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Abstract 1 

Ecosystem-based fisheries management (EBFM) approaches allow a broader and more 2 
extensive consideration of objectives than is typically possible with conventional single-3 
species approaches. Ecosystem linkages may include trophic interactions and climate change 4 
effects on productivity for the relevant species within the system. Presently, models are 5 
evolving to include a comprehensive set of fishery and ecosystem information to address 6 
these broader management considerations. The increased scope of EBFM approaches is 7 
accompanied with a greater number of plausible models to describe the systems. This can 8 
lead to harvest recommendations and biological reference points that differ considerably 9 
among models. Model selection for projections (and specific catch recommendations) often 10 
occurs through a process that tends to adopt familiar, often simpler, models without 11 
considering those that incorporate more complex ecosystem information. Multi-model 12 
inference provides a framework that resolves this dilemma by providing a means of including 13 
information from alternative, often divergent models to inform biological reference points 14 
and possible catch consequences. We apply an example of this approach to data for three 15 
species of groundfish in the Bering Sea: walleye pollock, Pacific cod, and arrowtooth 16 
flounder using three models: 1) an age-structured “conventional” single-species model, 2) an 17 
age-structured single-species model with temperature-specific weight at age, and 3) a 18 
temperature-specific multi-species stock assessment model.  The latter two approaches also 19 
include consideration of alternative future climate scenarios, adding another dimension to 20 
evaluate model projection uncertainty. We show how Bayesian model-averaging methods can 21 
be used to incorporate such trophic and climate information to broaden single-species stock 22 
assessments by using an EBFM approach that may better characterize uncertainty.  23 

1. Introduction  24 

The Scientific and Statistical Committees, SSCs, of the Regional Fishery Management 25 
Councils are required to provide recommendations for overfishing limits, OFLs, and 26 
Acceptable Biological Catches, ABCs, as well as evaluate whether a stock is subject to 27 
overfishing or is in an overfished state. For most major stocks, these recommendations are 28 
based on the outcomes of quantitative stock assessment methods, which involve fitting 29 
population dynamics models to monitoring data collected during fishing and surveys. For 30 
stocks managed by the North Pacific and Pacific Fishery Management Council (NPFMC 31 
2012, PMFC 2011), the stock assessments are based on single-species models that typically 32 
ignore the impacts of time-varying predation mortality. 33 

Most stock assessments involve pre-specifying the values for some of the parameters of the 34 
population dynamics model (e.g., the rate of natural mortality, M, fecundity as a function of 35 
length or age, and the survey catchability coefficient), making structural assumptions (e.g. 36 
vulnerability for a given fleet is a time-varying logistic function of length, recruitment is 37 
related to spawning stock size according to the Beverton-Holt form of the stock-recruitment 38 
relationship), choosing the data sets used when fitting the model (e.g., should fishery catch 39 
rate data be used or ignored given uncertainties regarding the relationship between catch rate 40 
and abundance), and assigning statistical weights to different assessment data components. 41 
Although model fits to data may be similar, the results of stock assessments can be highly 42 
sensitive to parameter values and choices regarding model structure (e.g., Myers et al. 1994 43 
Taylor and Stephens, 2013; Holsman et al. this issue, Patterson et al. 2001)  44 

In general, fisheries management advice (and hence OFLs and ABCs) is based on a single 45 
“best” model (and hence set of assumptions), and uncertainty is quantified about that model 46 
conditioned on its assumptions being correct. Typically, uncertainty is quantified using 47 
asymptotic methods, bootstrapping, or Bayesian methods (Magnusson et al., 2013). However, 48 



many sources of uncertainty are ignored when applying these methods, so the measures of 49 
uncertainty reported to managers usually underestimate the true amount of uncertainty 50 
(Ralston et al., 2011; Punt et al., 2012). The difference between the OFL and the ABC for a 51 
stock (the “buffer”) is meant to reflect the amount of scientific uncertainty. ABCs are often 52 
set so that the probability that the ABC exceeds the true OFL equals a selected value, P* 53 
(where P*< 0.5), i.e. P(ABC>OFL)=P* (Prager et al., 2003; Shertzer et al., 2008; Prager and 54 
Shertzer, 2010). However, the true probability that the ABC exceeds the OFL will be larger 55 
than the P* estimate if uncertainty is underestimated. This would occur if the uncertainty 56 
associated with assumptions regarding model structure were ignored. Here we propose an 57 
example on how an EBFM approach could be used from multiple alternative ecosystem 58 
models to provide a better accounting of structural uncertainties.   59 

The use of multispecies and ecosystem models for fisheries management is generally 60 
considered to be a key component of Ecosystem Based Fisheries Management (EBFM) 61 
(Marasco et al., 2007; Plagányi, 2007). However, similar to single-species stock assessment 62 
methods, projections based on two ecosystem models (or variants of one ecosystem model 63 
with alternative assumptions) often reflect uncertainty about model structure and assumptions 64 
regarding values for pre-specified parameters. For example, Kaplan et al. (2013) evaluated 65 
the impacts of depleting forage species in the California Current ecosystem using Atlantis 66 
(Fulton et al., 2004, 2011; Horner et al., 2010) and Ecopath-with-Ecosim (Christensen and 67 
Walters, 2004; Field et al., 2006). However, the results from these two ecosystem models 68 
differed markedly  and increased the uncertainty about whether reducing forage species 69 
abundance would have a negative or positive effect on some ecosystem components. In 70 
another study, Kinzey and Punt (2009) showed that the results of a multispecies stock 71 
assessment were sensitive to the choice of the relationship between predation mortality and 72 
the density of predators and prey. The multispecies models examined by Kinzey and Punt 73 
(2009) predicted that Pacific cod (Gadus macrocephalus) in the Aleutian Islands could have 74 
been increasing or decreasing prior to 1990 depending on this relationship. This illustrates 75 
that assumptions about functional responses can affect predictions in critical ecosystem 76 
components. Regarding reference points, including trophic interactions in models can have 77 
large impacts, especially for key prey species (Collie and Gislason, 2001).  78 

These considerations imply that alternative model formulations should be based on plausible 79 
working hypotheses and assigning model weights or prior probabilities (given the a priori 80 
likelihood of the specified model). Ideally, within-model estimation uncertainty would further 81 
contribute to statistical inference of the combined multiple-model results. Results typically 82 
include projections of population size under alternative harvest control rules or catch 83 
scenarios as well as specific outputs such as OFLs and ABCs. Model averaging allows 84 
diverse, yet plausible, model results to collectively be used to guide management, and can 85 
provide estimates of uncertainty derived from both data fit (as is the case with individual 86 
models) as well as model structure and assumptions. It allows the uncertainty regarding 87 
which model is correct to be reflected in the advice used for management rather than simply 88 
selecting a single “best” model and ignoring the others.  89 

Here we provide a brief review of the multi-model inference for fisheries assessment 90 
applications, focusing in particular on two alternative ways to implement model averaging for 91 
EBFM. We then use model averaging to integrate the results from three classes of model 92 
(single-species, temperature-specific single-species, temperature-specific multispecies) for 93 
three scenarios regarding future catch in the eastern Bering Sea in terms of impacts on the 94 
spawning stock biomass of walleye pollock (Gadus chalcogrammus), Pacific cod and 95 
arrowtooth flounder (Atheresthes stomias).  96 



2. Overview of model averaging 97 

This study focuses on practical approaches for model averaging and contrasts weighted 98 
versus unweighted methods. For the weighted approach, we focus on Bayesian Model 99 
Averaging (BMA) and categorize unweighted methods as “ensemble” forecasting. Burnham 100 
and Anderson (2002) detail a number of alternatives, e.g., weighting models using AIC and 101 
others contrast approaches including frequentist weights (Millar et al. 2015). For our 102 
purposes, BMA requires that estimates of the posterior probability of each candidate model 103 
be available. This probability needs to be derived by fitting the model to available data. 104 
However, the probability of the model given the data cannot be derived for all models (e.g. 105 
dynamic ecosystem models such as Atlantis (Fulton et al., 2004, 2011; Kaplan et al. 2014) or 106 
the Forage/Euphausiid Abundance in Space and Time (FEAST) model (Aydin et al. this 107 
volume) because they cannot be formally fitted to data. It is consequently impossible to apply 108 
BMA or methods which weight models based on other metrics of model fit such as AIC 109 
weights in many situations. When this is the case, posterior probability distributions can be 110 
approximated by “envelopes of plausibility” derived from ensemble/Monte Carlo runs of 111 
each model where each run is based on a different (yet plausible) set of parameters, with the 112 
probability assigned to each model based on expert judgment (i.e. the “Delphi method”), a 113 
process which we refer to as “ensemble” forecasting. Butterworth et al. (1996) proposed the 114 
following four-level scheme to assign ‘plausibility ranks’ to the hypotheses underlying 115 
alternative models that could be used to weight models when “ensemble” forecasting is 116 
conducted:  117 

1. how strong is the basis for the hypothesis in the data for the species or region under 118 
consideration; 119 

2. how strong is the basis for the hypothesis in the data for a similar species or another 120 
region; 121 

3. how strong is the basis for the hypothesis for any species; and 122 
4. how strong or appropriate is the theoretical basis for the hypothesis? 123 

For the population dynamics models typical of fisheries management, BMA and ensemble 124 
forecasting fundamentally involve making projections. Each model can be projected multiple 125 
times (the outcomes will differ if there are multiple parameter choices for each model or the 126 
projections account for future stochasticity due to recruitment variability for example). The 127 
results of model averaging can be summarized by the overall mean or median of some 128 
quantity of management or scientific interest (the median is used here), the spread of results, 129 
and by individual trajectories. The mean of the projections is a “best estimate”, but simply 130 
showing the median trajectory loses the advantage of conducting multiple forecasts, namely 131 
to characterize uncertainty. Ianelli et al. (2011) summarized the results of projections for 132 
multiple models by illustrating intervals containing 50% and 80% of the combined outcomes 133 
over future climate scenarios to illustrate the overall uncertainty. They also showed a subset 134 
of individual trajectories to characterize the nature of year-to-year variability. 135 

2.1 Bayesian Model Averaging (BMA) 136 
The philosophy underlying Bayesian model averaging has been outlined by several authors 137 
(e.g. Buckland et al., 1997; Durban et al., 2005; Hoeting et al., 1999; Kass and Raftery, 1995; 138 
Raftery et al., 2005; Chimielechi and Raftery, 2011).  Ideally, BMA involves fitting the range 139 
of models to the available data and computing the probability of each model given the data. 140 
This weighting of models should ideally be conducted using Bayes factors, which 141 
quantitatively evaluates the credibility of a model relative to other models (Aitkin, 1991; 142 
Kass and Raftery, 1995). However, studies have weighted alternative models, using, for 143 
example, the Deviance Information Criterion (Spiegelhalter et al., 2002), Akaike’s 144 



Information Criterion (Akaike, 1973; Burnham and Anderson, 1998), and the Bayes 145 
Information Criterion (Schwartz, 1978). The latter two weighting schemes are non-Bayesian, 146 
but are relatively easy to compute in contrast to Bayes factor and DIC which require that a 147 
Bayesian analysis be conducted, which can be computationally prohibitive even for relatively 148 
simple ecosystem models (e.g. Parslow et al., 2013).  149 

Bayes factor, DIC, AIC, and BIC can only be computed if each model is fit to the same data 150 
set. If the models are fit to different data sets, weighting each model would require a more ad 151 
hoc approach, such as fitting the models to a subset of the data and predicting the remaining 152 
data (i.e., cross-validation). In this case, the weight assigned to each model could be 153 
proportional to the inverse of the mean square error associated with its predictions. 154 

Given probabilities for each model, the Bayesian model averaged forecast is constructed by 155 
conducting multiple projections for each model and generating the overall forecast by 156 
selecting projections at a sampling rate proportional to the probability of the model. Table 1 157 
summarizes an application of Bayesian model averaging in which five models are used to 158 
predict the fishing mortality and spawning biomass corresponding to maximum sustainable 159 
yield (FMSY and SMSY) for Atlantic cod (Gadus morhua; Hill et al. 2007; Brodziak and Legault 160 
2005). The best model in Table 1 is RBH, but model RZBH is almost as likely. The model-161 
averaged results are as expected closest to the best models, but the standard errors for the 162 
model-averaged results are larger than for either of the two best models. The weights 163 
assigned to each model in Table 1 are based on the Bayes factor. Bayes factors can be 164 
computed in this case because all of the models use the same data and the models are fairly 165 
simple. 166 

2.2 Ensemble forecasting 167 
Ensemble forecasting involves generating multiple projections of future system state under 168 
different choices for assumptions or parameter values. In principle, both structural and 169 
parameter uncertainty can be addressed through the use of multi-model ensembles. This 170 
approach is widely used in climate modeling where uncertainty is reflected in the accuracy of 171 
the approximations to the well-known and accepted physical principles of climate, and the 172 
inherent variability of the climate system. The climate system is chaotic, and the timing and 173 
phases of major and long-lasting fluctuations are largely unpredictable beyond time-horizons 174 
of a few years. Consequently, slightly different initial conditions for a climate model can lead 175 
to markedly different outcomes 40-50 years into the future. Whether including climate in 176 
population dynamics models has major impacts on the estimated future state of the 177 
populations under investigation depends on how the dynamics of the populations are linked 178 
to climate and the strength of the associated relationships. 179 

Probabilities can be assigned to model configurations (the underlying model equations and 180 
the values for its parameters) or entire model configurations can be considered plausible 181 
using hindcast simulations of past conditions (e.g. Overland and Wang, 2007), although past 182 
performance is not necessarily a good indicator of success in simulating future climate 183 
(Reifen and Toumi, 2009). A’mar et al. (2009) based projections on six general circulation 184 
models which were selected for both their accuracy with respect to the historical data and 185 
their predictions with respect to future climate scenarios. Specifically, these six models were 186 
in the subset of models that replicated the spatial pattern and temporal characteristics of the 187 
first principal component of sea surface temperature (SST) in the North Pacific Ocean (the 188 
PDO) observed in the latter half of the twentieth century (A’mar et al., 2009). It is worth 189 
noting that unlike the tactical application of ensemble forecasts used in climate systems, most 190 
fisheries applications are geared to making strategic decisions (i.e., devising tactical 191 
approaches that are robust to the plausible, yet uncertain, future outcomes). 192 



2.3 Fisheries examples of model averaging 193 
Model averaging in fisheries assessments is rare; the focus for fisheries management tends to 194 
be either selection of a best model or identification of harvest control rules that are robust to 195 
model selection and parameter value uncertainty (Butterworth, 2007). However, there are a 196 
few examples of where model averaging has been applied to fisheries population dynamics 197 
models and these are reviewed here. 198 

2.3.1 Weighted model averaging 199 
BMA has been applied to account for uncertainty regarding the form of the stock-recruitment 200 
relationship (usually Ricker vs Beverton-Holt) and the error structure (autocorrelated or not, 201 
and the distribution for the residuals) (Patterson, 1999; Brodziak and Legault, 2005). BMA 202 
was used by Brandon and Wade (2006) to account for uncertainty regarding the form of the 203 
population dynamics model underlying a stock assessment (density-dependent or non-204 
density-dependent, and whether the stock was at its environmental carrying capacity at the 205 
start of the modeled period) in an assessment of the Bering-Chukchi-Beaufort seas stock of 206 
bowhead whales, Balaena mysticetus. The weights assigned to each model by Brandon and 207 
Wade (2006) were based on Bayes factor; they developed their posterior distributions for 208 
each model using the sample-importance-resample algorithm, which allowed straightforward 209 
computation of the posterior probability of each model. Wilberg and Bence (2008) used 210 
Monte Carlo simulation to show that model averaging of alternative formulations for how 211 
fishery catchability changes over time performed better than using DIC to select a “best” 212 
model.  213 

Brodziak and Piner (2010) used BMA to integrate uncertainty due to the form of the stock-214 
recruitment relationship (Ricker or Beverton-Holt), the extent of autocorrelation about the 215 
stock-recruitment relationship, and two values for the steepness of the stock-recruitment 216 
relationship for striped marlin (Tetrapturus audax) in the North Pacific. Unlike Broziak and 217 
Legault (2005), Brodziak and Piner (2010) approximated the Bayes factor using BIC. 218 

2.3.2 “Unweighted” model averaging  219 
The ensemble approach has been applied fairly extensively to management of groundfish off 220 
the US west coast. For example, it was applied to rebuilding strategies for cowcod (Sebastes 221 
levis) off southern California that were developed by Dick and Ralston (2009). They provided 222 
forecasts for a range of assessment models, each of which was conditioned on one of a set of 223 
values for the steepness of the Beverton-Holt stock-recruitment relationship. Each projection 224 
was weighted based on a pre-specified probability distribution for steepness. Hamel (2011) 225 
conducted projections to evaluate times for Pacific Ocean Perch (Sebastes alutus) to rebuild 226 
to the proxy for the biomass at which maximum sustainable yield is achieved, BMSY for three 227 
models, given different levels of future fishing mortality and catch. Two of these models 228 
were assigned probability 0.25 and the third model was assigned a probability of 0.5 based on 229 
relative plausibility provided in Hamel and Ono (2011). 230 

Ianelli et al. (2011) evaluated the performance of management strategies for walleye pollock 231 
in the eastern Bering Sea. Recruitment was linked to predictions of SST from 82 232 
Intergovernmental Panel on Climate Change (IPCC) models—SST, among other 233 
environmental factors, was found by Mueter et al. (2011) to be a possible factor affecting 234 
pollock recruitment. These 82 models were selected by downscaling IPCC models to the 235 
eastern Bering Sea ecosystem and using retrospective studies to identify models that 236 
performed best for this system (Wang et al., 2010). 237 

Kolody et al. (2008), Kolody (2011), and Davies et al. (2012) developed an ‘uncertainty grid’ 238 
for assessments of swordfish (Xiphias gladius) in the Indian and Pacific Oceans, and explored 239 
structural uncertainty in a balanced factorial design. The results of the assessment were 240 



presented in terms of box plots of output statistics for each level of the factors considered. 241 
Kolody et al. (2008) explored sensitivity to stock-recruitment steepness, mixing proportions, 242 
growth rate/maturity/mortality options, the extent of variation about the stock-recruitment 243 
relationship, selectivity constraints, and data weights. Of 768 model configurations, a set of 244 
192 model configurations considered the “most plausible ensemble” were used to summarize 245 
stock status. This ensemble was selected using three metrics: the root mean square fit to the 246 
catch rate index, the effective sample sizes for the length-frequency data, and the difference 247 
between observed and model-predicted mean catch lengths (similar to the method of Francis 248 
2011). Kolody (2011) assigned weights to each of the factors on which the uncertainty grid 249 
was based using auxiliary information and the quality of the fits to the data, which led to 250 
some factors, such as that recruitment is related deterministically to spawning biomass, being 251 
assigned zero weight. 252 

Gardmark et al. (2013) evaluated a “biological ensemble modeling approach” over different 253 
ecological assumptions including climate forcing. They evaluated seven ecological models 254 
ranging from single-species to food web models and concisely distilled some key population 255 
indicators (e.g., extinction, increase from 2009 levels) under high and low fishing mortality 256 
scenarios. Importantly, they were able to highlight the relative sensitivity of biological 257 
characteristics and multispecies interactions from climate effects on the populations of 258 
interest. 259 

An unusual form of ensemble modeling has been applied to calculate strike limits for the 260 
Bering-Chukchi-Beaufort Seas stock of bowhead whales and the Eastern North Pacific stock 261 
of gray whales, Eschrichtius robustus. This involves calculating strike limits from two 262 
different methods and averaging them (Punt and Donovan, 2007). The philosophy underlying 263 
this approach is that each model can be wrong some of the time so averaging model results 264 
will lead to an outcome that is never very badly wrong (but is usually somewhat wrong). 265 

3. Application to walleye pollock, Pacific cod and arrowtooth flounder 266 

3.1 Alternative models 267 
Three classes of models formed the basis for the analysis (Table S.1): 268 

1. The single species assessment models currently used by the AFSC to provide 269 
management advice for Eastern Bering Sea (EBS) walleye pollock (e.g., Ianelli et al., 270 
2012), Pacific cod (e.g. Thompson and Lauth, 2012), and arrowtooth flounder (e.g., 271 
Spies et al., 2012). The assessments for these stocks are based on software developed 272 
specifically for those stocks coded using AD Model Builder (Fournier et al., 2012). 273 
All of the three single species assessments have the following features in common: (a) they 274 
are fundamentally age-structured and use an annual time step; (b) estimates of annual 275 
fishing mortality rates are conditioned on the total catch (retained and discards) 276 
estimates, (c) fishery data (catch biomass and catch proportions at age) are aggregated 277 
over seasons and areas within each year, (d) proportions at age from surveys and 278 
fisheries are fitted using estimated (or assumed) multinomial sample sizes, (e) life 279 
history parameters and environmental effects are assumed constant, and (f) survey 280 
indices (abundance or biomass) are modeled using lognormal assumptions and 281 
annually-specified observation errors (variances). Uncertainty in the projections based 282 
on these models reflects both parameter uncertainty (including selectivity), captured 283 
through MCMC sampling from the joint posterior distribution, and process error, 284 
captured through variation in recruitment about mean recruitment. 285 

2. The Temperature-Specific Multispecies Model (MSMt, aka CEATTLE for Climate-286 
Enhanced Age-based model with Temperature-specific Trophic Linkages and 287 



Energetics; Holsman et al., this issue) is an example of a “model of intermediate 288 
complexity” (Plagányi et al., 2014). The implementation of MSMt for the eastern 289 
Bering Sea includes the three focal species, models natural mortality for each species 290 
and age as the sum of a pre-specified residual natural mortality and time-varying 291 
predation mortality due to the predators included in the model. Predation mortality is 292 
driven by temperature-dependent daily ration and a suitability function, which is 293 
based on observed proportions of each prey species by age in the diets of each 294 
predator species by age. Weight-at-age is also assumed to depend on temperature and 295 
varies annually. The parameters of MSMt are estimated by fitting the model to data 296 
on catch age-composition as well as survey biomass index and age-composition data. 297 
The projections of the model assume that future recruitment at age-0 is lognormal 298 
about mean recruitment. Two variants of MSMt are considered, one that includes 299 
multispecies predator-prey interactions (MSMtA), and one which assumes natural 300 
mortality is constant over time (MSMtB). The latter differs from the single species 301 
models used by AFSC in that weight-at-age in MSMtB depends on temperature and 302 
some other structural simplifications (e.g., constant fishery selectivity over time). 303 
Stochasticity in future projections based on MSMtA and MSMtB account only for 304 
process error in future recruitment. 305 

Four climate scenarios are considered for MSMtA and MSMtB because temperature 306 
influences weight-at-age and the predation mortality function in MSMt. The first of four 307 
scenarios assumes that future temperature equals the average observed temperatures 308 
(temperature scenario 1). The next three of four temperature scenarios are based on mean 309 
summer water column temperature predicted from a ROMS model for the Bering Sea forced 310 
by three statistically downscaled global climate models (Wang et al., 2010). These 311 
temperature scenarios were: 312 

Scenario 2  “ECHO-G version 4, T30 resolution model” (Legutke and Voss, 313 
1999), 314 

Scenario 3 “CCMA model” (Canadian Centre for Climate Modelling and 315 
Analysis  CGCM3-t47; Flato et al., 2000, Flato and Boer 2001, Kim 316 
et al. 2002, 2003), and  317 

Scenario 4 “MIROC 3.2” (Watanabe et al., 2011, K-1 model developers, 2004)  318 

A single realization of each of these three climate scenarios was used as plausible 319 
characterizations of atmospheric forcing and oceanic boundary conditions for the regional 320 
ROMS forecasts of the Bering Sea (2013 to 2040; Fig. 1). 321 

3.2 Projections 322 
Each projection of the 1,000 iterations for each model involved the forecast period (2013-323 
2039). For the purposes of this study, projected recruitment was assumed to have the same 324 
mean and variance for each species as observed for the historical period. Additionally, 325 
population model projections included three alternative constant future catch scenarios: 326 

1. Catches set to the mean catch over the most recent 15 years (Table 2); 327 
2. Catches set to the maximum catch over the most recent 15 years (Table 2); 328 
3. No future catches of any species. 329 



4. Results 330 

4.1 Results by model scenario 331 
Figures 2-4 shows the time-trajectories of spawning stock biomass the three models 332 
individually and includes the effect of fishing. Also, three sets of results are shown for the 333 
MSMtA and MSMtB models, one for each climate scenario. There is relatively little 334 
difference amongst the four climate scenarios for the MSMtA and MSMtB models, although 335 
the projections including alternative future temperature scenarios (rows 2-4 in Figures 3 and 336 
4) are more variable. This is unsurprising given the low variability shown by the data in 337 
Figure 1. 338 

The general patterns between the two single-species models (AFSC; Figure 2 and MSMtB; 339 
Figure 4) share some qualitatively similar traits but also show some major differences. 340 
Specifically, the declines in abundance under the mean and maximum catches for pollock and 341 
Pacific cod are much greater for MSMtB. The cause of the differences between the two 342 
single-species models is unlikely to be due to temperature impacts on weight-at-age because 343 
the qualitative difference in results remains even when future temperature equals the 344 
historical mean. This is more likely due to differences in the assumptions regarding fishery 345 
selectivity in projections where MSMtB is balancing periods of selectivity shifted to be 346 
younger than the age-specific maturity schedule whereas the more recent selectivity trend is 347 
more focused on older pollock. In contrast, the single-species model uses the assumption that 348 
the most recent 5-year average selectivity-at-age is most appropriate for projection purposes. 349 
This points out that simplifications in the MSMt models’ treatment of individual species are 350 
important to consider in evaluating projecting interactions and such factors should be 351 
considered when developing relative weights among models. 352 

The results are also markedly sensitive to whether MSMt is applied in single-species or 353 
multispecies mode (Figures 3 and 4). Specifically pollock is predicted to decline and then 354 
rebuild under all catch scenarios (including zero catch) for MSMtA (multispecies mode) 355 
whereas pollock is predicted to increase under zero catch and decline under mean and 356 
maximum catches for MSMtB (single-species mode). The difference between the single-357 
species and multispecies predictions for cod is attributable primarily to the combined effect 358 
of cod and arrowtooth predation and pollock cannibalism in MSMtA. The abundance of 359 
Pacific cod is more robust between MSMtA and MSMtB, but the extent of decline in cod 360 
abundance is much greater under the multispecies version of the model (again reflecting  the 361 
importance on the source of age-1 cod predation). The trends in biomass of arrowtooth 362 
flounder are similar between MSMtA and MSMtB for the first few years of the projection 363 
period. However, unlike the MSMtB, MSMtA predicts stability or an increasing trend in 364 
arrowtooth abundance post 2030 (Figures 3 and 5). Because the increasing trend in 365 
arrowtooth abundance is not evident in MSMtB, this result is probably a consequence of 366 
temperature effects of weight-at-age combined with a slight decrease in predation by cod 367 
(and possibly pollock).  368 

4.2 Model averaged results 369 
Figure 5 shows results for three model classes when results are pooled over climate scenarios 370 
for the two MSMt models. Example results of the projections, including those based on 371 
model averaging, are summarized quantitatively in Table 3 by the median and 50% and 90% 372 
intervals for spawning biomass in 2039, the last year of the projection period. 373 

As expected, model averaging across climate scenarios (assigning equal weight to each 374 
climate scenario) confirms that the impacts of the different climate scenarios on the model 375 
outcomes are not large (Figure 5). The widths of the 90% intervals in Figure 5 for the model-376 



averaged results for MSMtA and MSMtB are narrower than those for the individual climate 377 
models, suggesting that variation in recruitment has a larger impact on uncertainty than the 378 
choice of climate model in this case. 379 

Figure 5 (bottom panel) and Table 3 show results when all models are averaged (with equal 380 
weight assigned to all three models). In this case, the widths of the 90% intervals are wider 381 
for the model-averaged results than for the results for each individual model, reflecting that 382 
between-model variation is greater than the variation due to climate scenario (models 383 
MSMtA and MSMtB), parameter uncertainty (AFSC single-species models) and recruitment 384 
variation (all three models). 385 

5 Discussion 386 

Effectively capturing uncertainty is a key focus for modern stock assessment science, and 387 
quantifying uncertainty in fisheries stock assessment models has been a focus for stock 388 
assessment scientists for decades (e.g., Patterson, 1999, Pattern et al., 2001, Hill et al., 2007, 389 
Magnusson et al., 2013). A full accounting for uncertainty requires adequately representing 390 
uncertainty regarding growth rates, natural mortality, the form and parameters of the stock-391 
recruitment relationship, and how data are weighted. However, conventional approaches to 392 
quantifying uncertainty fail to capture ‘model uncertainty’, i.e. the uncertainty associated 393 
with the structural assumptions of a model. In general, single-species stock assessments make 394 
a small number of very strong assumptions (e.g. that natural mortality is independent of 395 
time). On the other hand, multispecies and ecosystem models typically require more 396 
numerous and more specific assumptions (e.g. that the functional relationship for predator 397 
and prey has the Holling Type II form) and commonly assume other simplifying assumptions 398 
(e.g., constant fishery selectivity). Since these model types each make somewhat different 399 
types of compromises, applying  model averaging approaches (BMA or ensemble) is an 400 
appropriate way to express a broader and presumably more comprehensive range of 401 
uncertainty. 402 

Variability in climate scenarios contribute less to overall uncertainty than recruitment 403 
variation for the MSMtA and MSMtB models (Figure 5, Table 3). However, model 404 
uncertainty is a more marked source of uncertainty than parameter uncertainty, recruitment 405 
variation, and the choice of climate scenario. It is, however, noteworthy that the impact of 406 
model uncertainty depends on the particular catch scenario under investigation. It is largest 407 
for the zero catch scenario, in particular given the impact of ‘release’ of Pacific cod, a major 408 
predator of pollock in the MSMtA model. The models are more consistent in their predictions 409 
when the projections are based on the mean catch and most consistent for the projections 410 
based on the maximum catch where the biomass of predators and concomitant predation 411 
mortality is lowest (and thus differences between model parameterizations of predation 412 
mortality are lowest). 413 

Comparing alternative models has also raised another challenge in developing more 414 
“holistic” multispecies models. As noted above, simplifications in the multispecies model 415 
(e.g., constant fisheries selectivity) can introduce substantial differences in projections. For 416 
example, considering the estimated selectivity (Figure S.1) and mean body mass at age (but 417 
the same natural mortality-at-age) for pollock results in substantially different yield curves 418 
between the MSMt model and the single species model used for projections (Figure S.2). 419 
This highlights the need to compare potentially subtle fishery and demographic 420 
characteristics when comparing multispecies projections with their single-species 421 
counterparts. Nevertheless, the different ways of modeling selectivity and body mass at age 422 
are plausible and do reflect alternative hypotheses. Such choices made by modelers (lacking 423 
evidence to favor alternatives) remain an important, often unaccounted-for source of 424 



uncertainty. Ralston et al. (2011) characterized this type of uncertainty in single-stocks 425 
species stock assessments by the extent of different assessment variation among analysts and 426 
a similar approach could be extended to this type of model averaging.  427 

The model forecasts were assigned equal probability in constructing the model-averaged 428 
forecasts. This was because there is no way for the hindcast and forecast skills of the three 429 
models to be compared at present. The ideal of using Bayes factor (or DIC, AIC, BIC) is 430 
infeasible in this case because although the parameters of the single-species model and MSMt 431 
are estimated by fitting them to monitoring data, each model has slightly different statistical 432 
weights and/or levels of aggregation in the data sources. In principle, each model could be 433 
weighted objectively by a cross-validation-like approach. For example, one could fit the 434 
model including data only up to 2008 and using the fitted model to predict the survey 435 
estimates of abundance for 2009, 2010, 2011, etc. given the catches that actually occurred 436 
during 2009, 2010, 2011; models that fit the observations better would obtain a higher 437 
weight.  438 

The illustrative application of this paper was based on three models. However, there are 439 
several other models that could have been included in the application. These include 440 
alternative multispecies models such as the multispecies virtual population analysis model of 441 
Jurado-Molina and Livingston (2002), and the statistical multispecies model developed by 442 
Kinzey and Punt (2009). Other models available for the Bering Sea include an Ecosim model 443 
(Aydin et al., 2007), the FEAST model, the multispecies surplus production model of Mueter 444 
and Megrey (2006), and a spatially-structured model of pollock (Hulson et al., 2013) 445 

Future work could involve evaluating the hindcast and forecast skill of projections based on a 446 
single model as well as on a model average of multiple models (c.f. Wilberg and Bence, 447 
2008). This could involve fitting the model to a subset of the data and conducting projections. 448 
The skill of the modeling approach could then be evaluated in terms of the percentiles of the 449 
predicted distributions in which the actual observations occurred. Ideally, the percentiles 450 
associated with the data should be uniformly distributed over 0-100. Large numbers of 451 
observations in the upper and lower tails of the forecast distributions would suggest that 452 
uncertainty is underestimated while no or few observations in the tails would suggest that 453 
uncertainty is overestimated. The benefits of using single models or model-averaged results 454 
could also be evaluated using simulations in which a true model is defined and data typical of 455 
an actual situation generated. This approach has been used extensively to evaluate the 456 
performance of single-species stock assessment methods, but has only been applied in a 457 
limited capacity for multispecies and ecosystem models, Kinzey (2010) being a noteworthy 458 
exception). 459 

Ultimately all approaches to applying model averaging involve subjective choices. These 460 
range from the initial choice of models to consider, along with a prior probability associated 461 
with each model. The latter is particularly a concern when many of the models are based on 462 
the same underlying philosophy. For example, the single-species assessments and MSMt, 463 
while different in several respects, make identical assumptions regarding many biological and 464 
fishery processes and cannot be considered to be totally independent. Similarly, MSMtA and 465 
MSMtB are identical except that the former allows for time-varying predation mortality while 466 
the latter does not. 467 

The outcomes from this model averaging exercise are expressed in terms of time-trajectories 468 
of spawning output given a time-series of catches. However, the primary use of stock 469 
assessments is to define whether overfishing is taking place and whether the stock is in 470 
overfished stock, which, given the way fisheries management advice is provided in the US, 471 
requires a way to define the management reference points SMSY and FMSY. These reference 472 



points are well-defined for the single-species assessments (although the precision of the 473 
estimates even from single-species models can be poor). However, there are several 474 
alternative ways to define these reference points for multispecies and ecosystem models 475 
(Moffit et al., this issue). Holsman et al. (this issue) illustrates how SMSY and FMSY can be 476 
calculated for a range of definitions for SMSY and FMSY for three species included in the 477 
analyses of this paper. Ultimately, model averaging could be used to compute ensemble 478 
distributions for stock status relative to reference points if probabilities could be assigned to 479 
each of the definitions for SMSY and FMSY.  480 

We suggest that model uncertainty can be as large, or even exceed, many of the types of 481 
uncertainties considered routinely in stock assessments. Use of model averaging can quantify 482 
the range of outcomes from multiple models and better characterize uncertainty. Given that 483 
ABCs and OFLs are often reduced based on scientific uncertainty, accounting for model 484 
uncertainty can inform buffers between OFLs and ABCs and hence provide an improved 485 
ability to achieve fishery goals such as avoiding overfishing and preventing stocks from 486 
becoming overfished. 487 
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Figure 1. The four future temperature time-series on which the MSMt projections are based. The constant 

temperature is the average over time for the “hindcast” (dashed line). 

 

Figure 2. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder 

for three catch series when the projections are based on the AFSC single-species model (zero catch: solid line; 

dashed line: mean catch; dotted line: maximum catch). The bold lines are distribution medians, the light shaded 

areas (zero catch: blue-green; light-blue: mean catch; darker blue: maximum catch) contain 50% of the 

distributions.  
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Figure 3. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder 

(columns) for three catch series when the projections are based on the MSMtA model. The results for each 

temperature scenario are shown as rows: average of hindcast values (a-c), ECHO-G (d-f), CCMA (g-i), and 

MIROC-ESM (j-l).   The bold lines are distribution medians, the light shaded areas contain 50% of the 

distributions and the dark shaded areas contain 90% of the distributions.  
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Figure 4. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder 

(columns) for three catch series when the projections are based on the MSMtB model. The results for each 

temperature scenario are shown as rows: average of hindcast values (a-c), ECHO-G (d-f), CCMA (g-i), and 

MIROC-ESM (j-l).  The bold lines are distribution medians, the light shaded areas contain 50% of the 

distributions and the dark shaded areas contain 90% of the distributions. 
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Figure 5. Model averaged results (over climate scenarios) for time-trajectories of spawning stock biomass for 

walleye pollock, Pacific cod and arrowtooth flounder for three catch series. The bold lines are distribution 

medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the 

distributions.   
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Tables 1 

 2 

Table 1. Spawning stock biomass (SMSY: thousands of metric tons) and fishing mortality rate (FMSY: 3 

per year) associated with MSY for Georges Bank Atlantic cod (Gadus morhua) based on five 4 

stock-recruitment models (Brodziak and Legault, 2005). Standard deviations are given in 5 

parentheses. 6 

 7 

Model Posterior 

Probability 

SMSY FMSY 

RBH 0.34 193.7 (26.2) 0.21 (0.03) 

RABH 0.15 176.1 (39.1) 0.23 (0.05) 

RZBH 0.33 188.7 (33.6) 0.22 (0.02) 

RZABH 0.16 172.7 (34.6) 0.23 (0.03) 

SRK 0.01 87.5 (57.4) 0.69 (0.01) 

Model Average 

80% credibility intervals 

 184.7 (38.2) 

(135.8, 233.6) 

0.23 (0.06) 

(0.15, 0.31) 

RBH, informative recruitment priors with uncorrelated Beverton-Holt; RABH, informative 8 

recruitment priors with autocorrelated Beverton-Holt; RZBH, informative recruitment and 9 

steepness priors with uncorrelated Beverton-Holt; RZABH, informative recruitment and 10 

steepness priors with autocorrelated Beverton-Holt; SRK, informative slope at origin priors 11 

with uncorrelated Ricker (Ricker 1954, modified from Hill et al., 2007). 12 

 13 

Table 2 Catches (t) used in the projections. 14 

Stock Mean catch over  

1998-2012 

Maximum catch over  

1998-2012 

Pollock 1,226,280 1,490,900 

Pacific cod 191,938 220,134 

Arrowtooth flounder 13,458 17,737 

 15 

 16 

 17 



Table 3 Percentiles of the distributions for the 2039 estimated spawning stock biomass for the individual models and for the model averaged results. 

(a) a) Zero catch scenario 

Model 

Climate 

Scenario 

Pollock Pacific cod Arrowtooth flounder 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

MSMtB 

Average 3,671 4,566 5,281 6,208 8,039 398 498 575 662 815 275 322 365 414 498 

ECHO-G 3,827 4,764 5,509 6,471 8,391 425 532 615 708 871 237 279 317 358 434 

CCMA 4,093 5,089 5,876 6,906 8,959 471 591 682 785 969 192 227 258 292 355 

MIROC-ESM 3,963 4,931 5,690 6,696 8,678 449 562 649 747 920 211 250 284 321 390 

MSMtA 

Average 1,525 2,011 2,461 3,103 4,683 258 310 354 405 497 217 265 313 368 470 

ECHO-G 1,426 1,903 2,359 3,017 4,649 261 313 357 410 510 181 221 261 308 395 

CCMA 1,359 1,784 2,226 2,859 4,342 275 329 376 432 531 142 174 206 242 309 

MIROC-ESM 1,500 1,975 2,412 3,056 4,566 279 334 381 438 537 163 199 237 278 352 

Single 

species 
4,042 5,144 6,269 7,806 11,616 322 398 474 564 725 412 477 529 588 691 

MSMtB Averaged 3,830 4,810 5,620 6,538 8,450 432 544 628 730 902 212 260 304 357 445 

MSMtA Averaged 1,458 1,894 2,378 3,022 4,616 265 324 369 421 518 161 206 251 308 411 

All Averaged 1,631 2,927 5,088 6,556 9,653 294 381 478 611 812 178 254 331 476 617 

 



b) Mean catch scenario 

Model 

Climate 

Scenario 

Pollock Pacific cod Arrowtooth flounder 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

MSMtB 

Average 0 1 644 1,919 3,794 0 0 33 121 279 183 229 272 319 406 

ECHO-G 0 55 996 2,251 4,159 0 6 83 176 342 148 188 225 266 341 

CCMA 0 340 1,447 2,663 4,737 0 46 143 240 423 110 144 175 208 271 

MIROC-ESM 0 41 989 2,306 4,277 0 4 78 178 355 133 170 204 240 309 

MSMtA 

Average 145 1,609 2,773 4,160 7,149 0 0 2 36 139 174 239 299 376 507 

ECHO-G 104 1,453 2,642 4,091 7,216 0 0 5 51 161 132 187 237 306 422 

CCMA 44 1,312 2,532 3,929 7,130 0 0 14 69 181 91 134 175 229 322 

MIROC-ESM 105 1,545 2,797 4,257 7,404 0 0 5 53 170 121 172 219 278 381 

Single 

species 
2,031 2,844 3,651 4,820 6,973 0 61 170 261 437 357 421 471 531 632 

MSMtB Averaged 0 66 993 2,240 4,311 0 5 81 184 360 129 176 216 266 353 

MSMtA Averaged 66 1,428 2,669 4,129 7,216 0 0 5 52 167 116 172 229 306 446 

All Averaged 0 1,134 2,636 3,867 6,380 0 2 73 189 378 127 198 279 427 561 

 

c) Maximum catch scenario 

Model 

Climate 

Scenario 

Pollock Pacific cod Arrowtooth flounder 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

Low 

5% 

Low 

25% 

Med. 

50% 

Up 

75% 

Up 

95% 

MSMtB 

Average 0 1 644 1919 3794 0 0 33 121 279 183 229 272 319 406 

ECHO-G 0 55 996 2251 4159 0 6 83 176 342 148 188 225 266 341 

CCMA 0 340 1447 2663 4737 0 46 143 240 423 110 144 175 208 271 

MIROC-ESM 0 41 989 2306 4277 0 4 78 178 355 133 170 204 240 309 

MSMtA 

Average 145 1609 2773 4160 7149 0 0 2 36 139 174 239 299 376 507 

ECHO-G 104 1453 2642 4091 7216 0 0 5 51 161 132 187 237 306 422 

CCMA 44 1312 2532 3929 7130 0 0 14 69 181 91 134 175 229 322 

MIROC-ESM 105 1545 2797 4257 7404 0 0 5 53 170 121 172 219 278 381 

Single 

species 2031 2844 3651 4820 6973 0 61 170 261 437 357 421 471 531 632 

MSMtB Averaged 0 66 993 2240 4311 0 5 81 184 360 129 176 216 266 353 

MSMtA Averaged 66 1428 2669 4129 7216 0 0 5 52 167 116 172 229 306 446 

All Averaged 0 1134 2636 3867 6380 0 2 73 189 378 127 198 279 427 561 



 




