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Abstract

Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of
corals and giant, clams. Because giant clams possess distinctive ectosymbiotic features, they
represent asunique and powerful model for comparing molecular pathways involved in 1)
maintenan¢e of symbiosis and 2) acquisition of thermo-tolerance among coral reef organisms.
Herein, we_explored the physiological and transcriptomic responses of the clam hosts and their
photosynthetically active symbionts over a 65-day experiment in which clams were exposed to
either normal or.environmentally relevant elevated seawater temperatures. Additionally, we used
metabarcoding”data coupled with in situ sampling/survey data to explore the relative importance
of holobiontradaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological
changes at the molecular level) in the clams’ responses to environmental change. We finally
compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae

dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better
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tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic
association. Gene module preservation analysis revealed that the function of the symbionts’
photosystem II was impaired at high temperature, and this response was also found across all
holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared
to be a key_response mechanism for symbionts in hospite with giant clams exposed to high
temperatures, and such modulation was able to distinguish thermo-tolerant from thermo-sensitive
Cladocopivm™goreaui ecotypes; epigenetic processes may, then, represent a promising research

avenue for those"interested in coral reef conservation in this era of changing global climate.

Introduction

The “small giant” clams (7ridacna maxima; hereafter referred to as simply
“clams”) are mixotrophic organisms living in obligatory symbiosis with photosynthetic
dinoflagellates of the family Symbiodiniaceae (Holt, Vahidinia, Gagnon, Morse, & Sweeney,
2014; Jantzenret al., 2008; LaJeunesse et al., 2018). Symbiodiniaceae associate not only with
clams, but“with a diverse array of marine invertebrates, namely sponges, molluscs, and
cnidariansjindeed, the coral-Symbiodiniaceae symbiosis is the functional basis of all coral reefs
(Hughes_etsal’, 2003). Whereas in scleractinian corals symbionts are located intracellularly, in
clams they reside extracellularly inside a tubular system (“Z-tubules”), which is 1) found in the
outer epithelium of the mantle and 2) connected to the stomach (Norton, Shepherd, Long, & Fitt,
1992). Thesevimyhospite dinoflagellates are known to provide nutrients to their clam hosts via
photosynthesissand may account for a major part of the clams’ energy needs (depending on the
species and the life history stage) (Hawkins & Klumpp, 1995; Klumpp, Bayne, & Hawkins,
1992; Klumpp & Griffiths, 1994; Lucas, 1994; Soo & Todd, 2014).

The_systematics of the family Symbiodiniaceae have recently been revised to include at
least nine different genera (formerly referred to as “clades”) with well characterized molecular
and physiological differences (LaJeunesse et al., 2018). One Symbiodiniaceae genus, formerly
known as clade A (which includes the species Symbiodinium fitti, S. microadriaticum, and S.
tridacnidorum), has been recurrently found in symbiosis with 7. maxima, though members of
clades C (Cladocopium) and D (Durusdinium) have been found in clam tissues, as well (Baillie,

Belda-Baillie, & Maruyama, 2000; DeBoer et al., 2012; Ikeda et al., 2017; LaJeunesse, 2001; Lee
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et al., 2015; Mies, Van Sluys, Metcalfe, & Sumida, 2017; Pinzén, Devlin-Durante, Weber,
Baums, & LalJeunesse, 2011). Depending on the clam species, the symbiont assemblage has been
found to vary with individual size (mostly observed in 7. squamosa), as well as across
environmental gradients (especially seawater temperatures) (DeBoer et al., 2012; Ikeda et al.,
2017).

In French Polynesia, eastern Tuamotu’s archipelagos were historically characterized by
high densitiesof'clams (Andréfouét et al., 2013; Gilbert et al., 2005; Gilbert, Remoissenet, Yan,
& Andrefouet;*2006). Recent mortality episodes and/or “bleaching” events in the Tuamotu
Islands have, however, been reported, including 1) a massive mortality event in 2009 that reduced
the clam pepulation by 90% at Tatakoto Atoll (Andréfouét et al., 2013; Van Wynsberge,
Andréfouét,»Gaertner-Mazouni, & Remoissenet, 2018) and 2) a bleaching event in 2016 that
affected 77 and 90% of the wild and cultured giant clam populations, respectively, at Reao Atoll
(Andréfouét et al., 2017). An increase in surface seawater temperature over a prolonged period
(approximately three months above 30°C) is suspected to have triggered such bleaching events
(Andréfouétetal., 2013, 2017; Van Wynsberge et al., 2018).

As withecorals, bleaching in clams corresponds to the loss of symbiotic Symbiodiniaceae
from the hests (Andréfouét et al., 2013; Buck, 2002; Fitt, Brown, Warner, & Dunne, 2001;
Hoegh-Guldberg et al., 2007; Leggat, Buck, Grice, & Yellowlees, 2003). Symbiodiniaceae
community variability and diversity (i.e., the collective assemblage of various genera and/or
species) seems to be a determining factor in the sensitivity and resilience of both coral and clam
hosts to increased temperatures (Barshis, Ladner, Oliver, & Palumbi, 2014; Barshis et al., 2013;
Ladner, Barshisy’ & Palumbi, 2012; Rowan, Knowlton, Baker, & Jara, 1997). However, the cell
physiology of the host and symbionts is likely to be as important, if not more so, than the
Symbiodiniaceae_assemblage, in terms of gauging the ability of the clam-Symbiodiniaceae
symbiosis to acclimate to elevated temperature over prolonged durations.

To date,/few studies have investigated the transcriptomic response of giant clams to
elevated tempetatures; lipid profiling analyses are more routinely undertaken (Dubousquet et al.,
2016). The™transcriptomic response to elevated temperature of several other taxa, mostly
scleractinian coral species (Crowder, Meyer, Fan, & Weis, 2017; Hou et al., 2018; Kenkel &
Matz, 2016; Pinzon et al., 2015) and cultured Symbiodiniaceae (Gierz, Forét, & Leggat, 2017,
Levin et al., 2016) have also been explored, yet few studies have looked at the mRNA level
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responses of multiple Symbiodiniaceae clades and host systems in the same study. Furthermore,
few physiological data and even fewer transcriptomic data are available for the high-temperature
responses of the giant clam 7. maxima and its symbionts [but see (Dubousquet et al., 2016; Zhou,
Liu, Wang, Luo, & Li, 2018)]; these two published studies, though, only considered the response
to an abrupt, rapid increase in temperature (short-term stress response).

Consequently, our understanding of the possible key drivers in high-temperature
acclimation"femains largely incomplete, despite its importance in generating better predictions of
the impactof elimate change on wild populations of giant clams (Van Wynsberge et al., 2018).
Given such knowledge deficiencies, we aimed herein to characterize the physiological and
transcriptomicgresponses of clams and their symbionts to hypothetically sub-lethal elevated
temperatures® (=30.7°C over a two-month period) that aimed to mimic past episodes of
anomalously high temperatures in French Polynesia. In addition to hypothesizing that the giant
clams would ultimately acclimate to this experimentally elevated temperature, we further
hypothesized that a “dual-compartmental” bioinformatic approach, similar to the one that has
been used witheeorals (Mayfield, Wang, Chen, Lin, & Chen, 2014), would provide insight into
the key molecular pathways underlying the ability of each member of this association to

acclimatete,an environmentally relevant, sub-lethal temperature.

Materials and Methods

Experimental design, tissue sampling, and physiological measurements
The experimental procedures were first described by Brahmi et al. (2019). Briefly, 24
individual clams_(N=4/treatment) were sampled over a 65-day period (days 29, 53, and 65) in
control (29.2°C; ambient at the time of experimentation) and elevated (30.7°C) temperature
conditions: Thestemperatures employed and the duration of the experiment reflect conditions in
normal and abnormally hot seasons, respectively [(correlated with mass clam bleaching events
(Addessi, 2001)] reported in lagoons of French Polynesia’s Tuamotu region (Brahmi et al.,
2019).
Samples (approx. 1 cm?) from each of the two treatments at each of the three sampling
times were systematically collected from the same region of the mantle and stored in RNALater®
(Life Technologies, USA) at -80°C until analysis (N=24). Furthermore, a single hermaphroditic

individual (approximately two years old) was sampled for a total of seven different tissues
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(mantle, adductor muscle, gonads, gills, byssus, visceral mass, and kidney) for transcriptome
assembly. Only one individual was used in an effort to reduce assembly polymorphism biases.
For this individual, which was excluded from the quantification analysis outlined below, sexual
status was confirmed by gonad biopsy and histology following a previously detailed procedure
(Menoud et al;,2016). Additionally, 10 giant clams were collected in situ in October 2018 around
Reao Atoll, (Tuamotu Archipelago, French Polynesia); tissues from each of these in situ
individuals*were collected from the same region of the mantle (approx. 1 cm?) and stored in 95%
ethanol at -20°Cuntil later symbiont community analysis (described below).

As deseribed in detail in Brahmi et al. (2019), a variety of physiological response variables
were assessedmin the 24 experimental replicates, in addition to the profiling of their
transcriptomes: ¥growth, Symbiodiniaceae density, and the maximum dark-adapted yield of
photosystem II (Fv/Fm; as measured by an AquaPen pulse amplitude modulating fluorometer;
APC-100m, Photon System Instruments, Czech Republic). Please see Brahmi et al. (2019) for
details on these analyses. Physiological data were tested with two-way ANOVA (treatment x
time) followed=by Tukey’s “honestly significant difference” (HSD) post-hoc tests (p<0.05),
including the interaction between time and temperature, when data (raw or transformed) met the
assumptions,for ANOVA. For Symbiodiniaceae density and Fv/Fm, a non-parametric equivalent
of the two-way ANOVA, the Scheirer-Ray-Hare test, was instead used (followed by Dunn’s post-

hoc tests).

DNA/RNA"extractions and transcriptome sequencing

Total RNA was extracted from 7. maxima mantles by lacerating tissues with a scalpel and
rinsing with 1X PBS. Cellular lysis was induced by addition of 1.5 ml TRIzol (Invitrogen, USA)
according_to.the manufacturer’s recommendations. The supernatant was transferred into a 2-ml
tube andmncubated for 10 min on ice. Phase separation was achieved by addition of 300 pl of
chloroform coupled with centrifugation at 12,000 xg for 12 min at 4°C. The upper aqueous layer
contained the RNA, and the lower organic layer was stored at -20°C for later DNA extraction
(according to the manufacturer’s recommendations). Total RNA from each individual was
subjected to a DNAse treatment using Qiagen’s RNA cleanup kit (Germany). RNA and DNA
were quantified using a NanoDrop ND-2000 spectrophotometer (Thermo-Fisher, USA), and
RNA quality was further evaluated by a Bioanalyzer 2100 (Agilent, USA). High-quality RNA

was sent to McGill University’s “Genome Quebec Innovation Center” (Montréal, QC, Canada)
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for Nextera XT (Illumina; USA) library preparation and sequencing on an Illumina HiSeq4000
100-bp paired-end platform. Samples for transcriptome assembly (N=7) were sequenced on a
single lane, while samples for expression level quantification analysis (N=24) were uniformly

and randomly distributed over two sequencing lanes after barcoding.

Transcriptomes assembly

Raw reads provided by RNA-Seq were filtered for quality and length using Trimmomatic
v.0.36 (Bolger, Lohse, & Usadel, 2014) with minimum length, trailing, and leading quality
parameters set t0,60 bp, 20, and 20, respectively. Illumina’s adaptors and residual cloning vectors
were removed via the UNIVEC database

(https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/).  Paired-end filtered reads were

assembled de.novo using Trinity v2.6.6 (Haas et al., 2013) with a default k-mer size of 25 bp and
a minimum.transcript length of 200 bp. Raw transcripts (n=726,689; 420 Gbp) were filtered for
presence of open reading frames (ORFs) (length>300 bp), longest isoform matches, and mapping
rate (>0.5 transcripts per million; TPM).

Transcripts matching Refseq entries from archaea, plasmids, viruses, and bacteria (BLASTn;
e-value<l0:19), as well those transcripts that aligned significantly (e-value<10) only to bacterial
sequences in theyNCBI nt database (max target seqs=5) were discarded in an effort to reduce
putative lcontamination. To segregate between symbiont and host sources, the meta-transcriptome
was blasted (BLASTn; e-value<l0#) against a pool of Symbiodiniaceae genomes and
transcriptomes including former clades A, C, and F [sensu (Gonzalez-Pech, Ragan, & Chan,
2017)]. By default, all hits with no match were considered as originating from the host. For
quality control, the de novo transcriptome’s completeness was assessed with BUSCO’s v2
metazoa_and_v2 eukaryotes databases for clam and Symbiodiniaceae, respectively (Simao,
Waterhousey=loannidis, Kriventseva, & Zdobnov, 2015). Transcriptomes were annotated by
BLAST search against the Uniprot-Swissprot database (BLASTX; e-value<104). A schematic
representation of the overall analysis pipeline has been provided in the Github repository

(https://github.com/jleluyer/acclimabest).
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Compartment-specific responses of the clam-dinoflagellate holobiont to long-term

temperature exposure

Filtered reads were mapped against a combined host-symbiont transcriptome using GSNAP
v2018.07.04 (Wu, Reeder, Lawrence, Becker, & Brauer, 2016) using the default parameters but
allowing for.a,maximum mismatch value of 3 and a minimum coverage of 0.85. Only properly
paired and uniquely mapped reads were conserved for downstream analysis (“concordant uniq;”
Wu, Reeder;*Irawrence, Becker, & Brauer, 2016). Gene counts were conducted with HTSEQ
v0.11.2 (Anders;"Pyl, & Huber, 2015) using the default parameters. A filtering step including
removal of genes with residual expression >1 count per million (CPM) in 4 individuals was
applied, and,data were transformed using the “rlog” function (betaPriorVar=2) implemented in
the DESeq2¢v1:23.10 R package (Love, Huber, & Anders, 2014) for host and symbionts
separately.

Signed co-expression networks were built for the host and symbiont datasets independently
using the R package WGCNA with a filtering step for minimum overall variance (>10%)
following thesrecommendations of Langfelder & Horvath (2008). The main goal of this analysis
was to clusterigenes in modules correlated with time, temperature, and relevant physiological
responses (Eigure 1). Briefly, we fixed “soft” threshold powers of 6 and 11 for the host and
symbiont_datasets, respectively, using the scale-free topology criterion to reach a model fit (|R|)
of 0.90 and 0.80, respectively. The modules were defined using the “cutreeDynamic” function
(minimum “of 50 genes by module and default cutting-height=0.99) based on the topological
overlap matrixjrand an automatic merging step with the threshold fixed at 0.25 (default) allowed
us to mergencorfrelated modules. For each module, we defined the module membership (kME;
Eigengene<based connectivity), and only statistically significant (p<0.05) modules were
conserved for downstream functional analysis (Figure 1). Gene ontology (GO) enrichment
analyses were conducted for each module using the GO MWU R package (Wright, Aglyamova,
Meyer, & Matz,2015) based on the background gene dataset found in WGCNA. GO terms were
considered _enriched at Benjamini-Hochberg adj. p<0.05 (minimum of three genes for any

individual GO term).

Meta-analysis of cultured and in hospite Symbiodiniaceae transcriptomes
We integrated publicly available datasets featuring similar experimental designs (i.e. control

and elevated temperature conditions over a long-term timescale) to further unravel conserved
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symbiont responses across genera, holobionts, and culture environments (i.e., cultured vs. in
hospite). Manuscript searches were conducted with the Web of Science platform using the search
formula: «symbio* AND RNAseq* AND temperature» together with informal searches via other
research engines (e.g., Google Scholar). A total of three studies met our criteria: Levin et al.
(2016) and Gierz et al. (2017) for cultured Symbiodiniaceae (n=48 transcriptomes) and Mayfield
et al. (2014) for the response of Symbiodiniaceae in hospite with the scleractinian coral P.
damicormis™(®=12 transcriptomes). Gierz et al. (2017) exposed cultured Symbiodiniaceae
(Fugacium“kawagutii; formerly clade F) to a 31°C heat stress (control temperature=24.5°C) over
a 28-day period, while Levin et al. (2016) exposed Symbiodiniaceae (Cladocopium goreaur;
formerly type £1; including established thermo-tolerant and thermo-sensitive phenotypes) to a
32°C heat stressd(control temperature=27°C) over a 13-day period. Finally, Mayfield ef al. (2014)
exposed corals housing Symbiodiniaceae (Cladocopium spp.; formerly a mixed assemblage of
clade C individuals) to 30°C over a 9-month period (control temperature=27°C), and both the
coral hosts ‘and in hospite Symbiodiniaceae appeared to have acclimated to this temperature.
Rawsdata processing followed the same procedure as described above, though adapted for
single-end “reads for cultured Symbiodiniaceae datasets. To explore the convergence of
Symbiodimaceae responses despite large phylogenetic differences across the Symbiodiniaceae
genera (Symbiodinium, Cladocopium, and Fugacium; LaJeunesse et al., 2018), we first searched
for single-copy orthologs across the three genera using OrthoFinder v2.2.7 (Emms & Kelly,
2015) based, on publicly available genomes (http://reefgenomics.org/; Liu et al., 2018). We found

a total of 44215, 0rtho-groups that were used for downstream analyses. The count matrix was
filtered for lewstesidual expression genes (>1 CPM in 40 individuals; 4,187 remaining genes),
and raw cQunt data were transformed using the “vst” function implemented in the DESeq2 R
package (Love et al., 2014). We used the “removeBatchEffect” function implemented in the
Limma R package (Ritchie et al., 2015) to remove experimental effects and fit the data prior the
downstream analyses.

We_then used a combination of redundant discriminant analysis (RDA) and partial
dbRDAs approaches to assess the effect of temperature across Symbiodiniaceae clades and
experiments. First, we computed a Euclidian distance matrix and performed a principal
coordinates analysis (PCoA) on this Euclidian distance matrix using the “daisy” and “pcoa”

functions, respectively, implemented in the “ape” R package (Paradis, Claude, & Strimmer,
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2004). Only PCo axes explaining at least 2.5% of the total variance were kept for downstream
analysis (Legendre & Gallagher, 2001; Legendre & legendre, 2012). To test for the effect of
temperature and time, a distance-based redundancy analysis (db-RDA) was also produced with
the retained PCo_factors (n=8) as a response matrix and the variables temperature, experiment,
and time as_the explanatory factors. We first carried out stepwise model selection to identify
relevant explanatory variables using the “ordistep” function implemented in the vegan R
package™(Oksanen et al.,, 2012) and ultimately retained only temperature and time (p<0.05).
Partial db-RDAs"Wwere therefore produced to test for the effects of these two parameters alone (no
effect of experiment or genotype) after constraining the remaining variables. The effect of a given
factor was .comsidered significant when p<0.05. Finally, we used a weighted co-expression
network analysis with WGCNA (similar thresholds as described above but with soft power fixed
at 14) to reach aymodel fit (|R|) of 0.83, and subsequent module-wise GO enrichment analyses

were undertaken using the GO_MWU R package (Wright et al., 2015).

Genomic basis of thermotolerance in Symbiodiniaceae dinoflagellates

We used an independent WGCNA co-expression network analysis to search for specific gene
modules. correlated with thermotolerance. For this purpose we focused on the dataset of Levin et
al. (2016), with*€ladocopium goreaui as the reference genome (Liu et al., 2018). Indeed, this is
the only “study=to our knowledge featuring established thermotolerant phenotypes with
transcriptomic data on long-term time series. The WGCNA analysis followed similar steps as
described previously based, though based on rlog-transformed data (betaPrior=2). The soft
threshold power was fixed at 20 to reach a model fit (|R|) of 0.85. The downstream, module-wise
GO enrichment, analyses followed the pipeline outlined above. Finally, we wused the
‘GO _deltaRanks_correlation’ function implemented in the GO_MWU R package (Wright et al.,
2015) to rassess=similarity between response to stress in symbiont in hospite with clams in and

specific mechanisms of thermotolerance for cultured Symbiodiniaceae.

Quantitative PCR- and meta-barcoding-based Symbiodiniaceae analysis

We evaluated the relative levels of various Symbiodiniaceae genera in our clam samples
using a series of quantitative PCR (qPCR) assays. Amplifications were carried out on AriaMx
real-time PCR System (Agilent, USA) using six primer sets optimized for the amplification of

nuclear ribosomal 28S in Symbiodiniaceae of clades/genera A-F (Yamashita, Suzuki,
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Hayashibara, & Koike, 2011) following the protocol of Rouzé et al. (2017). The PCRs (25 uL)
comprised 12.5 pLL of 2X SYBR® Green master mix (Agilent, USA), 10 uL of DNA (previously
diluted to 1 ng pL'), and 1.25 pL of each primer (forward and reverse; each at a stock
concentration of 4 pM). PCR thermocycling included: 1 cycle of pre-incubation for 10 min at
95°C; 40 cycles. of amplification (30 s at 95°C, 1 min at 64°C, and 1 min at 72°C), and a melting
curve analysis that extended from 60°C to 95°C (30-s incubations). All measurements were made
in duplicatéyand-all analyses were based on the threshold cycle (Ct) values of the PCR products.
Ct values*wetre averaged across duplicate samples when the variation was not exceeding 1;
otherwise, (samples were re-run until delta Ct<l. Similarity in relative clade abundance was
assessed usingsPCA analysis of a Bray-Curtis similarity matrix with Hellinger-transformed data.
Db-RDAs wereconducted to identify whether either temperature or time had a significant impact
on Symbiodiniaceae assemblage, and an alpha level of 0.05 was set a priori. To complement data
from the experimental individuals, qPCRs were carried out with DNA isolated from mantle
fragments ‘from the 10 wild individuals described above collected from Reao Atoll
[geographicallysproximal to the origin of the experimental individuals; see Brahmi et al., (2019)
for details.J*inuOctober 2018. Sample preparation and analyses were performed as described
above andan Rouzé et al. (2017).
As.asmore detailed means of assessing Symbiodiniaceae diversity in the 24 clam samples,
a meta-barcoding analysis was undertaken following the protocol of Cunning, Gates, & Edmunds
(2017). Briefly, the ITS2 gene was PCR amplified using previously described primers (Cunning,
Gates, and Edmunds, 2017) and sequenced at the facility listed above, albeit on a Illumina Miseq
250-bp paired-end platform. The Dada2 algorithm (Callahan et al., 2016) implemented in the
QIIME2 software package (Bokulich et al., 2018) was used to infer exact sample sequences from
amplicon data. The reference database was directly imported from the NCBI nt repository and
trained on_the basis of the ITS2 primers following Cunning, Gates, and Edmunds (2017).
Detailed protocols and the corresponding scripts have been made available in a public Github

repository (https://github.com/jleluyer/acclimabest).

Results
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Physiology

We observed no mortality across the 65-day experiment, but some of the individuals exposed
to elevated temperature showed signs of partial bleaching in the 30.7°C treatment by day 65.
Symbiodiniaceae_density and photosynthetic yield (Fv/Fm) were both lower in clams exposed to
elevated temperatures (Scheirer-Ray-Hare; H=24.44, p<0.001 and H=22.88, p<0.001,
respectively;, Figure S1). There was no interaction between time and temperature for
Symbiodiniaceae"Fv/Fm (Scheirer-Ray-Hare; H=1.26; p=0.53, Figure S1). Time had only a slight
effect on Symbiodiniaceae density (Scheirer-Ray-Hare; H=6.07; p=0.048, Figure S1), though no

post-hoc differences were detected between individual sampling times (Dunn’s test; p>0.05).

Symbiodiniaceae communities in hospite with clams

The Symbiodiniaceae communities of all clam hosts (from both control and high temperature
conditions)'were primarily composed of Symbiodinium spp. (formerly clade A; Figure 1A). Four
clams, however, were characterized by secondary populations of Cladocopium spp. (formerly
clade C; with relative proportions reaching 1.8 to 32.8%), as well as residual quantities
(<0.001%)..0f Breviolum (formerly clade B) and Fugacium (formerly clade F). There were no
detectable effects of prolonged high-temperature exposure of the Symbiodiniaceae assemblages
within the'giant'elam samples (Figure 1B). Similarly, in situ clam samples from Reao Atoll were
also dominated by Symbiodinium spp. (mean 93.0%=+10.7 SD), with smaller populations of
Breviolum "spp. and Cladocopium spp. Given the similarities in Symbiodiniaceae assemblages
between the experimental and in situ specimens, we conclude that transport out of the ocean and
into the aquarium husbandry facility did not result in community changes that could bias the
results described below.

Metabarcoding of the internal transcribed spacer 2 (ITS2) sequence resulted in an average
of 186.7k £ 25.7,PE sequences per sample. After sequence pre-processing, the Dada2 algorithm
reported a total of 12 amplicon sequence variants matching to Symbiodinium spp. (N=9) and
Cladocopium spp. (N=3) that paralleled results from qPCRs. Symbiodinium sequence variants
mainly matched to S. tridacnidorum (formerly sub-clade A3; best-hit BLASTn e-value<10°).
Neither cladal/genera representation based on UniFrac distance (PERMANOVA; pseudo-F=1.3;
g-value=0.33) nor evenness values (Kruskall-Wallis; H=0.04; g¢-value=0.83) differed

significantly between temperatures.
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Figure 1: Symbiodiniaceae community representation assessed by qPCR, metabarcoding, and
multivariateranalysis. (A) Heatmap showing the median relative clade proportion by group (N=4
individuals/group), as determined by qPCR. (B) RDA representation based on PCoA of Euclidian

distances.

Transeriptome assemblies

A total' of 363.70 million 100-bp paired-end reads were used to assemble a raw meta-
transcriptome (host + symbionts) of 726,689 transcripts (420.02 Gbp). After stringent filtering
and segregations of host and Symbiodiniaceae sequences, the assemblies resulted in a
transcriptome for 7. maxima of 24,234 contigs (N50=1,011 bp; GC content=40.1%) and a meta-
transcriptome for Symbiodiniaceae of 51,648 contigs (N50=1,027 bp; GC content=57.9%). High
G-C content is generally a hallmark of Symbiodiniaceae transcriptomes (Gonzalez-Pech et al.,
2017). Transcriptome statistics and annotations are provided in Figure 2 and Table SI,

respectively.
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Figure 2: Transcriptome assembly statistics. (A) Table showing various assembly metrics for
Tridacna maxima and Symbiodiniaceae. (B) Density plot of the relative G-C content (%) for

Symbiodiniaceae'and Tridacna maxima contigs.

Host clam acclimation response to prolonged high-temperature exposure

A gene co-expression network was built using the normalized RNA-Seq data from which
low-expression genes had been eliminated, and three modules correlated significantly (p<0.05)
with temperature and/or physiological data (including oxygen production, Symbiodiniaceae
density and Fv/FM, and host dry weight; Figure S2). No module was correlated with sampling
time, O, consumption, or shell extension. A single host module (pinky.) positively correlated
with temperature (R=0.82) and negatively with photosynthetic rate and symbiont density (R=-
0.52 and R=-0.48, respectively; Figure S2). The red;, module also correlated positively with
Fv/Fm (R=0759)"but not significantly with temperature (R=-0.38; p=0.08). Among the most
enriched"GO"terms in the pinky,s module were pituitary gland development (GO:0021983), L-
ascorbic acid metabolic processes (GO:0019852), regulation of extrinsic apoptotic signaling
pathways (GO:2001236), cholesterol efflux (GO:0033344), cilium movement (GO:0003341),
and ommochrome biosynthetic processes (GO:0006727). Ommochromes are biological pigments
and metabolites of tryptophan (Figon & Casas, 2019). The redy,ss module was enriched for cation
transport (GO:0006812), neurotransmitter uptake (GO:0001504), fructose 6-phosphate metabolic
processes (GO:0006002), and reactive oxygen species metabolic processes (GO:0072593). Host
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module membership eigenvalues were also integrated with the symbiont network analysis (Figure

3), and a complete list of GO-enriched functions has been provided in Table S2.

Acclimation to prolonged high-temperature exposure in Symbiodiniaceae in hospite

with clams

Co-exptession network analysis of Symbiodiniaceae showed more modules correlated with
temperaturesthan, for the clam host, either negatively [midnightbluesympiont (R=-0.94), blu€sympiont
(R=-0.45)] ompositively [cyansympiont (R=0.61), blacksymbiont (R=0.91), yellowsympiont (R=0.52), and
PinKgympiont (R=0.85); Figure 3]. Among the enriched GO terms in the blackgympions module were
RNA processing (GO:0006396), methylation (GO:0043414), chloroplast-nucleus signaling
pathways (GO:0031930), and glycerolipid metabolic processes (GO:0046486). For the
cyangmyiondmodule, enriched GO terms included response to vitamins (GO:0033273), response to
UV-C (GO:0071494), regulation of transferase activity (GO:0051338), intrinsic apoptotic
signaling pathways (GO:0097193), and induced systemic resistance (GO:0009682). The
yellowgymbionsiodule featured RNA modification (GO:0009451) and aspartate family amino acid
metabolic processes (GO:0009066). Finally, the bluegymbions module showed enrichment for
movementsofscellular or subcellular components (GO:0006928), reproduction (GO:0000003),
regulation of cell shape (GO:0008360), oxidation-reduction processes (GO:0055114), and
electron transport chain (GO:0022900) while the midnightbluegmpions module featured
enrichment for tegulation of BMP signaling pathways (G0O:0030510), hormone biosynthetic
processes (G0:0042446), peptidyl-lysine dimethylation (GO:0018027), short-term memory
(GO:0007614), and response to red or far, red light (GO:0009639). The complete GO enrichment

results canrbesfound in Table S2.
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Figure 3: Corfelation matrix of symbiont gene expression modules against experimental factors
(temperature and time), quantitative physiological traits, and module membership (ME) for host
modules. Genes have been clustered in modules (y—axis) according to their co-expression values.
Values in cellsiindicate Pearson’s correlation scores, and only statistically significant correlations

(»<0.05) arexdepicted.

Multivariate analysis of public Symbiodiniaceae datasets

We usedsdb=RDA to document gene expression variation in public Symbiodiniaceae datasets
[in culture and in hospite with corals and clams (this study)], with temperature and time as the
explanatory variables; there was a focus on single-copy orthologs from the genera Cladocopium,
Fugacium, and Symbiodinium. The overall model was significant (»<0.001), and the adjusted R?
was 0.12 (Figure'4). Partial db-RDAs showed that temperature also had a significant effect on
total gene expression variation across genotypes and experiments (1000 permutations; F=9.07,
p=0.001). A WGCNA analysis was conducted to identify genes cluster correlated with

temperature across all the orthologous genes (Figure S3).
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Figure 4: RDA of cultured Symbiodiniaceae (Cladocopium type C1 and Fugacium kawagutii)

and in hospite with corals (Cladocopium) and giant clams (Symbiodinium spp.). The reference

dataset onlygincluded the single-copy orthologous genes across the three genera (N=4,187

orthologs remaining after filtering for residual expression).

Search for thermotolerance-specific genes clusters

Weralso conducted independent WGCNA analyses to assess acclimatory responses in
cultured Symbiodiniaceae based on the Cladocopium goreaui (formerly type C1) genome (Liu et
al., 2018) and compared them with thermotolerant phenotypes (Levin ef al., 2016). No individual
module correlated with time. Instead, we found the majority of the genes to be correlated with
temperature, and three modules were uncovered: darkgreyc; (R=0.82), saddlebrownc; (R=-0.89;

N=1,354), and orange, (R=-0.87; N=378; Figure S4). We also found three modules

This article is protected by copyright. All rights reserved



449
450
451
452
453
454
455
456

457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

(darkolivegreency, lightgreenc;, and whitec;) that were significantly correlated with
thermotolerance (R=-0.74, -0.99, and 0.98, respectively; Figure S4) but not temperature. These
modules effectively differentiated thermo-sensitive Symbiodiniaceae from thermotolerant CI
phenotypes described in Levin et al. (2016). Among the most enriched GO terms for lightgreen,;
were cellular.zesponse to amino acid stimulus (GO:0071230), DNA methylation (GO:0006306),
and genetic, imprinting (GO:0071514; Figure S4 and Table S2). Furthermore, we found that
impact "o methylation-associated biological processes [methylation (GO:0032259) and
macromoleeule"methylation (GO:0043414)] was conserved in the lightgreenc; module and the

response to temperature of symbionts in hospite with clams (blackym, module; Figure S5).

Discussion

Temperature increases are threatening marine invertebrate populations worldwide, especially
for species already living at, or close to, their upper thermal tolerance limits (Hoffmann & Sgro,
2011). Recent heat wave events have resulted in ~90% declines in 7. maxima populations in
some atolls of French Polynesia (Andréfouét et al., 2013, 2017). While several studies have
investigated.the, invertebrate (mollusc and cnidarian) response to heat stress over short-term
timescales, ‘relatively few have investigated the prolonged response to elevated temperatures
(e.g., Mayfield et al.,, 2014). Although our clam samples ultimately acclimated to an
experimentally elevated temperatures of nearly 31°C, Symbiodiniaceae density was reduced in
thermally challenged clams, and both host clams and their Symbiodiniaceae populations
underwent gene/ expression changes over the course of this two-month experiment. Upon
discussing sueh®temperature-driven changes in gene expression, we highlight some intrinsic
responses ofithe symbionts (i.e., independent of the host species) and identify key mechanisms

potentially underlying their thermal-tolerance.
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Genus-specific fidelity in clam hosts might preclude symbiont community

shifts/shuffling as a thermal acclimation strategy

A 1.5°C temperature elevation over a 65-day period was sufficient to induce a significant
reduction in symbiont density in clams; no bleaching (even partial) was observed in control
temperature clams. Our results support previous studies of corals and giant clams in which high-
temperature,exposure led to sub-lethal bleaching (Ainsworth, Hoegh-Guldberg, Heron, Skirving,
& Leggat, 2008;"Brahmi et al., 2019; Hoegh-Guldberg & Smith, 1989; Jones, Hoegh-Guldberg,
Larkum, & Sehreiber, 1998; Leggat et al., 2003; Warner, Fitt, & Schmidt, 1999; Zhou et al.,
2018); whether the cellular mechanisms of bleaching are conserved between corals and giant
clams remains to,be determined (Mies et al., 2017; Zhou et al., 2018).

For some‘coral species, resilience to heat stress is associated with a more flexible symbiotic
association (1.e.,the capacity to shift from one dominant Symbiodiniaceae genus to another)
(Hume et al., 2015; LaJeunesse et al., 2004; Putnam, Stat, Pochon, & Gates, 2012; Rowan, 2004;
Silverstein, Correa, & Baker, 2012). Indeed, some bleaching events have largely been attributed
to the themmal=sensitivity of specific endosymbiotic Symbiodiniaceae residing in coral host
tissues (Berkelmans & van Oppen, 2006; Oliver & Palumbi, 2011). Corals hosting Cladocopium
spp. (formetly clade C) are typically more prone to bleaching, whereas those housing certain
lineages of*Durusdinium (formerly clade D) have demonstrated enhanced thermotolerance
(Baker, 2003; Mieog, van Oppen, Cantin, Stam, & Olsen, 2007). Interestingly, Cladocopium spp.
and/or Durusdinium spp. are more commonly found in giant clams inhabiting warmer
environments'while Symbiodinium spp. (formerly clade A) are more common in clams located in
cooler watesse(DeBoer et al., 2012). Herein, the Symbiodiniaceaec communities were
predominantly composed of Symbiodinium spp., even after two months of high-temperature
exposure; this finding aligns with other studies in corals that found Symbiodiniaceae assemblages
to be temporally stable, even as environmental conditions changed (Goulet, 2006; Sampayo,
Ridgway, Bongaerts, & Hoegh-Guldberg, 2008; Thornhill, LaJeunesse, Kemp, Fitt, & Schmidt,
2006; Thornhill; Xiang, Fitt, & Santos, 2009). This was not an artifact due to the experimental
conditions ‘emacted since individuals sampled from their original locations in sifu also
predominantly host Symbiodinium spp. (i.e., clade A).

Such a high proportion of Symbiodinium spp. in giant clams was expected, and it has also

been reported in the sea anemone Anemonia viridis; however, it is in sharp contrast with other
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invertebrate hosts such as corals, which host a broader Symbiodiniaceae diversity (Manning &
Gates, 2008; Rouzé et al., 2017; Stat, Carter, & Hoegh-Guldberg, 2006). This near-exclusive
hosting of Symbiodinium spp. in clams, and the temporal stability of their association, suggests
that some selection process favors this dinoflagellate lineage (or else impairs recruitment of
others); lectin/glycan interactions were once thought to play a role, possibly in the primary
recognition-related processes (Wood-Charlson, Hollingsworth, Krupp, & Weis, 2006), though
this hypethesis™has recently been called into question (Parkinson et al., 2018). Admittedly,
broader in sifielam sampling, (e.g., encompassing different times of the year) will be necessary
to verify the fidelity between Symbiodinium spp. and giant clams, and whether mixed-genera
assemblages,arescommon in situ (DeBoer et al., 2012; Parkinson, Banaszak, Altman, LaJeunesse,
& Baums, 2015). The presumably low flexibility would appear to preclude community shifts as a
strategy for theseiclams to cope with increased temperatures, at least in our experimental context.
Rather than_adaptation (i.e., a community shift resulting in a new “holobiont genomic
landscape™), acclimation (i.e., physiological changes that initially manifested at the molecular

level) appearsitorhave played a larger role in this study.

Effect of prolonged exposure to elevated temperature on the clam transcriptome

Both host clam and Symbiodiniaceae gene expression were affected by elevated temperature
exposure, “witheno significant effects of time from 29 days onwards; the temperature-related
differences were from thenceforth sustained over time. We found one gene module positively
impacted by temperature and negatively correlated with symbiont Fv/Fm and density. This
module showed enrichment for ommochrome biosynthesis process and specifically included the
tryptophan 2,3-dioxygenase coding gene (TDO), a pivotal regulator of systemic tryptophan levels
also involved in the response to oxidative stress (Forrest et al., 2004; Thackray, Mowat, &
Chapmang= 2008). Tryptophan is the precursor of 5-hydroxytryptamine (5-HT), a bivalve
serotonin ftransmitter that plays critical roles in numerous physiological functions [e.g.,
reproduction (Alavi, Nagasawa, Takahashi, & Osada, 2017)]. In larvae from the coral Orbicella
faveolata, TDO (referred to as AGAP) was up-regulated in response to ultraviolet radiation, and
larval fitness (locomotion and settlement) went on to suffer (Aranda et al., 2011). A more
thorough understanding, then, of ommochrome biosynthesis and, more generally, tryptophan

regulation, is likely to be key to elucidating the molecular regulation of invertebrate-
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dinoflagellate symbioses, nearly all of which involve at least some degree of nitrogen transfer
within holobionts (Chan et al., 2018).

A single module was 1) positively correlated with the maximum dark-adapted yield of
photosystem II (Fv/Fm) and 2) enriched for genes encoding proteins involved in glyceraldehyde-
3-phosphate_metabolic processes. Glycerol excretion from dinoflagellate symbionts is largely
influenced by the presence of host tissues (Muscatine, 1967). The glyceraldehyde-3-phosphate
pathwayy which*e¢ulminates in glycerol production, was also significantly affected by sub-lethal
elevated temperature (30°C) exposure in the reef coral P. damicornis (Mayfield et al., 2014).
Pollutant exposure also altered the expression of genes involved in carbohydrate metabolism,
albeit only in the coral host compartment (and not in Symbiodiniaceae) in another study (Gust et
al., 2014). “Admittedly, we did not assess the proportion of energy derived from autotrophy
herein, which ranges widely (from 25 to up to 100%) and is dependent on the species and/or life
history stage in the 7Tridacna genus (Fisher, Fitt, & Trench, 1985; Klumpp et al., 1992; Klumpp
& Griffiths;,1994); shifts from autotrophy to heterotrophy, and vice versa, are likely to affect host
gene expressiongpatterns. All that can be stated at present is that regulation of tryptophan levels
and impairment-0f carbohydrate metabolism might be key elements in the long-term response to
elevated temperature in clams; indeed, these two processes could be inter-linked. However, how
these changes"would affect fine-scale interactions between the host and symbionts remains to be

explored and should be the focus of future studies of clam-Symbiodiniaceae symbioses.

The response of Symbiodiniaceae dinoflagellates in hospite with clams to prolonged

elevated temperature exposure

Overall, gene clusters of Symbiodiniaceae showed positive correlation between expression
levels and ‘prolonged elevated temperature exposure, and some of the modules were also
correlated=with=the lower Symbiodiniaceae Fv/Fm and cell densities documented at elevated
temperatures. Other physiological studies have also shown that high temperatures lead to
diminished photosynthetic yield in several clades of Symbiodiniaceae (Grégoire, Schmacka,
Coffrothy'& Karsten, 2017). In terms of the RNA-Seq data, genes encoding proteins involved in
nitrogen metabolism were significantly affected by high-temperature exposure, and this module
correlated with host tryptophan dehydrogenase activity. Interestingly, this GO includes the salt-
and drought-induced ring fingerl (SDIR 1)-coding gene known in plants to control abscisic acid

(ABA) signal transduction (Zhang et al., 2007), a process that has never before been reported in
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Symbiodiniaceae. The phytohormone ABA and ROS regulating/modulating proteins are key
molecular constituents involved in the capacity to acclimate to abiotic stressors, including
oxidative stress tolerance in unicellular algae (Lu & Xu, 2015). Furthermore, up-regulation of
ABA signaling genes is associated with a later increase in ABA biosynthesis in several plant
species (Vishwakarma et al., 2017). The role of ABA signaling in the thermo-adaptation of
Symbiodiniaceae dinoflagellates may consequently be a fruitful avenue for future research.
Herein "we™also found that expression of genes encoding certain components of the
photosynthetie¢™machinery, especially photosystem II (PSII), was dampened at elevated
temperature. PSII integrity is vital for proper Symbiodiniaceae function, and PSII damage has
been directly linked to bleaching in corals (Warner et al., 1999). It is noteworthy that the same
gene modulefalso included chloroplast thylakoid membrane rearrangement-related genes, which
are used by Symbiodiniaceae and other photosynthetic organisms to cope with heat and high UV
radiation (Sharkey, 2005; Slavov et al., 2016). Although the clam-dinoflagellate holobionts
generally appeared to have acclimated to elevated temperatures over our two-month experiment
(no large-scalesbleaching), the Symbiodiniaceae communities, then, showed signs of intracellular
stress given'these gene expression changes, as well as the decreases in cell density and Fv/Fm.
Whether omnot these holobionts could have sustained an even longer exposure to ~31°C remains
to be determinied, though it is worth noting that, unlike in situ, clams were not fed in the aquaria.
It is thus likely that clams allowed to feed both autotrophically and heterotrophically might, then,

have an even superior capacity for high-temperature acclimation.

Conserved response to high temperatures across Symbiodiniaceae genera and molecular
mechanisms linked to thermo-acclimation capacity
We ‘documented a conserved response to long-term exposure to elevated temperature
across Symbioediniaceae genera based only on orthologous genes, which is noteworthy given the
large evolutionary distance between genera (Correa & Baker, 2009; LalJeunesse, 2001). This
common response, which transcended the host effect, included genes involved in regulation of
the DNA  damage response, wound healing and low-temperature responses, chromatin
remodeling, mRNA splicing, regulation of lipid biosynthetic processes, and motile cilium
assembly. Our results, however, most likely underestimate the molecular complexity of thermo-
acclimation given our use of exclusively “single-to-single” orthologous genes. It is also possible

that there are holobiont-specific responses that were not explored or detected herein with our
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bioinformatics approach. For instance, recent studies have shown that the Symbiodiniaceae
diverged, in part, in relation to their capacity for synthesizing UV-absorbing mycosporine-like
amino acids (Shoguchi et al., 2013). Furthermore, while UV-B radiation in cultured
Symbiodiniaceae_drastically reduces photosynthetic output, such is not always observed for cells
in hospite with, clams since the clam hosts produce UV-absorbing proteins (Ishikura, Kato, &
Maruyama,.1997).

Wesfurther explored basal differences within the Cladocopium genus that would
differentiate “the"contrastingly thermotolerant phenotypes. We found that differences between
thermotolerant phenotypes were driven by molecular pathways uncovered previously (Levin et
al., 2016), including meiotic nuclear division and glutathione disulfide oxidoreductase activity;
expression ‘of genes involved in photosynthesis, cellular heat acclimation, and methylation
programming alse differed across gradients of thermotolerance. Regarding the latter, epigenetic
landscape rearrangement has been shown to play a role in transgenerational inheritance of
thermo-tolerance of various plant models (Bruce, Matthes, Napier, & Pickett, 2007). Here,
thermotolerance=associated modules generally did not correlate with temperature, suggesting that
phenotypeshave intrinsic gene expression signatures that respond differentially to changes in
temperature, It 1s known that in plants DNA methylation and histone modification are associated
with the _response to heat stress, and, more specifically, act to prevent heat-associated
macromolecular damage (Liu, Feng, Li, & He, 2015). Such methylation changes might be
inherited and account for, at least in part, the remarkable ability of plants to adapt and/or
acclimate quickly to stressful environments (Ganguly, Crisp, Eichten, & Pogson, 2017; Lidmke &
Béurle, 2017)s

Conclusions

The_co-expression network analysis proved to be a powerful tool for dissecting
compartment=specific transcriptomic responses in symbiotic systems. This is especially true
when looking for acclimatory signatures that, in contrast to short-term stress responses, are
characterized by rather subtle changes over longer periods. Indeed, our data from a long-term
high temperature study revealed that different cellular processes are impacted in the host clam

and in hospite Symbiodiniaceae compartments; genes encoding key photosynthesis proteins were
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particularly temperature sensitive in not only Symbiodiniaceae in hospite, but also in culture.
Future studies focusing on the range of optimal thermal conditions of the 7. maxima species may
improve our understanding on the thermal tolerance of the clams and their symbionts. Although
the giant clams used in this study ultimately survived a two-month exposure to nearly 31°C, it is
possible that slightly higher temperatures, or extended exposure times, might cause them to
bleach to such a‘great extent that they would not survive. Regardless, our data show that novel
mechaniSms™involving epigenetic landscape rearrangement are associated with elevated
Symbiodiniaceae” thermotolerance. How the impact of stressful environmental conditions might
impact the subsequent generation’s tolerance and/or physiological capacities (i.e., epigenetic

effects) must consequently be addressed in the near future.
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