

Multi-model inference for incorporating trophic and climate uncertainty into stock assessments

James Ianelli^{a*}

Kirstin K. HOLSMAN^B

André E. Punt^c

Kerim Aydin^d

^aEmail: Jim.Ianelli@noaa.gov , Alaska Fisheries Science Center NOAA Fisheries. Address: 7600 Sand Point Way N.E., Building 4, Seattle, Washington 98115, USA.

^bEmail: kirstin.holsman@noaa.gov , Affiliation: University of Washington JISAO/ Alaska Fisheries Science Center NOAA Fisheries. Address: 7600 Sand Point Way N.E., Building 4, Seattle, Washington 98115, USA

^cEmail: aepunt@uw.edu, University of Washington School of Aquatic and Fisheries Sciences. 1122 NE Boat St. Seattle WA 98105, USA.

^dEmail: Kerim.Aydin@noaa.gov , Alaska Fisheries Science Center NOAA Fisheries. Address: 7600 Sand Point Way N.E., Building 4, Seattle, Washington 98115, USA.

Keywords: Model averaging, model ensemble, multi-species model, stock assessment, fisheries, USA, Alaska Bering Sea, groundfish, predator prey, climate change, biological reference points, walleye pollock, Pacific cod, arrowtooth flounder.

1 **Abstract**

2 Ecosystem-based fisheries management (EBFM) approaches allow a broader and more
3 extensive consideration of objectives than is typically possible with conventional single-
4 species approaches. Ecosystem linkages may include trophic interactions and climate change
5 effects on productivity for the relevant species within the system. Presently, models are
6 evolving to include a comprehensive set of fishery and ecosystem information to address
7 these broader management considerations. The increased scope of EBFM approaches is
8 accompanied with a greater number of plausible models to describe the systems. This can
9 lead to harvest recommendations and biological reference points that differ considerably
10 among models. Model selection for projections (and specific catch recommendations) often
11 occurs through a process that tends to adopt familiar, often simpler, models without
12 considering those that incorporate more complex ecosystem information. Multi-model
13 inference provides a framework that resolves this dilemma by providing a means of including
14 information from alternative, often divergent models to inform biological reference points
15 and possible catch consequences. We apply an example of this approach to data for three
16 species of groundfish in the Bering Sea: walleye pollock, Pacific cod, and arrowtooth
17 flounder using three models: 1) an age-structured “conventional” single-species model, 2) an
18 age-structured single-species model with temperature-specific weight at age, and 3) a
19 temperature-specific multi-species stock assessment model. The latter two approaches also
20 include consideration of alternative future climate scenarios, adding another dimension to
21 evaluate model projection uncertainty. We show how Bayesian model-averaging methods can
22 be used to incorporate such trophic and climate information to broaden single-species stock
23 assessments by using an EBFM approach that may better characterize uncertainty.

24 **1. Introduction**

25 The Scientific and Statistical Committees, SSCs, of the Regional Fishery Management
26 Councils are required to provide recommendations for overfishing limits, OFLs, and
27 Acceptable Biological Catches, ABCs, as well as evaluate whether a stock is subject to
28 overfishing or is in an overfished state. For most major stocks, these recommendations are
29 based on the outcomes of quantitative stock assessment methods, which involve fitting
30 population dynamics models to monitoring data collected during fishing and surveys. For
31 stocks managed by the North Pacific and Pacific Fishery Management Council (NPFMC
32 2012, PMFC 2011), the stock assessments are based on single-species models that typically
33 ignore the impacts of time-varying predation mortality.

34 Most stock assessments involve pre-specifying the values for some of the parameters of the
35 population dynamics model (e.g., the rate of natural mortality, M , fecundity as a function of
36 length or age, and the survey catchability coefficient), making structural assumptions (e.g.
37 vulnerability for a given fleet is a time-varying logistic function of length, recruitment is
38 related to spawning stock size according to the Beverton-Holt form of the stock-recruitment
39 relationship), choosing the data sets used when fitting the model (e.g., should fishery catch
40 rate data be used or ignored given uncertainties regarding the relationship between catch rate
41 and abundance), and assigning statistical weights to different assessment data components.
42 Although model fits to data may be similar, the results of stock assessments can be highly
43 sensitive to parameter values and choices regarding model structure (e.g., Myers *et al.* 1994
44 Taylor and Stephens, 2013; Holsman *et al.* this issue, Patterson *et al.* 2001)

45 In general, fisheries management advice (and hence OFLs and ABCs) is based on a single
46 “best” model (and hence set of assumptions), and uncertainty is quantified about that model
47 conditioned on its assumptions being correct. Typically, uncertainty is quantified using
48 asymptotic methods, bootstrapping, or Bayesian methods (Magnusson *et al.*, 2013). However,

49 many sources of uncertainty are ignored when applying these methods, so the measures of
50 uncertainty reported to managers usually underestimate the true amount of uncertainty
51 (Ralston *et al.*, 2011; Punt *et al.*, 2012). The difference between the OFL and the ABC for a
52 stock (the “buffer”) is meant to reflect the amount of scientific uncertainty. ABCs are often
53 set so that the probability that the ABC exceeds the true OFL equals a selected value, P^*
54 (where $P^* < 0.5$), i.e. $P(ABC > OFL) = P^*$ (Prager *et al.*, 2003; Shertzer *et al.*, 2008; Prager and
55 Shertzer, 2010). However, the true probability that the ABC exceeds the OFL will be larger
56 than the P^* estimate if uncertainty is underestimated. This would occur if the uncertainty
57 associated with assumptions regarding model structure were ignored. Here we propose an
58 example on how an EBFM approach could be used from multiple alternative ecosystem
59 models to provide a better accounting of structural uncertainties.

60 The use of multispecies and ecosystem models for fisheries management is generally
61 considered to be a key component of Ecosystem Based Fisheries Management (EBFM)
62 (Marasco *et al.*, 2007; Plagányi, 2007). However, similar to single-species stock assessment
63 methods, projections based on two ecosystem models (or variants of one ecosystem model
64 with alternative assumptions) often reflect uncertainty about model structure and assumptions
65 regarding values for pre-specified parameters. For example, Kaplan *et al.* (2013) evaluated
66 the impacts of depleting forage species in the California Current ecosystem using Atlantis
67 (Fulton *et al.*, 2004, 2011; Horner *et al.*, 2010) and Ecopath-with-Ecosim (Christensen and
68 Walters, 2004; Field *et al.*, 2006). However, the results from these two ecosystem models
69 differed markedly and increased the uncertainty about whether reducing forage species
70 abundance would have a negative or positive effect on some ecosystem components. In
71 another study, Kinzey and Punt (2009) showed that the results of a multispecies stock
72 assessment were sensitive to the choice of the relationship between predation mortality and
73 the density of predators and prey. The multispecies models examined by Kinzey and Punt
74 (2009) predicted that Pacific cod (*Gadus macrocephalus*) in the Aleutian Islands could have
75 been increasing or decreasing prior to 1990 depending on this relationship. This illustrates
76 that assumptions about functional responses can affect predictions in critical ecosystem
77 components. Regarding reference points, including trophic interactions in models can have
78 large impacts, especially for key prey species (Collie and Gislason, 2001).

79 These considerations imply that alternative model formulations should be based on plausible
80 working hypotheses and assigning model weights or prior probabilities (given the a priori
81 likelihood of the specified model). Ideally, within-model estimation uncertainty would further
82 contribute to statistical inference of the combined multiple-model results. Results typically
83 include projections of population size under alternative harvest control rules or catch
84 scenarios as well as specific outputs such as OFLs and ABCs. Model averaging allows
85 diverse, yet plausible, model results to collectively be used to guide management, and can
86 provide estimates of uncertainty derived from both data fit (as is the case with individual
87 models) as well as model structure and assumptions. It allows the uncertainty regarding
88 which model is correct to be reflected in the advice used for management rather than simply
89 selecting a single “best” model and ignoring the others.

90 Here we provide a brief review of the multi-model inference for fisheries assessment
91 applications, focusing in particular on two alternative ways to implement model averaging for
92 EBFM. We then use model averaging to integrate the results from three classes of model
93 (single-species, temperature-specific single-species, temperature-specific multispecies) for
94 three scenarios regarding future catch in the eastern Bering Sea in terms of impacts on the
95 spawning stock biomass of walleye pollock (*Gadus chalcogrammus*), Pacific cod and
96 arrowtooth flounder (*Atheresthes stomias*).

97 **2. Overview of model averaging**

98 This study focuses on practical approaches for model averaging and contrasts weighted
99 versus unweighted methods. For the weighted approach, we focus on Bayesian Model
100 Averaging (BMA) and categorize unweighted methods as “ensemble” forecasting. Burnham
101 and Anderson (2002) detail a number of alternatives, e.g., weighting models using AIC and
102 others contrast approaches including frequentist weights (Millar *et al.* 2015). For our
103 purposes, BMA requires that estimates of the posterior probability of each candidate model
104 be available. This probability needs to be derived by fitting the model to available data.
105 However, the probability of the model given the data cannot be derived for all models (e.g.
106 dynamic ecosystem models such as Atlantis (Fulton *et al.*, 2004, 2011; Kaplan *et al.* 2014) or
107 the Forage/Euphausiid Abundance in Space and Time (FEAST) model (Aydin *et al.* this
108 volume) because they cannot be formally fitted to data. It is consequently impossible to apply
109 BMA or methods which weight models based on other metrics of model fit such as AIC
110 weights in many situations. When this is the case, posterior probability distributions can be
111 approximated by “envelopes of plausibility” derived from ensemble/Monte Carlo runs of
112 each model where each run is based on a different (yet plausible) set of parameters, with the
113 probability assigned to each model based on expert judgment (i.e. the “Delphi method”), a
114 process which we refer to as “ensemble” forecasting. Butterworth *et al.* (1996) proposed the
115 following four-level scheme to assign ‘plausibility ranks’ to the hypotheses underlying
116 alternative models that could be used to weight models when “ensemble” forecasting is
117 conducted:

- 118 1. how strong is the basis for the hypothesis in the data for the species or region under
119 consideration;
- 120 2. how strong is the basis for the hypothesis in the data for a similar species or another
121 region;
- 122 3. how strong is the basis for the hypothesis for any species; and
- 123 4. how strong or appropriate is the theoretical basis for the hypothesis?

124 For the population dynamics models typical of fisheries management, BMA and ensemble
125 forecasting fundamentally involve making projections. Each model can be projected multiple
126 times (the outcomes will differ if there are multiple parameter choices for each model or the
127 projections account for future stochasticity due to recruitment variability for example). The
128 results of model averaging can be summarized by the overall mean or median of some
129 quantity of management or scientific interest (the median is used here), the spread of results,
130 and by individual trajectories. The mean of the projections is a “best estimate”, but simply
131 showing the median trajectory loses the advantage of conducting multiple forecasts, namely
132 to characterize uncertainty. Ianelli *et al.* (2011) summarized the results of projections for
133 multiple models by illustrating intervals containing 50% and 80% of the combined outcomes
134 over future climate scenarios to illustrate the overall uncertainty. They also showed a subset
135 of individual trajectories to characterize the nature of year-to-year variability.

136 *2.1 Bayesian Model Averaging (BMA)*

137 The philosophy underlying Bayesian model averaging has been outlined by several authors
138 (e.g. Buckland *et al.*, 1997; Durban *et al.*, 2005; Hoeting *et al.*, 1999; Kass and Raftery, 1995;
139 Raftery *et al.*, 2005; Chimielechi and Raftery, 2011). Ideally, BMA involves fitting the range
140 of models to the available data and computing the probability of each model given the data.
141 This weighting of models should ideally be conducted using Bayes factors, which
142 quantitatively evaluates the credibility of a model relative to other models (Aitkin, 1991;
143 Kass and Raftery, 1995). However, studies have weighted alternative models, using, for
144 example, the Deviance Information Criterion (Spiegelhalter *et al.*, 2002), Akaike’s

145 Information Criterion (Akaike, 1973; Burnham and Anderson, 1998), and the Bayes
146 Information Criterion (Schwartz, 1978). The latter two weighting schemes are non-Bayesian,
147 but are relatively easy to compute in contrast to Bayes factor and DIC which require that a
148 Bayesian analysis be conducted, which can be computationally prohibitive even for relatively
149 simple ecosystem models (e.g. Parslow *et al.*, 2013).

150 Bayes factor, DIC, AIC, and BIC can only be computed if each model is fit to the same data
151 set. If the models are fit to different data sets, weighting each model would require a more *ad*
152 *hoc* approach, such as fitting the models to a subset of the data and predicting the remaining
153 data (i.e., cross-validation). In this case, the weight assigned to each model could be
154 proportional to the inverse of the mean square error associated with its predictions.

155 Given probabilities for each model, the Bayesian model averaged forecast is constructed by
156 conducting multiple projections for each model and generating the overall forecast by
157 selecting projections at a sampling rate proportional to the probability of the model. Table 1
158 summarizes an application of Bayesian model averaging in which five models are used to
159 predict the fishing mortality and spawning biomass corresponding to maximum sustainable
160 yield (F_{MSY} and S_{MSY}) for Atlantic cod (*Gadus morhua*; Hill *et al.* 2007; Brodziak and Legault
161 2005). The best model in Table 1 is RBH, but model RZBH is almost as likely. The model-
162 averaged results are as expected closest to the best models, but the standard errors for the
163 model-averaged results are larger than for either of the two best models. The weights
164 assigned to each model in Table 1 are based on the Bayes factor. Bayes factors can be
165 computed in this case because all of the models use the same data and the models are fairly
166 simple.

167 2.2 Ensemble forecasting

168 Ensemble forecasting involves generating multiple projections of future system state under
169 different choices for assumptions or parameter values. In principle, both structural and
170 parameter uncertainty can be addressed through the use of multi-model ensembles. This
171 approach is widely used in climate modeling where uncertainty is reflected in the accuracy of
172 the approximations to the well-known and accepted physical principles of climate, and the
173 inherent variability of the climate system. The climate system is chaotic, and the timing and
174 phases of major and long-lasting fluctuations are largely unpredictable beyond time-horizons
175 of a few years. Consequently, slightly different initial conditions for a climate model can lead
176 to markedly different outcomes 40-50 years into the future. Whether including climate in
177 population dynamics models has major impacts on the estimated future state of the
178 populations under investigation depends on how the dynamics of the populations are linked
179 to climate and the strength of the associated relationships.

180 Probabilities can be assigned to model configurations (the underlying model equations and
181 the values for its parameters) or entire model configurations can be considered plausible
182 using hindcast simulations of past conditions (e.g. Overland and Wang, 2007), although past
183 performance is not necessarily a good indicator of success in simulating future climate
184 (Reifen and Toumi, 2009). A'mar *et al.* (2009) based projections on six general circulation
185 models which were selected for both their accuracy with respect to the historical data and
186 their predictions with respect to future climate scenarios. Specifically, these six models were
187 in the subset of models that replicated the spatial pattern and temporal characteristics of the
188 first principal component of sea surface temperature (SST) in the North Pacific Ocean (the
189 PDO) observed in the latter half of the twentieth century (A'mar *et al.*, 2009). It is worth
190 noting that unlike the tactical application of ensemble forecasts used in climate systems, most
191 fisheries applications are geared to making strategic decisions (i.e., devising tactical
192 approaches that are robust to the plausible, yet uncertain, future outcomes).

193 2.3 *Fisheries examples of model averaging*

194 Model averaging in fisheries assessments is rare; the focus for fisheries management tends to
195 be either selection of a best model or identification of harvest control rules that are robust to
196 model selection and parameter value uncertainty (Butterworth, 2007). However, there are a
197 few examples of where model averaging has been applied to fisheries population dynamics
198 models and these are reviewed here.

199 2.3.1 *Weighted model averaging*

200 BMA has been applied to account for uncertainty regarding the form of the stock-recruitment
201 relationship (usually Ricker vs Beverton-Holt) and the error structure (autocorrelated or not,
202 and the distribution for the residuals) (Patterson, 1999; Brodziak and Legault, 2005). BMA
203 was used by Brandon and Wade (2006) to account for uncertainty regarding the form of the
204 population dynamics model underlying a stock assessment (density-dependent or non-
205 density-dependent, and whether the stock was at its environmental carrying capacity at the
206 start of the modeled period) in an assessment of the Bering-Chukchi-Beaufort seas stock of
207 bowhead whales, *Balaena mysticetus*. The weights assigned to each model by Brandon and
208 Wade (2006) were based on Bayes factor; they developed their posterior distributions for
209 each model using the sample-importance-resample algorithm, which allowed straightforward
210 computation of the posterior probability of each model. Wilberg and Bence (2008) used
211 Monte Carlo simulation to show that model averaging of alternative formulations for how
212 fishery catchability changes over time performed better than using DIC to select a “best”
213 model.

214 Brodziak and Piner (2010) used BMA to integrate uncertainty due to the form of the stock-
215 recruitment relationship (Ricker or Beverton-Holt), the extent of autocorrelation about the
216 stock-recruitment relationship, and two values for the steepness of the stock-recruitment
217 relationship for striped marlin (*Tetrapturus audax*) in the North Pacific. Unlike Broziak and
218 Legault (2005), Brodziak and Piner (2010) approximated the Bayes factor using BIC.

219 2.3.2 *“Unweighted” model averaging*

220 The ensemble approach has been applied fairly extensively to management of groundfish off
221 the US west coast. For example, it was applied to rebuilding strategies for cowcod (*Sebastodes*
222 *levis*) off southern California that were developed by Dick and Ralston (2009). They provided
223 forecasts for a range of assessment models, each of which was conditioned on one of a set of
224 values for the steepness of the Beverton-Holt stock-recruitment relationship. Each projection
225 was weighted based on a pre-specified probability distribution for steepness. Hamel (2011)
226 conducted projections to evaluate times for Pacific Ocean Perch (*Sebastodes alutus*) to rebuild
227 to the proxy for the biomass at which maximum sustainable yield is achieved, B_{MSY} for three
228 models, given different levels of future fishing mortality and catch. Two of these models
229 were assigned probability 0.25 and the third model was assigned a probability of 0.5 based on
230 relative plausibility provided in Hamel and Ono (2011).

231 Ianelli *et al.* (2011) evaluated the performance of management strategies for walleye pollock
232 in the eastern Bering Sea. Recruitment was linked to predictions of SST from 82
233 Intergovernmental Panel on Climate Change (IPCC) models—SST, among other
234 environmental factors, was found by Mueter *et al.* (2011) to be a possible factor affecting
235 pollock recruitment. These 82 models were selected by downscaling IPCC models to the
236 eastern Bering Sea ecosystem and using retrospective studies to identify models that
237 performed best for this system (Wang *et al.*, 2010).

238 Kolody *et al.* (2008), Kolody (2011), and Davies *et al.* (2012) developed an ‘uncertainty grid’
239 for assessments of swordfish (*Xiphias gladius*) in the Indian and Pacific Oceans, and explored
240 structural uncertainty in a balanced factorial design. The results of the assessment were

241 presented in terms of box plots of output statistics for each level of the factors considered.
242 Kolody *et al.* (2008) explored sensitivity to stock-recruitment steepness, mixing proportions,
243 growth rate/maturity/mortality options, the extent of variation about the stock-recruitment
244 relationship, selectivity constraints, and data weights. Of 768 model configurations, a set of
245 192 model configurations considered the “most plausible ensemble” were used to summarize
246 stock status. This ensemble was selected using three metrics: the root mean square fit to the
247 catch rate index, the effective sample sizes for the length-frequency data, and the difference
248 between observed and model-predicted mean catch lengths (similar to the method of Francis
249 2011). Kolody (2011) assigned weights to each of the factors on which the uncertainty grid
250 was based using auxiliary information and the quality of the fits to the data, which led to
251 some factors, such as that recruitment is related deterministically to spawning biomass, being
252 assigned zero weight.

253 Gardmark *et al.* (2013) evaluated a “biological ensemble modeling approach” over different
254 ecological assumptions including climate forcing. They evaluated seven ecological models
255 ranging from single-species to food web models and concisely distilled some key population
256 indicators (e.g., extinction, increase from 2009 levels) under high and low fishing mortality
257 scenarios. Importantly, they were able to highlight the relative sensitivity of biological
258 characteristics and multispecies interactions from climate effects on the populations of
259 interest.

260 An unusual form of ensemble modeling has been applied to calculate strike limits for the
261 Bering-Chukchi-Beaufort Seas stock of bowhead whales and the Eastern North Pacific stock
262 of gray whales, *Eschrichtius robustus*. This involves calculating strike limits from two
263 different methods and averaging them (Punt and Donovan, 2007). The philosophy underlying
264 this approach is that each model can be wrong some of the time so averaging model results
265 will lead to an outcome that is never very badly wrong (but is usually somewhat wrong).

266 **3. Application to walleye pollock, Pacific cod and arrowtooth flounder**

267 *3.1 Alternative models*

268 Three classes of models formed the basis for the analysis (Table S.1):

- 269 1. The single species assessment models currently used by the AFSC to provide
270 management advice for Eastern Bering Sea (EBS) walleye pollock (e.g., Ianelli *et al.*,
271 2012), Pacific cod (e.g. Thompson and Lauth, 2012), and arrowtooth flounder (e.g.,
272 Spies *et al.*, 2012). The assessments for these stocks are based on software developed
273 specifically for those stocks coded using AD Model Builder (Fournier *et al.*, 2012).
274 All of the three single species assessments have the following features in common: (a) they
275 are fundamentally age-structured and use an annual time step; (b) estimates of annual
276 fishing mortality rates are conditioned on the total catch (retained and discards)
277 estimates, (c) fishery data (catch biomass and catch proportions at age) are aggregated
278 over seasons and areas within each year, (d) proportions at age from surveys and
279 fisheries are fitted using estimated (or assumed) multinomial sample sizes, (e) life
280 history parameters and environmental effects are assumed constant, and (f) survey
281 indices (abundance or biomass) are modeled using lognormal assumptions and
282 annually-specified observation errors (variances). Uncertainty in the projections based
283 on these models reflects both parameter uncertainty (including selectivity), captured
284 through MCMC sampling from the joint posterior distribution, and process error,
285 captured through variation in recruitment about mean recruitment.
- 286 2. The Temperature-Specific Multispecies Model (MSMt, aka CEATTLE for Climate-
287 Enhanced Age-based model with Temperature-specific Trophic Linkages and

288 Energetics; Holsman *et al.*, *this issue*) is an example of a “model of intermediate
289 complexity” (Plagányi *et al.*, 2014). The implementation of MSMt for the eastern
290 Bering Sea includes the three focal species, models natural mortality for each species
291 and age as the sum of a pre-specified residual natural mortality and time-varying
292 predation mortality due to the predators included in the model. Predation mortality is
293 driven by temperature-dependent daily ration and a suitability function, which is
294 based on observed proportions of each prey species by age in the diets of each
295 predator species by age. Weight-at-age is also assumed to depend on temperature and
296 varies annually. The parameters of MSMt are estimated by fitting the model to data
297 on catch age-composition as well as survey biomass index and age-composition data.
298 The projections of the model assume that future recruitment at age-0 is lognormal
299 about mean recruitment. Two variants of MSMt are considered, one that includes
300 multispecies predator-prey interactions (MSMtA), and one which assumes natural
301 mortality is constant over time (MSMtB). The latter differs from the single species
302 models used by AFSC in that weight-at-age in MSMtB depends on temperature and
303 some other structural simplifications (e.g., constant fishery selectivity over time).
304 Stochasticity in future projections based on MSMtA and MSMtB account only for
305 process error in future recruitment.

306 Four climate scenarios are considered for MSMtA and MSMtB because temperature
307 influences weight-at-age and the predation mortality function in MSMt. The first of four
308 scenarios assumes that future temperature equals the average observed temperatures
309 (temperature scenario 1). The next three of four temperature scenarios are based on mean
310 summer water column temperature predicted from a ROMS model for the Bering Sea forced
311 by three statistically downscaled global climate models (Wang *et al.*, 2010). These
312 temperature scenarios were:

313 Scenario 2 “ECHO-G version 4, T30 resolution model” (Legutke and Voss,
314 1999),

315 Scenario 3 “CCMA model” (Canadian Centre for Climate Modelling and
316 Analysis CGCM3-t47; Flato *et al.*, 2000, Flato and Boer 2001, Kim
317 et al. 2002, 2003), and

318 Scenario 4 “MIROC 3.2” (Watanabe *et al.*, 2011, K-1 model developers, 2004)

319 A single realization of each of these three climate scenarios was used as plausible
320 characterizations of atmospheric forcing and oceanic boundary conditions for the regional
321 ROMS forecasts of the Bering Sea (2013 to 2040; Fig. 1).

322 3.2 Projections

323 Each projection of the 1,000 iterations for each model involved the forecast period (2013-
324 2039). For the purposes of this study, projected recruitment was assumed to have the same
325 mean and variance for each species as observed for the historical period. Additionally,
326 population model projections included three alternative constant future catch scenarios:

- 327 1. Catches set to the mean catch over the most recent 15 years (Table 2);
- 328 2. Catches set to the maximum catch over the most recent 15 years (Table 2);
- 329 3. No future catches of any species.

330 **4. Results**

331 *4.1 Results by model scenario*

332 Figures 2-4 shows the time-trajectories of spawning stock biomass the three models
333 individually and includes the effect of fishing. Also, three sets of results are shown for the
334 MSMtA and MSMtB models, one for each climate scenario. There is relatively little
335 difference amongst the four climate scenarios for the MSMtA and MSMtB models, although
336 the projections including alternative future temperature scenarios (rows 2-4 in Figures 3 and
337 4) are more variable. This is unsurprising given the low variability shown by the data in
338 Figure 1.

339 The general patterns between the two single-species models (AFSC; Figure 2 and MSMtB;
340 Figure 4) share some qualitatively similar traits but also show some major differences.
341 Specifically, the declines in abundance under the mean and maximum catches for pollock and
342 Pacific cod are much greater for MSMtB. The cause of the differences between the two
343 single-species models is unlikely to be due to temperature impacts on weight-at-age because
344 the qualitative difference in results remains even when future temperature equals the
345 historical mean. This is more likely due to differences in the assumptions regarding fishery
346 selectivity in projections where MSMtB is balancing periods of selectivity shifted to be
347 younger than the age-specific maturity schedule whereas the more recent selectivity trend is
348 more focused on older pollock. In contrast, the single-species model uses the assumption that
349 the most recent 5-year average selectivity-at-age is most appropriate for projection purposes.
350 This points out that simplifications in the MSMt models' treatment of individual species are
351 important to consider in evaluating projecting interactions and such factors should be
352 considered when developing relative weights among models.

353 The results are also markedly sensitive to whether MSMt is applied in single-species or
354 multispecies mode (Figures 3 and 4). Specifically pollock is predicted to decline and then
355 rebuild under all catch scenarios (including zero catch) for MSMtA (multispecies mode)
356 whereas pollock is predicted to increase under zero catch and decline under mean and
357 maximum catches for MSMtB (single-species mode). The difference between the single-
358 species and multispecies predictions for cod is attributable primarily to the combined effect
359 of cod and arrowtooth predation and pollock cannibalism in MSMtA. The abundance of
360 Pacific cod is more robust between MSMtA and MSMtB, but the extent of decline in cod
361 abundance is much greater under the multispecies version of the model (again reflecting the
362 importance on the source of age-1 cod predation). The trends in biomass of arrowtooth
363 flounder are similar between MSMtA and MSMtB for the first few years of the projection
364 period. However, unlike the MSMtB, MSMtA predicts stability or an increasing trend in
365 arrowtooth abundance post 2030 (Figures 3 and 5). Because the increasing trend in
366 arrowtooth abundance is not evident in MSMtB, this result is probably a consequence of
367 temperature effects of weight-at-age combined with a slight decrease in predation by cod
368 (and possibly pollock).

369 *4.2 Model averaged results*

370 Figure 5 shows results for three model classes when results are pooled over climate scenarios
371 for the two MSMt models. Example results of the projections, including those based on
372 model averaging, are summarized quantitatively in Table 3 by the median and 50% and 90%
373 intervals for spawning biomass in 2039, the last year of the projection period.

374 As expected, model averaging across climate scenarios (assigning equal weight to each
375 climate scenario) confirms that the impacts of the different climate scenarios on the model
376 outcomes are not large (Figure 5). The widths of the 90% intervals in Figure 5 for the model-

377 averaged results for MSMtA and MSMtB are narrower than those for the individual climate
378 models, suggesting that variation in recruitment has a larger impact on uncertainty than the
379 choice of climate model in this case.

380 Figure 5 (bottom panel) and Table 3 show results when all models are averaged (with equal
381 weight assigned to all three models). In this case, the widths of the 90% intervals are wider
382 for the model-averaged results than for the results for each individual model, reflecting that
383 between-model variation is greater than the variation due to climate scenario (models
384 MSMtA and MSMtB), parameter uncertainty (AFSC single-species models) and recruitment
385 variation (all three models).

386 **5 Discussion**

387 Effectively capturing uncertainty is a key focus for modern stock assessment science, and
388 quantifying uncertainty in fisheries stock assessment models has been a focus for stock
389 assessment scientists for decades (e.g., Patterson, 1999, Pattern *et al.*, 2001, Hill *et al.*, 2007,
390 Magnusson *et al.*, 2013). A full accounting for uncertainty requires adequately representing
391 uncertainty regarding growth rates, natural mortality, the form and parameters of the stock-
392 recruitment relationship, and how data are weighted. However, conventional approaches to
393 quantifying uncertainty fail to capture ‘model uncertainty’, i.e. the uncertainty associated
394 with the structural assumptions of a model. In general, single-species stock assessments make
395 a small number of very strong assumptions (e.g. that natural mortality is independent of
396 time). On the other hand, multispecies and ecosystem models typically require more
397 numerous and more specific assumptions (e.g. that the functional relationship for predator
398 and prey has the Holling Type II form) and commonly assume other simplifying assumptions
399 (e.g., constant fishery selectivity). Since these model types each make somewhat different
400 types of compromises, applying model averaging approaches (BMA or ensemble) is an
401 appropriate way to express a broader and presumably more comprehensive range of
402 uncertainty.

403 Variability in climate scenarios contribute less to overall uncertainty than recruitment
404 variation for the MSMtA and MSMtB models (Figure 5, Table 3). However, model
405 uncertainty is a more marked source of uncertainty than parameter uncertainty, recruitment
406 variation, and the choice of climate scenario. It is, however, noteworthy that the impact of
407 model uncertainty depends on the particular catch scenario under investigation. It is largest
408 for the zero catch scenario, in particular given the impact of ‘release’ of Pacific cod, a major
409 predator of pollock in the MSMtA model. The models are more consistent in their predictions
410 when the projections are based on the mean catch and most consistent for the projections
411 based on the maximum catch where the biomass of predators and concomitant predation
412 mortality is lowest (and thus differences between model parameterizations of predation
413 mortality are lowest).

414 Comparing alternative models has also raised another challenge in developing more
415 “holistic” multispecies models. As noted above, simplifications in the multispecies model
416 (e.g., constant fisheries selectivity) can introduce substantial differences in projections. For
417 example, considering the estimated selectivity (Figure S.1) and mean body mass at age (but
418 the same natural mortality-at-age) for pollock results in substantially different yield curves
419 between the MSMt model and the single species model used for projections (Figure S.2).
420 This highlights the need to compare potentially subtle fishery and demographic
421 characteristics when comparing multispecies projections with their single-species
422 counterparts. Nevertheless, the different ways of modeling selectivity and body mass at age
423 are plausible and do reflect alternative hypotheses. Such choices made by modelers (lacking
424 evidence to favor alternatives) remain an important, often unaccounted-for source of

425 uncertainty. Ralston *et al.* (2011) characterized this type of uncertainty in single-stocks
426 species stock assessments by the extent of different assessment variation among analysts and
427 a similar approach could be extended to this type of model averaging.

428 The model forecasts were assigned equal probability in constructing the model-averaged
429 forecasts. This was because there is no way for the hindcast and forecast skills of the three
430 models to be compared at present. The ideal of using Bayes factor (or DIC, AIC, BIC) is
431 infeasible in this case because although the parameters of the single-species model and MSMt
432 are estimated by fitting them to monitoring data, each model has slightly different statistical
433 weights and/or levels of aggregation in the data sources. In principle, each model could be
434 weighted objectively by a cross-validation-like approach. For example, one could fit the
435 model including data only up to 2008 and using the fitted model to predict the survey
436 estimates of abundance for 2009, 2010, 2011, etc. given the catches that actually occurred
437 during 2009, 2010, 2011; models that fit the observations better would obtain a higher
438 weight.

439 The illustrative application of this paper was based on three models. However, there are
440 several other models that could have been included in the application. These include
441 alternative multispecies models such as the multispecies virtual population analysis model of
442 Jurado-Molina and Livingston (2002), and the statistical multispecies model developed by
443 Kinzey and Punt (2009). Other models available for the Bering Sea include an Ecosim model
444 (Aydin *et al.*, 2007), the FEAST model, the multispecies surplus production model of Mueter
445 and Megrey (2006), and a spatially-structured model of pollock (Hulson *et al.*, 2013)

446 Future work could involve evaluating the hindcast and forecast skill of projections based on a
447 single model as well as on a model average of multiple models (c.f. Wilberg and Bence,
448 2008). This could involve fitting the model to a subset of the data and conducting projections.
449 The skill of the modeling approach could then be evaluated in terms of the percentiles of the
450 predicted distributions in which the actual observations occurred. Ideally, the percentiles
451 associated with the data should be uniformly distributed over 0-100. Large numbers of
452 observations in the upper and lower tails of the forecast distributions would suggest that
453 uncertainty is underestimated while no or few observations in the tails would suggest that
454 uncertainty is overestimated. The benefits of using single models or model-averaged results
455 could also be evaluated using simulations in which a true model is defined and data typical of
456 an actual situation generated. This approach has been used extensively to evaluate the
457 performance of single-species stock assessment methods, but has only been applied in a
458 limited capacity for multispecies and ecosystem models, Kinzey (2010) being a noteworthy
459 exception).

460 Ultimately all approaches to applying model averaging involve subjective choices. These
461 range from the initial choice of models to consider, along with a prior probability associated
462 with each model. The latter is particularly a concern when many of the models are based on
463 the same underlying philosophy. For example, the single-species assessments and MSMt,
464 while different in several respects, make identical assumptions regarding many biological and
465 fishery processes and cannot be considered to be totally independent. Similarly, MSMtA and
466 MSMtB are identical except that the former allows for time-varying predation mortality while
467 the latter does not.

468 The outcomes from this model averaging exercise are expressed in terms of time-trajectories
469 of spawning output given a time-series of catches. However, the primary use of stock
470 assessments is to define whether overfishing is taking place and whether the stock is in
471 overfished stock, which, given the way fisheries management advice is provided in the US,
472 requires a way to define the management reference points S_{MSY} and F_{MSY} . These reference

473 points are well-defined for the single-species assessments (although the precision of the
474 estimates even from single-species models can be poor). However, there are several
475 alternative ways to define these reference points for multispecies and ecosystem models
476 (Moffit *et al.*, this issue). Holsman *et al.* (this issue) illustrates how S_{MSY} and F_{MSY} can be
477 calculated for a range of definitions for S_{MSY} and F_{MSY} for three species included in the
478 analyses of this paper. Ultimately, model averaging could be used to compute ensemble
479 distributions for stock status relative to reference points if probabilities could be assigned to
480 each of the definitions for S_{MSY} and F_{MSY} .

481 We suggest that model uncertainty can be as large, or even exceed, many of the types of
482 uncertainties considered routinely in stock assessments. Use of model averaging can quantify
483 the range of outcomes from multiple models and better characterize uncertainty. Given that
484 ABCs and OFLs are often reduced based on scientific uncertainty, accounting for model
485 uncertainty can inform buffers between OFLs and ABCs and hence provide an improved
486 ability to achieve fishery goals such as avoiding overfishing and preventing stocks from
487 becoming overfished.

488 Acknowledgements

489 This publication is partially funded by the Joint Institute for the Study of the Atmosphere and
490 Ocean (JISAO) under NOAA Cooperative Agreement NA10OAR4320148, Contribution No.
491 2229. Excellent suggestions from Ian Stewart, Mike Sigler, and two anonymous reviewers
492 helped improve the earlier draft. Thanks also for support from NOAA's Integrated Ecosystem
493 Assessment program. This work benefitted from the support of colleagues at BEST-BSIERP
494 Bering Sea Project (this is publication number 152) and the North Pacific Research Board
495 (publication number 530).

496 References

497 A'mar, Z.T., Punt, A.E., Dorn, M.W., 2009. The evaluation of two management strategies
498 for the Gulf of Alaska walleye pollock fishery under climate change. *ICES Journal of*
499 *Marine Science* 66: 1614–1632.

500 Akaike, H. 1973. Information theory and an extension of the maximum likelihood principle,
501 in: 2nd International Symposium on Information Theory. Academiai Kiado, Budapest, pp.
502 267–281.

503 Aitkin, M. 1991. Posterior Bayes factors. *Journal of the Royal Society Series B* 53: 111–142.

504 Aydin, K., Gaichas, S., Ortiz, I., Kinzey, D., Friday, N., 2007. A Comparison of the Bering
505 Sea, Gulf of Alaska, and Aleutian Islands Large Marine Ecosystems Through Food Web
506 Modeling. NOAA Tech Memo NMFS AFSC 178, 298 pp.

507 Brandon, J.R., Wade, P.R., 2006. Assessment of the Bering-Chukchi-Beaufort Seas stock of
508 bowhead whales using Bayesian model averaging. *Journal of Cetacean Research and*
509 *Management* 8: 225–239.

510 Brodziak, J., Legault, C.M., 2005. Model averaging to estimate rebuilding targets for
511 overfished stocks. *Canadian Journal of Fisheries and Aquatic Sciences* 62: 544–562.

512 Brodziak, J., Piner, K., 2010. Model averaging and probable status of North Pacific striped
513 marlin, *Tetrapturus audax*. *Canadian Journal of Fisheries and Aquatic Sciences* 67: 793–
514 805.

515 Buckland, S.T., Burnham, K.P., Augustin, N.H., 1997. Model selection: an integral part of
516 inference. *Biometrics* 53: 603–618.

517 Burnham, K.P., Anderson, D.R., 1998. Model Selection and Multimodel Inference: a
518 Practical Information-theoretical Approach. Springer Verlag, New York. 353 pp.

519 Butterworth, D.S., Punt, A.E., Smith, A.D.M., 1996. On plausible hypotheses and their
520 weighting, with implications for selection between variants of the Revised Management
521 Procedure. *Reports of the International Whaling Commission* 46: 637–640.

522 Butterworth, D.S., 2007. Why a management procedure approach? Some positives and
523 negatives. *ICES Journal of Marine Science* 64: 613–617.

524 Christensen, V., Walters, C.J., 2004. Ecopath with Ecosim: methods, capabilities and
525 limitations. *Ecological Modelling* 172: 109–130.

526 Chimielechi, R.M., Raftery, A.E., 2011. Probabilistic visibility forecasting using Bayesian
527 Model Averaging. *Monthly Weather Review* 139: 1626–1636.

528 Collie, J.S. Gislason, H., 2001. Biological reference points for fish stocks in a multispecies context.
529 Canadian Journal of Fisheries and Aquatic Sciences, Vol. 58, No. 11, p. 2167-2176.

530 Davies, N., Hoyle, S., Hampton, J., 2012. Stock assessment of striped marlin (*Kajikia audax*)
531 in the southwest Pacific Ocean. WCPFC document WCPFC-SC8-2012/SA-WP-05. 90
532 pp.

533 Dick, E.J., Ralston, S., 2009. Cowcod Rebuilding Analysis. Pacific Fishery Management
534 Council, 7700 NE Ambassador Place, Portland, OR 97220. 32 pp.

535 Durban, J.W., Elston, D.A., Ellifrit, D.K., Dickson, E., Hammond, P.S., Thompson, P.M.,
536 2005. Multisite mark-recapture for cetaceans: population estimates with Bayesian model
537 averaging. *Marine Mammal Science* 21: 80–92.

538 Flato, G.M., Boer, G.J., Lee, W.G., McFarlane, N.A., Ramsden, D., Reader, M.C., Weaver,
539 A.J., 2000. The Canadian Centre for Climate Modelling and Analysis global coupled
540 model and its climate. *Climate Dynamics* 16, 451-467

541 Flato, G.M. and G.J. Boer, 2001: Warming Asymmetry in Climate Change Simulations.
542 *Geophys. Res. Lett.*, 28, 195-198.

543 Field, J.C., Francis, R.C. and K. Aydin. 2006. Top-down modelling and bottom-up dynamics:
544 linking a fisheries-based ecosystem model with climate hypotheses in the Northern
545 California Current. *Progress in Oceanography* 68: 238–270.

546 Francis, R.I.C.C., 2011. Data weighting in statistical fisheries stock assessment models.
547 *Canadian Journal of Fisheries and Aquatic Sciences* 68: 1124–1138.

548 Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen,
549 A. and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical
550 inference of highly parameterized complex nonlinear models. *Optimization Methods and
551 Software* 27: 233–249.

552 Fulton, E.A., Smith, A.D.M., and Johnson, C.R. 2004. Effects of spatial resolution on the
553 performance and interpretation of marine ecosystem models. *Ecological Modelling* 176:
554 27–42.

555 Fulton, E.A., Link, J.S., Kaplan, I.C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne,
556 P., Gorton, R., Gamble, R.J., Smith, A.D.M., and D.C. Smith. 2011. Lessons in modelling
557 and management of marine ecosystems: the Atlantis experience. *Fish and Fisheries* 12:
558 171–188.

559 Fulton, E.A., Smith, A.D.M., Smith, D.C. and I.E. van Putten. 2011. Human behavior: the
560 key source of uncertainty in fisheries management. *Fish and Fisheries* 12: 2–17.

561 Gardmark, A., Lindegren, M., Neuenfeldt, S., Blenckner, T., Heikinheimo, O., Muller-Karulis, B.,
562 Niiranen, S., Tomczak, M.T., Aro, E., Wikstrom, A., Mollmann, C., 2013. Biological ensemble
563 modeling to evaluate potential futures of living marine resources. *Ecological Applications*
564 23(4):742-754.

565 Hamel, O.S., 2011. Rebuilding analysis for Pacific Ocean Perch in 2011. Pacific Fishery
566 Management Council, 7700 NE Ambassador Place, Portland, OR 97220. 15 pp.

567 Hamel, O.S., Ono, K., 2011. Stock Assessment of Pacific Ocean Perch in Waters off of the
568 U.S. West Coast in 2011. Pacific Fishery Management Council, 7700 NE Ambassador
569 Place, Portland, OR 97220. 165 pp.

570 Hill, S.L., Watters, G.M., Punt, A.E., McAllister, M.K., LeQuere, C., Turner, J., 2007. Model
571 uncertainty in the Ecosystem Approach to Fisheries. *Fish and Fisheries*. 8: 315–336.

572 Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T., 1999. Bayesian Model Averaging:
573 a tutorial. *Statistical Sciences* 14: 382–417.

574 Holsman K. K., Ianelli, J., Aydin, K., Punt, A. E., Moffitt, E.A., *This issue*. Comparative
575 biological reference points estimated from temperature-specific multispecies and single
576 species stock assessment models. *Deep Sea Res II* 00:00-00.

577 Horner, P.J., Kaplan, I.C., Marshall, K.N., Levin, P.S., Harvey, C.J., Hermann, A.J., Fulton,
578 E.A., 2010. Design and parameterization of a spatially explicit ecosystem model of the
579 Central California Current. NOAA Technical Memorandum NMFS-NWFSC-104,
580 NOAA, USA. 140 pp

581 Hulson, P-J.F., Quinn, T.J. II, Hanselman, D.H., Ianelli, J.N., 2013. Spatial modeling of
582 Bering Sea walleye pollock with integrated age-structured assessment models in a
583 changing environment. *Canadian Journal of Fisheries and Aquatic Sciences* 70: 1402–
584 1416.

585 Ianelli, J.N., Honkalehto, T., Barbeaux, S., Kotwicki, S., Aydin, K., Williamson, N., 2012. Pg
586 51-155 in Stock Assessment and Fishery Evaluation Report for the Groundfish Resources
587 for the Bering Sea/Aleutian Islands Regions. North Pacific Fishery Management Council,
588 605 West 4th Ave, Suite 306, Anchorage AK 99501.

589 Ianelli, J.N., Hollowed, A.B., Haynie, A.C., Mueter, F.J., Bond, N.A., 2011. Evaluating
590 management strategies for eastern Bering Sea walleye pollock (*Theragra chalcogramma*)
591 in a changing environment. *ICES Journal of Marine Science* 68: 1297–1304.

592 Jurado-Molina, J. Livingston, P., 2002. Climate-forcing effects on trophically linked
593 groundfish populations: implications for fisheries management. *Canadian Journal of
594 Fisheries and Aquatic Sciences* 59: 1941–1951.

595 Kaplan, I.C., Brown, C.J., Fulton, E.A., Gray, I.A., Field, J.C. and A.D.M. Smith. 2013.
596 Impacts of depleting forage species in the California Current. *Environmental
597 Conservation* 40 (4): 380–393.

598 Kass, R.E., Raftery, A.E., 1995. Bayes factors. *Journal of the American Statistical
599 Association* 90: 773–795.

600 K-1 model developers, 2004. K-1 coupled model (MIROC) description, K-1 technical report,
601 1, H. Hasumi and S. Emori (eds.), Center for Climate System Research, University of
602 Tokyo, 34pp.

603 Kinzey, D. 2010. Multispecies stock assessment with predator-prey interactions. Ph.D. thesis,
604 University of Washington, 123 pp.

605 Kinzey, D., Punt, A.E., 2009. Multispecies and single-species models of fish population
606 dynamics: comparing parameter estimates. *Natural Resource Modelling* 22: 167–204.

607 Kim, S.J., Flato, G.M., Boer, G.J., McFarlane, N.A., 2002. A coupled climate model
608 simulation of the Last Glacial Maximum, Part 1: transient multi-decadal response.
609 Climate Dynamics, 19, 515-537.

610 Kim, S.J., Flato, G.M., Boer, G.J., 2003. A coupled climate model simulation of the Last
611 Glacial Maximum, Part 2: approach to equilibrium Climate Dynamics, 20, 635-661.

612 Kolody, D. 2011. An age-, sex- and spatially-structured stock assessment of the Indian Ocean
613 swordfish fishery 1950-2009, including special emphasis on the south-west region. IOTC
614 Document IOTC-2011-WPB-17. 75 pp.

615 Kolody, D., Campbell, R., Davies, N., 2008. A MULTIFAN-CL stock assessment of
616 southwest Pacific swordfish 1952-2007. WCPFC document WCPFC-SC4-2008/SA-WP-
617 6 (Rev1). 90 pp.

618 Legutke S., Voss, R., 1999. ECHO-G, the Hamburg atmosphere-ocean coupled circulation
619 model. *DKRZ technical report* 18, DKRZ, Hamburg.

620 Magnusson, A., Punt, A.E., Hilborn, R., 2013. Measuring uncertainty in fisheries stock
621 assessment: the delta method, bootstrap, and MCMC. *Fish and Fisheries* 14: 325–342.

622 Marasco, R.J., Goodman, D., Grimes, C.B., Lawson, P.W., Punt, A.E., Quinn T.J. II, 2007.
623 Ecosystem-based fisheries management: some practical suggestions. *Canadian Journal of
624 Fisheries and Aquatic Sciences* 64: 928–939.

625 Millar, C., Jardim, E., 2015. Model averaging to streamline the stock assessment process.
626 *ICES Journal of Marine Science*, 72(1): 93–98.

627 Mueter, F.J. and Megrey, B.A., 2006. Using multispecies surplus production models to
628 estimate ecosystem-level maximum sustainable yields. *Fisheries Research* 81: 189–201.

629 Mueter, F.J., Bond, N.A., Ianelli, J.N., Hollowed, A.B., 2011. Expected declines in
630 recruitment of walleye pollock (*Theragra chalcogramma*) in the eastern Bering Sea under
631 future climate change. *ICES Journal of Marine Science* 68: 1284–1296.

632 Myers, R.A., A.A. Rosenberg, P.M. Mace, N. Barrowman Restrepo, V.R., 1994. In search of
633 thresholds for recruitment overfishing. *ICES Journal of Marine Science*. 51(2): 191-205.

634 North Pacific Fishery Management Council. 2012. Stock Assessment and Fishery Evaluation
635 Report for the Groundfish Resources of the Bering Sea / Aleutian Islands Regions. North
636 Pacific Fishery Management Council, 605 West 4th Ave, Anchorage, AK 99501.

637 Overland, J.E., Wang, M., 2007. Future climate of the North Pacific Ocean. *EOS
638 Transactions of the American Geophysical Union* 88: 182.

639 Pacific Fishery Management Council. 2011. Pacific Coast Groundfish Fishery Management
640 Plan for the California, Oregon and Washington Grounfish Fishery. 7700 NE
641 Ambassador Place NE, Portland, OR 97220

642 Parslow, J., Cressie, N., Campbell, E.P., Jones, E., Murray, L., 2013. Bayesian learning and
643 predictability in a stochastic nonlinear dynamical model. *Ecological Applications* 23:679–
644 698.

645 Patterson, K.R., 1999. Evaluating uncertainty in harvest control law catches using Bayesian
646 Markov chain Monte Carlo virtual population analysis with adaptive rejection sampling
647 and including structural uncertainty. *Canadian Journal of Fisheries and Aquatic Sciences*
648 56: 208–221.

649 Patterson, K., Cook, R., Darby, C., Gavaris, S., Kell, L., Lewy, P., Mesnil, B., Punt, A.E.,
650 Restrepo, V., Skagen, D.W., Stefansson, G., 2001. Estimating uncertainty in fish stock
651 assessment and forecasting. *Fish and Fisheries* 2:125-157.

652 Plagányi, É.E. 2007. Models for an ecosystem approach to fisheries. FAO Fish. Tech. Pap.
653 477. Rome, FAO. 108 pp.

654 Plagányi, É.E., Punt, A.E., Hillary, R., Morello, E.B., Thébaud, O., Hutton, T., Pillans, R.D.,
655 Thorson, J.T., Fulton, E.A., Smith, A.D.M., Smith, F., Bayliss, P., Haywood, M., Lyne,
656 V. and P.C. Rothlisberg. 2014. Models of intermediate complexity for ecosystem
657 assessment to support tactical management decisions in fisheries and conservation. *Fish
658 and Fisheries* 15: 1-22.

659 Prager, M.H. and K.W. Shertzer. 2010. Deriving Acceptable Biological Catch from the
660 Overfishing Limit: Implications for Assessment Models. *North American Journal of
661 Fisheries Management* 30: 289–294.

662 Prager, M.H., Porch, C.E., Shertzer, K.W., Caddy, J.F., 2003. Targets and limits for
663 management of fisheries: a simple probability-based approach. *North American Journal
664 of Fisheries Management* 23: 349–361.

665 Punt, A.E., Donovan, G., 2007. Developing management procedures that are robust to
666 uncertainty: Lessons from the International Whaling Commission. *ICES Journal of
667 Marine Science* 64: 603–612.

668 Punt, A.E., Siddeek, M.S.M., Garber-Yonts, B., Dalton, M., Rugolo, L., Stram, D., Turnock,
669 B.J., Zheng, J., 2012. Evaluating the impact of buffers to account for scientific

670 uncertainty when setting TACs: Application to red king crab in Bristol Bay, Alaska. *ICES*
671 *Journal of Marine Science* 69:624–634.

672 Raftery, A.E., Gneiting, T., Balabdaoui, F., Polakowski, M., 2005. Using Bayesian model
673 averaging to calibrate forecast ensembles. *Monthly Weather Review* 133:1155–1174.

674 Ralston, S., Punt, A.E., Hamel, O.S., DeVore, J., Conser, R.J., 2011. An approach to
675 quantifying scientific uncertainty in stock assessment. *Fishery Bulletin* 109: 217–231.

676 Reifen, C., Toumi, R., 2009. Climate projections: Past performance no guarantee of future
677 skill? *Geophysical Research Letters* 36:L13704.

678 Ricker, W.E., 1954. Stock and Recruitment. *Journal of the Fisheries Research Board of*
679 *Canada* 11: 559–623.

680 Shertzer, C.E., Prager, M.H., Williams, E.H., 2008. A probability-based approach to setting
681 annual catch levels. *Fishery Bulletin* 106:225–232.

682 Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures of
683 model complexity and fit. *Journal of Royal Society B* 64:583–639.

684 Spies, I., Wilderbuer, T.K., Nichol, D.G., Aydin, A., 2012. Arrowtooth flounder. Pp 895-965
685 in Stock Assessment and Fishery Evaluation Report for the Groundfish Resources for the
686 Bering Sea/Aleutian Islands Regions. North Pacific Fishery Management Council, 605
687 West 4th Ave, Suite 306, Anchorage AK 99501.

688 Schwartz, G., 1978. Estimating the dimension of a model. *Annals of Statistics* 6: 461–464.

689 Taylor, I.G., Stephens, A., 2013. Stock assessment of shortspine thornyhead in 2013. Pacific
690 Fishery Management Council, 7700 NE Ambassador Place, Portland, OR 97220.

691 Thompson, G.G., Lauth, RR., 2012. Assessment of the Pacific cod stock in the Eastern
692 Bering Sea and Aleutian Islands area. pp 245-254 in Stock Assessment and Fishery
693 Evaluation Report for the Groundfish Resources for the Bering Sea/Aleutian Islands
694 Regions. North Pacific Fishery Management Council, 605 West 4th Ave, Suite 306,
695 Anchorage AK 99501.

696 Wang, M., Overland, J.E., Bond, N.A., 2010. Climate projections for selected large marine
697 ecosystems. *Journal of Marine Systems* 79:258–266.

698 Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T.,
699 Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S.,
700 Kawamiya, M., 2011. MIROC-ESM 2010: model description and basic results of CMIP5-
701 20c3m experiments, *Geosci. Model Dev.* 4:845–872.

702 Wilberg, M.J., Bence, J.R., 2008. Performance of deviance information criterion model
703 selection in statistical catch-at-age analysis. *Fisheries Research* 93:212–221.

704

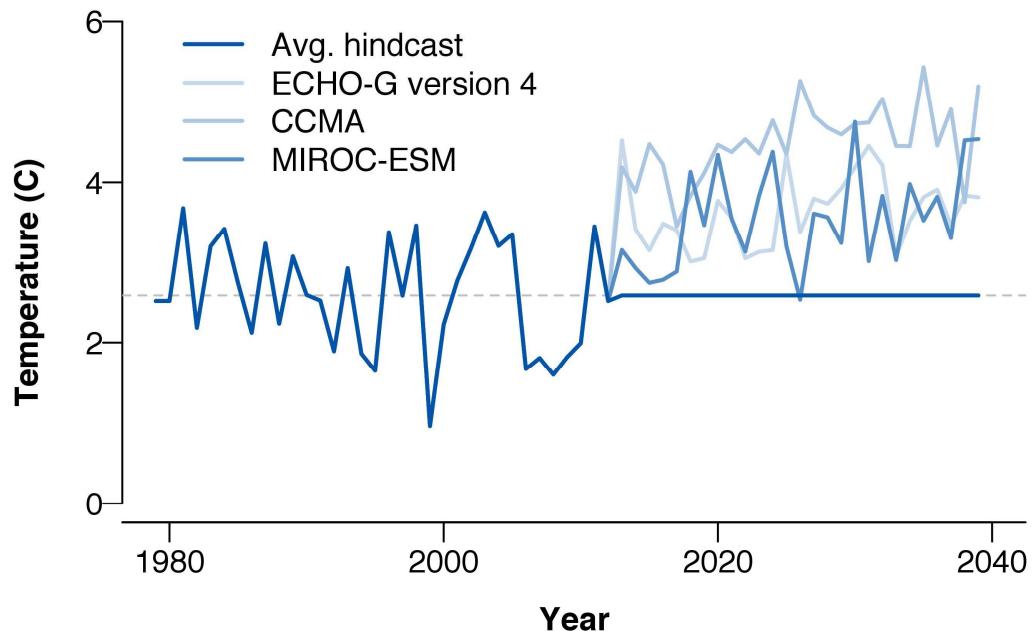


Figure 1. The four future temperature time-series on which the MSMt projections are based. The constant temperature is the average over time for the “hindcast” (dashed line).

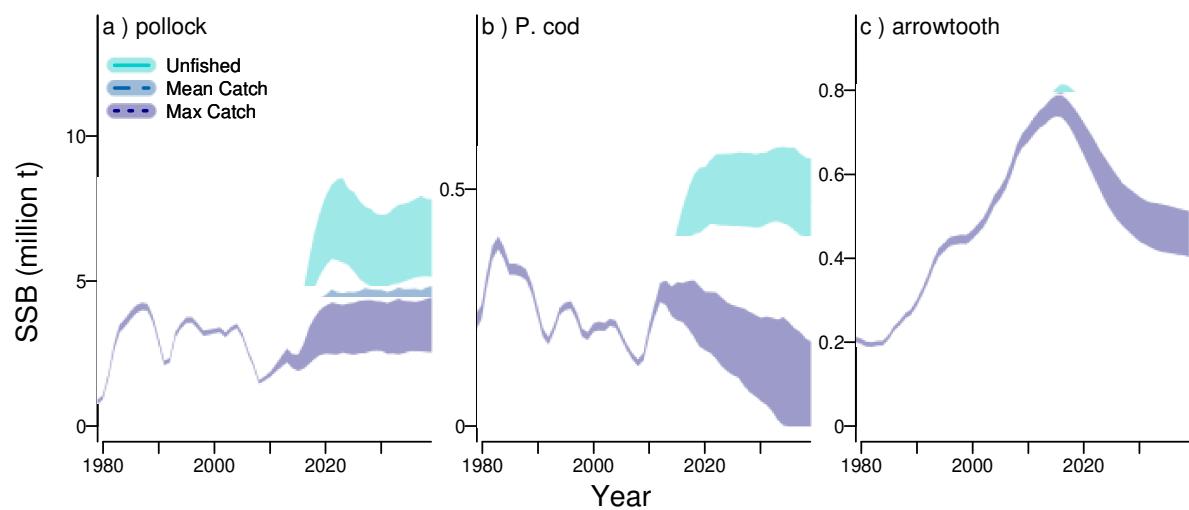


Figure 2. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder for three catch series when the projections are based on the AFSC single-species model (zero catch: solid line; dashed line: mean catch; dotted line: maximum catch). The bold lines are distribution medians, the light shaded areas (zero catch: blue-green; light-blue: mean catch; darker blue: maximum catch) contain 50% of the distributions.

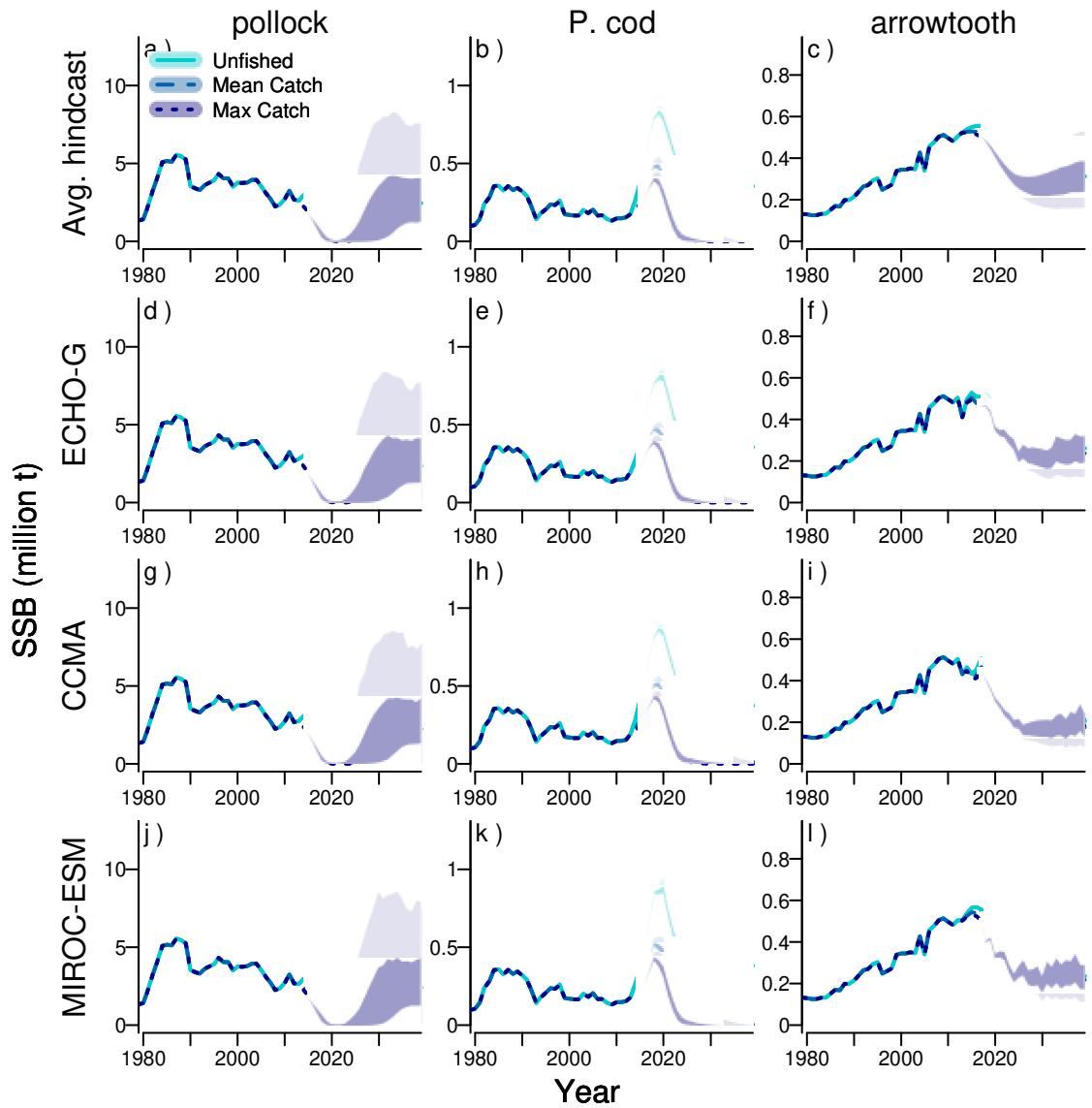


Figure 3. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder (columns) for three catch series when the projections are based on the MSMta model. The results for each temperature scenario are shown as rows: average of hindcast values (a-c), ECHO-G (d-f), CCMA (g-i), and MIROC-ESM (j-l). The bold lines are distribution medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the distributions.

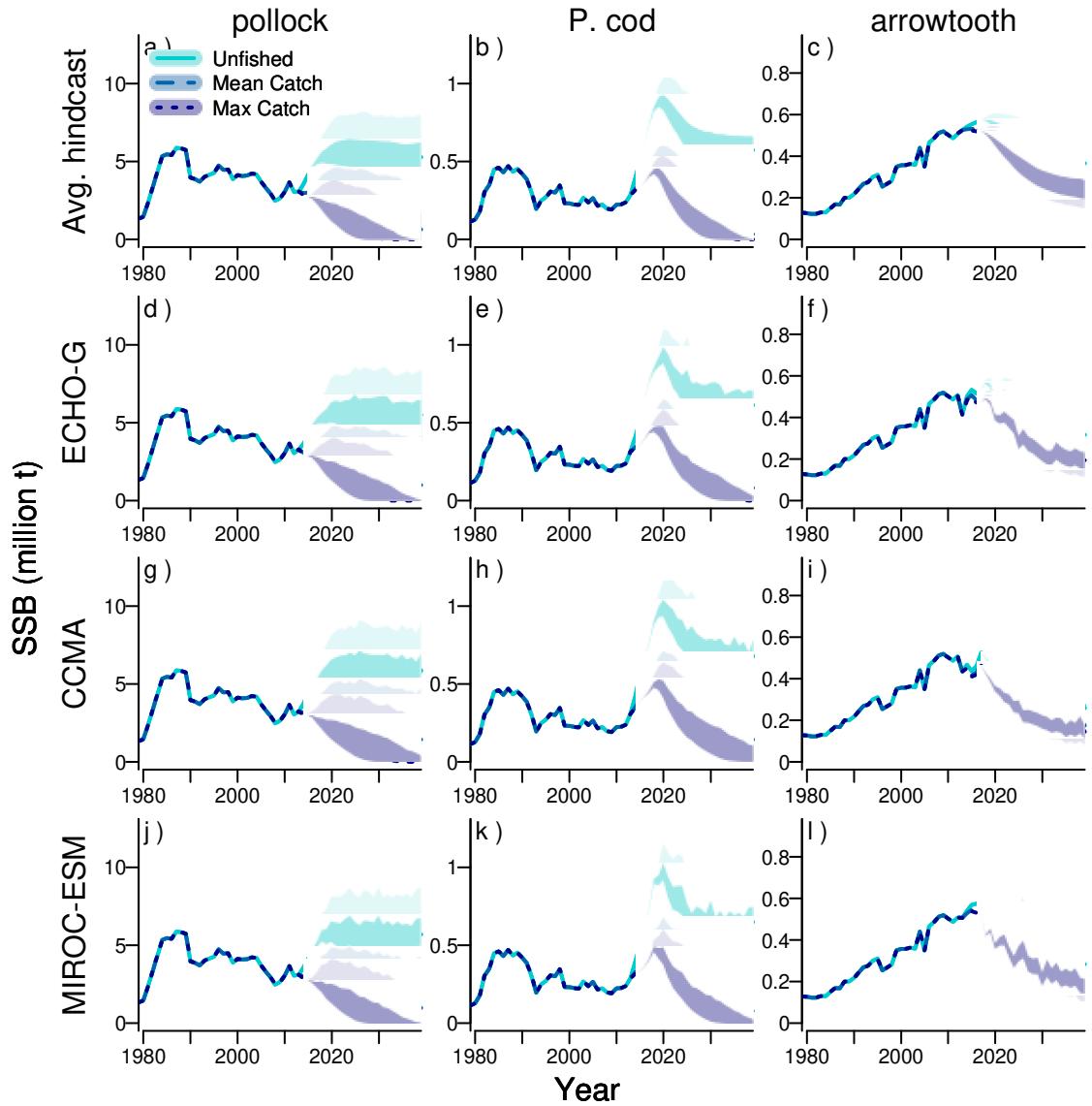


Figure 4. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder (columns) for three catch series when the projections are based on the MSMtB model. The results for each temperature scenario are shown as rows: average of hindcast values (a-c), ECHO-G (d-f), CCMA (g-i), and MIROC-ESM (j-l). The bold lines are distribution medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the distributions.

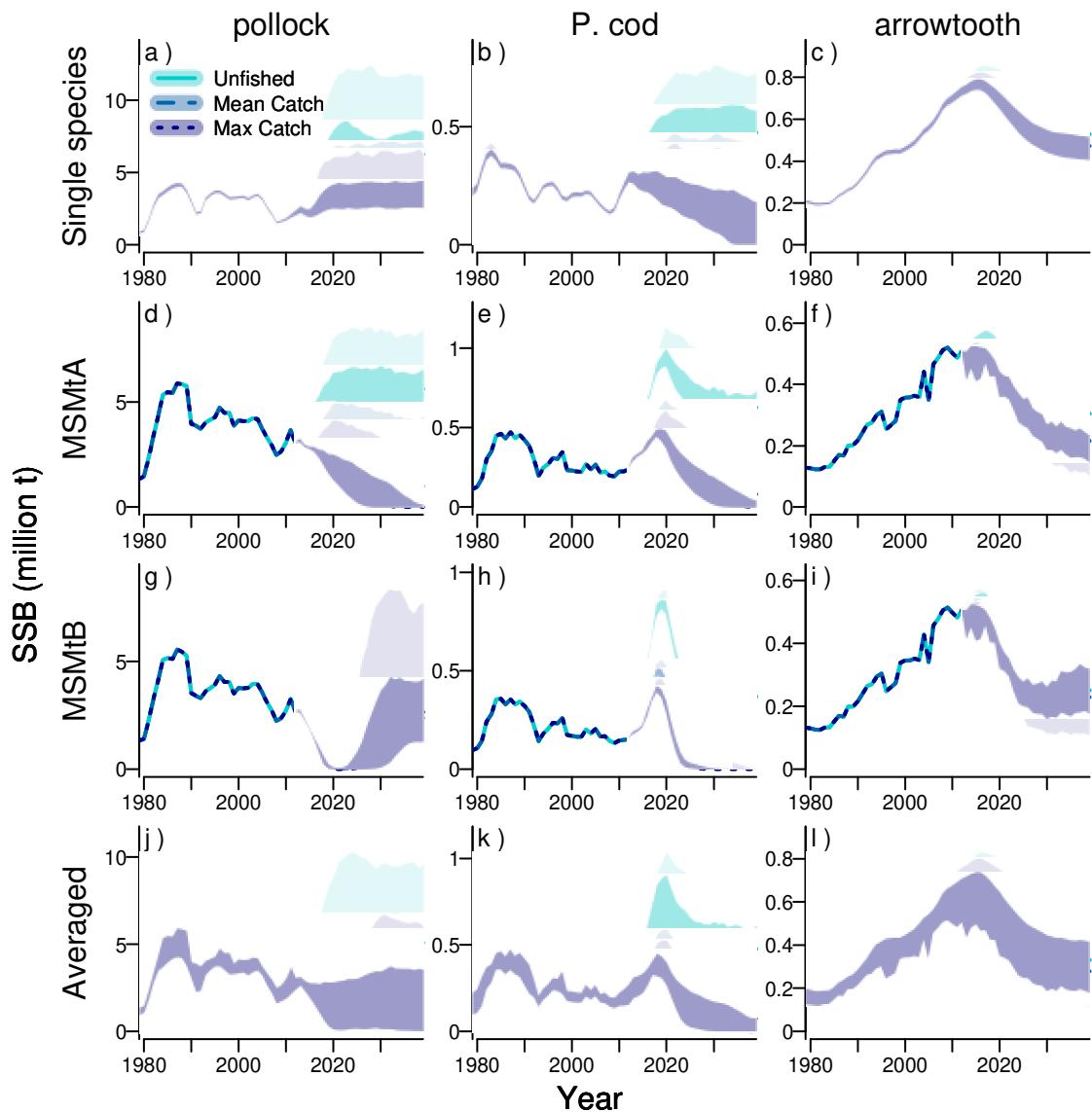


Figure 5. Model averaged results (over climate scenarios) for time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder for three catch series. The bold lines are distribution medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the distributions.

1 **Tables**

2

3 Table 1. Spawning stock biomass (S_{MSY} : thousands of metric tons) and fishing mortality rate (F_{MSY} :
4 per year) associated with MSY for Georges Bank Atlantic cod (*Gadus morhua*) based on five
5 stock-recruitment models (Brodziak and Legault, 2005). Standard deviations are given in
6 parentheses.

7

Model	Posterior Probability	S_{MSY}	F_{MSY}
RBH	0.34	193.7 (26.2)	0.21 (0.03)
RABH	0.15	176.1 (39.1)	0.23 (0.05)
RZBH	0.33	188.7 (33.6)	0.22 (0.02)
RZABH	0.16	172.7 (34.6)	0.23 (0.03)
SRK	0.01	87.5 (57.4)	0.69 (0.01)
Model Average		184.7 (38.2)	0.23 (0.06)
80% credibility intervals		(135.8, 233.6)	(0.15, 0.31)

8 RBH, informative recruitment priors with uncorrelated Beverton-Holt; RABH, informative
9 recruitment priors with autocorrelated Beverton-Holt; RZBH, informative recruitment and
10 steepness priors with uncorrelated Beverton-Holt; RZABH, informative recruitment and
11 steepness priors with autocorrelated Beverton-Holt; SRK, informative slope at origin priors
12 with uncorrelated Ricker (Ricker 1954, modified from Hill *et al.*, 2007).

13

14 Table 2 Catches (t) used in the projections.

Stock	Mean catch over 1998-2012	Maximum catch over 1998-2012
Pollock	1,226,280	1,490,900
Pacific cod	191,938	220,134
Arrowtooth flounder	13,458	17,737

15

16

17

Table 3 Percentiles of the distributions for the 2039 estimated spawning stock biomass for the individual models and for the model averaged results.

(a)

a) Zero catch scenario

Model	Climate Scenario	Pollock					Pacific cod					Arrowtooth flounder				
		Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%	Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%	Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%
MSMtB	Average	3,671	4,566	5,281	6,208	8,039	398	498	575	662	815	275	322	365	414	498
	ECHO-G	3,827	4,764	5,509	6,471	8,391	425	532	615	708	871	237	279	317	358	434
	CCMA	4,093	5,089	5,876	6,906	8,959	471	591	682	785	969	192	227	258	292	355
	MIROC-ESM	3,963	4,931	5,690	6,696	8,678	449	562	649	747	920	211	250	284	321	390
MSMtA	Average	1,525	2,011	2,461	3,103	4,683	258	310	354	405	497	217	265	313	368	470
	ECHO-G	1,426	1,903	2,359	3,017	4,649	261	313	357	410	510	181	221	261	308	395
	CCMA	1,359	1,784	2,226	2,859	4,342	275	329	376	432	531	142	174	206	242	309
	MIROC-ESM	1,500	1,975	2,412	3,056	4,566	279	334	381	438	537	163	199	237	278	352
Single species		4,042	5,144	6,269	7,806	11,616	322	398	474	564	725	412	477	529	588	691
MSMtB	Averaged	3,830	4,810	5,620	6,538	8,450	432	544	628	730	902	212	260	304	357	445
MSMtA	Averaged	1,458	1,894	2,378	3,022	4,616	265	324	369	421	518	161	206	251	308	411
All	Averaged	1,631	2,927	5,088	6,556	9,653	294	381	478	611	812	178	254	331	476	617

b) Mean catch scenario

Model	Climate Scenario	Pollock					Pacific cod					Arrowtooth flounder				
		Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%	Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%	Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%
MSMtB	Average	0	1	644	1,919	3,794	0	0	33	121	279	183	229	272	319	406
	ECHO-G	0	55	996	2,251	4,159	0	6	83	176	342	148	188	225	266	341
	CCMA	0	340	1,447	2,663	4,737	0	46	143	240	423	110	144	175	208	271
	MIROC-ESM	0	41	989	2,306	4,277	0	4	78	178	355	133	170	204	240	309
MSMtA	Average	145	1,609	2,773	4,160	7,149	0	0	2	36	139	174	239	299	376	507
	ECHO-G	104	1,453	2,642	4,091	7,216	0	0	5	51	161	132	187	237	306	422
	CCMA	44	1,312	2,532	3,929	7,130	0	0	14	69	181	91	134	175	229	322
	MIROC-ESM	105	1,545	2,797	4,257	7,404	0	0	5	53	170	121	172	219	278	381
Single species		2,031	2,844	3,651	4,820	6,973	0	61	170	261	437	357	421	471	531	632
MSMtB	Averaged	0	66	993	2,240	4,311	0	5	81	184	360	129	176	216	266	353
MSMtA	Averaged	66	1,428	2,669	4,129	7,216	0	0	5	52	167	116	172	229	306	446
All	Averaged	0	1,134	2,636	3,867	6,380	0	2	73	189	378	127	198	279	427	561

c) Maximum catch scenario

Model	Climate Scenario	Pollock					Pacific cod					Arrowtooth flounder				
		Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%	Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%	Low 5%	Low 25%	Med. 50%	Up 75%	Up 95%
MSMtB	Average	0	1	644	1919	3794	0	0	33	121	279	183	229	272	319	406
	ECHO-G	0	55	996	2251	4159	0	6	83	176	342	148	188	225	266	341
	CCMA	0	340	1447	2663	4737	0	46	143	240	423	110	144	175	208	271
	MIROC-ESM	0	41	989	2306	4277	0	4	78	178	355	133	170	204	240	309
MSMtA	Average	145	1609	2773	4160	7149	0	0	2	36	139	174	239	299	376	507
	ECHO-G	104	1453	2642	4091	7216	0	0	5	51	161	132	187	237	306	422
	CCMA	44	1312	2532	3929	7130	0	0	14	69	181	91	134	175	229	322
	MIROC-ESM	105	1545	2797	4257	7404	0	0	5	53	170	121	172	219	278	381
Single species		2031	2844	3651	4820	6973	0	61	170	261	437	357	421	471	531	632
MSMtB	Averaged	0	66	993	2240	4311	0	5	81	184	360	129	176	216	266	353
MSMtA	Averaged	66	1428	2669	4129	7216	0	0	5	52	167	116	172	229	306	446
All	Averaged	0	1134	2636	3867	6380	0	2	73	189	378	127	198	279	427	561

