

1
2 DR. JEREMY LE LUYER (Orcid ID : 0000-0001-9409-3196)
3
4 Article type : Primary Research Articles
5
6
7
8
9 **Title**
10 Molecular mechanisms of acclimation to long-term elevated temperature exposure in marine
11 symbioses
12
13 **Running head**
14 Thermo-acclimation in symbiotic organisms
15
16 **Authors**
17 H. J. Alves Monteiro¹, C. Brahmi², A. B. Mayfield^{3,4}, J. Vidal-Dupiol⁵, B. Lapeyre⁶, J. Le
18 Luyer^{1*}
19
20 **Affiliations**
21 ¹. IFREMER, EIO UMR 241, Labex CORAIL, Unité RMPF, Centre Océanologique du Pacifique,
22 Vairao - BP 49 Vairao, Tahiti, Polynésie française
23 ². Université de la Polynésie Française, EIO UMR 241, Labex CORAIL, BP 6570 Faa'a, Tahiti,
24 Polynésie française
25 ³. National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, Pingtung 944,
26 Taiwan

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the [Version of Record](#). Please cite this article as [doi: 10.1111/GCB.14907](https://doi.org/10.1111/GCB.14907)

27 ⁴. Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric
28 Administration, Miami, FL 33149 USA

29 ⁵. IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier France

30 ⁶. EPHE-UPVD-CNRS, CRIOBE USR 3278, Labex CORAIL, Université de Perpignan,
31 Perpignan, France

32

33 **Keywords**

34 co-expression network analysis; giant clams; metabarcoding; RNA-Seq; Symbiodiniaceae;
35 thermo-acclimation;

36

37 **Corresponding author (*)**

38 J. Le Luyer; Email: Jeremy.le.luyer@ifremer.fr / Tel: +689 405 460 52

39

40 **Paper type:**

41 Primary research

42

43

44 **Abstract**

45

46 Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of
47 corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they
48 represent a unique and powerful model for comparing molecular pathways involved in 1)
49 maintenance of symbiosis and 2) acquisition of thermo-tolerance among coral reef organisms.
50 Herein, we explored the physiological and transcriptomic responses of the clam hosts and their
51 photosynthetically active symbionts over a 65-day experiment in which clams were exposed to
52 either normal or environmentally relevant elevated seawater temperatures. Additionally, we used
53 metabarcoding data coupled with *in situ* sampling/survey data to explore the relative importance
54 of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological
55 changes at the molecular level) in the clams' responses to environmental change. We finally
56 compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae
57 dinoflagellates (both cultured and *in hospite* with the coral *Pocillopora damicornis*) to better

58 tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic
59 association. Gene module preservation analysis revealed that the function of the symbionts'
60 photosystem II was impaired at high temperature, and this response was also found across all
61 holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared
62 to be a key response mechanism for symbionts *in hospite* with giant clams exposed to high
63 temperatures, and such modulation was able to distinguish thermo-tolerant from thermo-sensitive
64 *Cladocopium goreau* ecotypes; epigenetic processes may, then, represent a promising research
65 avenue for those interested in coral reef conservation in this era of changing global climate.

66

67 **Introduction**

68

69 The “small giant” clams (*Tridacna maxima*; hereafter referred to as simply
70 “clams”) are mixotrophic organisms living in obligatory symbiosis with photosynthetic
71 dinoflagellates of the family Symbiodiniaceae (Holt, Vahidinia, Gagnon, Morse, & Sweeney,
72 2014; Jantzen et al., 2008; LaJeunesse et al., 2018). Symbiodiniaceae associate not only with
73 clams, but with a diverse array of marine invertebrates, namely sponges, molluscs, and
74 cnidarians; indeed, the coral-Symbiodiniaceae symbiosis is the functional basis of all coral reefs
75 (Hughes et al., 2003). Whereas in scleractinian corals symbionts are located intracellularly, in
76 clams they reside extracellularly inside a tubular system (“Z-tubules”), which is 1) found in the
77 outer epithelium of the mantle and 2) connected to the stomach (Norton, Shepherd, Long, & Fitt,
78 1992). These *in hospite* dinoflagellates are known to provide nutrients to their clam hosts via
79 photosynthesis and may account for a major part of the clams’ energy needs (depending on the
80 species and the life history stage) (Hawkins & Klumpp, 1995; Klumpp, Bayne, & Hawkins,
81 1992; Klumpp & Griffiths, 1994; Lucas, 1994; Soo & Todd, 2014).

82 The systematics of the family Symbiodiniaceae have recently been revised to include at
83 least nine different genera (formerly referred to as “clades”) with well characterized molecular
84 and physiological differences (LaJeunesse et al., 2018). One Symbiodiniaceae genus, formerly
85 known as clade A (which includes the species *Symbiodinium fitti*, *S. microadriaticum*, and *S.*
86 *tridacnidorum*), has been recurrently found in symbiosis with *T. maxima*, though members of
87 clades C (*Cladocopium*) and D (*Durusdinium*) have been found in clam tissues, as well (Baillie,
88 Belda-Baillie, & Maruyama, 2000; DeBoer et al., 2012; Ikeda et al., 2017; LaJeunesse, 2001; Lee

89 et al., 2015; Mies, Van Sluys, Metcalfe, & Sumida, 2017; Pinzón, Devlin-Durante, Weber,
90 Baums, & LaJeunesse, 2011). Depending on the clam species, the symbiont assemblage has been
91 found to vary with individual size (mostly observed in *T. squamosa*), as well as across
92 environmental gradients (especially seawater temperatures) (DeBoer et al., 2012; Ikeda et al.,
93 2017).

94 In French Polynesia, eastern Tuamotu's archipelagos were historically characterized by
95 high densities of clams (Andréfouët et al., 2013; Gilbert et al., 2005; Gilbert, Remoissenet, Yan,
96 & Andrefouet, 2006). Recent mortality episodes and/or "bleaching" events in the Tuamotu
97 Islands have, however, been reported, including 1) a massive mortality event in 2009 that reduced
98 the clam population by 90% at Tatakoto Atoll (Andréfouët et al., 2013; Van Wynsberge,
99 Andréfouët, Gaertner-Mazouni, & Remoissenet, 2018) and 2) a bleaching event in 2016 that
100 affected 77 and 90% of the wild and cultured giant clam populations, respectively, at Reao Atoll
101 (Andréfouët et al., 2017). An increase in surface seawater temperature over a prolonged period
102 (approximately three months above 30°C) is suspected to have triggered such bleaching events
103 (Andréfouët et al., 2013, 2017; Van Wynsberge et al., 2018).

104 As with corals, bleaching in clams corresponds to the loss of symbiotic Symbiodiniaceae
105 from the hosts (Andréfouët et al., 2013; Buck, 2002; Fitt, Brown, Warner, & Dunne, 2001;
106 Hoegh-Guldberg et al., 2007; Leggat, Buck, Grice, & Yellowlees, 2003). Symbiodiniaceae
107 community variability and diversity (i.e., the collective assemblage of various genera and/or
108 species) seems to be a determining factor in the sensitivity and resilience of both coral and clam
109 hosts to increased temperatures (Barshis, Ladner, Oliver, & Palumbi, 2014; Barshis et al., 2013;
110 Ladner, Barshis, & Palumbi, 2012; Rowan, Knowlton, Baker, & Jara, 1997). However, the cell
111 physiology of the host and symbionts is likely to be as important, if not more so, than the
112 Symbiodiniaceae assemblage, in terms of gauging the ability of the clam-Symbiodiniaceae
113 symbiosis to acclimate to elevated temperature over prolonged durations.

114 To date, few studies have investigated the transcriptomic response of giant clams to
115 elevated temperatures; lipid profiling analyses are more routinely undertaken (Dubousquet et al.,
116 2016). The transcriptomic response to elevated temperature of several other taxa, mostly
117 scleractinian coral species (Crowder, Meyer, Fan, & Weis, 2017; Hou et al., 2018; Kenkel &
118 Matz, 2016; Pinzón et al., 2015) and cultured Symbiodiniaceae (Gierz, Forêt, & Leggat, 2017;
119 Levin et al., 2016) have also been explored, yet few studies have looked at the mRNA level

120 responses of multiple Symbiodiniaceae clades and host systems in the same study. Furthermore,
121 few physiological data and even fewer transcriptomic data are available for the high-temperature
122 responses of the giant clam *T. maxima* and its symbionts [but see (Dubousquet et al., 2016; Zhou,
123 Liu, Wang, Luo, & Li, 2018)]; these two published studies, though, only considered the response
124 to an abrupt, rapid increase in temperature (short-term stress response).

125 Consequently, our understanding of the possible key drivers in high-temperature
126 acclimation remains largely incomplete, despite its importance in generating better predictions of
127 the impact of climate change on wild populations of giant clams (Van Wijnsberge et al., 2018).
128 Given such knowledge deficiencies, we aimed herein to characterize the physiological and
129 transcriptomic responses of clams and their symbionts to hypothetically sub-lethal elevated
130 temperatures (~30.7°C over a two-month period) that aimed to mimic past episodes of
131 anomalously high temperatures in French Polynesia. In addition to hypothesizing that the giant
132 clams would ultimately acclimate to this experimentally elevated temperature, we further
133 hypothesized that a “dual-compartmental” bioinformatic approach, similar to the one that has
134 been used with corals (Mayfield, Wang, Chen, Lin, & Chen, 2014), would provide insight into
135 the key molecular pathways underlying the ability of each member of this association to
136 acclimate to an environmentally relevant, sub-lethal temperature.

137

138 **Materials and Methods**

139 **Experimental design, tissue sampling, and physiological measurements**

140 The experimental procedures were first described by Brahmi et al. (2019). Briefly, 24
141 individual clams (N=4/treatment) were sampled over a 65-day period (days 29, 53, and 65) in
142 control (29.2°C; ambient at the time of experimentation) and elevated (30.7°C) temperature
143 conditions. The temperatures employed and the duration of the experiment reflect conditions in
144 normal and abnormally hot seasons, respectively [(correlated with mass clam bleaching events
145 (Addessi, 2001)] reported in lagoons of French Polynesia’s Tuamotu region (Brahmi et al.,
146 2019).

147 Samples (approx. 1 cm²) from each of the two treatments at each of the three sampling
148 times were systematically collected from the same region of the mantle and stored in RNALater®
149 (Life Technologies, USA) at -80°C until analysis (N=24). Furthermore, a single hermaphroditic
150 individual (approximately two years old) was sampled for a total of seven different tissues

151 (mantle, adductor muscle, gonads, gills, byssus, visceral mass, and kidney) for transcriptome
152 assembly. Only one individual was used in an effort to reduce assembly polymorphism biases.
153 For this individual, which was excluded from the quantification analysis outlined below, sexual
154 status was confirmed by gonad biopsy and histology following a previously detailed procedure
155 (Menoud et al., 2016). Additionally, 10 giant clams were collected *in situ* in October 2018 around
156 Reao Atoll (Tuamotu Archipelago, French Polynesia); tissues from each of these *in situ*
157 individuals were collected from the same region of the mantle (approx. 1 cm²) and stored in 95%
158 ethanol at -20°C until later symbiont community analysis (described below).

159 As described in detail in Brahmi et al. (2019), a variety of physiological response variables
160 were assessed in the 24 experimental replicates, in addition to the profiling of their
161 transcriptomes: growth, Symbiodiniaceae density, and the maximum dark-adapted yield of
162 photosystem II (Fv/Fm; as measured by an AquaPen pulse amplitude modulating fluorometer;
163 APC-100m, Photon System Instruments, Czech Republic). Please see Brahmi et al. (2019) for
164 details on these analyses. Physiological data were tested with two-way ANOVA (treatment x
165 time) followed by Tukey's "honestly significant difference" (HSD) *post-hoc* tests ($p<0.05$),
166 including the interaction between time and temperature, when data (raw or transformed) met the
167 assumptions for ANOVA. For Symbiodiniaceae density and Fv/Fm, a non-parametric equivalent
168 of the two-way ANOVA, the Scheirer-Ray-Hare test, was instead used (followed by Dunn's *post-*
169 *hoc* tests).

170 **DNA/RNA extractions and transcriptome sequencing**

171 Total RNA was extracted from *T. maxima* mantles by lacerating tissues with a scalpel and
172 rinsing with 1X PBS. Cellular lysis was induced by addition of 1.5 ml TRIzol (Invitrogen, USA)
173 according to the manufacturer's recommendations. The supernatant was transferred into a 2-ml
174 tube and incubated for 10 min on ice. Phase separation was achieved by addition of 300 μ l of
175 chloroform coupled with centrifugation at 12,000 $\times g$ for 12 min at 4°C. The upper aqueous layer
176 contained the RNA, and the lower organic layer was stored at -20°C for later DNA extraction
177 (according to the manufacturer's recommendations). Total RNA from each individual was
178 subjected to a DNase treatment using Qiagen's RNA cleanup kit (Germany). RNA and DNA
179 were quantified using a NanoDrop ND-2000 spectrophotometer (Thermo-Fisher, USA), and
180 RNA quality was further evaluated by a Bioanalyzer 2100 (Agilent, USA). High-quality RNA
181 was sent to McGill University's "Genome Quebec Innovation Center" (Montréal, QC, Canada)

182 for Nextera XT (Illumina; USA) library preparation and sequencing on an Illumina HiSeq4000
183 100-bp paired-end platform. Samples for transcriptome assembly (N=7) were sequenced on a
184 single lane, while samples for expression level quantification analysis (N=24) were uniformly
185 and randomly distributed over two sequencing lanes after barcoding.

186 Transcriptomes assembly

187 Raw reads provided by RNA-Seq were filtered for quality and length using Trimmomatic
188 v.0.36 (Bolger, Lohse, & Usadel, 2014) with minimum length, trailing, and leading quality
189 parameters set to 60 bp, 20, and 20, respectively. Illumina's adaptors and residual cloning vectors
190 were removed via the UNivec database
[\(https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/\)](https://www.ncbi.nlm.nih.gov/tools/vecscreen/univec/). Paired-end filtered reads were
191 assembled *de novo* using Trinity v2.6.6 (Haas et al., 2013) with a default k-mer size of 25 bp and
192 a minimum transcript length of 200 bp. Raw transcripts (n=726,689; 420 Gbp) were filtered for
193 presence of open reading frames (ORFs) (length \geq 300 bp), longest isoform matches, and mapping
194 rate (\geq 0.5 transcripts per million; TPM).

196 Transcripts matching Refseq entries from archaea, plasmids, viruses, and bacteria (BLASTn;
197 *e*-value $<10^{-10}$), as well those transcripts that aligned significantly (*e*-value $<10^{-4}$) only to bacterial
198 sequences in the NCBI nt database (max target seqs=5) were discarded in an effort to reduce
199 putative contamination. To segregate between symbiont and host sources, the meta-transcriptome
200 was blasted (BLASTn; *e*-value $<10^{-4}$) against a pool of Symbiodiniaceae genomes and
201 transcriptomes including former clades A, C, and F [*sensu* (González-Pech, Ragan, & Chan,
202 2017)]. By default, all hits with no match were considered as originating from the host. For
203 quality control, the *de novo* transcriptome's completeness was assessed with BUSCO's v2
204 metazoa and v2 eukaryotes databases for clam and Symbiodiniaceae, respectively (Simão,
205 Waterhouse, Ioannidis, Kriventseva, & Zdobnov, 2015). Transcriptomes were annotated by
206 BLAST search against the Uniprot-Swissprot database (BLASTx; *e*-value $<10^{-4}$). A schematic
207 representation of the overall analysis pipeline has been provided in the Github repository
208 (<https://github.com/jleluyer/acclimabest>).

209 **Compartment-specific responses of the clam-dinoflagellate holobiont to long-term**
210 **temperature exposure**

211 Filtered reads were mapped against a combined host-symbiont transcriptome using GSNAp
212 v2018.07.04 (Wu, Reeder, Lawrence, Becker, & Brauer, 2016) using the default parameters but
213 allowing for a maximum mismatch value of 3 and a minimum coverage of 0.85. Only properly
214 paired and uniquely mapped reads were conserved for downstream analysis (“concordant_uniq;”
215 Wu, Reeder, Lawrence, Becker, & Brauer, 2016). Gene counts were conducted with HTSEQ
216 v0.11.2 (Anders, Pyl, & Huber, 2015) using the default parameters. A filtering step including
217 removal of genes with residual expression >1 count per million (CPM) in 4 individuals was
218 applied, and data were transformed using the “*rlog*” function (betaPriorVar=2) implemented in
219 the DESeq2 v1.23.10 R package (Love, Huber, & Anders, 2014) for host and symbionts
220 separately.

221 Signed co-expression networks were built for the host and symbiont datasets independently
222 using the R package WGCNA with a filtering step for minimum overall variance (>10%)
223 following the recommendations of Langfelder & Horvath (2008). The main goal of this analysis
224 was to cluster genes in modules correlated with time, temperature, and relevant physiological
225 responses (Figure 1). Briefly, we fixed “soft” threshold powers of 6 and 11 for the host and
226 symbiont datasets, respectively, using the scale-free topology criterion to reach a model fit ($|R|$)
227 of 0.90 and 0.80, respectively. The modules were defined using the “*cutreeDynamic*” function
228 (minimum of 50 genes by module and default cutting-height=0.99) based on the topological
229 overlap matrix, and an automatic merging step with the threshold fixed at 0.25 (default) allowed
230 us to merge correlated modules. For each module, we defined the module membership (kME;
231 Eigengene-based connectivity), and only statistically significant ($p < 0.05$) modules were
232 conserved for downstream functional analysis (Figure 1). Gene ontology (GO) enrichment
233 analyses were conducted for each module using the GO_MWU R package (Wright, Aglyamova,
234 Meyer, & Matz, 2015) based on the background gene dataset found in WGCNA. GO terms were
235 considered enriched at Benjamini-Hochberg adj. $p < 0.05$ (minimum of three genes for any
236 individual GO term).

237 **Meta-analysis of cultured and *in hospite* Symbiodiniaceae transcriptomes**

238 We integrated publicly available datasets featuring similar experimental designs (i.e. control
239 and elevated temperature conditions over a long-term timescale) to further unravel conserved

240 symbiont responses across genera, holobionts, and culture environments (i.e., cultured vs. *in*
241 *hospite*). Manuscript searches were conducted with the Web of Science platform using the search
242 formula: «symbio* AND RNAseq* AND temperature» together with informal searches via other
243 research engines (e.g., Google Scholar). A total of three studies met our criteria: Levin *et al.*
244 (2016) and Gierz *et al.* (2017) for cultured Symbiodiniaceae (n=48 transcriptomes) and Mayfield
245 *et al.* (2014) for the response of Symbiodiniaceae *in hospite* with the scleractinian coral *P.*
246 *damicornis* (n=12 transcriptomes). Gierz *et al.* (2017) exposed cultured Symbiodiniaceae
247 (*Fugacium kawagutii*; formerly clade F) to a 31°C heat stress (control temperature=24.5°C) over
248 a 28-day period, while Levin *et al.* (2016) exposed Symbiodiniaceae (*Cladocopium goreau*;
249 formerly type C1; including established thermo-tolerant and thermo-sensitive phenotypes) to a
250 32°C heat stress (control temperature=27°C) over a 13-day period. Finally, Mayfield *et al.* (2014)
251 exposed corals housing Symbiodiniaceae (*Cladocopium* spp.; formerly a mixed assemblage of
252 clade C individuals) to 30°C over a 9-month period (control temperature=27°C), and both the
253 coral hosts and *in hospite* Symbiodiniaceae appeared to have acclimated to this temperature.

254 Raw data processing followed the same procedure as described above, though adapted for
255 single-end reads for cultured Symbiodiniaceae datasets. To explore the convergence of
256 Symbiodiniaceae responses despite large phylogenetic differences across the Symbiodiniaceae
257 genera (*Symbiodinium*, *Cladocopium*, and *Fugacium*; LaJeunesse *et al.*, 2018), we first searched
258 for single-copy orthologs across the three genera using OrthoFinder v2.2.7 (Emms & Kelly,
259 2015) based on publicly available genomes (<http://reefgenomics.org/>; Liu *et al.*, 2018). We found
260 a total of 4,215 ortho-groups that were used for downstream analyses. The count matrix was
261 filtered for low residual expression genes (>1 CPM in 40 individuals; 4,187 remaining genes),
262 and raw count data were transformed using the “*vst*” function implemented in the DESeq2 R
263 package (Love *et al.*, 2014). We used the “*removeBatchEffect*” function implemented in the
264 Limma R package (Ritchie *et al.*, 2015) to remove experimental effects and fit the data prior the
265 downstream analyses.

266 We then used a combination of redundant discriminant analysis (RDA) and partial
267 dbRDAs approaches to assess the effect of temperature across Symbiodiniaceae clades and
268 experiments. First, we computed a Euclidian distance matrix and performed a principal
269 coordinates analysis (PCoA) on this Euclidian distance matrix using the “*daisy*” and “*pcoa*”
270 functions, respectively, implemented in the “*ape*” R package (Paradis, Claude, & Strimmer,

271 2004). Only PCo axes explaining at least 2.5% of the total variance were kept for downstream
272 analysis (Legendre & Gallagher, 2001; Legendre & legendre, 2012). To test for the effect of
273 temperature and time, a distance-based redundancy analysis (db-RDA) was also produced with
274 the retained PCo factors (n=8) as a response matrix and the variables temperature, experiment,
275 and time as the explanatory factors. We first carried out stepwise model selection to identify
276 relevant explanatory variables using the “*ordistep*” function implemented in the *vegan* R
277 package (Oksanen et al., 2012) and ultimately retained only temperature and time ($p<0.05$).
278 Partial db-RDAs were therefore produced to test for the effects of these two parameters alone (no
279 effect of experiment or genotype) after constraining the remaining variables. The effect of a given
280 factor was considered significant when $p<0.05$. Finally, we used a weighted co-expression
281 network analysis with WGCNA (similar thresholds as described above but with soft power fixed
282 at 14) to reach a model fit ($|R|$) of 0.83, and subsequent module-wise GO enrichment analyses
283 were undertaken using the GO_MWU R package (Wright et al., 2015).

284 **Genomic basis of thermotolerance in Symbiodiniaceae dinoflagellates**

285 We used an independent WGCNA co-expression network analysis to search for specific gene
286 modules correlated with thermotolerance. For this purpose we focused on the dataset of Levin *et*
287 *al.* (2016), with *Cladocopium goreau* as the reference genome (Liu et al., 2018). Indeed, this is
288 the only study to our knowledge featuring established thermotolerant phenotypes with
289 transcriptomic data on long-term time series. The WGCNA analysis followed similar steps as
290 described previously based, though based on rlog-transformed data (betaPrior=2). The soft
291 threshold power was fixed at 20 to reach a model fit ($|R|$) of 0.85. The downstream, module-wise
292 GO enrichment analyses followed the pipeline outlined above. Finally, we used the
293 ‘*GO_deltaRanks_correlation*’ function implemented in the GO_MWU R package (Wright et al.,
294 2015) to assess similarity between response to stress in symbiont in hospite with clams in and
295 specific mechanisms of thermotolerance for cultured Symbiodiniaceae.

296 **Quantitative PCR- and meta-barcoding-based Symbiodiniaceae analysis**

297 We evaluated the relative levels of various Symbiodiniaceae genera in our clam samples
298 using a series of quantitative PCR (qPCR) assays. Amplifications were carried out on AriaMx
299 real-time PCR System (Agilent, USA) using six primer sets optimized for the amplification of
300 nuclear ribosomal 28S in Symbiodiniaceae of clades/genera A-F (Yamashita, Suzuki,

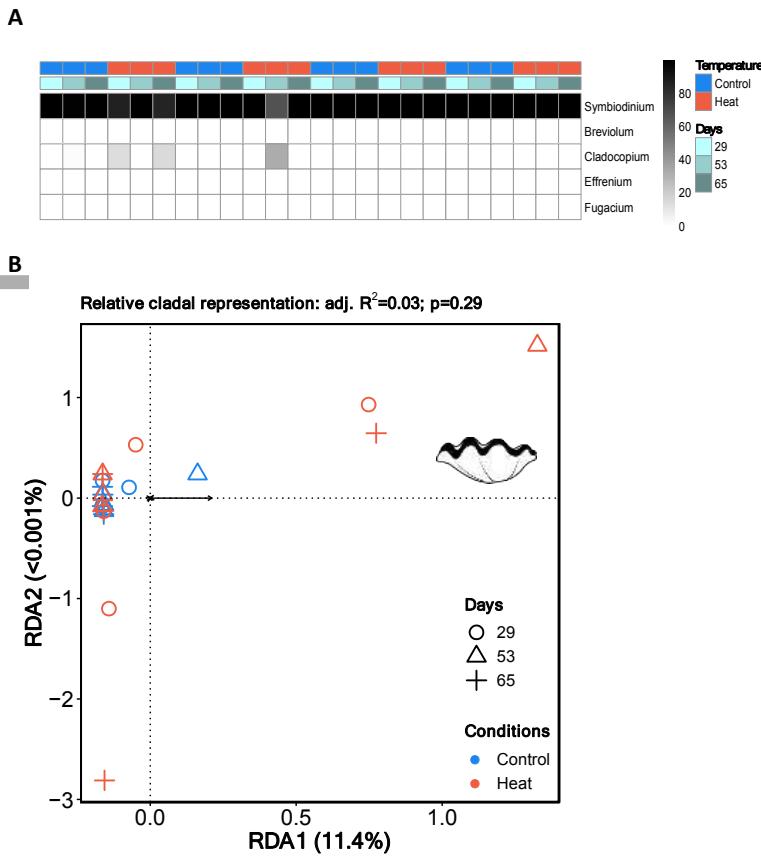
301 Hayashibara, & Koike, 2011) following the protocol of Rouzé *et al.* (2017). The PCRs (25 µL)
302 comprised 12.5 µL of 2X SYBR® Green master mix (Agilent, USA), 10 µL of DNA (previously
303 diluted to 1 ng µL⁻¹), and 1.25 µL of each primer (forward and reverse; each at a stock
304 concentration of 4 µM). PCR thermocycling included: 1 cycle of pre-incubation for 10 min at
305 95°C; 40 cycles of amplification (30 s at 95°C, 1 min at 64°C, and 1 min at 72°C), and a melting
306 curve analysis that extended from 60°C to 95°C (30-s incubations). All measurements were made
307 in duplicate, and all analyses were based on the threshold cycle (Ct) values of the PCR products.

308 Ct values were averaged across duplicate samples when the variation was not exceeding 1;
309 otherwise, samples were re-run until delta Ct<1. Similarity in relative clade abundance was
310 assessed using PCA analysis of a Bray-Curtis similarity matrix with Hellinger-transformed data.
311 Db-RDAs were conducted to identify whether either temperature or time had a significant impact
312 on Symbiodiniaceae assemblage, and an alpha level of 0.05 was set *a priori*. To complement data
313 from the experimental individuals, qPCRs were carried out with DNA isolated from mantle
314 fragments from the 10 wild individuals described above collected from Reao Atoll
315 [geographically proximal to the origin of the experimental individuals; see Brahmi *et al.*, (2019)
316 for details.] in October 2018. Sample preparation and analyses were performed as described
317 above and in Rouzé *et al.* (2017).

318 As a more detailed means of assessing Symbiodiniaceae diversity in the 24 clam samples,
319 a meta-barcoding analysis was undertaken following the protocol of Cunning, Gates, & Edmunds
320 (2017). Briefly, the ITS2 gene was PCR amplified using previously described primers (Cunning,
321 Gates, and Edmunds, 2017) and sequenced at the facility listed above, albeit on a Illumina MiSeq
322 250-bp paired-end platform. The Dada2 algorithm (Callahan *et al.*, 2016) implemented in the
323 QIIME2 software package (Bokulich *et al.*, 2018) was used to infer exact sample sequences from
324 amplicon data. The reference database was directly imported from the NCBI nt repository and
325 trained on the basis of the ITS2 primers following Cunning, Gates, and Edmunds (2017).
326 Detailed protocols and the corresponding scripts have been made available in a public Github
327 repository (<https://github.com/jleluyer/acclimabest>).

328

329 **Results**


330 **Physiology**

331 We observed no mortality across the 65-day experiment, but some of the individuals exposed
332 to elevated temperature showed signs of partial bleaching in the 30.7°C treatment by day 65.
333 Symbiodiniaceae density and photosynthetic yield (Fv/Fm) were both lower in clams exposed to
334 elevated temperatures (Scheirer-Ray-Hare; $H=24.44$, $p<0.001$ and $H=22.88$, $p<0.001$,
335 respectively; Figure S1). There was no interaction between time and temperature for
336 Symbiodiniaceae Fv/Fm (Scheirer-Ray-Hare; $H=1.26$; $p=0.53$, Figure S1). Time had only a slight
337 effect on Symbiodiniaceae density (Scheirer-Ray-Hare; $H=6.07$; $p=0.048$, Figure S1), though no
338 *post-hoc* differences were detected between individual sampling times (Dunn's test; $p>0.05$).
339

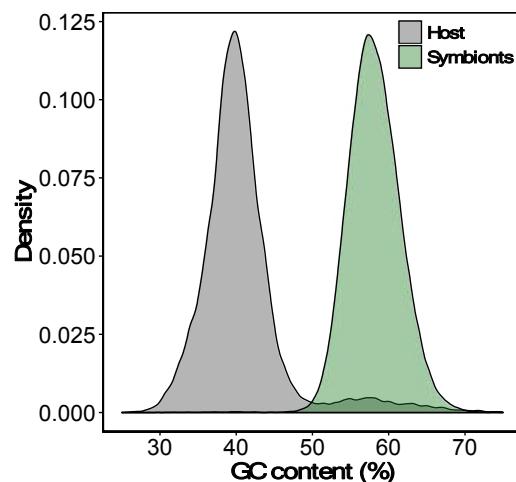
340 **Symbiodiniaceae communities *in hospite* with clams**

341 The Symbiodiniaceae communities of all clam hosts (from both control and high temperature
342 conditions) were primarily composed of *Symbiodinium* spp. (formerly clade A; Figure 1A). Four
343 clams, however, were characterized by secondary populations of *Cladocopium* spp. (formerly
344 clade C; with relative proportions reaching 1.8 to 32.8%), as well as residual quantities
345 (<0.001%) of *Breviolum* (formerly clade B) and *Fugacium* (formerly clade F). There were no
346 detectable effects of prolonged high-temperature exposure of the Symbiodiniaceae assemblages
347 within the giant clam samples (Figure 1B). Similarly, *in situ* clam samples from Reao Atoll were
348 also dominated by *Symbiodinium* spp. (mean $93.0\% \pm 10.7$ SD), with smaller populations of
349 *Breviolum* spp. and *Cladocopium* spp. Given the similarities in Symbiodiniaceae assemblages
350 between the experimental and *in situ* specimens, we conclude that transport out of the ocean and
351 into the aquarium husbandry facility did not result in community changes that could bias the
352 results described below.

353 Metabarcoding of the internal transcribed spacer 2 (ITS2) sequence resulted in an average
354 of $186.7k \pm 25.7$ PE sequences per sample. After sequence pre-processing, the Dada2 algorithm
355 reported a total of 12 amplicon sequence variants matching to *Symbiodinium* spp. ($N=9$) and
356 *Cladocopium* spp. ($N=3$) that paralleled results from qPCRs. *Symbiodinium* sequence variants
357 mainly matched to *S. tridacnidorum* (formerly sub-clade A3; best-hit BLASTn $e\text{-value}<10^{-6}$).
358 Neither cladal/genera representation based on UniFrac distance (PERMANOVA; pseudo- $F=1.3$;
359 $q\text{-value}=0.33$) nor evenness values (Kruskall-Wallis; $H=0.04$; $q\text{-value}=0.83$) differed
360 significantly between temperatures.

361
362
363
364
365
366

Figure 1: Symbiodiniaceae community representation assessed by qPCR, metabarcoding, and multivariate analysis. (A) Heatmap showing the median relative clade proportion by group ($N=4$ individuals/group), as determined by qPCR. (B) RDA representation based on PCoA of Euclidian distances.


367 **Transcriptome assemblies**

368 A total of 363.70 million 100-bp paired-end reads were used to assemble a raw meta-
369 transcriptome (host + symbionts) of 726,689 transcripts (420.02 Gbp). After stringent filtering
370 and segregation of host and Symbiodiniaceae sequences, the assemblies resulted in a
371 transcriptome for *T. maxima* of 24,234 contigs ($N50=1,011$ bp; GC content=40.1%) and a meta-
372 transcriptome for Symbiodiniaceae of 51,648 contigs ($N50=1,027$ bp; GC content=57.9%). High
373 G-C content is generally a hallmark of Symbiodiniaceae transcriptomes (González-Pech et al.,
374 2017). Transcriptome statistics and annotations are provided in Figure 2 and Table S1,
375 respectively.

A

<i>Tridacna maxima</i>	
Total number of transcripts	24,234
Average percent G-C	40.15
Contig N50	1,768
Median contig length (bp)	1,011
Average contig length (bp)	1,276.13
Total assembled bases	30,925,845
<i>Symbiodinium spp.</i>	
Total number of transcripts	51,648
Average percent G-C	57.9
Contig N50	1,027
Median contig length (bp)	688
Average contig length (bp)	845.89
Total assembled bases	43,688,343

B

376

377

378

379

380

Figure 2: Transcriptome assembly statistics. (A) Table showing various assembly metrics for *Tridacna maxima* and Symbiodiniaceae. (B) Density plot of the relative G-C content (%) for Symbiodiniaceae and *Tridacna maxima* contigs.

Host clam acclimation response to prolonged high-temperature exposure

A gene co-expression network was built using the normalized RNA-Seq data from which low-expression genes had been eliminated, and three modules correlated significantly ($p<0.05$) with temperature and/or physiological data (including oxygen production, Symbiodiniaceae density and Fv/FM, and host dry weight; Figure S2). No module was correlated with sampling time, O₂ consumption, or shell extension. A single host module (pink_{host}) positively correlated with temperature ($R=0.82$) and negatively with photosynthetic rate and symbiont density ($R=-0.52$ and $R=-0.48$, respectively; Figure S2). The red_{host} module also correlated positively with Fv/Fm ($R=0.59$) but not significantly with temperature ($R=-0.38$; $p=0.08$). Among the most enriched GO terms in the pink_{host} module were pituitary gland development (GO:0021983), L-ascorbic acid metabolic processes (GO:0019852), regulation of extrinsic apoptotic signaling pathways (GO:2001236), cholesterol efflux (GO:0033344), cilium movement (GO:0003341), and ommochrome biosynthetic processes (GO:0006727). Ommochromes are biological pigments and metabolites of tryptophan (Figon & Casas, 2019). The red_{host} module was enriched for cation transport (GO:0006812), neurotransmitter uptake (GO:0001504), fructose 6-phosphate metabolic processes (GO:0006002), and reactive oxygen species metabolic processes (GO:0072593). Host

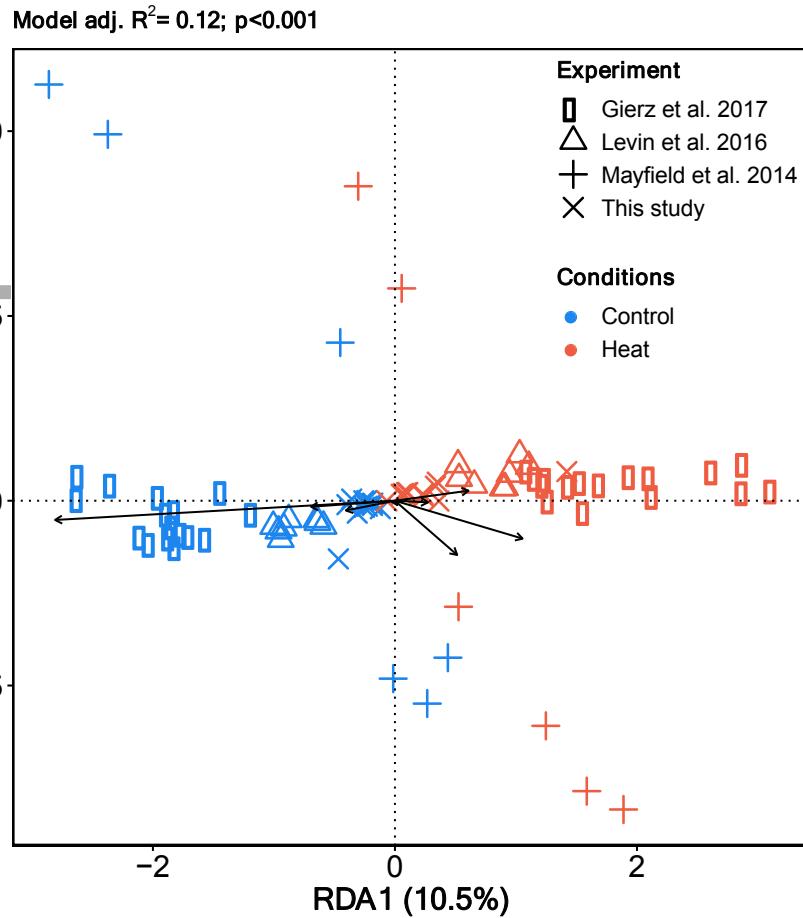
396 module membership eigenvalues were also integrated with the symbiont network analysis (Figure
397 3), and a complete list of GO-enriched functions has been provided in Table S2.

398

399

400 **Acclimation to prolonged high-temperature exposure in Symbiodiniaceae *in hospite*** 401 **with clams**

402 Co-expression network analysis of Symbiodiniaceae showed more modules correlated with
403 temperature than for the clam host, either negatively [midnightblue_{symbiont} ($R=-0.94$), blue_{symbiont}
404 ($R=-0.45$)] or positively [cyan_{symbiont} ($R=0.61$), black_{symbiont} ($R=0.91$), yellow_{symbiont} ($R=0.52$), and
405 pink_{symbiont} ($R=0.85$); Figure 3]. Among the enriched GO terms in the black_{symbiont} module were
406 RNA processing (GO:0006396), methylation (GO:0043414), chloroplast-nucleus signaling
407 pathways (GO:0031930), and glycerolipid metabolic processes (GO:0046486). For the
408 cyan_{symbiont} module, enriched GO terms included response to vitamins (GO:0033273), response to
409 UV-C (GO:0071494), regulation of transferase activity (GO:0051338), intrinsic apoptotic
410 signaling pathways (GO:0097193), and induced systemic resistance (GO:0009682). The
411 yellow_{symbiont} module featured RNA modification (GO:0009451) and aspartate family amino acid
412 metabolic processes (GO:0009066). Finally, the blue_{symbiont} module showed enrichment for
413 movement of cellular or subcellular components (GO:0006928), reproduction (GO:0000003),
414 regulation of cell shape (GO:0008360), oxidation-reduction processes (GO:0055114), and
415 electron transport chain (GO:0022900) while the midnightblue_{symbiont} module featured
416 enrichment for regulation of BMP signaling pathways (GO:0030510), hormone biosynthetic
417 processes (GO:0042446), peptidyl-lysine dimethylation (GO:0018027), short-term memory
418 (GO:0007614), and response to red or far, red light (GO:0009639). The complete GO enrichment
419 results can be found in Table S2.


	Temperature	Time	Fv/Fm	Symb. density	Dry weight host	MEPink-host	MERed-host	METurquoise-host
cyan (91)	0.61		-0.66			0.51	-0.46	
black (3,675)	0.91		-0.71	-0.46		0.88		
yellow (1,442)	0.52		-0.55			0.47	-0.51	
tan (166)								-0.94
pink (212)					0.53			
greenyellow (186)			0.54		0.46			
blue (5,414)	-0.45		0.52		0.53		0.51	
midnightblue (87)	-0.94		0.73			-0.87		

420

421 Figure 3: Correlation matrix of symbiont gene expression modules against experimental factors
 422 (temperature and time), quantitative physiological traits, and module membership (ME) for host
 423 modules. Genes have been clustered in modules (y-axis) according to their co-expression values.
 424 Values in cells indicate Pearson's correlation scores, and only statistically significant correlations
 425 ($p<0.05$) are depicted.

426 Multivariate analysis of public Symbiodiniaceae datasets

427 We used db-RDA to document gene expression variation in public Symbiodiniaceae datasets
 428 [in culture and *in hospite* with corals and clams (this study)], with temperature and time as the
 429 explanatory variables; there was a focus on single-copy orthologs from the genera *Cladocopium*,
 430 *Fugacium*, and *Symbiodinium*. The overall model was significant ($p<0.001$), and the adjusted R^2
 431 was 0.12 (Figure 4). Partial db-RDAs showed that temperature also had a significant effect on
 432 total gene expression variation across genotypes and experiments (1000 permutations; $F=9.07$,
 433 $p=0.001$). A WGCNA analysis was conducted to identify genes cluster correlated with
 434 temperature across all the orthologous genes (Figure S3).

435
436 Figure 4: RDA of cultured Symbiodiniaceae (*Cladocopium* type C1 and *Fugacium kawagutii*)
437 and *in hospite* with corals (*Cladocopium*) and giant clams (*Symbiodinium* spp.). The reference
438 dataset only included the single-copy orthologous genes across the three genera (N=4,187
439 orthologs remaining after filtering for residual expression).

440
441 **Search for thermotolerance-specific genes clusters**
442
443 We also conducted independent WGCNA analyses to assess acclimatory responses in
444 cultured Symbiodiniaceae based on the *Cladocopium goreau* (formerly type C1) genome (Liu *et*
445 *al.*, 2018) and compared them with thermotolerant phenotypes (Levin *et al.*, 2016). No individual
446 module correlated with time. Instead, we found the majority of the genes to be correlated with
447 temperature, and three modules were uncovered: *darkgrey_{C1}* ($R=0.82$), *saddlebrown_{C1}* ($R=-0.89$;
448 $N=1,354$), and *orange_{C1}* ($R=-0.87$; $N=378$; Figure S4). We also found three modules

449 (darkolivegreen_{C1}, lightgreen_{C1}, and white_{C1}) that were significantly correlated with
450 thermotolerance ($R=-0.74$, -0.99 , and 0.98 , respectively; Figure S4) but not temperature. These
451 modules effectively differentiated thermo-sensitive Symbiodiniaceae from thermotolerant C1
452 phenotypes described in Levin *et al.* (2016). Among the most enriched GO terms for lightgreen_{C1}
453 were cellular response to amino acid stimulus (GO:0071230), DNA methylation (GO:0006306),
454 and genetic imprinting (GO:0071514; Figure S4 and Table S2). Furthermore, we found that
455 impact on methylation-associated biological processes [methylation (GO:0032259) and
456 macromolecule methylation (GO:0043414)] was conserved in the lightgreen_{C1} module and the
457 response to temperature of symbionts *in hospite* with clams (black_{symb} module; Figure S5).

458

459

460

461

462 Discussion

463

464 Temperature increases are threatening marine invertebrate populations worldwide, especially
465 for species already living at, or close to, their upper thermal tolerance limits (Hoffmann & Sgrò,
466 2011). Recent heat wave events have resulted in $\sim 90\%$ declines in *T. maxima* populations in
467 some atolls of French Polynesia (Andréfouët *et al.*, 2013, 2017). While several studies have
468 investigated the invertebrate (mollusc and cnidarian) response to heat stress over short-term
469 timescales, relatively few have investigated the prolonged response to elevated temperatures
470 (e.g., Mayfield *et al.*, 2014). Although our clam samples ultimately acclimated to an
471 experimentally elevated temperatures of nearly 31°C , Symbiodiniaceae density was reduced in
472 thermally challenged clams, and both host clams and their Symbiodiniaceae populations
473 underwent gene expression changes over the course of this two-month experiment. Upon
474 discussing such temperature-driven changes in gene expression, we highlight some intrinsic
475 responses of the symbionts (i.e., independent of the host species) and identify key mechanisms
476 potentially underlying their thermal-tolerance.

477 **Genus-specific fidelity in clam hosts might preclude symbiont community**
478 **shifts/shuffling as a thermal acclimation strategy**

479 A 1.5°C temperature elevation over a 65-day period was sufficient to induce a significant
480 reduction in symbiont density in clams; no bleaching (even partial) was observed in control
481 temperature clams. Our results support previous studies of corals and giant clams in which high-
482 temperature exposure led to sub-lethal bleaching (Ainsworth, Hoegh-Guldberg, Heron, Skirving,
483 & Leggat, 2008; Brahmi et al., 2019; Hoegh-Guldberg & Smith, 1989; Jones, Hoegh-Guldberg,
484 Larkum, & Schreiber, 1998; Leggat et al., 2003; Warner, Fitt, & Schmidt, 1999; Zhou et al.,
485 2018); whether the cellular mechanisms of bleaching are conserved between corals and giant
486 clams remains to be determined (Mies et al., 2017; Zhou et al., 2018).

487 For some coral species, resilience to heat stress is associated with a more flexible symbiotic
488 association (i.e., the capacity to shift from one dominant Symbiodiniaceae genus to another)
489 (Hume et al., 2015; LaJeunesse et al., 2004; Putnam, Stat, Pochon, & Gates, 2012; Rowan, 2004;
490 Silverstein, Correa, & Baker, 2012). Indeed, some bleaching events have largely been attributed
491 to the thermal sensitivity of specific endosymbiotic Symbiodiniaceae residing in coral host
492 tissues (Berkelmans & van Oppen, 2006; Oliver & Palumbi, 2011). Corals hosting *Cladocopium*
493 spp. (formerly clade C) are typically more prone to bleaching, whereas those housing certain
494 lineages of *Durusdinium* (formerly clade D) have demonstrated enhanced thermotolerance
495 (Baker, 2003; Mieog, van Oppen, Cantin, Stam, & Olsen, 2007). Interestingly, *Cladocopium* spp.
496 and/or *Durusdinium* spp. are more commonly found in giant clams inhabiting warmer
497 environments while *Symbiodinium* spp. (formerly clade A) are more common in clams located in
498 cooler waters (DeBoer et al., 2012). Herein, the Symbiodiniaceae communities were
499 predominantly composed of *Symbiodinium* spp., even after two months of high-temperature
500 exposure; this finding aligns with other studies in corals that found Symbiodiniaceae assemblages
501 to be temporally stable, even as environmental conditions changed (Goulet, 2006; Sampayo,
502 Ridgway, Bongaerts, & Hoegh-Guldberg, 2008; Thornhill, LaJeunesse, Kemp, Fitt, & Schmidt,
503 2006; Thornhill, Xiang, Fitt, & Santos, 2009). This was not an artifact due to the experimental
504 conditions enacted since individuals sampled from their original locations *in situ* also
505 predominantly host *Symbiodinium* spp. (i.e., clade A).

506 Such a high proportion of *Symbiodinium* spp. in giant clams was expected, and it has also
507 been reported in the sea anemone *Anemonia viridis*; however, it is in sharp contrast with other

508 invertebrate hosts such as corals, which host a broader Symbiodiniaceae diversity (Manning &
509 Gates, 2008; Rouzé et al., 2017; Stat, Carter, & Hoegh-Guldberg, 2006). This near-exclusive
510 hosting of *Symbiodinium* spp. in clams, and the temporal stability of their association, suggests
511 that some selection process favors this dinoflagellate lineage (or else impairs recruitment of
512 others); lectin/glycan interactions were once thought to play a role, possibly in the primary
513 recognition-related processes (Wood-Charlson, Hollingsworth, Krupp, & Weis, 2006), though
514 this hypothesis has recently been called into question (Parkinson et al., 2018). Admittedly,
515 broader *in situ* clam sampling, (e.g., encompassing different times of the year) will be necessary
516 to verify the fidelity between *Symbiodinium* spp. and giant clams, and whether mixed-genera
517 assemblages are common *in situ* (DeBoer et al., 2012; Parkinson, Banaszak, Altman, LaJeunesse,
518 & Baums, 2015). The presumably low flexibility would appear to preclude community shifts as a
519 strategy for these clams to cope with increased temperatures, at least in our experimental context.
520 Rather than adaptation (i.e., a community shift resulting in a new “holobiont genomic
521 landscape”), acclimation (i.e., physiological changes that initially manifested at the molecular
522 level) appears to have played a larger role in this study.

523 **Effect of prolonged exposure to elevated temperature on the clam transcriptome**

524 Both host clam and Symbiodiniaceae gene expression were affected by elevated temperature
525 exposure, with no significant effects of time from 29 days onwards; the temperature-related
526 differences were from thenceforth sustained over time. We found one gene module positively
527 impacted by temperature and negatively correlated with symbiont Fv/Fm and density. This
528 module showed enrichment for ommochrome biosynthesis process and specifically included the
529 tryptophan 2,3-dioxygenase coding gene (TDO), a pivotal regulator of systemic tryptophan levels
530 also involved in the response to oxidative stress (Forrest et al., 2004; Thackray, Mowat, &
531 Chapman, 2008). Tryptophan is the precursor of 5-hydroxytryptamine (5-HT), a bivalve
532 serotonin transmitter that plays critical roles in numerous physiological functions [e.g.,
533 reproduction (Alavi, Nagasawa, Takahashi, & Osada, 2017)]. In larvae from the coral *Orbicella*
534 *faveolata*, TDO (referred to as AGAP) was up-regulated in response to ultraviolet radiation, and
535 larval fitness (locomotion and settlement) went on to suffer (Aranda et al., 2011). A more
536 thorough understanding, then, of ommochrome biosynthesis and, more generally, tryptophan
537 regulation, is likely to be key to elucidating the molecular regulation of invertebrate-

538 dinoflagellate symbioses, nearly all of which involve at least some degree of nitrogen transfer
539 within holobionts (Chan et al., 2018).

540 A single module was 1) positively correlated with the maximum dark-adapted yield of
541 photosystem II (Fv/Fm) and 2) enriched for genes encoding proteins involved in glyceraldehyde-
542 3-phosphate metabolic processes. Glycerol excretion from dinoflagellate symbionts is largely
543 influenced by the presence of host tissues (Muscatine, 1967). The glyceraldehyde-3-phosphate
544 pathway, which culminates in glycerol production, was also significantly affected by sub-lethal
545 elevated temperature (30°C) exposure in the reef coral *P. damicornis* (Mayfield et al., 2014).
546 Pollutant exposure also altered the expression of genes involved in carbohydrate metabolism,
547 albeit only in the coral host compartment (and not in Symbiodiniaceae) in another study (Gust *et*
548 *al.*, 2014). Admittedly, we did not assess the proportion of energy derived from autotrophy
549 herein, which ranges widely (from 25 to up to 100%) and is dependent on the species and/or life
550 history stage in the *Tridacna* genus (Fisher, Fitt, & Trench, 1985; Klumpp et al., 1992; Klumpp
551 & Griffiths, 1994); shifts from autotrophy to heterotrophy, and vice versa, are likely to affect host
552 gene expression patterns. All that can be stated at present is that regulation of tryptophan levels
553 and impairment of carbohydrate metabolism might be key elements in the long-term response to
554 elevated temperature in clams; indeed, these two processes could be inter-linked. However, how
555 these changes would affect fine-scale interactions between the host and symbionts remains to be
556 explored and should be the focus of future studies of clam-Symbiodiniaceae symbioses.

557 **The response of Symbiodiniaceae dinoflagellates *in hospite* with clams to prolonged
558 elevated temperature exposure**

559 Overall, gene clusters of Symbiodiniaceae showed positive correlation between expression
560 levels and prolonged elevated temperature exposure, and some of the modules were also
561 correlated with the lower Symbiodiniaceae Fv/Fm and cell densities documented at elevated
562 temperatures. Other physiological studies have also shown that high temperatures lead to
563 diminished photosynthetic yield in several clades of Symbiodiniaceae (Grégoire, Schmacka,
564 Coffroth, & Karsten, 2017). In terms of the RNA-Seq data, genes encoding proteins involved in
565 nitrogen metabolism were significantly affected by high-temperature exposure, and this module
566 correlated with host tryptophan dehydrogenase activity. Interestingly, this GO includes the salt-
567 and drought-induced ring finger1 (SDIR 1)-coding gene known in plants to control abscisic acid
568 (ABA) signal transduction (Zhang et al., 2007), a process that has never before been reported in

569 Symbiodiniaceae. The phytohormone ABA and ROS regulating/modulating proteins are key
570 molecular constituents involved in the capacity to acclimate to abiotic stressors, including
571 oxidative stress tolerance in unicellular algae (Lu & Xu, 2015). Furthermore, up-regulation of
572 ABA signaling genes is associated with a later increase in ABA biosynthesis in several plant
573 species (Vishwakarma et al., 2017). The role of ABA signaling in the thermo-adaptation of
574 Symbiodiniaceae dinoflagellates may consequently be a fruitful avenue for future research.

575 Herein we also found that expression of genes encoding certain components of the
576 photosynthetic machinery, especially photosystem II (PSII), was dampened at elevated
577 temperature. PSII integrity is vital for proper Symbiodiniaceae function, and PSII damage has
578 been directly linked to bleaching in corals (Warner et al., 1999). It is noteworthy that the same
579 gene module also included chloroplast thylakoid membrane rearrangement-related genes, which
580 are used by Symbiodiniaceae and other photosynthetic organisms to cope with heat and high UV
581 radiation (Sharkey, 2005; Slavov et al., 2016). Although the clam-dinoflagellate holobionts
582 generally appeared to have acclimated to elevated temperatures over our two-month experiment
583 (no large-scale bleaching), the Symbiodiniaceae communities, then, showed signs of intracellular
584 stress given these gene expression changes, as well as the decreases in cell density and Fv/Fm.
585 Whether or not these holobionts could have sustained an even longer exposure to ~31°C remains
586 to be determined, though it is worth noting that, unlike *in situ*, clams were not fed in the aquaria.
587 It is thus likely that clams allowed to feed both autotrophically *and* heterotrophically might, then,
588 have an even superior capacity for high-temperature acclimation.

589 **Conserved response to high temperatures across Symbiodiniaceae genera and molecular
590 mechanisms linked to thermo-acclimation capacity**

591 We documented a conserved response to long-term exposure to elevated temperature
592 across Symbiodiniaceae genera based only on orthologous genes, which is noteworthy given the
593 large evolutionary distance between genera (Correa & Baker, 2009; LaJeunesse, 2001). This
594 common response, which transcended the host effect, included genes involved in regulation of
595 the DNA damage response, wound healing and low-temperature responses, chromatin
596 remodeling, mRNA splicing, regulation of lipid biosynthetic processes, and motile cilium
597 assembly. Our results, however, most likely underestimate the molecular complexity of thermo-
598 acclimation given our use of exclusively “single-to-single” orthologous genes. It is also possible
599 that there are holobiont-specific responses that were not explored or detected herein with our

600 bioinformatics approach. For instance, recent studies have shown that the Symbiodiniaceae
601 diverged, in part, in relation to their capacity for synthesizing UV-absorbing mycosporine-like
602 amino acids (Shoguchi et al., 2013). Furthermore, while UV-B radiation in cultured
603 Symbiodiniaceae drastically reduces photosynthetic output, such is not always observed for cells
604 *in hospite* with clams since the clam hosts produce UV-absorbing proteins (Ishikura, Kato, &
605 Maruyama, 1997).

606 We further explored basal differences within the *Cladocopium* genus that would
607 differentiate the contrastingly thermotolerant phenotypes. We found that differences between
608 thermotolerant phenotypes were driven by molecular pathways uncovered previously (Levin et
609 al., 2016), including meiotic nuclear division and glutathione disulfide oxidoreductase activity;
610 expression of genes involved in photosynthesis, cellular heat acclimation, and methylation
611 programming also differed across gradients of thermotolerance. Regarding the latter, epigenetic
612 landscape rearrangement has been shown to play a role in transgenerational inheritance of
613 thermo-tolerance of various plant models (Bruce, Matthes, Napier, & Pickett, 2007). Here,
614 thermotolerance-associated modules generally did not correlate with temperature, suggesting that
615 phenotypes have intrinsic gene expression signatures that respond differentially to changes in
616 temperature. It is known that in plants DNA methylation and histone modification are associated
617 with the response to heat stress, and, more specifically, act to prevent heat-associated
618 macromolecular damage (Liu, Feng, Li, & He, 2015). Such methylation changes might be
619 inherited and account for, at least in part, the remarkable ability of plants to adapt and/or
620 acclimate quickly to stressful environments (Ganguly, Crisp, Eichten, & Pogson, 2017; Lämke &
621 Bäurle, 2017).

622

623 **Conclusions**

624

625 The co-expression network analysis proved to be a powerful tool for dissecting
626 compartment-specific transcriptomic responses in symbiotic systems. This is especially true
627 when looking for acclimatory signatures that, in contrast to short-term stress responses, are
628 characterized by rather subtle changes over longer periods. Indeed, our data from a long-term
629 high temperature study revealed that different cellular processes are impacted in the host clam
630 and *in hospite* Symbiodiniaceae compartments; genes encoding key photosynthesis proteins were

631 particularly temperature sensitive in not only Symbiodiniaceae *in hospite*, but also in culture.
632 Future studies focusing on the range of optimal thermal conditions of the *T. maxima* species may
633 improve our understanding on the thermal tolerance of the clams and their symbionts. Although
634 the giant clams used in this study ultimately survived a two-month exposure to nearly 31°C, it is
635 possible that slightly higher temperatures, or extended exposure times, might cause them to
636 bleach to such a great extent that they would not survive. Regardless, our data show that novel
637 mechanisms involving epigenetic landscape rearrangement are associated with elevated
638 Symbiodiniaceae thermotolerance. How the impact of stressful environmental conditions might
639 impact the subsequent generation's tolerance and/or physiological capacities (i.e., epigenetic
640 effects) must consequently be addressed in the near future.

641

642 **References**

643

644 Addessi, L. (2001). Giant clam bleaching in the lagoon of Takapoto atoll (French Polynesia).
645 *Coral Reefs*, 19(3), 220–220. <https://doi.org/10.1007/PL00006957>

646 Ainsworth, T. D., Hoegh-Guldberg, O., Heron, S. F., Skirving, W. J., & Leggat, W. (2008). Early
647 cellular changes are indicators of pre-bleaching thermal stress in the coral host. *Journal of*
648 *Experimental Marine Biology and Ecology*, 364(2), 63–71.
649 <https://doi.org/10.1016/j.jembe.2008.06.032>

650 Alavi, S. M. H., Nagasawa, K., Takahashi, K. G., & Osada, M. (2017). Structure-function of
651 serotonin in bivalve molluscs. In K. F. Shad (Ed.), *Serotonin - A Chemical Messenger Between*
652 *All Types of Living Cells*. <https://doi.org/10.5772/intechopen.69165>

653 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq—a Python framework to work with high-
654 throughput sequencing data. *Bioinformatics*, 31(2), 166–169.
655 <https://doi.org/10.1093/bioinformatics/btu638>

656 Andréfouët, S., Van Wijnsberge, S., Gaertner-Mazouni, N., Menkes, C., Gilbert, A., &
657 Remoissenet, G. (2013). Climate variability and massive mortalities challenge giant clam
658 conservation and management efforts in French Polynesia atolls. *Biological Conservation*, 160,
659 190–199. <https://doi.org/10.1016/j.biocon.2013.01.017>

660 Andréfouët, S., Wijnsberge, S. V., Kabbadj, L., Wabnitz, C. C. C., Menkes, C., Tamata, T., ...
661 Remoissenet, G. (2017). Adaptive management for the sustainable exploitation of lagoon

662 resources in remote islands: lessons from a massive El Niño-induced giant clam bleaching event
663 in the Tuamotu atolls (French Polynesia). *Environmental Conservation*, 1–11.
664 <https://doi.org/10.1017/S0376892917000212>

665 Aranda, M., Banaszak, A. T., Bayer, T., Luyten, J. R., Medina, M., & Voolstra, C. R. (2011).
666 Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of
667 larval competence. *Molecular Ecology*, 20(14), 2955–2972. <https://doi.org/10.1111/j.1365-294X.2011.05153.x>

668 Baillie, B. K., Belda-Baillie, C. A., & Maruyama, T. (2000). Conspecificity and Indo-Pacific
669 distribution of *Symbiodinium* genotypes (Dinophyceae) from giant clams. *Journal of Phycology*,
670 36(6), 1153–1161. <https://doi.org/10.1046/j.1529-8817.2000.00010.x>

671 Baker, A. C. (2003). Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology,
672 and Biogeography of *Symbiodinium*. *Annual Review of Ecology, Evolution, and Systematics*,
673 34(1), 661–689. <https://doi.org/10.1146/annurev.ecolsys.34.011802.132417>

674 Barshis, D. J., Ladner, J. T., Oliver, T. A., & Palumbi, S. R. (2014). Lineage-Specific
675 Transcriptional Profiles of *Symbiodinium spp.* Unaltered by Heat Stress in a Coral Host.
676 *Molecular Biology and Evolution*, 31(6), 1343–1352. <https://doi.org/10.1093/molbev/msu107>

677 Barshis, D. J., Ladner, J. T., Oliver, T. A., Seneca, F. O., Traylor-Knowles, N., & Palumbi, S. R.
678 (2013). Genomic basis for coral resilience to climate change. *Proceedings of the National
679 Academy of Sciences*, 110(4), 1387–1392.

680 Berkelmans, R., & van Oppen, M. J. H. (2006). The role of zooxanthellae in the thermal
681 tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. *Proceedings of
682 the Royal Society B: Biological Sciences*, 273(1599), 2305–2312.
683 <https://doi.org/10.1098/rspb.2006.3567>

684 Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., ... Gregory
685 Caporaso, J. (2018). Optimizing taxonomic classification of marker-gene amplicon sequences
686 with QIIME 2’s q2-feature-classifier plugin. *Microbiome*, 6(1). <https://doi.org/10.1186/s40168-018-0470-z>

687 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
688 sequence data. *Bioinformatics*, 30(15), 2114–2120. <https://doi.org/10.1093/bioinformatics/btu170>

689 Brahmi, Chloé, Le Moullac, G., Soyez, C., Beliaeff, B., Lazareth, C. E., Gaertner-Mazouni, N., &
690 Vidal-Dupiol, J. (2019). *Effects of temperature and p CO₂ on the respiration, biomineralization*

691

692

693 and photophysiology of the giant clam *Tridacna maxima*. <https://doi.org/10.1101/672907>

694 Brahmi, Chloe, Le Moullac, G., Soyez, C., Chapron, L., Gaertner-Mazouni, N., & Vidal-Dupiol,
695 J. (2019). Effects of temperature and pH on the respiration, biomineralization and
696 photophysiology of the giant clam *Tridacna maxima*. *BioRxiv*.

697 Bruce, T. J. A., Matthes, M. C., Napier, J. A., & Pickett, J. A. (2007). Stressful “memories” of
698 plants: Evidence and possible mechanisms. *Plant Science*, 173(6), 603–608.
699 <https://doi.org/10.1016/j.plantsci.2007.09.002>

700 Buck, B. (2002). Effect of increased irradiance and thermal stress on the symbiosis of
701 *Symbiodinium microadriaticum* and *Tridacna gigas*. *Aquatic Living Resources*, 15(2), 107–117.
702 [https://doi.org/10.1016/S0990-7440\(02\)01159-2](https://doi.org/10.1016/S0990-7440(02)01159-2)

703 Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P.
704 (2016). DADA2: High resolution sample inference from Illumina amplicon data. *Nature
705 Methods*, 13(7), 581–583. <https://doi.org/10.1038/nmeth.3869>

706 Chan, C. Y. L., Hiong, K. C., Boo, M. V., Choo, C. Y. L., Wong, W. P., Chew, S. F., & Ip, Y. K.
707 (2018). Light exposure enhances urea absorption in the fluted giant clam, *Tridacna squamosa*,
708 and up-regulates the protein abundance of a light-dependent urea active transporter, DUR3-like,
709 in its ctenidium. *Journal of Experimental Biology*, 221(8), jeb176313.
710 <https://doi.org/10.1242/jeb.176313>

711 Correa, A. M. S., & Baker, A. C. (2009). Understanding diversity in coral-algal symbiosis: a
712 cluster-based approach to interpreting fine-scale genetic variation in the genus *Symbiodinium*.
713 *Coral Reefs*, 28(1), 81–93. <https://doi.org/10.1007/s00338-008-0456-6>

714 Crowder, C. M., Meyer, E., Fan, T.-Y., & Weis, V. M. (2017). Impacts of temperature and lunar
715 day on gene expression profiles during a monthly reproductive cycle in the brooding coral
716 *Pocillopora damicornis*. *Molecular Ecology*, 26(15), 3913–3925.
717 <https://doi.org/10.1111/mec.14162>

718 Cunning, R., Gates, R. D., & Edmunds, P. J. (2017). *Using high-throughput sequencing of ITS2
719 to describe Symbiodinium metacommunities in St. John, U.S. Virgin Islands* (No. e2925v1).
720 Retrieved from PeerJ Preprints website: <https://peerj.com/preprints/2925>

721 DeBoer, T., Baker, A., Erdmann, M., Ambariyanto, Jones, P., & Barber, P. (2012). Patterns of
722 *Symbiodinium* distribution in three giant clam species across the biodiverse Bird’s Head region of
723 Indonesia. *Marine Ecology Progress Series*, 444, 117–132. <https://doi.org/10.3354/meps09413>

724 Dubousquet, V., Gros, E., Berteaux-Lecellier, V., Viguier, B., Raharivelomanana, P., Bertrand,
725 C., & Lecellier, G. J. (2016). Changes in fatty acid composition in the giant clam *Tridacna*
726 *maxima* in response to thermal stress. *Biology Open*, 5(10), 1400–1407.
727 <https://doi.org/10.1242/bio.017921>

728 Emms, D. M., & Kelly, S. (2015). OrthoFinder: solving fundamental biases in whole genome
729 comparisons dramatically improves orthogroup inference accuracy. *Genome Biology*, 16(1), 157.
730 <https://doi.org/10.1186/s13059-015-0721-2>

731 Figon, F., & Casas, J. (2019). Ommochromes in invertebrates: biochemistry and cell biology:
732 Ommochromes in invertebrates. *Biological Reviews*, 94(1), 156–183.
733 <https://doi.org/10.1111/brv.12441>

734 Fisher, C. R., Fitt, W. K., & Trench, R. K. (1985). Photosynthesis and respiration in *Tridacna*
735 *gigas* as a function of irradiance and size. *The Biological Bulletin*, 169(1), 230–245.
736 <https://doi.org/10.2307/1541400>

737 Fitt, W., Brown, B., Warner, M., & Dunne, R. (2001). Coral bleaching: interpretation of thermal
738 tolerance limits and thermal thresholds in tropical corals. *Coral Reefs*, 20(1), 51–65.
739 <https://doi.org/10.1007/s003380100146>

740 Forrest, C. M., Mackay, G. M., Stoy, N., Egerton, M., Christofides, J., Stone, T. W., &
741 Darlington, L. G. (2004). Tryptophan Loading Induces Oxidative Stress. *Free Radical Research*,
742 38(11), 1167–1171. <https://doi.org/10.1080/10715760400011437>

743 Ganguly, D. R., Crisp, P. A., Eichten, S. R., & Pogson, B. J. (2017). The *Arabidopsis* DNA
744 methylome is stable under transgenerational drought stress. *Plant Physiology*, 175(4), 1893–
745 1912. <https://doi.org/10.1104/pp.17.00744>

746 Gierz, S. L., Forêt, S., & Leggat, W. (2017). Transcriptomic analysis of thermally stressed
747 *Symbiodinium* reveals differential expression of stress and metabolism genes. *Frontiers in Plant*
748 *Science*, 8. <https://doi.org/10.3389/fpls.2017.00271>

749 Gilbert, A., Yan, L., Remoissenet, G., Andréfouët, S., Payri, C., & Chancerelle, Y. (2005).
750 Extraordinarily high giant clam density under protection in Tatakoto atoll (Eastern Tuamotu
751 archipelago, French Polynesia). *Coral Reefs*, 24(3), 495–495. <https://doi.org/10.1007/s00338-005-0494-2>

753 Gilbert, Antoine, Remoissenet, G., Yan, L., & Andrefouet, S. (2006). Special traits and promises
754 of the giant clam (*Tridacna maxima*) in French Polynesia. *Fisheries Newsletter-South Pacific*

755 *Commission*, 118, 44.

756 González-Pech, R. A., Ragan, M. A., & Chan, C. X. (2017). Signatures of adaptation and
757 symbiosis in genomes and transcriptomes of *Symbiodinium*. *Scientific Reports*, 7(1).
758 <https://doi.org/10.1038/s41598-017-15029-w>

759 Goulet, T. (2006). Most corals may not change their symbionts. *Marine Ecology Progress Series*,
760 321, 1–7. <https://doi.org/10.3354/meps321001>

761 Grégoire, V., Schmacka, F., Coffroth, M. A., & Karsten, U. (2017). Photophysiological and
762 thermal tolerance of various genotypes of the coral endosymbiont *Symbiodinium* sp.
763 (Dinophyceae). *Journal of Applied Phycology*, 29(4), 1893–1905.
764 <https://doi.org/10.1007/s10811-017-1127-1>

765 Gust, K. A., Najar, F. Z., Habib, T., Lotufo, G. R., Piggot, A. M., Fouke, B. W., ... Perkins, E. J.
766 (2014). Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.
767 *BMC Genomics*, 15(1), 591. <https://doi.org/10.1186/1471-2164-15-591>

768 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., ... Regev, A.
769 (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for
770 reference generation and analysis. *Nature Protocols*, 8(8), 1494–1512.
771 <https://doi.org/10.1038/nprot.2013.084>

772 Hawkins, A. J. S., & Klumpp, D. W. (1995). Nutrition of the giant clam *Tridacna gigas* (L.). II.
773 Relative contributions of filter-feeding and the ammonium-nitrogen acquired and recycled by
774 symbiotic alga towards total nitrogen requirements for tissue growth and metabolism. *Journal of*
775 *Experimental Marine Biology and Ecology*, 190(2), 263–290. [https://doi.org/10.1016/0022-0981\(95\)00044-R](https://doi.org/10.1016/0022-0981(95)00044-R)

776 Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., ...
777 Hatziolos, M. E. (2007). Coral Reefs Under Rapid Climate Change and Ocean Acidification.
778 *Science*, 318(5857), 1737–1742. <https://doi.org/10.1126/science.1152509>

779 Hoegh-Guldberg, Ove, & Smith, G. J. (1989). The effect of sudden changes in temperature, light
780 and salinity on the population density and export of zooxanthellae from the reef corals *Stylophora*
781 *pistillata* Esper and *Seriatopora hystrix* Dana. *Journal of Experimental Marine Biology and*
782 *Ecology*, 129(3), 279–303. [https://doi.org/10.1016/0022-0981\(89\)90109-3](https://doi.org/10.1016/0022-0981(89)90109-3)

783 Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. *Nature*,
784 470(7335), 479–485. <https://doi.org/10.1038/nature09670>

786 Holt, A. L., Vahidinia, S., Gagnon, Y. L., Morse, D. E., & Sweeney, A. M. (2014).
787 Photosymbiotic giant clams are transformers of solar flux. *Journal of The Royal Society*
788 *Interface*, 11(101), 20140678. <https://doi.org/10.1098/rsif.2014.0678>

789 Hou, J., Xu, T., Su, D., Wu, Y., Cheng, L., Wang, J., ... Wang, Y. (2018). RNA-Seq reveals
790 extensive transcriptional response to heat stress in the stony coral *Galaxea fascicularis*. *Frontiers*
791 in *Genetics*, 9. <https://doi.org/10.3389/fgene.2018.00037>

792 Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., ...
793 Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs.
794 *Science*, 301(5635), 929–933. <https://doi.org/10.1126/science.1085046>

795 Hume, B. C. C., D'Angelo, C., Smith, E. G., Stevens, J. R., Burt, J., & Wiedenmann, J. (2015).
796 *Symbiodinium thermophilum* sp. nov., a thermotolerant symbiotic alga prevalent in corals of the
797 world's hottest sea, the Persian/Arabian Gulf. *Scientific Reports*, 5, 8562.

798 Ikeda, S., Yamashita, H., Kondo, S., Inoue, K., Morishima, S., & Koike, K. (2017). Zooxanthellal
799 genetic varieties in giant clams are partially determined by species-intrinsic and growth-related
800 characteristics. *PLOS ONE*, 12(2), e0172285. <https://doi.org/10.1371/journal.pone.0172285>

801 Ishikura, M., Kato, C., & Maruyama, T. (1997). UV-absorbing substances in zooxanthellate and
802 azooxanthellate clams. *Marine Biology*, 128(4), 649–655. <https://doi.org/10.1007/s002270050131>

803 Jantzen, C., Wild, C., El-Zibdah, M., Roa-Quiaoit, H. A., Haacke, C., & Richter, C. (2008).
804 Photosynthetic performance of giant clams, *Tridacna maxima* and *T. squamosa*, Red Sea. *Marine*
805 *Biology*, 155(2), 211–221. <https://doi.org/10.1007/s00227-008-1019-7>

806 Jones, R. J., Hoegh-Guldberg, O., Larkum, A. W. D., & Schreiber, U. (1998). Temperature-
807 induced bleaching of corals begins with impairment of the CO₂ fixation mechanism in
808 zooxanthellae. *Plant, Cell and Environment*, 21(12), 1219–1230. <https://doi.org/10.1046/j.1365-3040.1998.00345.x>

809 Kenkel, C. D., & Matz, M. V. (2016). Gene expression plasticity as a mechanism of coral
810 adaptation to a variable environment. *Nature Ecology & Evolution*, 1(1), 0014.
811 <https://doi.org/10.1038/s41559-016-0014>

812 Klumpp, D. W., Bayne, B. L., & Hawkins, A. J. S. (1992). Nutrition of the giant clam *Tridacna*
813 *gigas* (L.) I. Contribution of filter feeding and photosynthates to respiration and growth. *Journal*
814 of *Experimental Marine Biology and Ecology*, 155(1), 105–122. [https://doi.org/10.1016/0022-0981\(92\)90030-E](https://doi.org/10.1016/0022-0981(92)90030-E)

817 Klumpp, D. W., & Griffiths, C. L. (1994). Contributions of phototrophic and heterotrophic
818 nutrition to the metabolic and growth requirements of four species of giant clam (Tridacnidae).
819 *Marine Ecology Progress Series*, 115(1/2), 103–115.

820 Ladner, J. T., Barshis, D. J., & Palumbi, S. R. (2012). Protein evolution in two co-occurring types
821 of *Symbiodinium*: an exploration into the genetic basis of thermal tolerance in *Symbiodinium*
822 clade D. *BMC Evolutionary Biology*, 12(1), 217. <https://doi.org/10.1186/1471-2148-12-217>

823 LaJeunesse, T. C. (2001). Investigating the biodiversity, ecology, and phylogeny of
824 endosymbiotic dinoflagellates in the genus *Symbiodinium* using the ITS region: in search of a
825 “species” level marker. *Journal of Phycology*, 37(5), 866–880. <https://doi.org/10.1046/j.1529-8817.2001.01031.x>

826 LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C.
827 R., & Santos, S. R. (2018). Systematic Revision of Symbiodiniaceae Highlights the Antiquity and
828 Diversity of Coral Endosymbionts. *Current Biology*, 28(16), 2570-2580.e6.
829 <https://doi.org/10.1016/j.cub.2018.07.008>

830 LaJeunesse, ToddC., Thornhill, DanielJ., Cox, EvelynF., Stanton, FrankG., Fitt, WilliamK., &
831 Schmidt, GregoryW. (2004). High diversity and host specificity observed among symbiotic
832 dinoflagellates in reef coral communities from Hawaii. *Coral Reefs*, 23(4), 596–603.
833 <https://doi.org/10.1007/s00338-004-0428-4>

834 Lämke, J., & Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental
835 stress adaptation and stress memory in plants. *Genome Biology*, 18(1).
836 <https://doi.org/10.1186/s13059-017-1263-6>

837 Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network
838 analysis. *BMC Bioinformatics*, 9, 559. <https://doi.org/10.1186/1471-2105-9-559>

839 Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H., & Lajeunesse, T. C. (2015).
840 *Symbiodinium tridacnidorum* sp. nov., a dinoflagellate common to Indo-Pacific giant clams, and
841 a revised morphological description of *Symbiodinium microadriaticum* Freudenthal, emended
842 Trench & Blank. *European Journal of Phycology*, 50(2), 155–172.
843 <https://doi.org/10.1080/09670262.2015.1018336>

844 Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination
845 of species data. *Oecologia*, 129(2), 271–280. <https://doi.org/10.1007/s004420100716>

846 Legendre, P., & legendre, L. (2012). *Numerical Ecology*, Volume 24 - 3rd Edition. Elsevier.

848 Leggat, W., Buck, B. H., Grice, A., & Yellowlees, D. (2003). The impact of bleaching on the
849 metabolic contribution of dinoflagellate symbionts to their giant clam host. *Plant, Cell and*
850 *Environment*, 26(12), 1951–1961. <https://doi.org/10.1046/j.0016-8025.2003.01111.x>

851 Levin, R. A., Beltran, V. H., Hill, R., Kjelleberg, S., McDougald, D., Steinberg, P. D., & van
852 Oppen, M. J. H. (2016). Sex, scavengers, and chaperones: transcriptome secrets of divergent
853 *Symbiodinium* thermal tolerances. *Molecular Biology and Evolution*, 33(9), 2201–2215.
854 <https://doi.org/10.1093/molbev/msw119>

855 Liu, H., Stephens, T. G., González-Pech, R. A., Beltran, V. H., Lapeyre, B., Bongaerts, P., ...
856 Chan, C. X. (2018). *Symbiodinium* genomes reveal adaptive evolution of functions related to
857 coral-dinoflagellate symbiosis. *Communications Biology*, 1(1). <https://doi.org/10.1038/s42003-018-0098-3>

859 Liu, J., Feng, L., Li, J., & He, Z. (2015). Genetic and epigenetic control of plant heat responses.
860 *Frontiers in Plant Science*, 06. <https://doi.org/10.3389/fpls.2015.00267>

861 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
862 dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 550.
863 <https://doi.org/10.1186/s13059-014-0550-8>

864 Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: a new opportunity for microalgal
865 biotechnology? *Trends in Plant Science*, 20(5), 273–282.
866 <https://doi.org/10.1016/j.tplants.2015.01.006>

867 Lucas, J. S. (1994). The biology, exploitation, and mariculture of giant clams (Tridacnidae).
868 *Reviews in Fisheries Science*, 2(3), 181–223. <https://doi.org/10.1080/10641269409388557>

869 Manning, M. M., & Gates, R. D. (2008). Diversity in populations of free-living *Symbiodinium*
870 from a Caribbean and Pacific reef. *Limnology and Oceanography*, 53(5), 1853–1861.
871 <https://doi.org/10.4319/lo.2008.53.5.1853>

872 Mayfield, A. B., Wang, Y.-B., Chen, C.-S., Lin, C.-Y., & Chen, S.-H. (2014). Compartment-
873 specific transcriptomics in a reef-building coral exposed to elevated temperatures. *Molecular*
874 *Ecology*, 23(23), 5816–5830. <https://doi.org/10.1111/mec.12982>

875 Menoud, M., Van Wijnsberge, S., Moullac, G. L., Levy, P., Andréfouët, S., Remoissenet, G., &
876 Gaertner-Mazouni, N. (2016). Identifying robust proxies of gonad maturation for the protandrous
877 hermaphrodite *Tridacna maxima* (Röding, 1798, Bivalvia) from individual to population scale.
878 *Journal of Shellfish Research*, 35(1), 51–61. <https://doi.org/10.2983/035.035.0107>

879 Mieog, J. C., van Oppen, M. J. H., Cantin, N. E., Stam, W. T., & Olsen, J. L. (2007). Real-time
880 PCR reveals a high incidence of *Symbiodinium* clade D at low levels in four scleractinian corals
881 across the Great Barrier Reef: implications for symbiont shuffling. *Coral Reefs*, 26(3), 449–457.
882 <https://doi.org/10.1007/s00338-007-0244-8>

883 Mies, M., Voolstra, C. R., Castro, C. B., Pires, D. O., Calderon, E. N., & Sumida, P. Y. G.
884 (2017). Expression of a symbiosis-specific gene in *Symbiodinium* type A1 associated with coral,
885 nudibranch and giant clam larvae. *Royal Society Open Science*, 4(5), 170253.
886 <https://doi.org/10.1098/rsos.170253>

887 Mies, Miguel, Van Sluys, M. A., Metcalfe, C. J., & Sumida, P. Y. G. (2017). Molecular evidence
888 of symbiotic activity between *Symbiodinium* and *Tridacna maxima* larvae. *Symbiosis*, 72(1), 13–
889 22. <https://doi.org/10.1007/s13199-016-0433-8>

890 Muscatine, L. (1967). Glycerol excretion by symbiotic algae from corals and *Tridacna* and its
891 control by the host. *Science*, 156(3774), 516–519. <https://doi.org/10.1126/science.156.3774.516>

892 Norton, J. H., Shepherd, M. A., Long, H. M., & Fitt, W. K. (1992). The zooxanthellal tubular
893 system in the Giant clam. *The Biological Bulletin*, 183(3), 503–506.
894 <https://doi.org/10.2307/1542028>

895 Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., Wagner, R. B. O., ...
896 Wagner, H. (2012). *Vegan: community ecology package*. R package. Version 2.0-3.

897 Oliver, T. A., & Palumbi, S. R. (2011). Many corals host thermally resistant symbionts in high-
898 temperature habitat. *Coral Reefs*, 30(1), 241–250. <https://doi.org/10.1007/s00338-010-0696-0>

899 Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in
900 R language. *Bioinformatics*, 20(2), 289–290. <https://doi.org/10.1093/bioinformatics/btg412>

901 Parkinson, John E., Tivey, T. R., Mandelare, P. E., Adressa, D. A., Loesgen, S., & Weis, V. M.
902 (2018). Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-
903 Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis. *Frontiers in Microbiology*, 9.
904 <https://doi.org/10.3389/fmicb.2018.00842>

905 Parkinson, John Everett, Banaszak, A. T., Altman, N. S., LaJeunesse, T. C., & Baums, I. B.
906 (2015). Intraspecific diversity among partners drives functional variation in coral symbioses.
907 *Scientific Reports*, 5. <https://doi.org/10.1038/srep15667>

908 Pinzón, J. H., Devlin-Durante, M. K., Weber, M. X., Baums, I. B., & LaJeunesse, T. C. (2011).
909 Microsatellite loci for *Symbiodinium* A3 (*S. fitti*) a common algal symbiont among Caribbean

910 Acropora (stony corals) and Indo-Pacific giant clams (Tridacna). *Conservation Genetics*
911 *Resources*, 3(1), 45–47. <https://doi.org/10.1007/s12686-010-9283-5>

912 Pinzón, J. H., Kamel, B., Burge, C. A., Harvell, C. D., Medina, M., Weil, E., & Mydlarz, L. D.
913 (2015). Whole transcriptome analysis reveals changes in expression of immune-related genes
914 during and after bleaching in a reef-building coral. *Royal Society Open Science*, 2(4), 140214.
915 <https://doi.org/10.1098/rsos.140214>

916 Putnam, H. M., Stat, M., Pochon, X., & Gates, R. D. (2012). Endosymbiotic flexibility associates
917 with environmental sensitivity in scleractinian corals. *Proceedings of the Royal Society of*
918 *London B: Biological Sciences*, 279(1746), 4352–4361. <https://doi.org/10.1098/rspb.2012.1454>

919 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma
920 powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic*
921 *Acids Research*, 43(7), e47–e47. <https://doi.org/10.1093/nar/gkv007>

922 Rouzé, H., Lecellier, G. J., Saulnier, D., Planes, S., Gueguen, Y., Wirshing, H. H., & Berteaux-
923 Lecellier, V. (2017). An updated assessment of *Symbiodinium* spp. that associate with common
924 scleractinian corals from Moorea (French Polynesia) reveals high diversity among background
925 symbionts and a novel finding of clade B. *PeerJ*, 5, e2856. <https://doi.org/10.7717/peerj.2856>

926 Rowan, R. (2004). Thermal adaptation in reef coral symbionts. *Nature*, 430, 742.

927 Rowan, R., Knowlton, N., Baker, A., & Jara, J. (1997). Landscape ecology of algal symbionts
928 creates variation in episodes of coral bleaching. *Nature*, 388(6639), 265–269.
929 <https://doi.org/10.1038/40843>

930 Sampayo, E. M., Ridgway, T., Bongaerts, P., & Hoegh-Guldberg, O. (2008). Bleaching
931 susceptibility and mortality of corals are determined by fine-scale differences in symbiont type.
932 *Proceedings of the National Academy of Sciences*, 105(30), 10444–10449.
933 <https://doi.org/10.1073/pnas.0708049105>

934 Sharkey, T. D. (2005). Effects of moderate heat stress on photosynthesis: importance of thylakoid
935 reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by
936 isoprene. *Plant, Cell and Environment*, 28(3), 269–277. <https://doi.org/10.1111/j.1365-3040.2005.01324.x>

938 Shoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R., ... Satoh,
939 N. (2013). Draft assembly of the *Symbiodinium minutum* nuclear genome reveals dinoflagellate
940 gene structure. *Current Biology: CB*, 23(15), 1399–1408.

941 <https://doi.org/10.1016/j.cub.2013.05.062>

942 Silverstein, R. N., Correa, A. M. S., & Baker, A. C. (2012). Specificity is rarely absolute in coral-
943 algal symbiosis: implications for coral response to climate change. *Proceedings of the Royal
944 Society B: Biological Sciences*, 279(1738), 2609–2618. <https://doi.org/10.1098/rspb.2012.0055>

945 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015).
946 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.
947 *Bioinformatics*, 31(19), 3210–3212. <https://doi.org/10.1093/bioinformatics/btv351>

948 Slavov, C., Schrameyer, V., Reus, M., Ralph, P. J., Hill, R., Büchel, C., ... Holzwarth, A. R.
949 (2016). “Super-quenching” state protects *Symbiodinium* from thermal stress - Implications for
950 coral bleaching. *Biochimica et Biophysica Acta (BBA) - Bioenergetics*, 1857(6), 840–847.
951 <https://doi.org/10.1016/j.bbabi.2016.02.002>

952 Soo, P., & Todd, P. A. (2014). The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae).
953 *Marine Biology*, 161(12), 2699–2717. <https://doi.org/10.1007/s00227-014-2545-0>

954 Stat, M., Carter, D., & Hoegh-guldberg, O. (2006). The evolutionary history of *Symbiodinium* and
955 scleractinian hosts—Symbiosis, diversity, and the effect of climate change. *Perspectives in Plant
956 Ecology, Evolution and Systematics*, 8(1), 23–43. <https://doi.org/10.1016/j.ppees.2006.04.001>

957 Thackray, S. J., Mowat, C. G., & Chapman, S. K. (2008). Exploring the mechanism of
958 tryptophan 2,3-dioxygenase. *Biochemical Society Transactions*, 36(Pt 6), 1120–1123.
959 <https://doi.org/10.1042/BST0361120>

960 Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K., & Schmidt, G. W. (2006). Multi-
961 year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-
962 bleaching reversion. *Marine Biology*, 148(4), 711–722. [https://doi.org/10.1007/s00227-005-0114-2](https://doi.org/10.1007/s00227-005-0114-
963 2)

964 Thornhill, D. J., Xiang, Y., Fitt, W. K., & Santos, S. R. (2009). Reef Endemism, Host Specificity
965 and Temporal Stability in Populations of Symbiotic Dinoflagellates from Two Ecologically
966 Dominant Caribbean Corals. *PLoS ONE*, 4(7), e6262.
967 <https://doi.org/10.1371/journal.pone.0006262>

968 Van Wijnsberge, S., Andréfouët, S., Gaertner-Mazouni, N., & Remoissenet, G. (2018).
969 Consequences of an uncertain mass mortality regime triggered by climate variability on giant
970 clam population management in the Pacific Ocean. *Theoretical Population Biology*, 119, 37–47.
971 <https://doi.org/10.1016/j.tpb.2017.10.005>

972 Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R. K., ... Sharma, S.
973 (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current
974 knowledge and future prospects. *Frontiers in Plant Science*, 8, 161.
975 <https://doi.org/10.3389/fpls.2017.00161>

976 Warner, M. E., Fitt, W. K., & Schmidt, G. W. (1999). Damage to photosystem II in symbiotic
977 dinoflagellates: A determinant of coral bleaching. *Proceedings of the National Academy of
978 Sciences*, 96(14), 8007–8012. <https://doi.org/10.1073/pnas.96.14.8007>

979 Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A., & Weis, V. M. (2006). Lectin/glycan
980 interactions play a role in recognition in a coral/dinoflagellate symbiosis. *Cellular Microbiology*,
981 8(12), 1985–1993. <https://doi.org/10.1111/j.1462-5822.2006.00765.x>

982 Wright, R. M., Aglyamova, G. V., Meyer, E., & Matz, M. V. (2015). Gene expression associated
983 with white syndromes in a reef building coral, *Acropora hyacinthus*. *BMC Genomics*, 16(1), 371.
984 <https://doi.org/10.1186/s12864-015-1540-2>

985 Wu, T. D., Reeder, J., Lawrence, M., Becker, G., & Brauer, M. J. (2016). GMAP and GSNAP for
986 genomic sequence alignment: enhancements to speed, accuracy, and functionality. *Statistical
987 Genomics: Methods and Protocols*, pp. 283–334.

988 Yamashita, H., Suzuki, G., Hayashibara, T., & Koike, K. (2011). Do corals select zooxanthellae
989 by alternative discharge? *Marine Biology*, 158(1), 87–100. <https://doi.org/10.1007/s00227-010-1544-z>

990 Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., ... Xie, Q. (2007). SDIR1 Is a RING
991 Finger E3 Ligase That Positively Regulates Stress-Responsive Abscisic Acid Signaling in
992 *Arabidopsis*. *The Plant Cell*, 19(6), 1912–1929. <https://doi.org/10.1105/tpc.106.048488>

993 Zhou, Z., Liu, Z., Wang, L., Luo, J., & Li, H. (2018). Oxidative stress, apoptosis activation and
994 symbiosis disruption in giant clam *Tridacna crocea* under high temperature. *Fish & Shellfish
995 Immunology*, 84, 451–457. <https://doi.org/10.1016/j.fsi.2018.10.033>

996

997

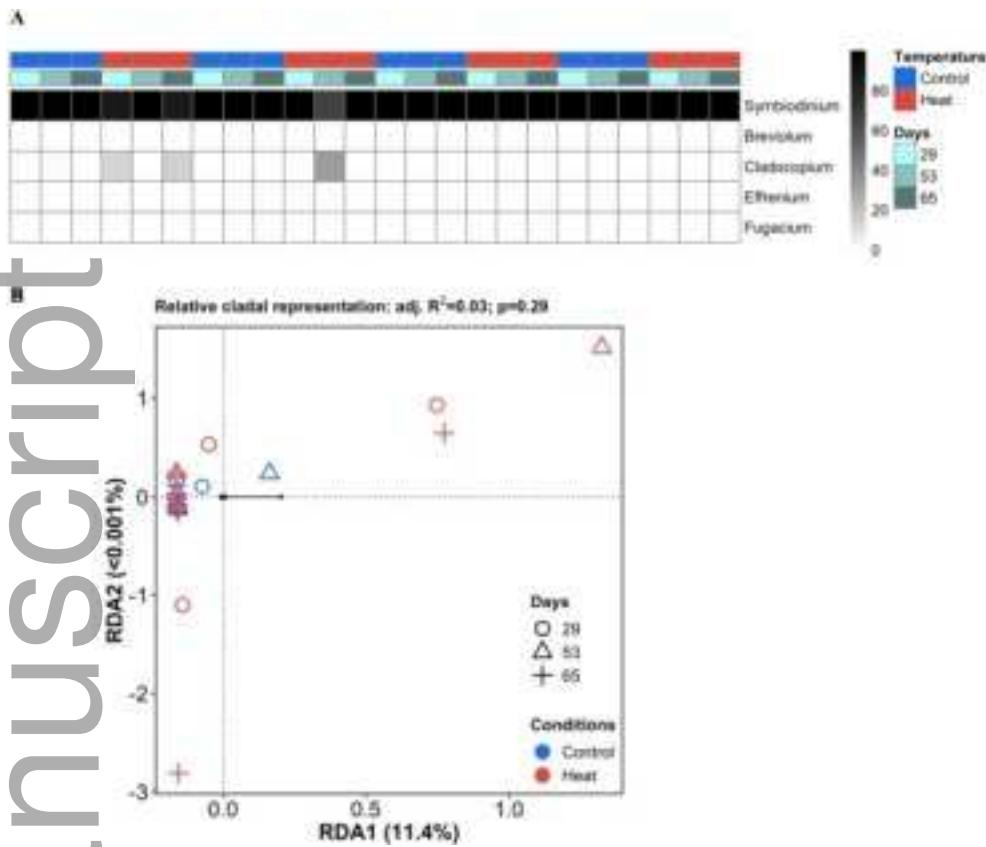
998

999 **Acknowledgments**

1000

1001 **General:** We are grateful to Michel Pahuatini for providing the “small giant” clams and
1002 seawater samples. We thank Claude Soyez and Leila Chapron for their help in animal

1003 rearing. We thank Dr. Laetitia Hédouin for valuable comments on prior versions of the
1004 manuscript, Corinne Belliard for help with DNA preparation, and Dr. Yu-Bin Wang for
1005 making the *P. damicornis*-Symbiodiniaceae transcriptomic resources openly accessible,
1006 as well as designing the afore-cited *P. damicornis*-Symbiodiniaceae transcriptome server.
1007 Finally, we thank O. Bichet for her help with the figures.


1009 **Funding:** This experiment was made possible by a grant from Labex CORAIL (France),
1010 as well as an IFREMER grant (France; Master's internship to HAM).

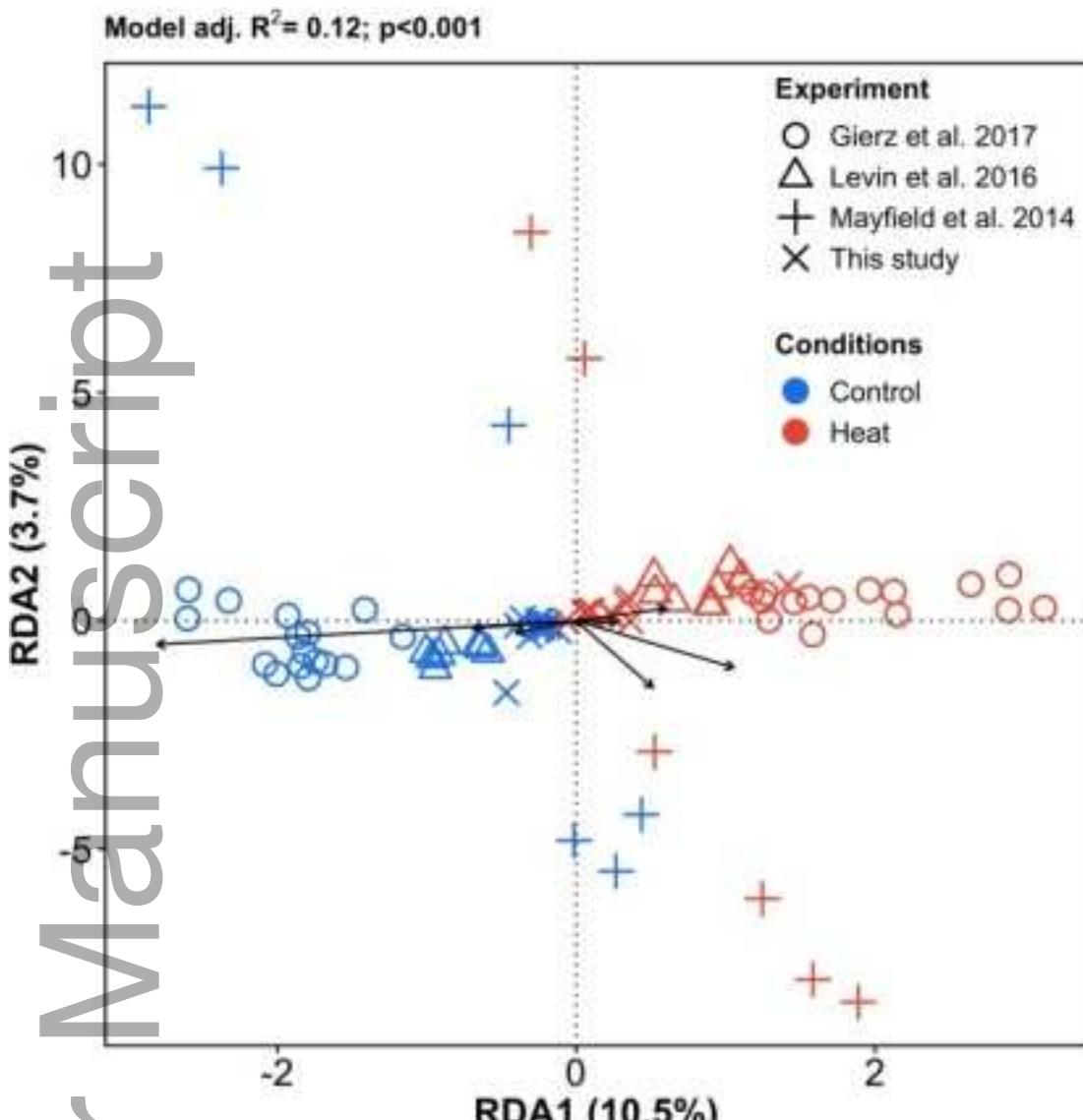
1012 **Author contributions:** CB and JVD conceived the experimental design, under which
1013 tissue samples featured herein were collected. CB and JLL conceived the transcriptomic
1014 study. HAM and JLL carried out the laboratory benchwork. HAM and JLL analyzed the
1015 data. HAM, CB, ABM, and JLL wrote the manuscript. All co-authors contributed
1016 substantially to revised drafts of the manuscript. We also thank two anonymous reviewers
1017 for their help in largely improving the manuscript.


1019 **Competing interests:** We declare that we have no competing interests.

1021 **Data and materials availability:** Raw sequencing RNA-Seq data for small giant clams
1022 featured herein have been made publicly available on the NCBI database
1023 (PRJNA579426), and all scripts discussed in the article can be found on Github
1024 (<https://github.com/jleluyer/acclimabest>). Raw meta-barcoding data are available here:
1025 (pending creation). Data for cultured Symbiodiniaceae have been previously deposited on
1026 the NCBI database: Levin *et al.* (2016)-BioProject NCBI: PRJNA295075, Gierz *et al.*
1027 (2017)-BioProject NCBI: PRJNA342240. Data for Symbiodiniaceae from the reef coral
1028 *P. damicornis* (Mayfield *et al.*, 2014) can be found on the NCBI database (Sequence Read
1029 Archive: SRR1030692 and BioProject: PRJNA227785), as well as on this modular,
1030 interactive website:
http://symbiont.iis.sinica.edu.tw/coral_pdlte/static/html/index.html#home

Author Manuscript

gcb_14907_f1.jpg


gcb_14907_f2.jpg

Author Manuscript

	Temperature	Time	Fv/Fm	Sym. density	Dry weight host	MEPink-host	MERed-host	METurquoise-host
cyan (91)	0.61		-0.66			0.51	-0.46	
black (3,675)	0.91		-0.71	-0.46		0.88		
yellow (1,442)	0.52		-0.55			0.47	-0.51	
tan (166)								-0.94
pink (212)					0.53			
greenyellow (186)			0.54		0.46			
blue (5,414)	-0.45		0.52		0.53		0.51	
midnightblue (87)	-0.94		0.73			-0.87		

gcb_14907_f3.jpg

Author Manuscript

gcb_14907_f4.jpg