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Abstract

Ecosystem-based fisheries management (EBFM) approaches allow a broader and more
extensive consideration of objectives than is typically possible with conventional single-
species approaches. Ecosystem linkages may include trophic interactions and climate change
effects on productivity for the relevant species within the system. Presently, models are
evolving to include a comprehensive set of fishery and ecosystem information to address
these broader management considerations. The increased scope of EBFM approaches is
accompanied with a greater number of plausible models to describe the systems. This can
lead to harvest recommendations and biological reference points that differ considerably
among models. Model selection for projections (and specific catch recommendations) often
occurs through a process that tends to adopt familiar, often simpler, models without
considering those that incorporate more complex ecosystem information. Multi-model
inference provides a framework that resolves this dilemma by providing a means of including
information from alternative, often divergent models to inform biological reference points
and possible catch consequences. We apply an example of this approach to data for three
species of groundfish in the Bering Sea: walleye pollock, Pacific cod, and arrowtooth
flounder using three models: 1) an age-structured “conventional” single-species model, 2) an
age-structured single-species model with temperature-specific weight at age, and 3) a
temperature-specific multi-species stock assessment model. The latter two approaches also
include consideration of alternative future climate scenarios, adding another dimension to
evaluate model projection uncertainty. We show how Bayesian model-averaging methods can
be used to incorporate such trophic and climate information to broaden single-species stock
assessments by using an EBFM approach that may better characterize uncertainty.

1. Introduction

The Scientific and Statistical Committees, SSCs, of the Regional Fishery Management
Councils are required to provide recommendations for overfishing limits, OFLs, and
Acceptable Biological Catches, ABCs, as well as evaluate whether a stock is subject to
overfishing or is in an overfished state. For most major stocks, these recommendations are
based on the outcomes of quantitative stock assessment methods, which involve fitting
population dynamics models to monitoring data collected during fishing and surveys. For
stocks managed by the North Pacific and Pacific Fishery Management Council (NPFMC
2012, PMFEC 2011), the stock assessments are based on single-species models that typically
ignore the impacts of time-varying predation mortality.

Most stock assessments involve pre-specifying the values for some of the parameters of the
population dynamics model (e.g., the rate of natural mortality, M, fecundity as a function of
length or age, and the survey catchability coefficient), making structural assumptions (e.g.
vulnerability for a given fleet is a time-varying logistic function of length, recruitment is
related to spawning stock size according to the Beverton-Holt form of the stock-recruitment
relationship), choosing the data sets used when fitting the model (e.g., should fishery catch
rate data be used or ignored given uncertainties regarding the relationship between catch rate
and abundance), and assigning statistical weights to different assessment data components.
Although model fits to data may be similar, the results of stock assessments can be highly
sensitive to parameter values and choices regarding model structure (e.g., Myers et al. 1994
Taylor and Stephens, 2013; Holsman et al. this issue, Patterson et al. 2001)

In general, fisheries management advice (and hence OFLs and ABCs) is based on a single
“best” model (and hence set of assumptions), and uncertainty is quantified about that model
conditioned on its assumptions being correct. Typically, uncertainty is quantified using
asymptotic methods, bootstrapping, or Bayesian methods (Magnusson et al., 2013). However,
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many sources of uncertainty are ignored when applying these methods, so the measures of
uncertainty reported to managers usually underestimate the true amount of uncertainty
(Ralston et al., 2011; Punt et al., 2012). The difference between the OFL and the ABC for a
stock (the “buffer”) is meant to reflect the amount of scientific uncertainty. ABCs are often
set so that the probability that the ABC exceeds the true OFL equals a selected value, P*
(where P*< 0.5), i.e. PCABC>OFL)=P* (Prager et al., 2003; Shertzer et al., 2008; Prager and
Shertzer, 2010). However, the true probability that the ABC exceeds the OFL will be larger
than the P* estimate if uncertainty is underestimated. This would occur if the uncertainty
associated with assumptions regarding model structure were ignored. Here we propose an
example on how an EBFM approach could be used from multiple alternative ecosystem
models to provide a better accounting of structural uncertainties.

The use of multispecies and ecosystem models for fisheries management is generally
considered to be a key component of Ecosystem Based Fisheries Management (EBFM)
(Marasco et al., 2007; Plaganyi, 2007). However, similar to single-species stock assessment
methods, projections based on two ecosystem models (or variants of one ecosystem model
with alternative assumptions) often reflect uncertainty about model structure and assumptions
regarding values for pre-specified parameters. For example, Kaplan et al. (2013) evaluated
the impacts of depleting forage species in the California Current ecosystem using Atlantis
(Fulton et al., 2004, 2011; Horner et al., 2010) and Ecopath-with-Ecosim (Christensen and
Walters, 2004; Field et al., 2006). However, the results from these two ecosystem models
differed markedly and increased the uncertainty about whether reducing forage species
abundance would have a negative or positive effect on some ecosystem components. In
another study, Kinzey and Punt (2009) showed that the results of a multispecies stock
assessment were sensitive to the choice of the relationship between predation mortality and
the density of predators and prey. The multispecies models examined by Kinzey and Punt
(2009) predicted that Pacific cod (Gadus macrocephalus) in the Aleutian Islands could have
been increasing or decreasing prior to 1990 depending on this relationship. This illustrates
that assumptions about functional responses can affect predictions in critical ecosystem
components. Regarding reference points, including trophic interactions in models can have
large impacts, especially for key prey species (Collie and Gislason, 2001).

These considerations imply that alternative model formulations should be based on plausible
working hypotheses and assigning model weights or prior probabilities (given the a priori
likelihood of the specified model). Ideally, within-model estimation uncertainty would further
contribute to statistical inference of the combined multiple-model results. Results typically
include projections of population size under alternative harvest control rules or catch
scenarios as well as specific outputs such as OFLs and ABCs. Model averaging allows
diverse, yet plausible, model results to collectively be used to guide management, and can
provide estimates of uncertainty derived from both data fit (as is the case with individual
models) as well as model structure and assumptions. It allows the uncertainty regarding
which model is correct to be reflected in the advice used for management rather than simply
selecting a single “best” model and ignoring the others.

Here we provide a brief review of the multi-model inference for fisheries assessment
applications, focusing in particular on two alternative ways to implement model averaging for
EBFM. We then use model averaging to integrate the results from three classes of model
(single-species, temperature-specific single-species, temperature-specific multispecies) for
three scenarios regarding future catch in the eastern Bering Sea in terms of impacts on the
spawning stock biomass of walleye pollock (Gadus chalcogrammus), Pacific cod and
arrowtooth flounder (Atheresthes stomias).
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2. Overview of model averaging

This study focuses on practical approaches for model averaging and contrasts weighted
versus unweighted methods. For the weighted approach, we focus on Bayesian Model
Averaging (BMA) and categorize unweighted methods as “ensemble” forecasting. Burnham
and Anderson (2002) detail a number of alternatives, e.g., weighting models using AIC and
others contrast approaches including frequentist weights (Millar et al. 2015). For our
purposes, BMA requires that estimates of the posterior probability of each candidate model
be available. This probability needs to be derived by fitting the model to available data.
However, the probability of the model given the data cannot be derived for all models (e.g.
dynamic ecosystem models such as Atlantis (Fulton et al., 2004, 2011; Kaplan et al. 2014) or
the Forage/Euphausiid Abundance in Space and Time (FEAST) model (Aydin et al. this
volume) because they cannot be formally fitted to data. It is consequently impossible to apply
BMA or methods which weight models based on other metrics of model fit such as AIC
weights in many situations. When this is the case, posterior probability distributions can be
approximated by “envelopes of plausibility” derived from ensemble/Monte Carlo runs of
each model where each run is based on a different (yet plausible) set of parameters, with the
probability assigned to each model based on expert judgment (i.e. the “Delphi method”), a
process which we refer to as “ensemble” forecasting. Butterworth et al. (1996) proposed the
following four-level scheme to assign ‘plausibility ranks’ to the hypotheses underlying
alternative models that could be used to weight models when “ensemble” forecasting is
conducted:

1. how strong is the basis for the hypothesis in the data for the species or region under

consideration;
2. how strong is the basis for the hypothesis in the data for a similar species or another
region;
3. how strong is the basis for the hypothesis for any species; and
4. how strong or appropriate is the theoretical basis for the hypothesis?

For the population dynamics models typical of fisheries management, BMA and ensemble
forecasting fundamentally involve making projections. Each model can be projected multiple
times (the outcomes will differ if there are multiple parameter choices for each model or the
projections account for future stochasticity due to recruitment variability for example). The
results of model averaging can be summarized by the overall mean or median of some
quantity of management or scientific interest (the median is used here), the spread of results,
and by individual trajectories. The mean of the projections is a “best estimate”, but simply
showing the median trajectory loses the advantage of conducting multiple forecasts, namely
to characterize uncertainty. lanelli ez al. (2011) summarized the results of projections for
multiple models by illustrating intervals containing 50% and 80% of the combined outcomes
over future climate scenarios to illustrate the overall uncertainty. They also showed a subset
of individual trajectories to characterize the nature of year-to-year variability.

2.1 Bayesian Model Averaging (BMA)

The philosophy underlying Bayesian model averaging has been outlined by several authors
(e.g. Buckland et al., 1997; Durban et al., 2005; Hoeting et al., 1999; Kass and Raftery, 1995;
Raftery et al., 2005; Chimielechi and Raftery, 2011). Ideally, BMA involves fitting the range
of models to the available data and computing the probability of each model given the data.
This weighting of models should ideally be conducted using Bayes factors, which
quantitatively evaluates the credibility of a model relative to other models (Aitkin, 1991;
Kass and Raftery, 1995). However, studies have weighted alternative models, using, for
example, the Deviance Information Criterion (Spiegelhalter ez al., 2002), Akaike’s
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Information Criterion (Akaike, 1973; Burnham and Anderson, 1998), and the Bayes
Information Criterion (Schwartz, 1978). The latter two weighting schemes are non-Bayesian,
but are relatively easy to compute in contrast to Bayes factor and DIC which require that a
Bayesian analysis be conducted, which can be computationally prohibitive even for relatively
simple ecosystem models (e.g. Parslow et al., 2013).

Bayes factor, DIC, AIC, and BIC can only be computed if each model is fit to the same data
set. If the models are fit to different data sets, weighting each model would require a more ad
hoc approach, such as fitting the models to a subset of the data and predicting the remaining
data (i.e., cross-validation). In this case, the weight assigned to each model could be
proportional to the inverse of the mean square error associated with its predictions.

Given probabilities for each model, the Bayesian model averaged forecast is constructed by
conducting multiple projections for each model and generating the overall forecast by
selecting projections at a sampling rate proportional to the probability of the model. Table 1
summarizes an application of Bayesian model averaging in which five models are used to
predict the fishing mortality and spawning biomass corresponding to maximum sustainable
yield (Fmsy and Smsy) for Atlantic cod (Gadus morhua; Hill et al. 2007; Brodziak and Legault
2005). The best model in Table 1 is RBH, but model RZBH is almost as likely. The model-
averaged results are as expected closest to the best models, but the standard errors for the
model-averaged results are larger than for either of the two best models. The weights
assigned to each model in Table 1 are based on the Bayes factor. Bayes factors can be
computed in this case because all of the models use the same data and the models are fairly
simple.

2.2 Ensemble forecasting

Ensemble forecasting involves generating multiple projections of future system state under
different choices for assumptions or parameter values. In principle, both structural and
parameter uncertainty can be addressed through the use of multi-model ensembles. This
approach is widely used in climate modeling where uncertainty is reflected in the accuracy of
the approximations to the well-known and accepted physical principles of climate, and the
inherent variability of the climate system. The climate system is chaotic, and the timing and
phases of major and long-lasting fluctuations are largely unpredictable beyond time-horizons
of a few years. Consequently, slightly different initial conditions for a climate model can lead
to markedly different outcomes 40-50 years into the future. Whether including climate in
population dynamics models has major impacts on the estimated future state of the
populations under investigation depends on how the dynamics of the populations are linked
to climate and the strength of the associated relationships.

Probabilities can be assigned to model configurations (the underlying model equations and
the values for its parameters) or entire model configurations can be considered plausible
using hindcast simulations of past conditions (e.g. Overland and Wang, 2007), although past
performance is not necessarily a good indicator of success in simulating future climate
(Reifen and Toumi, 2009). A’mar et al. (2009) based projections on six general circulation
models which were selected for both their accuracy with respect to the historical data and
their predictions with respect to future climate scenarios. Specifically, these six models were
in the subset of models that replicated the spatial pattern and temporal characteristics of the
first principal component of sea surface temperature (SST) in the North Pacific Ocean (the
PDO) observed in the latter half of the twentieth century (A’ mar et al., 2009). It is worth
noting that unlike the tactical application of ensemble forecasts used in climate systems, most
fisheries applications are geared to making strategic decisions (i.e., devising tactical
approaches that are robust to the plausible, yet uncertain, future outcomes).
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2.3 Fisheries examples of model averaging

Model averaging in fisheries assessments is rare; the focus for fisheries management tends to
be either selection of a best model or identification of harvest control rules that are robust to
model selection and parameter value uncertainty (Butterworth, 2007). However, there are a
few examples of where model averaging has been applied to fisheries population dynamics
models and these are reviewed here.

2.3.1 Weighted model averaging

BMA has been applied to account for uncertainty regarding the form of the stock-recruitment
relationship (usually Ricker vs Beverton-Holt) and the error structure (autocorrelated or not,
and the distribution for the residuals) (Patterson, 1999; Brodziak and Legault, 2005). BMA
was used by Brandon and Wade (2006) to account for uncertainty regarding the form of the
population dynamics model underlying a stock assessment (density-dependent or non-
density-dependent, and whether the stock was at its environmental carrying capacity at the
start of the modeled period) in an assessment of the Bering-Chukchi-Beaufort seas stock of
bowhead whales, Balaena mysticetus. The weights assigned to each model by Brandon and
Wade (2006) were based on Bayes factor; they developed their posterior distributions for
each model using the sample-importance-resample algorithm, which allowed straightforward
computation of the posterior probability of each model. Wilberg and Bence (2008) used
Monte Carlo simulation to show that model averaging of alternative formulations for how
fishery catchability changes over time performed better than using DIC to select a “best”
model.

Brodziak and Piner (2010) used BMA to integrate uncertainty due to the form of the stock-
recruitment relationship (Ricker or Beverton-Holt), the extent of autocorrelation about the
stock-recruitment relationship, and two values for the steepness of the stock-recruitment
relationship for striped marlin (Tetrapturus audax) in the North Pacific. Unlike Broziak and
Legault (2005), Brodziak and Piner (2010) approximated the Bayes factor using BIC.

2.3.2 “Unweighted” model averaging

The ensemble approach has been applied fairly extensively to management of groundfish off
the US west coast. For example, it was applied to rebuilding strategies for cowcod (Sebastes
levis) off southern California that were developed by Dick and Ralston (2009). They provided
forecasts for a range of assessment models, each of which was conditioned on one of a set of
values for the steepness of the Beverton-Holt stock-recruitment relationship. Each projection
was weighted based on a pre-specified probability distribution for steepness. Hamel (2011)
conducted projections to evaluate times for Pacific Ocean Perch (Sebastes alutus) to rebuild
to the proxy for the biomass at which maximum sustainable yield is achieved, Bmsy for three
models, given different levels of future fishing mortality and catch. Two of these models
were assigned probability 0.25 and the third model was assigned a probability of 0.5 based on
relative plausibility provided in Hamel and Ono (2011).

Ianelli e al. (2011) evaluated the performance of management strategies for walleye pollock
in the eastern Bering Sea. Recruitment was linked to predictions of SST from 82
Intergovernmental Panel on Climate Change (IPCC) models—SST, among other
environmental factors, was found by Mueter et al. (2011) to be a possible factor affecting
pollock recruitment. These 82 models were selected by downscaling IPCC models to the
eastern Bering Sea ecosystem and using retrospective studies to identify models that
performed best for this system (Wang et al., 2010).

Kolody et al. (2008), Kolody (2011), and Davies et al. (2012) developed an ‘uncertainty grid’
for assessments of swordfish (Xiphias gladius) in the Indian and Pacific Oceans, and explored
structural uncertainty in a balanced factorial design. The results of the assessment were
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presented in terms of box plots of output statistics for each level of the factors considered.
Kolody et al. (2008) explored sensitivity to stock-recruitment steepness, mixing proportions,
growth rate/maturity/mortality options, the extent of variation about the stock-recruitment
relationship, selectivity constraints, and data weights. Of 768 model configurations, a set of
192 model configurations considered the “most plausible ensemble” were used to summarize
stock status. This ensemble was selected using three metrics: the root mean square fit to the
catch rate index, the effective sample sizes for the length-frequency data, and the difference
between observed and model-predicted mean catch lengths (similar to the method of Francis
2011). Kolody (2011) assigned weights to each of the factors on which the uncertainty grid
was based using auxiliary information and the quality of the fits to the data, which led to
some factors, such as that recruitment is related deterministically to spawning biomass, being
assigned zero weight.

Gardmark et al. (2013) evaluated a “biological ensemble modeling approach” over different
ecological assumptions including climate forcing. They evaluated seven ecological models
ranging from single-species to food web models and concisely distilled some key population
indicators (e.g., extinction, increase from 2009 levels) under high and low fishing mortality
scenarios. Importantly, they were able to highlight the relative sensitivity of biological
characteristics and multispecies interactions from climate effects on the populations of
interest.

An unusual form of ensemble modeling has been applied to calculate strike limits for the
Bering-Chukchi-Beaufort Seas stock of bowhead whales and the Eastern North Pacific stock
of gray whales, Eschrichtius robustus. This involves calculating strike limits from two
different methods and averaging them (Punt and Donovan, 2007). The philosophy underlying
this approach is that each model can be wrong some of the time so averaging model results
will lead to an outcome that is never very badly wrong (but is usually somewhat wrong).

3. Application to walleye pollock, Pacific cod and arrowtooth flounder

3.1 Alternative models
Three classes of models formed the basis for the analysis (Table S.1):

1. The single species assessment models currently used by the AFSC to provide
management advice for Eastern Bering Sea (EBS) walleye pollock (e.g., Ianelli et al.,
2012), Pacific cod (e.g. Thompson and Lauth, 2012), and arrowtooth flounder (e.g.,
Spies et al., 2012). The assessments for these stocks are based on software developed
specifically for those stocks coded using AD Model Builder (Fournier et al., 2012).
All of the three single species assessments have the following features in common: (a) they
are fundamentally age-structured and use an annual time step; (b) estimates of annual
fishing mortality rates are conditioned on the total catch (retained and discards)
estimates, (c) fishery data (catch biomass and catch proportions at age) are aggregated
over seasons and areas within each year, (d) proportions at age from surveys and
fisheries are fitted using estimated (or assumed) multinomial sample sizes, (e) life
history parameters and environmental effects are assumed constant, and (f) survey
indices (abundance or biomass) are modeled using lognormal assumptions and
annually-specified observation errors (variances). Uncertainty in the projections based
on these models reflects both parameter uncertainty (including selectivity), captured
through MCMC sampling from the joint posterior distribution, and process error,
captured through variation in recruitment about mean recruitment.

2. The Temperature-Specific Multispecies Model (MSMt, aka CEATTLE for Climate-
Enhanced Age-based model with Temperature-specific Trophic Linkages and
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Energetics; Holsman et al., this issue) is an example of a “model of intermediate
complexity” (Plaganyi et al., 2014). The implementation of MSMt for the eastern
Bering Sea includes the three focal species, models natural mortality for each species
and age as the sum of a pre-specified residual natural mortality and time-varying
predation mortality due to the predators included in the model. Predation mortality is
driven by temperature-dependent daily ration and a suitability function, which is
based on observed proportions of each prey species by age in the diets of each
predator species by age. Weight-at-age is also assumed to depend on temperature and
varies annually. The parameters of MSMt are estimated by fitting the model to data
on catch age-composition as well as survey biomass index and age-composition data.
The projections of the model assume that future recruitment at age-0 is lognormal
about mean recruitment. Two variants of MSMt are considered, one that includes
multispecies predator-prey interactions (MSMtA), and one which assumes natural
mortality is constant over time (MSMtB). The latter differs from the single species
models used by AFSC in that weight-at-age in MSMtB depends on temperature and
some other structural simplifications (e.g., constant fishery selectivity over time).
Stochasticity in future projections based on MSMtA and MSMtB account only for
process error in future recruitment.

Four climate scenarios are considered for MSMtA and MSMtB because temperature
influences weight-at-age and the predation mortality function in MSMt. The first of four
scenarios assumes that future temperature equals the average observed temperatures
(temperature scenario 1). The next three of four temperature scenarios are based on mean
summer water column temperature predicted from a ROMS model for the Bering Sea forced
by three statistically downscaled global climate models (Wang et al., 2010). These
temperature scenarios were:

Scenario 2 “ECHO-G version 4, T30 resolution model” (Legutke and Voss,
1999),
Scenario 3 “CCMA model” (Canadian Centre for Climate Modelling and

Analysis CGCM3-t47; Flato et al., 2000, Flato and Boer 2001, Kim
et al. 2002, 2003), and

Scenario 4 “MIROC 3.2” (Watanabe et al., 2011, K-1 model developers, 2004)

A single realization of each of these three climate scenarios was used as plausible
characterizations of atmospheric forcing and oceanic boundary conditions for the regional
ROMS forecasts of the Bering Sea (2013 to 2040; Fig. 1).

3.2 Projections

Each projection of the 1,000 iterations for each model involved the forecast period (2013-
2039). For the purposes of this study, projected recruitment was assumed to have the same
mean and variance for each species as observed for the historical period. Additionally,
population model projections included three alternative constant future catch scenarios:

1. Catches set to the mean catch over the most recent 15 years (Table 2);
2. Catches set to the maximum catch over the most recent 15 years (Table 2);
3. No future catches of any species.
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4. Results

4.1 Results by model scenario

Figures 2-4 shows the time-trajectories of spawning stock biomass the three models
individually and includes the effect of fishing. Also, three sets of results are shown for the
MSMtA and MSMtB models, one for each climate scenario. There is relatively little
difference amongst the four climate scenarios for the MSMtA and MSMtB models, although
the projections including alternative future temperature scenarios (rows 2-4 in Figures 3 and
4) are more variable. This is unsurprising given the low variability shown by the data in
Figure 1.

The general patterns between the two single-species models (AFSC; Figure 2 and MSMtB;
Figure 4) share some qualitatively similar traits but also show some major differences.
Specifically, the declines in abundance under the mean and maximum catches for pollock and
Pacific cod are much greater for MSMtB. The cause of the differences between the two
single-species models is unlikely to be due to temperature impacts on weight-at-age because
the qualitative difference in results remains even when future temperature equals the
historical mean. This is more likely due to differences in the assumptions regarding fishery
selectivity in projections where MSMItB is balancing periods of selectivity shifted to be
younger than the age-specific maturity schedule whereas the more recent selectivity trend is
more focused on older pollock. In contrast, the single-species model uses the assumption that
the most recent 5-year average selectivity-at-age is most appropriate for projection purposes.
This points out that simplifications in the MSMt models’ treatment of individual species are
important to consider in evaluating projecting interactions and such factors should be
considered when developing relative weights among models.

The results are also markedly sensitive to whether MSMt is applied in single-species or
multispecies mode (Figures 3 and 4). Specifically pollock is predicted to decline and then
rebuild under all catch scenarios (including zero catch) for MSMtA (multispecies mode)
whereas pollock is predicted to increase under zero catch and decline under mean and
maximum catches for MSMtB (single-species mode). The difference between the single-
species and multispecies predictions for cod is attributable primarily to the combined effect
of cod and arrowtooth predation and pollock cannibalism in MSMtA. The abundance of
Pacific cod is more robust between MSMtA and MSMtB, but the extent of decline in cod
abundance is much greater under the multispecies version of the model (again reflecting the
importance on the source of age-1 cod predation). The trends in biomass of arrowtooth
flounder are similar between MSMtA and MSMtB for the first few years of the projection
period. However, unlike the MSMtB, MSMtA predicts stability or an increasing trend in
arrowtooth abundance post 2030 (Figures 3 and 5). Because the increasing trend in
arrowtooth abundance is not evident in MSMtB, this result is probably a consequence of
temperature effects of weight-at-age combined with a slight decrease in predation by cod
(and possibly pollock).

4.2 Model averaged results

Figure 5 shows results for three model classes when results are pooled over climate scenarios
for the two MSMt models. Example results of the projections, including those based on
model averaging, are summarized quantitatively in Table 3 by the median and 50% and 90%
intervals for spawning biomass in 2039, the last year of the projection period.

As expected, model averaging across climate scenarios (assigning equal weight to each
climate scenario) confirms that the impacts of the different climate scenarios on the model
outcomes are not large (Figure 5). The widths of the 90% intervals in Figure 5 for the model-
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averaged results for MSMtA and MSMtB are narrower than those for the individual climate
models, suggesting that variation in recruitment has a larger impact on uncertainty than the
choice of climate model in this case.

Figure 5 (bottom panel) and Table 3 show results when all models are averaged (with equal
weight assigned to all three models). In this case, the widths of the 90% intervals are wider
for the model-averaged results than for the results for each individual model, reflecting that
between-model variation is greater than the variation due to climate scenario (models
MSMtA and MSMtB), parameter uncertainty (AFSC single-species models) and recruitment
variation (all three models).

5 Discussion

Effectively capturing uncertainty is a key focus for modern stock assessment science, and
quantifying uncertainty in fisheries stock assessment models has been a focus for stock
assessment scientists for decades (e.g., Patterson, 1999, Pattern et al., 2001, Hill et al., 2007,
Magnusson et al., 2013). A full accounting for uncertainty requires adequately representing
uncertainty regarding growth rates, natural mortality, the form and parameters of the stock-
recruitment relationship, and how data are weighted. However, conventional approaches to
quantifying uncertainty fail to capture ‘model uncertainty’, i.e. the uncertainty associated
with the structural assumptions of a model. In general, single-species stock assessments make
a small number of very strong assumptions (e.g. that natural mortality is independent of
time). On the other hand, multispecies and ecosystem models typically require more
numerous and more specific assumptions (e.g. that the functional relationship for predator
and prey has the Holling Type II form) and commonly assume other simplifying assumptions
(e.g., constant fishery selectivity). Since these model types each make somewhat different
types of compromises, applying model averaging approaches (BMA or ensemble) is an
appropriate way to express a broader and presumably more comprehensive range of
uncertainty.

Variability in climate scenarios contribute less to overall uncertainty than recruitment
variation for the MSMtA and MSMtB models (Figure 5, Table 3). However, model
uncertainty is a more marked source of uncertainty than parameter uncertainty, recruitment
variation, and the choice of climate scenario. It is, however, noteworthy that the impact of
model uncertainty depends on the particular catch scenario under investigation. It is largest
for the zero catch scenario, in particular given the impact of ‘release’ of Pacific cod, a major
predator of pollock in the MSMtA model. The models are more consistent in their predictions
when the projections are based on the mean catch and most consistent for the projections
based on the maximum catch where the biomass of predators and concomitant predation
mortality is lowest (and thus differences between model parameterizations of predation
mortality are lowest).

Comparing alternative models has also raised another challenge in developing more
“holistic” multispecies models. As noted above, simplifications in the multispecies model
(e.g., constant fisheries selectivity) can introduce substantial differences in projections. For
example, considering the estimated selectivity (Figure S.1) and mean body mass at age (but
the same natural mortality-at-age) for pollock results in substantially different yield curves
between the MSMt model and the single species model used for projections (Figure S.2).
This highlights the need to compare potentially subtle fishery and demographic
characteristics when comparing multispecies projections with their single-species
counterparts. Nevertheless, the different ways of modeling selectivity and body mass at age
are plausible and do reflect alternative hypotheses. Such choices made by modelers (lacking
evidence to favor alternatives) remain an important, often unaccounted-for source of



425
426
427

428
429
430
431
432
433
434
435
436
437
438

439
440
441
442
443
444
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459

460
461
462
463
464
465
466
467

468
469
470
471
472

uncertainty. Ralston et al. (2011) characterized this type of uncertainty in single-stocks
species stock assessments by the extent of different assessment variation among analysts and
a similar approach could be extended to this type of model averaging.

The model forecasts were assigned equal probability in constructing the model-averaged
forecasts. This was because there is no way for the hindcast and forecast skills of the three
models to be compared at present. The ideal of using Bayes factor (or DIC, AIC, BIC) is
infeasible in this case because although the parameters of the single-species model and MSMt
are estimated by fitting them to monitoring data, each model has slightly different statistical
weights and/or levels of aggregation in the data sources. In principle, each model could be
weighted objectively by a cross-validation-like approach. For example, one could fit the
model including data only up to 2008 and using the fitted model to predict the survey
estimates of abundance for 2009, 2010, 2011, etc. given the catches that actually occurred
during 2009, 2010, 2011; models that fit the observations better would obtain a higher
weight.

The illustrative application of this paper was based on three models. However, there are
several other models that could have been included in the application. These include
alternative multispecies models such as the multispecies virtual population analysis model of
Jurado-Molina and Livingston (2002), and the statistical multispecies model developed by
Kinzey and Punt (2009). Other models available for the Bering Sea include an Ecosim model
(Aydin et al., 2007), the FEAST model, the multispecies surplus production model of Mueter
and Megrey (2006), and a spatially-structured model of pollock (Hulson et al., 2013)

Future work could involve evaluating the hindcast and forecast skill of projections based on a
single model as well as on a model average of multiple models (c.f. Wilberg and Bence,
2008). This could involve fitting the model to a subset of the data and conducting projections.
The skill of the modeling approach could then be evaluated in terms of the percentiles of the
predicted distributions in which the actual observations occurred. Ideally, the percentiles
associated with the data should be uniformly distributed over 0-100. Large numbers of
observations in the upper and lower tails of the forecast distributions would suggest that
uncertainty is underestimated while no or few observations in the tails would suggest that
uncertainty is overestimated. The benefits of using single models or model-averaged results
could also be evaluated using simulations in which a true model is defined and data typical of
an actual situation generated. This approach has been used extensively to evaluate the
performance of single-species stock assessment methods, but has only been applied in a
limited capacity for multispecies and ecosystem models, Kinzey (2010) being a noteworthy
exception).

Ultimately all approaches to applying model averaging involve subjective choices. These
range from the initial choice of models to consider, along with a prior probability associated
with each model. The latter is particularly a concern when many of the models are based on
the same underlying philosophy. For example, the single-species assessments and MSMt,
while different in several respects, make identical assumptions regarding many biological and
fishery processes and cannot be considered to be totally independent. Similarly, MSMtA and
MSMItB are identical except that the former allows for time-varying predation mortality while
the latter does not.

The outcomes from this model averaging exercise are expressed in terms of time-trajectories
of spawning output given a time-series of catches. However, the primary use of stock
assessments is to define whether overfishing is taking place and whether the stock is in
overfished stock, which, given the way fisheries management advice is provided in the US,
requires a way to define the management reference points Smsy and Fwmsy. These reference
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points are well-defined for the single-species assessments (although the precision of the
estimates even from single-species models can be poor). However, there are several
alternative ways to define these reference points for multispecies and ecosystem models
(Moffit et al., this issue). Holsman et al. (this issue) illustrates how Smsy and Fmsy can be
calculated for a range of definitions for Smsy and Fvsy for three species included in the
analyses of this paper. Ultimately, model averaging could be used to compute ensemble
distributions for stock status relative to reference points if probabilities could be assigned to
each of the definitions for Smsy and Fusy.

We suggest that model uncertainty can be as large, or even exceed, many of the types of
uncertainties considered routinely in stock assessments. Use of model averaging can quantify
the range of outcomes from multiple models and better characterize uncertainty. Given that
ABCs and OFLs are often reduced based on scientific uncertainty, accounting for model
uncertainty can inform buffers between OFLs and ABCs and hence provide an improved
ability to achieve fishery goals such as avoiding overfishing and preventing stocks from
becoming overfished.
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Figure 1. The four future temperature time-series on which the MSMt projections are based. The constant

temperature is the average over time for the “hindcast” (dashed line).
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Figure 2. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder
for three catch series when the projections are based on the AFSC single-species model (zero catch: solid line;
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Figure 3. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder
(columns) for three catch series when the projections are based on the MSMtA model. The results for each
temperature scenario are shown as rows: average of hindcast values (a-c), ECHO-G (d-f), CCMA (g-i), and
MIROC-ESM (j-1). The bold lines are distribution medians, the light shaded areas contain 50% of the
distributions and the dark shaded areas contain 90% of the distributions.
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Figure 4. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder
(columns) for three catch series when the projections are based on the MSMtB model. The results for each
temperature scenario are shown as rows: average of hindcast values (a-c), ECHO-G (d-f), CCMA (g-i), and
MIROC-ESM (j-1). The bold lines are distribution medians, the light shaded areas contain 50% of the
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distributions and the dark shaded areas contain 90% of the distributions.
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Figure 5. Model averaged results (over climate scenarios) for time-trajectories of spawning stock biomass for
walleye pollock, Pacific cod and arrowtooth flounder for three catch series. The bold lines are distribution
medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the
distributions.
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Tables

Table 1. Spawning stock biomass (Smsy: thousands of metric tons) and fishing mortality rate (Fumsy:
per year) associated with MSY for Georges Bank Atlantic cod (Gadus morhua) based on five
stock-recruitment models (Brodziak and Legault, 2005). Standard deviations are given in

parentheses.
Model Posterior Smsy Fwmsy
Probability
RBH 0.34 193.7 (26.2) 0.21 (0.03)
RABH 0.15 176.1 (39.1) 0.23 (0.05)
RZBH 0.33 188.7 (33.6) 0.22 (0.02)
RZABH 0.16 172.7 (34.6) 0.23 (0.03)
SRK 0.01 87.5(57.4) 0.69 (0.01)
Model Average 184.7 (38.2) 0.23 (0.06)

80% credibility intervals

(135.8, 233.6) (0.15, 0.31)

RBH, informative recruitment priors with uncorrelated Beverton-Holt; RABH, informative
recruitment priors with autocorrelated Beverton-Holt; RZBH, informative recruitment and
steepness priors with uncorrelated Beverton-Holt; RZABH, informative recruitment and
steepness priors with autocorrelated Beverton-Holt; SRK, informative slope at origin priors
with uncorrelated Ricker (Ricker 1954, modified from Hill ezt al., 2007).

Table 2 Catches (t) used in the projections.

Stock Mean catch over Maximum catch over
1998-2012 1998-2012

Pollock 1,226,280 1,490,900

Pacific cod 191,938 220,134

Arrowtooth flounder 13,458 17,737




(a)

Table 3 Percentiles of the distributions for the 2039 estimated spawning stock biomass for the individual models and for the model averaged results.

a) Zero catch scenario

Pollock Pacific cod Arrowtooth flounder
Climate Low Low Med. Up Up Low Low Med. Up Up Low Low Med. Up Up
Model Scenario 5%  25%  50% 5%  95% |5%  25%  50% 5%  95% |5%  25%  50% 75%  95%
Average 3671 4566 5281 6208 8039 [398 498 575 662 815 |275 322 365 414 498
vsm  ECHO-G 3827 4764 5509 6471 8391 [425 532 615 708 871 |237 279 317 358 434
CCMA 4093 5089 5876 6906 8959 [471 591 682 785 969 192 227 258 292 355
MIROC-ESM 3,963 4931 5690 6,696 8678 [449 562 649 747 920 [211 250 284 321 390
Average 1,525 2,011 2461 3,103 4,683 (258 310 354 405 497 217 265 313 368 470
vsmia  ECHO-G 1426 1903 2359 3,017 4,649 (261 313 357 410 510|181 221 261 308 395
CCMA 1359 1,784 2226 2,859 4342 (275 329 376 432 531|142 174 206 242 309
MIROC-ESM 1,500 1,975 2412 3,056 4566 [279 334 381 438 537  |163 199 237 278 352
Ssljc‘fil; 4042 5144 6269 7,806 11,616 (322 398 474 564 725|412 477 529 588 691
MSMtB  Averaged 3830 4810 5620 6,538 8450 (432 544 628 730 902 [212 260 304 357 445
MSMtA  Averaged 1458 1,894 2378 3,022 4616 (265 324 369 421 518|161 206 251 308 411
All Averaged 1,631 2,927 5088 6556 9,653 |294 381 478 611 812 |178 254 331 476 617




b) Mean catch scenario

Pollock Pacific cod Arrowtooth flounder
Climate Low Low Med. Up Up Low Low Med. Up Up Low Low Med. Up Up
Model Scenario 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
Average 0 1 644 1,919 3,794 |0 0 33 121 279 183 229 272 319 406
MSM(B ECHO-G 0 55 996 2,251 4,159 |0 6 83 176 342 148 188 225 266 341
CCMA 0 340 1,447 2,663 4,737 |0 46 143 240 423 110 144 175 208 271
MIROC-ESM 0 41 989 2,306 4,277 |0 4 78 178 355 133 170 204 240 309
Average 145 1,609 2,773 4,160 7,149 |0 0 2 36 139 174 239 299 376 507
MSMiA ECHO-G 104 1,453 2,642 4,091 7216 |0 0 5 51 161 132 187 237 306 422
CCMA 44 1,312 2,532 3,929 7,130 |0 0 14 69 181 91 134 175 229 322
MIROC-ESM 105 1,545 2,797 4257 7,404 |0 0 5 53 170 121 172 219 278 381
f;c’fil; 2,031 2844 3,651 4820 6973 |0 61 170 261 437 (357 421 471 531 632
MSMtB Averaged 0 66 993 2,240 4,311 |0 5 81 184 360 129 176 216 266 353
MSMtA Averaged 66 1,428 2,669 4,129 7,216 |0 0 5 52 167 116 172 229 306 446
All Averaged 0 1,134 2,636 3,867 6,380 |0 2 73 189 378 127 198 279 427 561
¢) Maximum catch scenario
Pollock Pacific cod Arrowtooth flounder
Climate Low Low Med. Up Up Low Low Med. Up Up Low Low Med. Up Up
Model Scenario 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%
Average 0 1 644 1919 3794 |0 0 33 121 279 183 229 272 319 406
MSMiB ECHO-G 0 55 996 2251 4159 |0 6 83 176 342 148 188 225 266 341
CCMA 0 340 1447 2663 4737 |0 46 143 240 423 110 144 175 208 271
MIROC-ESM 0 41 989 2306 4277 |0 4 78 178 355 133 170 204 240 309
Average 145 1609 2773 4160 7149 |0 0 2 36 139 174 239 299 376 507
MSM(A ECHO-G 104 1453 2642 4091 7216 |0 0 5 51 161 132 187 237 306 422
CCMA 44 1312 2532 3929 7130 |0 0 14 69 181 91 134 175 229 322
MIROC-ESM 105 1545 2797 4257 7404 |0 0 5 53 170 121 172 219 278 381
Single
species 2031 2844 3651 4820 6973 |0 61 170 261 437 357 421 471 531 632
MSMtB Averaged 0 66 993 2240 4311 0 5 81 184 360 129 176 216 266 353
MSMtA Averaged 66 1428 2669 4129 7216 |0 0 5 52 167 116 172 229 306 446
All Averaged 0 1134 2636 3867 6380 |0 2 73 189 378 127 198 279 427 561









