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ARTICLE INFO ABSTRACT

Handling Editor- Richard D Methot, Jr Integrated fisheries stock assessment models (SAMs) and integrated population models (IPMs) are used in bio-
logical and ecological systems to estimate abundance and demographic rates. The approaches are fundamentally

Keywords: very similar, but historically have been considered as separate endeavors, resulting in a loss of shared vision,

Data integration practice and progress. We review the two approaches to identify similarities and differences, with a view to

Management

identifying key lessons that would benefit more generally the overarching topic of population ecology. We
Population dynamics present a case study for each of SAM (snapper from the west coast of New Zealand) and IPM (woodchat shrikes
Population model from Germany) to highlight differences and similarities. The key differences between SAMs and IPMs appear to
Uncertainty be the objectives and parameter estimates required to meet these objectives, the size and spatial scale of the
populations, and the differing availability of various types of data. In addition, up to now, typical SAMs have
been applied in aquatic habitats, while most IPMs stem from terrestrial habitats. SAMs generally aim to assess the
level of sustainable exploitation of fish populations, so absolute abundance or biomass must be estimated,
although some estimate only relative trends. Relative abundance is often sufficient to understand population
dynamics and inform conservation actions, which is the main objective of IPMs. IPMs are often applied to small
populations of conservation concern, where demographic uncertainty can be important, which is more conve-
niently implemented using Bayesian approaches. IPMs are typically applied at small to moderate spatial scales (1
to 10* km?), with the possibility of collecting detailed longitudinal individual data, whereas SAMs are typically
applied to large, economically valuable fish stocks at very large spatial scales (10* to 10® km?) with limited
possibility of collecting detailed individual data. There is a sense in which a SAM is more data- (or information-)
hungry than an IPM because of its goal to estimate absolute biomass or abundance, and data at the individual
level to inform demographic rates are more difficult to obtain in the (often marine) systems where most SAMs are
applied. SAMs therefore require more "tuning’ or assumptions than IPMs, where the *data speak for themselves’,
and consequently techniques such as data weighting and model evaluation are more nuanced for SAMs than for
IPMs. SAMs would benefit from being fit to more disaggregated data to quantify spatial and individual variation
and allow richer inference on demographic processes. IPMs would benefit from more attempts to estimate ab-
solute abundance, for example by using unconditional models for capture-recapture data.

Parameter estimation

1. Introduction models can be used to support conservation goals by estimating the risk
of extinction associated with alternative management actions (e.g.,

Providing management advice using population models fitted to Ellner and Fieberg, 2003; Saunders et al., 2018) and the sustainable
monitoring data is central to applied population ecology. Population harvest of commercially and recreationally important species by
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estimating the level of removal that is consistent with optimal man-
agement (e.g., Hilborn and Walters, 1992). Initially, population
modelling efforts were typically based on fitting models to a single data
set. With the development of statistical techniques that integrate mul-
tiple sources of data into a single analysis, ‘data integration” has become
a central theme in applied population ecology. By ‘integrated analysis’
we mean the explicit, model-based integration of multiple data sets,
each of which is informative about some or all parts of a statistical model
of the system under study. It is unsurprising that integrated analysis has
been developed in many fields as it is intuitive and logical to combine
multiple types of data to better inform parameter estimates. Typically,
there are practical benefits to data integration: the greater amount of
information usually leads to more precise estimates, and combining
different types of data may allow the estimation of additional parame-
ters that might not be identifiable with each data set alone (Goodyear,
1977; Fournier and Archibald, 1982; Besbeas et al., 2002; Pacifici et al.,
2017; Zipkin and Saunders, 2018; Miller et al., 2019; chapter 10 in Kéry
and Royle, 2021; Schaub and Kéry, 2022).

The integrated approach is common to both aquatic (fisheries) and
terrestrial (wildlife) modelling, with the result that the same basic
modelling approaches are used in both fields. Fisheries typically refer to
‘stock assessment models’ (SAMs)' when an integrated analysis is per-
formed,” while wildlife studies refer to ‘integrated population models’
(IPMs). However, so far there has been very little communication and
collaboration between practitioners of these approaches, despite
broadly similar ecological problems and the shared goal of a statistical
description of some population of interest. Integrated analyses of pop-
ulation size and dynamics have been developed independently for
fisheries stock assessment (Fournier and Archibald, 1982) and wildlife
research (Besbeas et al., 2002), and reviews of their use in the two fields
do not refer to developments outside the authors’ field of practice
(contrast reviews by Maunder and Punt, 2013 and Punt et al., 2013 for
fisheries assessment with Schaub and Abadi, 2011 and Zipkin and
Saunders, 2018 for ecology and wildlife assessment). Despite their
conceptual similarity, the specific details of how SAMs and IPMs are
applied can vary considerably among applications as a consequence of
the questions being asked, the data that are available, the characteristics
of the population (i.e., small or large population size) and also simply
the traditions of the field.

Fisheries modelling has traditionally focused on determining the
maximum catch that can be taken from a population over the long-term
(i.e., the maximum sustainable yield, MSY) and population size corre-
sponding to MSY, although information on stock status and fishing
mortality relative to other management reference points is an additional
focus in recent decades. Integrated fisheries stock assessments are based
on fitting a population dynamics model to an index of relative abun-
dance, data on removals (landings and discards) and/or the age-
composition data of the catch. In contrast, IPMs in wildlife manage-
ment and ecology have traditionally focused on determining the de-
mographic drivers of population change and on estimating trends in
abundance or demographic rates using, for example, capture-recapture
data® that are combined with population counts, and these types of
analyses have naturally been extended to population viability analysis
(PVA, Saunders et al., 2018; chapter 10 in Schaub and Kéry, 2022). The
usual statistical inference method, often frequentist for SAMs and

1 Data for aquatic animals such as marine mammals and seabirds are often
analyzed using methods that incorporate features of IPMs and SAMs (e.g.,
Robinson et al., 2015).

2 The term ‘stock assessment’ is also applied to other approaches that provide
advice to support management decision making.

3 There is a plethora of terms for data in which animals are assigned marks or
tags or have natural marks and may be resighted or recaptured if they survive
(sight-resight, capture-recapture). We will use the term ‘capture-recapture’ in
the paper, recognizing that animals need not be handled to be marked.
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Bayesian for IPMs, and software, often AD Model Builder (Fournier
et al., 2012) or TMB (Kristensen et al., 2016) for SAMs, and WinBUGS
(Lunn et al., 2000), JAGS (Plummer, 2003) or NIMBLE (de Valpine et al.,
2020) for IPMs, also differ. Only a small handful of marine studies have
explicitly (e.g., Maunder, 2004; Jacobson et al., 2020) attempted to
bridge the gap between population modeling focused on exploited (in
the case of SAMs) and unexploited populations (in the case of IPMs),
usually because of the incidental effects of fishing on the latter (Hoyle
and Maunder, 2004; Véran and Lebreton, 2008; Gamelon et al., 2021).
In the terrestrial realm, analyses of harvested wildlife populations (e.g.,
wild boar, Gamelon et al., 2021; grey wolves, Horne et al., 2019) have
similar goals (sustainable harvest) and data (harvest rates, age- and
sex-composition of the harvest) to fisheries assessments as well as data
that are common to wildlife analyses (capture-recapture data). Analyses
of some fish populations focus on extinction risk or human impacts other
than fishing (Deriso et al., 2008) using the same data needed for stock
assessments. However, the type of analysis and software used, as well as
the vocabulary, differ depending on whether the researcher has a fish-
eries or a wildlife background. We believe that the choice of the most
appropriate analysis method should not depend on idiosyncrasies of the
field of research, but rather on the objectives of the analysis, the char-
acteristics of the study design and of the population, and on the data
available.

Non-integrated stock assessment models that are based on a single
data set (e.g., Adams and Jones, 2022) and integrated models that do not
include an explicit demographic population model (e.g., Smith et al.,
2022) are not the focus of this study. We here compare the two types of
integrated analyses, SAMs and IPMs, to identify similarities and differ-
ences, including the structure of the models (Section 2), the typical data
sets used for parameter estimation (Section 3), and the key steps
involved in constructing SAMs and IPMs (Section 4). We illustrate the
two approaches using simple examples (Section 5) and outline the next
steps towards a unified approach to address natural resource manage-
ment problems using comprehensive population models (Section 6). In
addition, a common vocabulary and notation or at least explicit trans-
lations between terms used for the same concept in different fields is
required to share experiences and increase the rate of progress in the
application and development of both SAMs and IPMs. We therefore list
some of the key quantities, data types and terms and their meanings in
the two fields in Table 1.

2. Model structure and implementation

SAMs and IPMs can be viewed as demographic population models
linked to multiple observational sub-models to simultaneously estimate
parameters and analyze the population itself (Fournier and Archibald,
1982; Schaub and Keéry, 2022). Many SAMs and IPMs use a state-space
formulation,” where a demographic population model is coupled with
several sub-models for individual data sets. However, SAMs and IPMs
are not identical. Schaub and Kéry (2022) note that a typical IPM uses
data directly at the process level (e.g., fecundity data from counts of
young in the nest) and also at the population level (e.g., total population
counts or indices of abundance), and these two levels are usually linked
using an age-/stage-structured (matrix) population model (Caswell,
2001). An IPM is therefore a joint analysis with a joint likelihood for
multiple data sets that are informative about individual demographic
processes (survival, productivity, immigration, emigration) and about
population size (absolute or relative; structured or unstructured) and
that share some parameters (Fig. 1). Data that are informative about
some demographic rates are used to obtain the demographic informa-
tion in data that are aggregated across individuals, such as count data. In
contrast, SAMs typically use data aggregated over individuals, with
abundance trend and age-composition data providing information on

4 In the sense that they account for process and observation error.
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Table 1

Glossary of terms frequently used in this paper and in the literature on integrated
stock assessment models (SAM) and integrated population models (IPM). We

provide a short definition and related terms.

Term

Our definition

Other related terms

Joint likelihood

Capture-recapture
data

State-space model

Survey bias

Selectivity

[Catch] Age/
length/size
composition
data

Forcing function

Stock-recruitment
relationship

Harvest data

The combination of
likelihoods of different data
sets/types in a single
analysis.

Data that include individuals
that are artificially or
naturally marked and that
are encountered alive or
dead in subsequent time
periods.

A hierarchical model
composed of a process model
describing the (typically)
temporal development of the
state of interest in a
Markovian way and a
conditional observation
model linking the state of
interest with observations.
The coefficient that
represents the relationship
between an index of relative
abundance or an incomplete
population count and the
true population size.
Relative probability of being
harvested or sampled by age,
size, stage, or sex. It is often
parameterized using a
logistic or dome-shaped
function.

The proportion of
individuals in the catch or
sample that are of a given
age class, length, or size.
Data that are not fit in the
model, but used to
determine the values of a
process over time (e.g., a
covariate or catch).
Function that determines the
number of “recruits” to a
population as a function of
some measure of
reproductive output.

The amount (weight or
numbers) that died due to
fishing (both landed and
discarded fish).

Mark-recapture data, capture-
mark-recapture data, capture-
resighting data, multistate
capture-recapture data, sight-
resight data, tag-recovery
data, dead-recovery data,
tagging. ‘Ring’, ‘sight’, ‘tag’,
and ‘mark’ are generally used
interchangeably.

Hidden Markov model (if
states are discrete), random
effect (the process variability
can be modeled as a random
effect), latent variable model
(in terms of population
dynamics), process error,
process variability.

Catchability, selectivity (age-
specific survey bias),
detection probability.

Age-specific catchability, age-
specific survey bias.

Age/length/size-at-harvest
data, age/length/size-
frequency.

Stock-productivity
relationship, per-capita
recruitment, Spawner-recruit
curve.

Removal data, catch data.

processes at the population level. Combined with catch data using a joint
likelihood, they can provide information on individual processes (e.g.,
fishing vs. natural mortality), but sometimes several parameters have to
be pre-specified (i.e., fixed) to obtain an identifiable model. Some SAMs
also include age-length or tagging data for individuals in the joint
likelihood, which provide direct information on individual processes
such as growth.

Although SAMs are typically applied to fish, especially in marine
environments, and IPMs mainly to terrestrial vertebrates, the population
models on which they are based have a similar structure. Most SAMs are
based on age-structured models® often including sex structure and less
often spatial structure. Some SAMs are based on size- or stage-structured
models, usually for species that are difficult to age such as crustaceans.

5 Exceptions being biomass dynamics models.
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In contrast, IPMs are based either on models that lump all animals into a
single variable or on age-/stage-structured models. Most IPMs only
model females because of the monogamous mating system of many birds
and mammals. However, IPMs that explicitly include both sexes are
increasingly being used (Rotelli et al., 2021; Hostetler et al., 2021;
Millsap et al., 2023). The use of stage- rather than of age-structured
models is more common in IPMs because of the general lack of infor-
mation on the age composition of wildlife populations. IPMs tend to
model survival as a function of age or size/stage given information from
capture-recapture data, whereas SAMs separate survival into fishing
mortality and natural mortality (which can sometimes be assumed to be
a function of age, sex or length). Fishing mortality is, however, usually
assumed to be age- and time-specificc. When SAMs allow for
age-variation in natural mortality, they often do so by pre-specifying the
relative probability of mortality by age (Maunder et al., 2023), i.e.,
rather than estimating these parameters, they are fixed by the analyst.

IPMs are often applied to species with low (10 s-1000 s) population
sizes. This means that demographic stochasticity can be important for
both survival and reproduction and needs to be included in the model
formulation. Consequently, most IPMs are implemented using the
Bayesian inference framework because demographic uncertainty is
easier to incorporate (see e.g., Besbeas et al., 2005 for an exception). The
inclusion of demographic stochasticity is the rule rather than the
exception in IPMs even in applications where it is not necessarily needed
(Schaub and Kéry, 2022). Where sufficiently long time series of data are
available, IPMs can incorporate environmental stochasticity in addition
to demographic stochasticity (Schaub et al., 2013; Pace et al., 2017,
Pace, 2021). In contrast, SAMs are often implemented using methods
that are based on automatic differentiation (e.g., Fournier et al., 2012;
Kristensen et al., 2016) to facilitate the estimation of many parameters,
most of them being treated as random effects with a variance that is
assumed to be known (i.e., using penalized likelihood estimation).
Automatic differentiation requires the latent variables to be continuous,
and thus precludes easy estimation of count-valued variables such as the
discrete number of individuals, which is important to model for small
populations. However, SAMs increasingly include environmental sto-
chasticity in processes such as recruitment, survival (natural mortality
and/or selectivity) and growth. Some SAMs also allow for variation over
time in fishery and survey catchability (Fieberg et al., 2010), which is
also the case for IPMs that, for example, are based on capture-recapture
data (Schaub and Ullrich, 2021; Nater et al., 2023). Abundance is often
large to very large for exploited fish populations, and the recruitment
process for fish tends to be dominated by environmental variation, and
there is often not a strong relationship between reproductive output and
abundance of the first age- or size-/stage-class in the model (Gilbert,
1997; Szuwalski et al., 2015). As a result, uncertainty due to de-
mographic stochasticity in survival and reproduction is generally not
included in SAMs or is incorporated using random effects that are used
to represent environmental variability.

3. Data types

Table 2 lists typical types of data used in SAM and IPM analyses. In
general, both SAMs and IPMs can use any of the data types, but they
differ in terms of the data that are considered “essential™: catch and an
index of abundance (or age-/size-composition data) for SAMs, and data
on absolute or relative abundance for IPMs.

SAMs usually, and IPMs always, make use of data on absolute or
relative abundance. For SAMs, these data often come in the form of
measures of weight, such as biomass estimates from acoustic surveys or
fishery catch-per-unit-effort. In contrast, many IPMs are fitted to abun-
dance data in the form of counts or indices of abundance. These can be
either estimates of absolute abundance, such as counts of gray whales off
the coast of California (Laake et al., 2012), or counts of the number of
breeding pairs in a small population (Schaub and Ullrich, 2021), or
measures of relative abundance, such as kestrel monitoring at multiple
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Multiple other possible
datasets ...

\

Individual level | ¢—»

[ N\

Productivity data
(e.g. Poisson GLM or GLMM)

Capture-recapture
data

Population model
(e.g. matrix model)
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Time-series of population counts
(e.g. Gaussian state-space model)

}

<+— | Population level

Capture-recapture data
(e.g. Cormack-Jolly-Seber)

Time-series
of catch

Age/length
composition

c

Individual Population model r_‘g_ it Tipieiy
level (e.g. matrix model) ao (2P " ’ —» Blomass |
] A N
4
7
I~
- -~

Age-at-length data == == == == = = =

Index of relative abundance
(e.g. catch-per-unit effort)

Fig. 1. Graphical representation of an IPM (top, and an integrated SAM (bottom). Data sets (gray shaded) originate from the individual (red box) and the population
levels (blue box) and their connection is indicated by arrows. Data sets from both levels are jointly analyzed using a joint likelihood approach, and a population
model connects them (indicated by double arrows). For the SAM, there is usually also a link between number of individuals and biomass at the population level, also

indicated by a dashed arrow.
(Adapted from Schaub and Kéry, 2022)

Table 2

List of typical data sets used in integrated stock assessment models (SAMs) and in integrated population models (IPMs), application examples and the information the

data set typically provides (Table 6.2 in Schaub and Kéry, 2022 provides a more comprehensive list of possible data sets used in IPMs).

Data set

Alternative term

SAM Applications

IPM Applications

Common likelihood functions

Catch / harvest

Absolute abundance / biomass (raw data or
estimate)

Relative abundance / biomass (raw data or
estimate)

Encounters of identifiable individuals

Age/length/size and stage composition data
(from catches / harvests or from
observations during monitoring)

Telemetry data

Length-at-age (conditional age-at-length)
data
Productivity data (e.g., clutch size)

Removal data

Population count
Population count

Capture-recapture
data, see Table 1.

Catch age/length/
size-composition
data

Fecundity data
Breeding success data

Almost all applications

Gray whales: Punt and Wade
(2012)
Most applications

Skipjack tuna: Hilborn (1990);
Yellowfin tuna:Hampton and
Fournier (2001)

Fournier and Archibald (1982)

Methot and Wetzel (2013); Lee
et al. (2014)

Black bear: Fieberg et al. (2010);
Beluga whales: Jacobson et al.
(2020)

Egyptian vulture: Lieury et al.
(2015)

Lapwing: Brooks et al. (2004);
Kestrel: Fay et al. (2019)
Horseshoe bat: Schaub et al.
(2007); Song thrush: Baillie

et al. (2009)

Pintail: Zhao et al. (2019), Black
bear: Fieberg et al. (2010)

Greater sage grouse: Coates
et al. (2018); Black grouse:
Rotelli et al. (2021)

Peregrine falcon: Altwegg et al.
(2014); Kittiwake: Acker et al.
(2022)

Forcing function, normal or log-
normal

Normal, log-normal, Poisson,
Negative binomial
Normal or log-normal

Multinomial, binomial or
negative binomial

Multinomial or similar
approximation (see Maunder,
2011, for examples)
Binomial

Multinomial or similar
approximation
Poisson, Normal or binomial

sites (Fay et al., 2019), or video counts of spawning aggregations
(Waterhouse et al., 2020). It is common for estimates of relative abun-
dance (e.g., annual biomass divided by biomass in a reference year) to be
more accurate than estimates of absolute biomass (Thorson et al., 2021).

However, SAMs usually attempt to estimate absolute abundance using
information from both the relative abundance index and the sex- and/or
age-composition data using the population model, its parameter esti-
mates and assumptions, and the removal data (see Maunder and Piner,
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2015, for details) given the general need to provide catch advice in
absolute terms. In contrast, IPMs often do not attempt to estimate ab-
solute abundance, because variation in relative abundance is deemed
sufficient to understand population dynamics. This simplifies model
formulation and reduces data requirements. However, there is a focus on
absolute density for spatially explicit IPMs (Chandler and Clark, 2014)
or on absolute population size for IPMs assessing population extinction
risk (Saunders et al., 2018; Schaub and Ullrich, 2021).

Data on human-caused removals from the population are rarely used
in IPMs (but see e.g., Lee et al., 2015; Jacobson et al., 2020; Gamelon
et al.,, 2021), but are an essential data type in SAMs, where they are
included as either landings or discards (e.g., Methot and Wetzel, 2013).
Landings data are commonly assumed to be known exactly rather than
data to fit to, and even when landings data are modelled, they are
usually assumed to be very precise measures of the true landings
(Maunder and Punt, 2013). In contrast, discard data are usually esti-
mated from monitoring programs and may be subject to considerable
uncertainty (e.g., Zheng et al., 2021). In many SAMs, the estimates of
parameters representing the size of the population (i.e., the catchability
coefficient associated with abundance indices) are heavily informed by
treating the fishery history as a multi-year depletion experiment
(Maunder and Piner, 2015). In these cases, abundance indices are ex-
pected to decline when harvest is high, with the exact magnitude of this
decline informing the estimated size of the population.

Age and stage composition data (i.e., samples of the age or stage
composition of the population or of the removals due to harvesting) are
more commonly used in SAMs than in IPMs. Traditionally, information
on the age composition of removals due to fishing has been summed
along cohorts in virtual population analysis (VPA) to estimate absolute
abundance by cohort, adjusting for natural mortality (Lassen and Med-
ley, 2001). This approach assumes no error in the catch by age data,
which is unrealistic in most cases due to ageing errors, sampling vari-
ability, length to age conversion, and missing data. IPMs using
age-composition data (often but not exclusively age-at-harvest data)
treat them in a similar way as do SAMs based on the integrated analysis
paradigm, i.e. as a source of information on recruitment and survival
(Gove et al., 2002; Conn et al., 2008; Tavecchia et al., 2009; Broms et al.,
2010; chapter 17 in Schaub and Kéry, 2022) or to estimate the pro-
duction of offspring (Taylor and Udevitz, 2015; Koons et al., 2017).

Length-composition or other size-related data, such as weight, are
proxies for age in taxa with indeterminate growth, and are included in
most SAMs because these data are easy and cheap to collect from catches
or surveys, whereas aging is often time consuming and expensive. In
addition, catch is often recorded in weight and management quantities
expressed in biomass, and weight-at-age or weight-at-size is needed to
calculate these quantities or to convert them into the number of in-
dividuals as used in the model. Therefore, modelling growth (length-at-
age and/or weight-at-age) is often an important component of SAMs.
Some SAMs include both length and age composition data because only
a fraction of the catch or survey data is typically aged, while many more
fish are measured by length. The age-composition data are sometimes
included in the model as age conditioned on length to account for the
sampling design which is often based on prespecified length bins or to
account for the length-based selectivity of the gear (Lee et al., 2016).
IPMs generally do not include length-composition data because man-
agement is typically interested in the number of individuals, growth of
the usually studied species stops at maturity and the IPM does not
differentiate among adults of different sizes. IPMs are more likely to
model stage than age, where biological characteristics change with
stage. Theoretically, other compositional data related to age or stage (e.
g., number of antler points, accumulation of biofauna on shells, or shell
condition for crabs) could be modelled in the same way as
length-composition data (e.g., Zheng et al., 2021).

Capture-recapture data provide information on a wide range of
population parameters and processes, including survival, reproduction,
growth, movement and abundance (Williams et al., 2002). SAMs and

Fisheries Research 272 (2024) 106925

IPMs use capture-recapture data, but there are notable differences in
how they are collected and what information is extracted from them.
First, SAMs generally only have information on an initial capture and a
subsequent second capture, which is often lethal, because multiple (live)
recaptures are very rare in aquatic environments (exceptions are some
freshwater fish and marine mammals). In contrast, multiple recaptures
are common for terrestrial studies. As a result, the information content
of the capture-recapture data available for IPMs is usually much richer
than that available for SAMs. Second, SAMs use capture-recapture data
primarily to estimate abundance, fishing mortality, or movement in
spatially stratified SAMs (Goethel et al., 2021), whereas IPMs also use
them to estimate survival (Schaub and Kéry, 2022). Estimating abun-
dance is essential for calculating exploitation rates in SAMs and requires
that the number of unmarked individuals evaluated for marks is recor-
ded, the analysis is unconditional and the reporting rate (the probability
of a recaptured animal being reported) is correctly specified (Goethel
et al., 2023). In some cases, independent estimates of reporting rates can
be obtained from experiments on fishing vessels (Vincent and Pilling,
2023) or from reward tags (Pollock et al., 2001; Meyer et al., 2012). In
the absence of data on reporting rates the ‘recapture conditional’
approach to analyzing capture-recapture data (e.g., McGarvey et al.,
2010) can be used to estimate movement rates. Tag loss and
tagging-related mortality are issues that may need to be addressed when
analyzing capture-recapture data. Estimating survival from
capture-recapture data, which does not need the number of unmarked
individuals to be recorded, requires the joint estimation of recapture
probabilities, and parameters related to tag loss and tagging-related
mortality need to be modelled appropriately to avoid bias (Lebreton
et al., 1992). Sometimes additional information such as a location or
state (e.g., breeder or non-breeder) is collected for each encounter.
These data allow multistate capture-recapture models to estimate
additional parameters such as movement rates or breeding propensity
(the probability that a female is reproducing in a year, Lebreton et al.,
2009).

Other types of data can also be integrated. In SAMs, these include tag
growth-increment in length-structured models (Punt et al., 2013), and
environmental data such as temperature, predator abundance, or ocean
pH (Miller et al., 2016). Data on reproduction such as clutch or litter
size, number of fledglings or pups raised by a female, and encounters of
marked dead individuals (ring-recovery data) are often used in IPMs (see
Table 6.2. in Schaub and Kéry, 2022).

4. Developing SAMs and IPMs

The steps involved in developing most SAMs and IPMs are very
similar:

o Identify the question or set of questions that must be answered or the
management decision that must be informed by the analysis and/or
the quantities that the model is intended to estimate.

e Select one or a set of population models with different levels of
complexity in terms of how the population is structured (e.g., by age,
stage or space). The complexity of the model will depend on the goals
of the analyses, the knowledge of the species and system, and the
data available. This step involves the construction of structured
population models that describe the trajectory of population size
over time as a function of previous population size and of de-
mographic rates. A life-cycle graph can be helpful to characterize the
population model and facilitate its development (Schaub and Kéry,
2022).

e Select how each demographic process (e.g., growth, survival,
reproduction) is to be modelled (e.g., age- or stage- specific, as a
function of density and/or environmental variables and perhaps
subject to demographic and/or environmental stochasticity).

e Identify data sets that could be used for parameter estimation and
how the observation process (e.g., harvest selectivity, recapture
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probability, survey bias/catchability) is to be modelled. This step
may also precede the previous one as the amount and type of the data
may affect the way in which the model is formulated.

Select the likelihood function for each data set (referred to as
‘component likelihoods’). In the case of a Bayesian implementation,
priors are chosen for the parameters of the model (some of which
may be so precise as to ‘fix’ their values) and in the frequentist
framework values are specified for parameters that are not informed
by the data (note that likelihood penalties are also commonly used in
SAMs that estimate parameters using maximum likelihood®). Under
an assumption of independence for the data sets, the joint likelihood
is defined as the product of the component likelihoods. The joint
likelihood requires some degree of sharing of parameters between
two or more of its components. A typical linkage is provided by the
population model, which contains all the demographic parameters
and age-/stage-structured population sizes, and thus provides a sort
of ‘motherboard’ into which all the other data sets can be ‘plugged’.
Fit one or a set of candidate models or configurations (sets of as-
sumptions about model structure and parameter values) using
maximum likelihood, Bayesian or related methods.

e Apply diagnostics to eliminate model configurations that are clearly
mis-specified and/or fix the mis-specification (e.g., Carvalho et al.,
2017, 2021 for SAM; Besbeas and Morgan, 2014; chapter 7 in Schaub
and Kéry, 2022 for IPM).

If multiple models are fitted, use model selection criteria to further
reduce the number of models and/or to apply model weighting/
averaging methods to construct an ensemble summary to better
capture model uncertainty.

5. Examples

In this section we provide two simple, but typical, examples of a SAM
and an IPM to illustrate the general characteristics of each.

5.1. A SAM case study: Australasian snapper from the west coast of New
Zealand

5.1.1. Background

In the past, the primary tools for stock assessment were usually based
on a single data source using VPA or surplus production models. The
latter aggregate abundance over age into a single production function
and fit to an index of abundance conditioned on catch or on effort (Fox,
1970; Pella and Tomlinson, 1969). Yield-per-recruit (YPR) analyses use
estimates or assumptions of age-specific population dynamics processes
(natural mortality, growth, and age-specific selectivity to the fishery) to
estimate the fishing mortality rates corresponding to optimal yields
(Beverton and Holt, 1957). Other approaches were also used such as
stock-recruitment analysis (Ricker, 1954; Beverton and Holt, 1957) and
catch-curve analysis (Chapman and Robson, 1960).

Integrated analysis was developed in the context of catch age-
composition data. It is well-known that catch age-composition data
alone do not allow the simultaneous estimation of recruitment and age-
specific selectivity of harvest (selectivity-at-age) if both are allowed to
vary among years (Pope and Shepherd, 1982). Doubleday (1976)
accounted for errors in catch age-composition data by decomposing
age-specific fishing mortality into a multiplicative model with an age
component that was constant over time and a time component, reducing
the number of parameters and analyzed multiple cohorts simulta-
neously. However, he also found that catch age-composition data alone

® This involves (a) treating random effects (such as annual deviations in
natural mortality about their expected value) as if they were fixed effects but
placing a prior on them, with the variance parameter pre-specified and not
estimated, and (b) imposing what amount to priors on fixed effects parameters
but treating them as likelihood components.
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were not sufficient to provide a reliable estimate of stock biomass.
Paloheimo (1980) overcame this problem by assuming that fishing
mortality was proportional to fishing effort but ignored any error in the
relationship between these variables.

Doubleday (1976) and Paloheimo (1980) laid the foundations for
integrated analysis, but it was Fournier and Archibald (1982) who
developed the comprehensive statistical framework. They fit an inte-
grated SAM using a joint likelihood framework to data on catch
(conditioned on fishing effort) and age-composition, incorporating
process error in the effort-fishing mortality and in the stock-recruitment
relationship.

We illustrate a typical integrated SAM that is fit to an index of
relative abundance and age-composition data, while assuming that
catch is known precisely, for a teleost species, the Australasian snapper
(Pagrus auratus). It is the most valuable commercial and recreational
inshore finfish in New Zealand and is distributed around the North Is-
land and the top part of the South Island. It has been exploited since the
mid 1800's and is currently managed under New Zealand’s Quota
Management System. The species is moderately long lived, but fast
growing, reaching ages of 60 years and lengths of one meter, while
maturing at 3—4 years of age. We apply the SAM to the snapper stock on
the west coast of the North Island of New Zealand.

5.1.2. Population model

A classic traditional integrated SAM fits an age-structured population
model to an index of relative abundance and the age-composition of the
catch, assuming that the landed catch is correctly recorded, by esti-
mating the average recruitment, the annual deviations in recruitment
from the recruitment expected from a stock-recruitment relationship,
and the parameters of the relationship between the relative probability
of capture and age (i.e., the selectivity curve). Fishing mortality is
calculated on the assumptions that the catch in weight and the value of
several demographic parameters such as natural mortality are known
exactly, or nearly exactly for catch in some implementations. A key
objective of a SAM is to estimate the absolute abundance (or biomass) of
the population to determine the impact of the removals (harvest) from
the population and to separate fishing from natural mortality. The
quantities of management interest (e.g., maximum sustainable yield,
MSY) are derived and calculated based on the parameter estimates and
assumptions about population dynamics, with uncertainty characterized
using bootstrapping, asymptotic normal approximations, profile likeli-
hood, or Bayesian methods (Pawitan, 2013; Hobbs and Hooten, 2015).

Here we provide an example that represents some of the key com-
ponents of most modern SAMs that are fit to multiple data types. The
assessment is based on a single sex model that tracks numbers from age 1
year to a plus-group age. It assumes that total mortality is separated into
natural mortality (M, assumed to be independent of time and age) and
fishing mortality (F;), with the latter modelled as the product of age-
specific selectivity® (S,, assumed to be a logistic function of age) and
fully-selected fishing mortality’:

R ifa=1
Nt = { Nygye M5mf fl<a<A @
Nz_A—]ei(M+SA7IF1) + N,_Aei(MJrSAF') l.f(,l =A

where N, , is the number of fish of age a at the start of year t, R, is the
recruitment (at age 1) during year t, and A is the plus-group age that
accumulates all the older fish. Recruitment is often related to repro-
ductive output according to a stock-recruitment, but in this example,
recruitment is modelled assuming that it is log-normal, but parameter-

ized with the % term such that E(R;) = R:

7 The fishing mortality rate for the age-class(es) that has the highest
selectivity.
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R, =Re" 2 2

where R is the mean recruitment,® ¢, is the recruitment deviation for
year t, & ~ N(0,6%), and og is the amount of temporal variation in
recruitment. A penalty (see Equations A.4 and A.5) is added to the
objective function to implement the log-normal distributional
assumption.

The fully-selected fishing mortality is estimated for each year t.
Selectivity, the relative probability of being captured by the fishery is
assumed to increase with age and is hence modelled using a logistic
equation (parameterized using the age-at-50%-selectivity (aso) and
slope of the selectivity at aso in logit-space (asope)):

gil (Sn) = siope (Ll - aSO) (3)

where g(a) is a logistic function.
The total catch in weight is given by:
A S.F;

_ ,—(M+S,F)
azlw"“MJrSaFfN"“(1 ¢ ) )

C =
where S F;/(M + S,F;) is the fraction of total mortality attributed to the
fishery and exp( — (M + SqF;) ) is survival, w;, is the mean weight of an
animal of age a during year t. The biomass vulnerable to the fishery at
the start of year t, B, is a sum over all age classes:

A
B, = Z«:lsﬂwlﬂN’ﬂ )

A common feature of many fisheries stock-assessment models is the
need to specify the state of the population when the model is initialized.
Often, analysts choose to start their population model before large scale
fishing began, so that the age structure is a function of natural mortality
only. The initial conditions here assume that the population was unf-
ished and, in expectation, at equilibrium with a stable age structure
based on natural mortality.

R ifa=1
T—a-M -
Niu = Re ifl<a<A ©)
_e-a-M
1 —e™ fa=A

5.1.3. Parameter estimation, likelihood functions, and penalties

As with most age-structured integrated stock assessments (Fournier
and Archibald, 1982; Maunder and Punt, 2013), the objective function
(i.e., the negative log-likelihood to be minimized) includes contributions
from the data as well as from various penalties (Appendix A). The pa-
rameters of the population model (Table 3) are estimated by fitting the
model to catch data, an index of vulnerable biomass, and catch
age-composition data (data sources that all relate to the population
aggregated over individuals). Estimation is carried out by maximizing
the penalized log-likelihood. Several of the parameters of the population
model are fixed based on auxiliary information (e.g., natural mortality
and weight-at-age), because the available data fit in the model are un-
informative about them. The remaining parameters are estimated, with
a penalty for the annual recruitment deviations based on the log-normal
distributional assumption.

5.1.4. Data and results

The historical data are the same as those used by Maunder and Deriso
(2003). The stock is modelled from 1931, which is assumed to be an
unexploited state, to the start of 1999 where individuals older than 20

8 Equation 2 includes a bias-correction factor so that the expected recruit-
ment equals R. This bias-correction factor accounts for retransformation bias,
and can be calculated in a variety of different ways (Thorson, 2019).
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Table 3

Parameters of the integrated stock assessment model (SAM) for the snapper data
with some explanation. Means (MLE) and standard errors (SE) are given for
parameters that are estimated. For parameter that were fixed (pre-specified), the
values are provided.

Parameter Maximum likelihood estimate SE
(MLE)
Average recruitment (log(R)) 7.560 0.026

Fixed at 0.075 yr ! -
Estimated (values not shown) -

Natural mortality (M)
Fishing mortality (F,)

Age at 50% selectivity of the logistic 1.117 0.066
selectivity curve (asp)

Age at 95% selectivity of the logistic 1.196 0.334
selectivity curve (ags)

Weight-at-age (w,) Fixed

Recruitment deviates (&) Estimated for years 1970-1995, -
which relates to cohorts
represented in the age-

composition data.

02
Fixed at ER for earlier years to

ensure recruitment equals R
Standard deviation of the lognormal Fixed at 0.6 -
distribution for recruitment (o)
Standard deviation of the lognormal
distribution for catch (o¢)
Catchability (log(Q)): the coefficient
that represents the relationship
between an index of relative

abundance and the population

Fixed at 0.05 to represent that the -
catch is known with little error
-10.597 0.113

are accumulated at 20 + . The model is fitted to catch data for the entire
time period (1931-1998), to an index of relative abundance (catch per
unit effort for years 1974-1991) and to catch age-composition data (for
years 1975, 1976, 1979, 1986, 1987, and 1989-98). Having catches
available from 1931 onward allows the model to treat the catch time
series as a complete record of removals, improving its information as a
‘depletion experiment’ to estimate absolute population size. Recruit-
ment deviations are estimated for years that are well represented in the
catch age-composition data (1970 to 1995). The model is implemented
using TMB (Kristensen et al., 2016); the code, an R script, and data files
are included in the supplementary material.

Fig. 2 shows the estimates of biomass, fishing mortality, recruitment,
and selectivity. Fig. 3 shows fits to the catch data and the index of
abundance. Figs. S1 and S2 show the fits to the catch age-composition
data in the form of fits to data for individual years and in the form of
bubble plots of standardized residuals.

5.1.5. Potential model extensions

The model could be converted from a penalized likelihood approach
to an explicit state-space approach by making the annual recruitment
deviates a random effect and estimating o as a fixed effect (Thorson,
2019). This would integrate over the annual recruitment deviations. A
similar approach could be applied to fishing (e.g., treating the loga-
rithms of the annual fishing mortality rates as a random walk, c.f., Berg
and Nielsen, 2016) and natural mortality. The number of recruitment
deviations could be increased to better reflect uncertainty in historical
abundance - similarly, recruitment deviations could be added to the
initial conditions to reflect the assumption that the stock was close to,
but not exactly at, its unfished level in 1931. A stock-recruitment rela-
tionship could be added to the model with the annual deviations around
this relationship. The model could have allowed for ageing error, which
has been quantified for Australasian snapper (Walsh et al., 2014).

The analysis could be implemented in a Bayesian framework by
adding penalties to the objective function that reflect prior distributions,
possibly estimating additional parameters that were originally fixed,
and using, for example, the tmbstan package (Monnahan and Kristensen,
2018) or reprogramming in JAGS (Plummer, 2003) or NIMBLE (de
Valpine et al., 2020).



M. Schaub et al.

Vulnerable biomass (B) * 1000

1940 1950 1960 1970 1980 1990

3000 —

N
o
o
o
1

Recruiment (R

1000 —

1940 1950 1960 1970 1980 1990

Fisheries Research 272 (2024) 106925

0.5
0.4
0.3
0.2

Fishing mortality (F)

0.1

0.0 —

1940 1950 1960 1970 1980 1990

0.8

0.6

0.4

Selectivity

0.0 -

Frrrrrr1rrrrrrr 1o Tl
1 3 65 7 9 11 13 15 17 19

Age

Fig. 2. Estimates of vulnerable biomass (in tons), fishing mortality, and recruitment (in 1000 s of individuals in age class 1) with asymptotic 95% confidence in-

tervals, and selectivity for the New Zealand snapper application.
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Fig. 3. Fits (black lines) to the index of relative abundance and the catch (in
tons) with 95% confidence intervals on the observations for the New Zealand
snapper application (red).

5.2. An IPM case study: woodchat shrikes

5.2.1. Background

Prior to the development of IPMs (Besbeas et al., 2002), wildlife
population ecologists focused either on estimating demographic rates
from individual-level data (e.g., Williams et al., 2002) or on studying
population dynamics (e.g., assessing the impact of environmental vari-
ables on annual population growth, or assessing density dependence)
from population count data (e.g., Lande et al., 2003). Where estimates of

key demographic rates were available, age/stage structured population
models were often constructed to examine how variation in de-
mographic rates affected population dynamics (e.g., Bro et al., 2000;
Gaillard et al., 1998). Population count data, when available, were used
either for model validation (e.g., Barbraud et al., 1999; Schaub et al.,
2004) or to determine whether the observed changes in demographic
rates were sufficient to account for the observed change in population
size (e.g., Peach et al., 1999; Siriwardena et al., 2001). The latter
approach shares elements with IPMs, but the analyses were piecemeal
and ignored the sampling variability of the demographic rates.

Here, we illustrate a typical ‘terrestrial’ IPM that is fit to count,
capture-recapture and productivity data in a bird species, the woodchat
shrike (Lanius senator). This is an insectivorous, migratory passerine bird
that breeds in semi-open farmland around the Mediterranean Sea. Its life
cycle is typical of many short-lived passerines that start to reproduce at
the age of 1 year, when they are considered adults. The study population
was surveyed by Bruno Ullrich from 1964 to 1992 in southern Germany
in an area of 120 km? (Ullrich, 2017), which was defined in the typical
somewhat haphazard way based on the presence of suitable shrike
habitat and, more importantly, on logistical considerations (Schaub and
Ullrich, 2021; chapter 11 in Schaub and Kéry, 2022). IPMs for somewhat
more complex models were developed using the same data, with the
main objectives of identifying demographic drivers and of assessing
possible demographic causes of population extinction (Schaub and Ull-
rich, 2021; chapter 11 in Schaub and Kéry, 2022).

5.2.2. Population model

We adopt a female-based stage-structured population model with a
pre-breeding census, i.e., the population is modelled in the spring just
before reproduction, when all individuals are at least 1 year old. Three
classes of females can be identified according to their origin:

e Surviving adults in year t (S;) are females that reproduced in year t-1
in the study area.

e Local recruits in year t (R;) are females born locally in year t-1 that
return to the study area.

e Immigrants in year t (I,) are females born elsewhere that appear in
the study area for the first time in year t.

The number of surviving adults in year t (S;) is a function of the
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number of breeders in year t-1 (Ni.1) and the apparent survival proba-
bility of adults from year t-1 to t (¢4,_1), i.€., S¢ ~ Binomial(¢g, 1,N;-1).
The binomial distribution allows for demographic stochasticity, which is
an important component of the demography of small populations
(Caswell, 2001). Apparent survival is defined as the probability of sur-
viving and returning to the study area. Thus, permanent emigration
from the study area is accounted for by apparent survival, even though it
cannot be quantified separately from true survival using these data.

The number of local recruits in year t (R,) is a function of the number
of breeders in year t-1, productivity in year t-1 (p,_;) and juvenile
apparent survival probability from year t1 to t (¢;,4), ie,
R; ~ Poisson(N;_1p,_1 ¢;,_1 /2). Here, productivity is expressed by the
average number of fledglings produced by a female, and assuming an
even fledgling sex ratio.

Finally, the number of immigrants in year t (I) is specified as
I, ~ Poisson(w;), where w; is the expected number of immigrants in year
t. The total female population size in year t is the sum of the three types
of females, i.e., N; = S; + R; + I,.

This stage-structured population model provides the link between
population size and the demographic processes and connects the indi-
vidual and the population levels (Fig. 1). The model incorporates de-
mographic stochasticity (represented by use of statistical distributions
rather than by expectations) and environmental stochasticity (de-
mographic rates vary annually; modelled with temporal random ef-
fects). However, to simplify the model and based on previous results
suggesting only limited annual variability in some parameters (chapter
11 in Schaub and Kéry, 2022), the apparent survival of both age classes
and the expected number of immigrants are assumed to be constant over
time, i.e. ¢;, = ¢}, o, = . and @ = .

5.2.3. Parameter estimation, likelihood functions, and penalties
Every year, three data types were collected:

Population counts: the observed number of breeding pairs (or fe-
males) within the study area. Suitable breeding sites were visited
multiple times during the breeding season, so the observed number
of breeding pairs is more of a census than a relative abundance index.
Productivity data: the number of young fledged for the nests found -
nests that failed before fledging were denoted as unsuccessful with
zero young. Note that not all nests of the observed breeding pairs
were found.

Capture-recapture data: a sample of nestlings was marked with a leg
ring and a sample of unmarked adults was captured and marked with
color rings. Adult breeders were checked with a telescope to identify
marked individuals. In 10 out of 29 years, no capture-recapture data
were collected due to time constraints.

Appendix B contains the full derivation of the likelihood function,
which consists of three components: a) a state-space model for the
annual population count data, b) a zero-inflated model for the produc-
tivity data, and c) a Cormack-Jolly-Seber (CJS) model for the capture-
recapture data. Some parameters are shared among component likeli-
hoods ensuring their integrated estimation based on the information
from the three data sets. There is no data set that provides direct in-
formation about immigration, so it is a latent or ‘hidden’ demographic
parameter. It can only be estimated in the joint model, but not separately
from any of the individual data sets alone (Abadi et al., 2010).

The joint likelihood requires the assumption of independence for the
different data sets (Schaub and Keéry, 2022; Frost et al., 2023). It can
either be analyzed in the frequentist approach by maximization (Besbeas
et al., 2002) or priors can be placed on its parameters and Bayesian
inference used. We took the latter approach and fit the model using
JAGS (Plummer, 2017) from R using jagsUI (Kellner, 2019), using vague
priors throughout (see code for priors).
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5.2.4. Results

The MCMC chains converged rapidly. Posterior means and 95%
credible intervals for the main parameters are given in Table 4. The
estimated total population size is in good agreement with the observed
population counts (Fig. 4), and the estimated stage-specific population
sizes suggest that local recruitment was low and immigration substantial
(Fig. 4). Although we assumed most demographic parameters to be
constant over time, population size fluctuated strongly, which is a
consequence of the demographic stochasticity affecting this small
population.

Based on the parameter estimates we could now conduct retrospec-
tive analyses to identify the contributions of each demographic process
to the observed temporal variation of the population growth rate (Koons
et al., 2017; Schaub and Ullrich, 2021), or conduct prospective analyses
to project the population into the future, perhaps under different sce-
narios of changes in the mean of demographic rates due to management
or harvest interventions (Saunders et al., 2018; Schaub and Kéry, 2022).
Schaub and Ullrich (2021) performed a population viability analysis and
found that extinction was unlikely due to the rescue effect of sustained
immigration. Unfortunately, the population did in fact go extinct shortly
after the end of data collection, suggesting that immigration was no
longer compensating for losses for this increasingly isolated small
population.

6. Key similarities and differences between SAMs and IPMs
6.1. Purpose

SAMs and IPMs have the common goals to create a model that best
represents ‘reality’, to estimate the parameters of the model, to check
that the model fits the data adequately, quantify the uncertainty of the
parameters and derived quantities such as realized population size, and
to use the model to address the objectives of the modelling exercise.
Moreover, all modelling efforts are undertaken to improve our under-
standing of the population under study, such as how many animals are
there, what is their trend in abundance, and what factors are driving
changes in reproduction and survival. However, target audiences of
SAMs and IPMs differ and hence the types of specific questions they aim
to address.

SAMs are usually developed with the aim of informing management
decisions, and almost always in the context of exploited populations.
They typically attempt to estimate stock status relative to management
reference points, and/or catch limits that will achieve maximum long-
term yield or profit, or that will allow a depleted population to
recover at a desired rate. The majority of stock assessments worldwide
are conducted using a small number of SAMs implemented as software
packages (Dichmont et al., 2021), which facilitates review and collab-
oration among modelling groups. However, there are also research
SAMs where the focus is on understanding demographic processes
(Dichmont et al., 2021).

The main purpose of IPMs is to improve the understanding of the

Table 4

Posterior means and 95% credible intervals (CRI) of parameters in the integrated
population model (IPM) for the woodchat shrike. All model parameters are
estimated.

Parameter Posterior mean 95% CRI

Apparent juvenile survival (¢;) 0.057 0.024; 0.110
Apparent adult survival (¢,) 0.388 0.289; 0.500
Nest success probability (logit™* (1,)) 0.766 0.699; 0.830
Number of fledglings per successful nest (x) 4.287 4.117; 4.451
Number of immigrants (o) 7.621 5.445; 9.846
Reencounter first year (p;) 0.154 0.042; 0.358
Reencounter later years (pq) 0.486 0.299; 0.695
Variability of number of fledglings (a}?) 1.368 1.248; 1.507
Temporal variability of nest success (62) 0.677 0.276; 1.131
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Fig. 4. Estimated number of female woodchat shrikes in spring (corresponding
to the number of breeding pairs), along with the counts (top panel), and the
decomposition of these females based on their origin into immigrant, local
recruit and surviving adult (bottom panel). The shaded area in the top panel
shows the limits of the 95% credible interval, the line and column heights show
posterior means.

dynamics of the population under study, that is, to estimate annual
abundance and demographic rates. Often there is an applied aspect
involved. Retrospective and prospective population analyses are per-
formed from the output of an IPM to assess the demographic mecha-
nisms underlying changes in abundance (e.g., Plard et al., 2020) or
population viability (e.g., Oppel et al., 2014). The use of IPMs to inform
harvest or management has only just begun (e.g., Saunders et al., 2018;
Nater et al., 2021; Riecke et al., 2022; Zimmerman et al., 2022; McIntosh
et al., 2023). IPMs are also used for fundamental research in population
ecology, e.g. for studying mechanisms of density-dependence (Gamelon
et al., 2016) or interspecific interactions (Péron and Koons, 2012;
Gamelon et al., 2019), or to assess how immigration works (Szostek
et al., 2014; Acker et al., 2022).

6.2. Demographic detail and scale

SAMs and IPMs use a population model and linked observation and
process sub-models to make use of multiple data types and to inform the
values of the parameters of the population model. SAMs and IPMs often
differ in the way reproduction is related to the number of reproductive
adults, whether demographic stochasticity is included, in the spatial
domain of the population under study, and the fitting framework.

Typically, IPMs explicitly account for reproductive and age-0 dy-
namics along with an assumption about the probability density function
for the offspring (e.g., Poisson, log-Normal) whereas SAMs often model
abundance implicitly or explicitly from the age or size at which animals
are first monitored (e.g., the age at recruitment to the fishery). Both
approaches need to specify the extent to which reproductive output is

10
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autocorrelated or related to environmental variables. SAMs typically
estimate abundance in the youngest/smallest population stage or age
class either as random deviations from a mean or as random deviations
about an underlying stock-recruitment relationship. Similarly, SAMs
model the proportion of an age-/size-class dying due to fishing or nat-
ural causes ignoring demographic stochasticity (but not necessarily
environmental stochasticity, e.g., Berg and Nielsen, 2016; Miller et al.,
2016). In contrast, recently developed IPMs often capture both de-
mographic and environmental stochasticity in survival (see many ex-
amples in Schaub and Kéry, 2022). One of the reasons for the difference
in approach to modelling recruitment and survival is that most SAMs are
applied to very large populations (thousands to millions or even billions
of individuals) so that effects of demographic stochasticity can safely be
neglected. In contrast, many IPMs are applied to small populations
(<100 individuals) where the effects of demographic stochasticity are
likely to be important. Another reason is the different biology of the
target species. Fish typically produce many eggs (e.g., 100 s — 1000 s),
the hatchlings are small, may be pelagic and it is not possible to count
them nor to allocate them to a mother. Wildlife species, which are the
target of most IPMs, have comparatively small clutches or litters (e.g.,
1-10), juveniles are often large enough to be marked, and parental care
provides the opportunity to link productivity to a mother.

The outputs of SAMs (such as maximum sustainable yield, catch
limits for commercial and recreational fisheries, and trends in spawning
stock biomass) are usually expressed in terms of biomass whereas the
results of IPMs and SAMs for marine mammals and seabirds are more
likely to be expressed in terms of numbers of individuals. This requires
many SAMs to include models of how weight changes with age, sex and
time, and perhaps also as a function of density and environmental fac-
tors (Punt et al., 2001; Punt et al., 2021). SAMs are also often fitted to
size-composition data, which requires estimates or assumptions about
size-at-age (i.e., growth) and its distribution.

The stock assessment community has developed assessment methods
that can directly account for the effects of multispecies predation given
data on diets and on trends in abundance and age-/size-composition (e.
g., Jurado-Molina et al., 2005; Holsman et al., 2016). These assessment
methods are increasingly being applied in North America and Europe
but have yet to be directly incorporated into management decision
making. To date, multispecies predation models have not been applied
to wildlife management problems.

The spatial scale of IPMs tends to be well defined and rather small,
whereas SAMs focus on large populations whose boundaries are often
not well defined or include the entire species. In addition, SAMs oriented
towards commercial fishing may have spatial domains defined on the
basis of political rather than biological considerations (Cadrin et al.,
2023). SAMs typically assume a closed population with no immigration
or emigration, whereas IPMs often assume an open population for which
estimates of survival (apparent survival) include emigration implicitly
and immigration is modelled explicitly (see e.g., Section 5.2). SAMs are
often applied to data over multiple decades (see e.g., Section 5.1),
whereas this is rarely the case for IPMs given their need for time-series of
individual observations.

6.3. Parameters estimated and estimation frameworks

Most SAMs and IPMs include fixed effects (e.g., unfished biomass/
recruitment for SAMs, average survival rate for IPMs) and random ef-
fects. The random effects are typically used to represent temporal vari-
ation in population processes (e.g., deviations of recruitment from a
stock-recruitment relationship for SAMs; temporal deviation of sur-
vival from a long-term mean for IPMs), but not always (e.g., semi-
parametric representations of age-specific selectivity; Xu et al., 2019). In
addition, IPMs include demographic uncertainty by assuming proba-
bility distributions for processes with realizations treated as random
effects.

SAMs and IPMs are fitted using a variety of methods such as



M. Schaub et al.

maximum likelihood and Bayesian inference. IPMs are typically imple-
mented in the Bayesian inference framework (although see Besbeas
et al., 2002; Besbeas and Morgan, 2014; Tavecchia et al., 2009; Besbeas
and Morgan, 2017 for exceptions) due to its convenience in imple-
menting demographic uncertainty. SAMs are typically implemented
with maximum likelihood, or using ‘penalized maximum likelihood’
[PML], where the random effects are treated as fixed effects subject to a
penalty based on the distribution assumed for the random effects, with
the associated variance parameter pre-specified. PML has been used
primarily due to the lack of efficient software implementations for
approximating the integrals over the random effects in what are highly
non-linear models, resulting in longer run times and convergence
problems.” However, some applications (e.g., Maunder and Deriso,
2003), including more recent developments in stock assessment (Berg
and Nielsen, 2016; Miller et al., 2016), involve the implementation of
SAMs as state-space models, where the likelihood is marginalized over
the random effects (process variation) using Laplace approximation,
Bayesian integration, or other approaches.

Bayesian approaches (Punt and Hilborn, 1997) are less common for
SAMs, again due to computational demands especially due to large
sample sizes, but also due to concerns related to assessment outcomes
being driven by overly informative priors. However, Bayesian analysis
was popular for early SAMs that were less complex (McAllister et al.,
1994; Punt and Hilborn, 1997) and one of the first general integrated
models was developed explicitly to allow estimation in the Bayesian
framework (Coleraine; Hilborn et al., 2003). Bayesian is the primary
assessment framework used in New Zealand CASAL (Bull et al., 2012),
where Bayesian inference is the main basis for the provision of man-
agement advice.

6.4. Types of data

A majority of the data for SAMs are opportunistic (e.g., commercial
catch-per-unit-of-effort (CPUE) and catch length composition) rather
than being based on a fishery-independent sampling program (e.g., a
scientific survey) and therefore are more subject to bias (e.g., due to
preferential sampling). Some data sets are collected specifically to ac-
count for selective sampling or reporting errors. Typically, few data are
sampled that provide information on demographic processes, and hence
there is a need to fix rather than estimate some demographic parameters
in most SAMs. In contrast, IPMs typically use multiple data sets that
provide direct information on demographic processes, and they are
collected in a way that accounts for observation error (e.g., capture-
recapture data). Population-level data, such as population counts or
indices, are also used, but often no data are collected to adjust for bias in
these data due to systematic observation errors. It is generally assumed
in IPMs that temporal variation in count or index data largely reflects
temporal variation in population size, but if this assumption is incorrect
it can lead to biased parameter estimates (Schaub and Kéry, 2022).

6.5. Capture-recapture data

Capture-recapture data are used in both SAMs and IPMs, but their
purpose, data collection, and analysis are quite different. In SAMs
capture-recapture data are used to estimate either mortality rates or
abundance. The number of individuals in the sample, both marked and
unmarked, is recorded, and no marked individuals are released after
capture (they are generally dead or kept). Estimates of survival are
usually biased and imprecise due to practical issues with implementing

9 Auto-differentiation Model Builder ADMB, Fournier et al. (2012), which
was traditionally used for most SAMs, supports inference in both the Bayesian
and frequentist frameworks but the Bayesian sampling algorithm is slow except
for very simple problems and the implementation of the Laplace approximation
is also very slow.
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tagging programs for large spatially dispersed fish stocks (Maunder
et al., 2023). However, alternative sampling designs such as close-kin
mark-recapture (Bravington et al., 2016) may pave the way for sur-
vival to be estimated within SAMs.

Wildlife capture-recapture data allow recaptures to be released
again, so that there are capture histories of marked individuals over
multiple sampling occasions (typically years). The focus of these richer
data in the context of IPMs is to estimate survival and state-transition (in
the case of multistate capture-recapture data). They are not typically
used to estimate population size and recruitment because their estima-
tion requires additional assumptions about the initial capture that are
difficult to test. Multiple recaptures of the same individuals allow for
complex modeling of survival and recapture processes. For example,
survival can be modelled as a function of individual characteristics such
as age, stage (e.g., breeder or non-breeder) or body size. Likewise, the
recapture probability can be modelled as a function of individual traits,
or depending on whether an individual was captured before to account
for trap-shyness or trap-happiness (e.g., Williams et al., 2002).

6.6. Data weighting and diagnostics

By default, parameter estimates from integrated analyses represent a
sort of ‘weighted average’ to which all data sets contribute information,
and the amount of information contributed by each data set is usually a
function of its sample size (Schaub and Kéry, 2022). In addition, by
explicitly weighting the data sets, an analyst can regulate the amount of
information that a data set contributes, which is sometimes argued to be
desired when a large data set is likely to contain unrepresentative in-
formation about a parameter (Francis, 2011). However,
down-weighting the data when there is model misspecification does not
necessarily improve the estimates and the model misspecification should
be identified and corrected (Maunder and Piner, 2017). Data weighting
also impacts the precision of the estimated quantities. It is common for
SAMs to fix the weights assigned to the data sets. For example, the
standard deviations of the logarithms of catch and the index of abun-
dance (Eqn A.1 and A.2) are pre-specified based on auxiliary informa-
tion, while the input sample size for the multinomial distribution for the
catch age-composition data (S; in Eqn A.3) is based on a subjective un-
derstanding of the data. The value of S; is not set to the number of an-
imals measured for age (which would correspond to unweighted data)
because it is well-known that the sampling schemes commonly used in
fisheries result in sample sizes that are substantially larger than those
corresponding to independent sampling (Stewart and Hamel, 2014).

Subjective weighting of likelihood components and penalties,
particularly those related to data collected from fishing operations, is
common in SAMs. Often the weighting is coupled with an examination
of the sensitivity of the results to alternative weighting schemes. This
differs from most IPMs where the distribution for a process or data
source is either implicit in the model (e.g., Bernoulli for whether a
marked animal is resighted), the value of the parameter determining the
variance of a data point is given from sampling theory, or the variance
parameter is estimated. Therefore, data weighting is usually not per-
formed in IPMs; in fact data weighting is hardly discussed in IPMs
(Schaub and Kéry, 2022). The widespread use of Bayesian methods
when fitting IPMs facilitates use of priors for variance parameters, and
hence greater stability.

Checking the assumptions of statistical models in general is impor-
tant to avoid biased estimates of key model outputs which could be
problematic for the intended use of the model (Conn et al., 2018). All
parameters can potentially be biased in an integrated model if the as-
sumptions of at least one component model are violated (Maunder and
Piner, 2017), and the parameters most sensitive to bias are the hidden
parameters for which little or no direct information is available (Schaub
and Kéry, 2022). It is therefore important to have confidence in an in-
tegrated model and to perform some form of model checking.

Although there are some suggestions and recommendations on
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goodness-of-fit testing for IPMs (Besbeas and Morgan, 2014; Schaub and
Kéry, 2022), there is no omnibus goodness-of-fit test so far, and Schaub
and Kéry (2022) speculate that there will never be one. A major problem
is that an integrated model requires assumptions beyond those of
non-integrated models (e.g., the demography of the individuals
appearing in the different data sets must be the same (‘common
demography assumption’ c.f. Schaub and Kéry, 2022), or the data sets
must be independent (unless a dependency is explicitly modelled) and it
is not clear how to assess these assumptions. It is therefore not surprising
that the majority of empirical IPMs have not performed any formal
model checking (Table 7.1 in Schaub and Kéry, 2022). When
goodness-of-fit tests have been performed, they have been done for each
individual data sets, either in a separate analysis or within the IPM. Due
to the Bayesian estimation framework used in most IPMs, posterior
predictive checks have often been conducted. Sometimes established
frequentist tests have been used such as those for capture-recapture data
to estimate survival (e.g., Pradel and Lebreton, 1993; Pradel et al., 1997,
2003). Schaub and Kéry (2022) reviewed model assumptions of IPMs
and their assessment and showed that posterior predictive checks
generally have low power to detect violations of assumptions, that
hidden parameters are often the most sensitive to bias, and that viola-
tions of assumptions become more problematic for parameter estima-
tion, the more information a data set provides. They also made some ad
hoc recommendations based on simulation studies. For example,
goodness-of-fit tests should be performed whenever they exist for
component data (e.g., capture-recapture for estimating survival) ideally
within the IPM. Comparison of estimates from an IPM with the corre-
sponding parameter estimates from a single data set fit is also recom-
mended. A large difference may indicate problems.

Several tests and ideas have been proposed for assessing the fit of
SAMs and are reviewed in Carvalho et al., (2017, 2021). Common ap-
proaches include standard diagnostics such as residual analysis, but
others have been developed including retrospective analyses (Cadigan
and Farrell, 2005; Hurtado-Ferro et al., 2015), hindcasting (Kell et al.,
2016), likelihood component profiles (Maunder and Starr, 2001; Wang
et al., 2014), model and data simplifications (ASPM; Maunder and Piner,
2015), catch-curve analysis (Carvalho et al., 2017), and simulation
methods (Piner et al., 2011); all of which could be adapted to IPMs.

7. Lessons learnt and the way forward

IPMs and SAMs vary along several major axes; the objectives being
addressed; whether demographic stochasticity is included to understand
extinction risk and because of population sizes; whether the aim is un-
derstanding absolute population size to regulate harvest sizes or other-
wise; whether the spatial extent of a population is well defined or not;
whether we have additional sources of information to estimate detect-
ability; and the types of data available. A SAM is in a sense more data-
(or information-) hungry than an IPM because of the need to precisely
estimate absolute biomass or abundance, and individual level data that
inform demographic rates are more difficult to obtain in systems where
SAMs are applied. SAMs therefore require more ‘tuning’ or assumptions
than IPMs, where the ‘data speak’ more for themselves, and conse-
quently techniques such as data weighting or model assessments are
more advanced for SAMs than for IPMs.

There are several lessons to be learnt from IPMs for SAMs, and vice
versa; here we highlight a few that we think are of particular interest.

7.1. Suggestions for everyone

e SAMs and IPMs should better evaluate the sampled data and choose
the appropriate sampling distributions and values for the variance
parameters, where appropriate, eliminate model misspecification,
and model temporal process variability adequately. Further research
is needed to determine if, and when, it is appropriate to apply model
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weighting in the presence of uncorrectable model misspecification
and unmodeled process variation.
Some of the differences between the SAMs and IPMs are not due to
different objectives or data, but rather to the ‘tradition’ of the field
(aquatic vs terrestrial) in which they are applied. Traditions should
be overcome in order to move towards a unified approach. This in-
cludes the fitting framework (frequentist vs. Bayesian). There may be
good reasons for using one or the other, but the decision should be
based on these reasons and not simply on tradition. We also believe
that the development of the population model, which is a key part of
any SAM and IPM, should follow general biological principles, such
as how to structure the population (age, stage, size), which compo-
nents of stochasticity (demographic, environmental) to include, and
whether and how to include density dependence. These decisions
should be made transparent and explicit.
During the writing of this paper, the authors discovered that it was
sometimes difficult to communicate and exchange ideas, simply
because of different terminology. There are terms such as ‘stock-
recruitment relationship’ or ‘fledging success’ that are used only in
SAMs or only in IPMs. Different terminology is an obstacle to moving
towards a unified approach. We do not suggest that standardized
terminology is necessary, as precise, context-specific terminology is
important for communication in a more specialized field. However,
to increase transparency, we suggest that appropriate definitions or
explanations of certain terms be developed and made available
generally in both fields (Table 1 is an initial attempt to highlight
some of the key terms that led to confusion among the authors).

o The usual workflow for applying SAMs and IPMs is to identify a
management objective or research question, then identify already
collected data that might be useful to address the objectives, and
then apply a SAM or IPM. Ideally, however, it should be known what
data need to be sampled to best address the objectives before data
start being collected. This requires knowledge of sampling designs,
but sampling designs are poorly understood for both SAMs and IPMs
(but see Johnson et al., 2020). We expect that better inference and
more efficient studies if sampling designs for SAM and IPM are better
understood.

7.2. Suggestions for analysts using IPMs

e IPMs generally assume that population-level data have little or no
systematic bias. IPMs could be improved by including data that are
informative about such bias, similar to the case for SAMs (see Hoyle
et al., 2024).

Collection of information on the number of unmarked individuals in

addition to the marked individuals can provide estimates of absolute

abundance, which may be useful when the population size is small,
the probability of extinction is desired, and total census counts are
not available. This is a situation encountered by one of the authors

(MNM) when evaluating the impact of the fishery on the New Zea-

land yelloweye penguin Megadyptes antipodes population (see

Maunder et al., 2009 for the mark-recapture component). Absolute

abundance can also be estimated if alternative sampling protocols for

the count data are used such as repeated counts, double observer
approaches or the collection of distance information, but these are,
with few exceptions (Chandler et al., 2018; Ross et al., 2018; Schmidt

and Robison, 2020; Ramsey et al., 2021; Milligan and McNew, 2022),

rarely implemented in IPM.

o Custom data weighting is not applied in IPMs. IPMs use likelihood
functions where the variance parameter is inherent in the assumed
distribution so that data sets are weighted ‘automatically’, but there
is the possibility of overdispersion due to the sampling design, model
misspecification, and unmodelled process variation. These factors
can lead to over weighing of some data sets and underestimation of
the total uncertainty. There would be benefit to develop new di-
agnostics (and ideally ‘diagnostic cookbooks’, c.f. Carvalho et al.,
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2021) for use with IPMs. Also see Fletcher et al. (2019) for an inte-
grated model (but not an IPM) where the optimal weights for the
data sets combined where estimated by cross-validation.

e Mortality is typically expressed as a probability in IPMs, whereas it is
expressed as a hazard rate in SAMs. As the latter is more general
(Ergon et al., 2018), we advocate greater use of hazard rates in IPMs.
This would to some degree also reduce differences in terminology
between IPMs and SAMs.

e The various goodness-of-fit testing techniques developed for SAMs
should be explored for IPMs.

7.3. Suggestions for analysts using SAMs

e SAMs typically rely on strong assumptions about demographic pro-

cesses, whereas IPMs attempt to estimate these processes. Therefore,

SAMs could benefit from attempting to sample data that are directly

informative about demographic processes.

Exploiting the additional information on individual variation from

multiple recaptures of the same individual in SAMs, where practical

(e.g., whales, seabirds), might allow for better understanding in

SAMs.

SAMs, particularly those that aim to capture spatial structure, should

consider allowing for the effects of immigration and emigration (e.g.,

by allowing natural mortality, M, to be stochastic).

e SAMs often pre-specify, i.e., fix many of the parameters that deter-
mine the dynamics of the population (e.g., stock-recruitment steep-
ness, growth) whereas this is uncommon for IPMs. This will lead to
under-estimation of uncertainty — we advocate that where possible
SAM developers treat as many parameters as possible as estimable,
for example, by providing priors on these parameters and estimating
them.

In summary, this paper emphasizes that integrated SAMs and IPMs
have much more in common than is generally assumed. Indeed, when
viewed from a broader perspective, they are essentially the same: pop-
ulation models that attempt to estimate abundance and demographic
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rates from a joint analysis of multiple data sets. Despite the many sim-
ilarities, these types of models have been developed largely indepen-
dently in the two fields. As a result, certain aspects are more developed
in one type of model than in the other, and vice versa. We hope that this
paper will encourage more exchange and collaboration between the
fields of fisheries stock assessment, population ecology and wildlife
management.
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Appendix A: Derivation of the [penalized] likelihood function for the integrated stock assessment model (SAM).
The negative logarithm of the objective function, which is a combination of component likelihoods for the catch (L¢), index (L), and catch age-
composition (Lage) data, and the penalties for the recruitment deviations (Pr and Pr,;) deviates, is minimized:

—LnL = — Ln(LcLiLygePrPrit)

A.1. Likelihood.

The contribution of the catch data to the negative of the logarithm of the likelihood function is based on the assumption that the catches are subject

to log-normal error,

Le : in(C™) ~ N(in(C,); 0%

(A1)

where C° is the observed catch-in-weight (weight of the captured individuals) for year t, and C, is the model-estimate of the catch-in-weight for year t

(Eq. 2).

The contribution of the index of relative abundance to the negative of the logarithm of the likelihood function is based on the assumption that the

survey index is subject to log-normal error,

Ly In(I7™) ~ N(ln(qﬁ,); ;)

(A.2)

where I°™ is the survey index of abundance for year t, q is the catchability coefficient, B, is the model-estimate of the vulnerable biomass during year t,

and o is the sampling coefficient of variation for the index during year t.

The contribution of the catch age composition data to the negative of the logarithm of the likelihood function is based on assumption that the age
composition data are multinomially distributed, i.e. ignoring constants independent of the model parameters:

LAge = _letzapz‘aln(/p\t,a)

(A.3)
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where p, , is the observed proportion of the catch-in-numbers (number of captured individuals) during year t that was of age a, p,, is the model-
estimate of the proportion of the catch-in-numbers during year t that was of age a, and S, is the effective sample size for the fishery age-
composition data in year t, set to 50 based on a subjective understanding of the data.

Penalties.

Penalties (corresponds to informative priors in the context of a Bayesian analysis) based on the assumption that recruitment is log-normally
distributed is placed on the recruitment deviations, i.e.:

Pr:& ~ N(0;0%) (A.9)

P : €4~ N(07 0‘?{) (A.S)

where ¢, is the random deviation in recruitment about the average recruitment, oy is standard deviation of the recruitment deviations, and ¢, is the
deviation for age a to determine the initial age-structure.

Appendix B. Derivation of the likelihood function for the integrated population model (IPM).

A state-space model (de Valpine and Hastings, 2002; Buckland et al., 2004; Newman et al., 2014) is adopted for the annual population count data
and the observed counts are decomposed into one contribution from the underlying true dynamics of state N; (the state process) and another from an
observation process that describes how an observation in year t is related to the true state in year t. The state process is a first-order Markov process and
corresponds exactly to the population model. The state (population size) in the first year cannot be written recursively, so a model is needed for it. In a
Bayesian analysis we estimate the population size in the first year and therefore place a prior on it.

The likelihood of the state-space model (L) is the product of the three likelihoods for the population size in the first year (L;), for the state process
(Lg), and for the observation process (Lp), i.e.:

Lss(N, d;, 0 p, 0|C) = Li(N1) X Ls(Na..1, ¢, by, P, @) X Lo(N|C) (B.2)

where plain and bold symbols denote scalars and vectors or matrices, respectively.
The observation model assumes that the population counts are correct on average and have no systematic bias, e.g., due to imperfect detection or
double counting, and therefore adopts a Poisson sampling distribution:

C, ~ Poisson(N;) (B.1)

The second component likelihood is for the productivity data, i.e., the number of fledglings per surveyed brood i (f;). The distribution of the number
of fledglings contains excess zeros caused by a significant number of failed broods. These data could be modelled using zero-inflated models, but for
simplicity we first model the probability of a brood being successful using a Bernoulli distribution, and second model the non-zero number of
fledglings of successful broods using a normal distribution. Thus, we specify a zero-inflated model in two steps and there are two component like-
lihoods for the productivity data. For the Bernoulli likelihood the data are recoded such that ;= 1, if f;> 0 and z; = 0, if f;= 0. Then, 2; ~ Bernoulli(v,),
where v, is the probability that a brood attempted in year t was successful (i.e., the nest success probability). The temporal variation of nest success was
modelled with random time effects, logit(v;) ~ Normal(y,,02), where y, is the mean nest success on the logit scale and o2 is the temporal variability of
the logit nest success. The component likelihood is Lp; (v, 0]2).

For the number of fledglings of a successful brood we restrict the productivity data to those that were successful, i.e., gi=f; if f;> 0. We use the
normal distribution and obtain g; ~ Normal(x, 02), where « is the average number of fledglings of successful broods, and 02 is the variance of the

number of fledglings among successful broods. The component likelihood for the number of fledglings of successful broods is Lpy (K,(FZ q). The annual

productivity as used in the population model is p, = vk.

A Cormack-Jolly-Seber (CJS) model (Williams et al., 2002) with a multinomial likelihood is assumed for the capture-recapture data, i.e. the
capture-recapture are treated as ‘release conditioned’. These data are summarized as a matrix with rows for each individual captured and columns for
years. Each row in the matrix is an individual capture-history where a 1 denotes a capture/recapture/resighting (more generally an encounter) of an
individual at the corresponding time step and a 0 denotes an individual that was not encountered at that time step. These data could be analyzed
directly using a state-space representation of the CJS model (Royle, 2008; Schaub and Kéry, 2022), but here we arrange them into the m-array format
(Williams et al., 2002; Schaub and Kéry, 2022) and use the multinomial likelihood to increase computational efficiency. The m-array (m) is a table
summarizing how many individuals were released in each year, and when these individuals were first re-encountered after that release. Given a
release in year t, we can express the probability of a reencounter in year j as a recursive function of apparent survival (¢) and reencounter probability
®), m; = ¢ (1 - pY " 'p. The m-array table also contains a column for the number of released individuals that were never reencountered. The
probability that an individual is never reencountered is calculated as the complement to 1 and the sum of the probabilities of reencountered in-
dividuals. The likelihood for the capture-recapture data in the m-array format is:

m, ~ Multinomial(z,, R;) (B.3)

where m; is the " row in the m-array, R, is the total number of individuals released in year t, and 7, is a vector with probabilities expressing when
individuals that were released in year t were reencountered as a function of apparent survival and reencounter probabilities. For further details, see

Schaub and Kéry chapter 4.5) (2022). The component likelihood of the capture-recapture data is LCR(qu7 ¢qsP1,Pq|m), Where p; and p, are the reen-

counter probabilities in the first and later years of age, respectively. We expect them to differ because younger females are more likely to fail (and then
move away) than older females and therefore have a lower chance to be re-encountered.
The final step in the IPM is to formulate the joint likelihood, which is the product of the three component likelihoods:
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2 2
LIPM (N’ ¢j) ¢a7w7 D)K)zyplzpa76q7av

Lpy (K, U; ‘q) X Lcr (¢j’ DasP1:Py |m)

As p, = v,k we have replaced p by v and « in all component likelihoods.

C,qu,m) :LSS(N7¢j’¢a»D7K7w|C) X Lpy (U,5§|Z)><
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(B.4)

The productivity data could have been analyzed in a single step using a hurdle model, but writing that likelihood in JAGS is a bit complicated and
not very intuitive. One might prefer a discrete-valued distribution for productivity instead of the normal. However, a Poisson is far too dispersed for
usual fledging counts. Less dispersed alternatives have been developed (e.g., Ridout and Besbeas, 2004; Lynch et al., 2014; Brooks et al., 2019) but
they are more complex and we have found that using a normal instead of some of them seems to have little effect on the main conclusions of an IPM.

Appendix C. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.fishres.2023.106925.
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