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ABSTRACT:

Anthropogenic global change and local stressors are impacting coral growth and survival
worldwide qaltering the structure and function of coral reef ecosystems. Here, we show that
skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals
(Siderastrea siderea, Pseudodiploria strigosa) declined across the Belize Mesoamerican Barrier
Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited
relatively stable,extension rates over the same temporal interval. This decline has caused
nearshore, coral extension rates to converge with those of their historically slower-growing
offshore coral counterparts. For both species, individual mass coral bleaching events were
correlated with low rates of skeletal extension within specific reef environments, but no single
bleaching event was correlated with low skeletal extension rates across all reef environments.

We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily
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by the combined effects of long-term ocean warming and increasing exposure to higher levels of
land-based anthropogenic stressors, with acute thermally-induced bleaching events playing a
lessor role. If these declining trends in skeletal growth of nearshore S. siderea and P. strigosa
continue into the, future, the structure and function of these critical nearshore MBRS coral reef

systems is likely to be severely impaired.

INTRODUCTION

Global climate change is impacting ecosystems worldwide (Walther et al., 2002), causing
range expafisions (Elmhagen ef al., 2015), habitat contractions (Smale & Wernberg, 2013),
decreased productivity (O'Reilly et al., 2003), pest outbreaks (Kurz et al., 2008), phase shifts
(Connell & Russell, 2010), and alterations in ecosystem structure and function (Hoegh-Guldberg
& Bruno, 20405:Knowlton, 2001). For example, sea surface temperatures (SST) in the Caribbean
Sea have inereased by up to 0.8°C over the past century (Glenn et al., 2015, Rhein, 2013),
impacting the health and viability of coral reef ecosystems. As tropical corals already live near
their thermal limits (Fitt et al., 2001, Jokiel & Coles, 1977), even small increases in ocean
temperatureé“ean have dire consequences for their survival. Increased seawater temperature is the
primary seause of widespread coral bleaching, a phenomenon describing the breakdown of the
obligate coral-algal symbiosis for many reef-building scleractinian corals (Jokiel & Coles,
1990). Mass..coral bleaching events have caused significant coral mortality across reef
ecosystems’ globally (Hughes et al., 2017), including within the Caribbean Sea (Eakin et al.,
2010, McWilliams et al., 2005).

Risingwseawater temperatures coupled with disease outbreaks have caused major
reductions§’ in“€oral cover on many Caribbean reefs since the 1980s (Gardner et al., 2003),
induced declinesiin the structural complexity of local reefs (Alvarez-Filip et al., 2009), and led to
a shift in coral_dominance from large, fast-growing, and structurally complex species (e.g.,
Acropora.sp.) to less structurally complex and more stress tolerant species that tend to be small
and faster-growing (e.g., Porites astreoides)(Green et al., 2008) or large and slower-growing,
(e.g., S. siderea) (Alvarez-Filip et al., 2013). If present warming trends continue, bleaching
events on Caribbean coral reefs are predicted to increase in frequency, duration, and severity,

potentially occurring every two years as soon as 2030 (Donner et al., 2007) and annually by
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approximately 2040 (Van Hooidonk et al., 2015), depending on the rate of coral adaptation
(Logan et al., 2014). This predicted increase in coral bleaching, triggered by exposure to more
intense, frequent, and/or prolonged thermal stress, would negatively impact rates of coral growth
and survival, even in thermally tolerant species (Berkelmans & Van Oppen, 2006, Hoegh-

Guldberg et.al52007, Hughes ef al., 2010).

Coral “growth and calcification rates are influenced by many processes, including
seawater temperature, sedimentation, and nutrient concentrations (e.g, see complete discussion of
the environmental drivers of coral growth in Castillo et al., 2014, Courtney ef al., 2017, Jokiel &
Coles, 197 TuPratchett ef al., 2015). Moderate increases in temperature (up to and slightly beyond
a coral’s thermal optimum) have been shown to increase coral growth rates (Castillo et al., 2014,
Courtney et.al., 2017, Jokiel & Coles, 1977, Marshall & Clode, 2004, Pratchett et al., 2015),
while temperatures surpassing this thermal optimum by more than a degree have been shown to

impair coral growth (Jokiel & Coles, 1977, Lough & Cantin, 2014, Pratchett et al., 2015).

Local_impacts, such as increased sedimentation and nutrient loading associated with
human development, have been shown to correlate with slower or declining coral growth rates
(Carilli et.al., 2010, Cooper et al., 2008, D’Olivo et al., 2013). However, elevated nutrient and
sediment loads*can also lead to increased heterotrophy, which can offset negative impacts of
environmental stress and increase coral resilience (Ferrier-Pages et al., 2003, Grottoli et al.,
2006, Houlbreque & Ferrier-Pages, 2009, Mills et al, 2004, Mills & Sebens, 2004).
Meanwhile, .observations of elevated growth rates relative to lower variability sites and
increasing ‘and/er stable growth rates through time on reefs exposed to higher degrees of
environmental “variability (e.g., temperature and/or nutrients) indicate that exposure to
environmental variation may precondition coral populations (Carilli et al., 2012, Carricart-
Ganivet & Merino, 2001, Castillo ef al., 2012, Manzello et al., 2015) potentially affording them
greater resilience in the face of more frequent and/or more intense thermal stress events.
Changing seawater chemistry (i.e., ocean acidification) may also lead to lower coral growth rates
(e.g., Bovewet al., 2019, Chan & Connolly, 2013). Temporal trends in coral growth rates at any
given location are dependent upon a complex network of factors due to the interactive nature of
environmental variables known to influence calcification, (Courtney et al., 2017, Jokiel &

Coles, 1977, Pratchett ef al., 2015).
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The stressors known to impact coral calcification can vary in intensity along
environmental gradients, warranting comparisons of coral growth and resilience across reef
environments (Baumann et al., 2016, Cooper, 2008, Cooper et al., 2007, Lirman & Fong, 2007,
Manzello et al., 2015). For example, coral reefs more proximal to the coast (i.e., nearshore reefs)
generally experience more extreme environmental conditions than reefs more distal from the
coast (i.e., offshore reefs), including greater thermal variability (Baumann et al., 2016, Oliver &
Palumbi}’ 20T1)"and land-based stressors, such as sedimentation and nutrients (Baumann et al.,
2016, Dodgeefal., 1974, Fabricius, 2005, Heyman & Kjerfve, 1999). However, environmental
conditions'on nearshore reefs are highly site-specific, potentially driving large spatial differences

in coral growthrresponse.

Here, we characterize reef-wide trends in skeletal extension over the past century for two
abundant and widely distributed massive Caribbean reef-building corals, Siderastrea siderea and
Pseudodiploriastrigosa, across five reef environments that span a nearshore-to-offshore
environmeftal stress gradient (Baumann et al., 2016) throughout the Belize Mesoamerican
Barrier Reef| System (MBRS). Specifically, this study addresses the following research
questions: (1) What are the trends in coral growth over the past century for two species of
massive corals™(S. siderea, P. strigosa) on the Belize MBRS? (2) Do temporal trends in coral
growth varysbetween reef environments? (3) What are the effects of mass bleaching events on
temporal trends in coral growth? The resulting reconstructions of historical coral extension will
provide a framework for predicting the growth trajectories of these resilient coral species in

response to future global change.
MATERIALS'AND METHODS
Research sites

Researchisites were located along the 300 km-long coast of the Belize portion of the
Mesoamerican Barrier Reef System (MBRS)—a 1,200 km-long network of coral reefs in the
western [Caribbean Sea extending south from the tip of the Yucatan Peninsula in Mexico,
traversing the entire coast of Belize and the Atlantic coast of Guatemala, and culminating in the
Islas de la Bahia (Bay Islands) off the coast of Honduras (Fig. 1). Coral cores were obtained
from five different reef environments (i.e., nearshore, backreef, forereef, atoll backreef, and atoll

forereef) along a putative nearshore-offshore environmental stress gradient (Fig. 1). Nearshore
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coral cores were obtained from patch reefs within 10 km of the Belize coast. Backreef and
forereef coral cores were obtained on the landward and seaward sides of the reef crest,
respectively. Backreef, forereef, atoll backreef, and atoll forereef are referred to collectively as
offshore reefs as they are located 30-60 km away from mainland Belize. Corals in nearshore
habitats are exposed to higher summer temperatures, increased thermal variability (diurnal and
seasonal), more.days per year above the estimated bleaching threshold (Baumann et al., 2016),
elevated"chlorophyll-a (used as a proxy for nutrient delivery and primary productivity)
(Baumann ‘et al’;2016), and greater local anthropogenic stress (e.g., sedimentation, pollution)
than offshore corals (backreef, forereef, atolls) due to their proximity to mainland Belize (Carilli

et al., 2010gHeyman & Kjerfve, 1999).
Coral core.collection

A total of 124 coral cores (93 S. siderea and 31 P. strigosa) were collected from 19 sites
along the Belize MBRS by SCUBA divers using a pneumatic core drill (Chicago Pneumatic CP
315) in 2009.and:2012 (Castillo et al., 2011) or a hydraulic core drill (Chicago Pneumatic COR 5
in 2012 and,CS Unitec model 2 1335 0010, 3.8 HP in 2015) equipped with a 5 cm diameter
diamond tipped core bit (Castillo ez al., 2011) (Table S1). All of the P. strigosa cores (31 in
total) and 37.ef'the S. siderea cores were collected in 2015. The remaining 56 S. siderea cores
were collected 1in 2009 (13) and 2012 (43). All cores were extracted from colonies that appeared
healthy (i.e:, no bleaching, abnormalities, scarring, or disease). Cores were extracted parallel to
the central growth axis of each colony. Overall, core lengths ranged from 10 to 100 cm. After
extracting each gore, a concrete plug was inserted into the drilled hole and the hole was sealed
with Z-spapunderwater epoxy to prevent bioerosion and promote re-growth of coral tissue.
Cores were rinsed in ethanol, stored in PVC tubes, and transported to the University of North
Carolina at Chapel Hill for analysis. Collection permits were obtained from the Belize Fisheries
Department and all cores were collected and transported pursuant to local, federal, and
international regulations. It should be noted that because cores were collected from apparently
healthy corals, the results of this study may underestimate population-wide declines in coral
growth rates over the historical study interval owing to the well-documented deleterious effects
of coral diseases and growth anomalies on calcification rates (e.g., Peters, 2015 and references

therein)
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Coral computer tomography scanning

Coral cores collected in 2009 and 2012 were CT scanned on a Siemens Somatom
Definition AS (120 kV, 300 mAs, 0.6 mm slice thickness) scanner at Wake Radiology Chapel
Hill in 204:3.using methods modified from Carilli et al. (2012). Cores collected in 2015 were
scanned on‘a Siemens Biograph mCT (120 kV, 250 mAs, 0.6 mm slice thickness) at UNC
Biomedical Research Imaging Center (BRIC). Images were reconstructed at 0.1 mm increments

and exported as DICOM files.

Cores collected in 2009 and 2012 were scanned with the growth axis oriented
perpendicular to the length of the CT table. Importantly, the perpendicular orientation of the
cores on the €T scanning table was found to distort density readings slightly at the ends of each
core through a phenomenon known as “beam hardening” (Brooks & Di Chiro, 1976). To rectify
this issue, cores collected in 2015 were scanned in a parallel orientation relative to the CT table.
However, all cores from 2009 and 2012 were slabbed and sampled for geochemical analysis
before they could be re-scanned; thus, skeletal density could not be reliably measured from these
cores. As agesult, analyses in this study focus on annual linear extension rate as the principal
growth parameter, which has been found to be a reliable proxy for annual coral calcification
(Fig. 2; Supplementary Methods; Lough & Barnes, 2000), though the relative contribution of

linear extension and density to calcification rate varies by species (Pratchett ez al., 2015).

Lingas.extension rates were measured by uploading all CT scans to the DICOM image
viewing softwares OsiriX or Horos v2.0.2, which permitted visualization of annual density bands
on 8-10 mm thick “digital slabs” of stacked 0.6 mm layers using “Mean” projection mode (i.e.,
displays mean density of each voxel within the digital slab). Annual high- and low-density band
couplets were inspected visually as the distance from the top of a high density band to the bottom
of the nextidewsdensity band. Linear transects were then drawn parallel to the coral growth axis
and withintherexothecal space between corallite walls down the core using the “Length” tool in
OsiriX/Heros. Density measurements were then extracted from linear transects and a custom R
code was used to,calculate the width of each annual pair of high- and low-density bands.
Transects were performed in triplicate for each segment of the core in order to average out the
spatial variability in linear extension within the annual growth bands. The entire length of the

core was analyzed in this manner, or until it was no longer possible to resolve annual growth
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bands due to the effects of bioerosion and/or loss of seasonal density banding. Additional details
on this methodology, including example images of coral CT scans, can be found in Figure S1
and in Rippe et al. (2018). Data for the individual cores analyzed in this experiment, including

length of each growth record, are provided in Table S1.
Linear extensionas a proxy for calcification rate

Fo walidate the use of linear extension as a proxy of coral calcification in this study,
skeletal density-and calcification rate were also calculated for all cores collected and CT scanned
in 2015 (n= 68 cores). Coral density standards of known mass and volume were obtained from
coral cores with the same diameter as those used in the study and scanned alongside the corals to
construct a'standard curve for each scanning session that correlated Hounsfield unit values (CT
scan output) to density (g/cm?) (DeCarlo et al., (2015), Rippe et al., (2018). In this study,
extension rate was well correlated with calcification rate (p <0.001, R2= 0.919 for S. siderea and
p <0.001, R>= 0.598 for P. strigosa), while density is not (p <0.001, R?> = 0.052 for S. siderea
and p <0.001, R%= 0.002 for P. strigosa) (Fig. S2).

Belize sea surface temperature, population, and agricultural data

Hadley Centre Sea Surface Temperature (HadISST1, 1880—present) and NOAA Coral
Reef Watch Degree Heating Weeks (DHW; 1994-present) data for Belize were obtained from
the NOAA Environmental Research Division Data Access Program (ERDDAP) website
(http://coastwatch.pfeg.noaa.gov/erddap/griddap/index.html) over the full available temporal.

Sea surface temperature (SST) measurements from all 1° x 1° latitudinal-longitudinal grid cells
within the Belize.Exclusive Economic Zone were averaged annually, and linear regression was

used to evaluatesstatistically significant changes in temperature over time.

Degree Heating Weeks (DHW) is a measure of accumulated thermal stress over a 12
week interyal measured in °C weeks where 1°C week is equal to one week of temperatures 1°C
over the estimated 29.7 °C regional coral bleaching threshold for Belize (Aronson et al., 2002)
over a 12 week interval (Liu ef al., 2006). Maximum annual DHW data at Skm resolution were
obtained from NOAA ERDAAP for grid cells nearest each coring site. DHW data were averaged
across reef environments to compare accumulated thermal stress between each environment

during reported bleaching events.
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Population data for the country of Belize from 1980-to-present and for major coastal
cities in Belize (i.e., Belize City, San Pedro, Dangriga, Punta Gorda) from 2008-to-present were
obtained from the Statistical Institute of Belize website

(http://www.sib.org.bz/statistics/population). Agricultural land use statistics for Belize from

1960-to-present.were obtained from the Food and Agricultural Organization of the United

Nations (FAQO) website (http://www.fao.org/faostat/). All parameters are plotted in Figure S3.

Statistical analyses

To evaluate long-term trends in linear extension rates across the Belize MBRS, a linear
mixed-effects modeling framework was employed, which accounts for variability in individual S.
siderea and\P. strigosa core chronologies, rather than relying on a single master chronology
(Castillo ef al.,2011). A linear regression of annual skeletal extension rates vs. year was
obtained by fitting a set of mixed effects models that treated each individual core as a sampling
unit and incorporated the inherent variability in core chronologies as random effects (both
random slopes.and random intercepts for each core chronology; Tables 1, S2). This mixed effects
modeling appreach was employed to address the inherent hierarchical nature of coral skeletal
extension data. See Castillo ef al. (2011) and Rippe et al. (2018) for further details on the

advantage of.this approach with respect to interpreting coral extension data.

Species Reef Slope Slope Number
nenvironment p-value  of cores
S. siderea "AFR 0.00024 0599 9
' ABR -0.00056 0.141 15
BR 0.00013 0591 33
FR -0.00030 0.182 23
NS -0.00108 <0.001 16
P. strigosa wwFR« -0.00183 0.329 20
NS -0.00755 <0.001 15

Table 1: SIOE ofannual extension rate vs. year by species and reef environment from linear mixed effects models.
Significant p-values (p<0.05) are in bold and indicate a statistically significant from zero slope for change in annual
extension rate through time. 95% confidence intervals (CI) that do not overlap indicate significant differences
between reef environments (see Figs. 2, 3, S3, S4). AFR, ABR, BR, FR, and NS represent atoll forereef, atoll

backreef, backreef, forereef, and nearshore, respectively.
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Linear mixed effects model selection

The central goal of the present study was to describe how annual skeletal extension of S.
siderea and P. strigosa on the Belize Mesoamerican Barrier Reef System (MBRS) varied for
each species throughout time (1814-present for S. siderea and 1950-present for P. strigosa). A
model testing.procedure was employed for each species (Table S2; Supplementary Methods) and
Akaike Information Criterion (AIC) was used to identify the best-fit model (Burnham &
Anderson, 2002). AIC provides a measure of the explanatory power of a model discounted by
the number of parameters that contributed to its construction; a lower value indicates a better

fitting model{(Burnham & Anderson, 2002).

Statistical analyses were carried out using the nlme package (Pinheiro et al., 2017) in R (R
Core Teamy2047). Slopes and the variance of slopes were extracted from each linear mixed
effects modelforall reef environments. 50% and 95% confidence intervals (CI) were calculated
for all reeffenyironments within each species, with 95% CI that do not overlap indicating
significant differences in the rate of change in annual extension between reef environments (Figs.
2, 3; Table S35.S4). t-tests and 95% confidence intervals were used to identify slopes that were
significantly different from zero (Figs. 2, 3; Table S3, S4). This method has previously been
utilized to analyze coral core data (Barkley & Cohen, 2016, Castillo et al., 2011, Rippe et al.,
2018) and has.been shown to be sensitive enough to assess significant differences between small

slopes (on the order of 10~ cm/year/year) and zero (Castillo et al., 2011).
Reef-envirenment-averaged extension rates

To investigate differences in recent extension rates between reef environments, skeletal
extension rates (cm/year) were averaged for all corals within a reef environment across five-year
time bins from 1950-t0-2014 (e.g., 1950-1954, 1955-1959, etc.) in order to smooth out year-to-
year noise inscoral growth associated with anomalous growth events caused by warming or local
stressors. A"two-way analysis of variance (ANOVA) and a TUKEY HSD test were used to
determine significant differences (p<0.05) in average extension between reef environments

within these five-year time bins (Figs. 2C, 3C; Table S3).

Extension anomaly vs. mass-bleaching events
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To test whether reported coral bleaching events correlate with low annual extension rates,
“low extension” years were identified as those with extension rates falling in the bottom 10t
percentile of the core’s full growth record for each core chronology. The fraction of cores
registering low extension was determined for each year in which the sample size exceeded 5 in a
given reef enviconment (1975-present for P. strigosa, 1920-present for S. siderea). Low
extension anomalies within each reef environment were then compared with years in which max
DHW >4 as'DHW = 4 is the threshold at which significant bleaching is expected (Eakin ef al.,
2010). These'high DHW years were compared with reports of historical mass-bleaching events
in the Caribbean region: 1995 (McField, 1999); 1997-1998 (Aronson ef al., 2002, Podesta &
Glynn, 2004); 2005 (Donner et al., 2007, Eakin et al., 2010, LaJeunesse ef al., 2009); 2009-2010
(Alemu & ‘Clement, 2014, Buglass et al., 2016, Kemp et al., 2014); and 2014-2016 (Eakin et al.,
2016). Years that directly preceded or followed a reported bleaching event, years containing
bleaching events (DHW > 4), and other years that had high numbers of cores exhibiting low
extension were noted and included as explanatory variables in least squares regression, thereby
identifyinggwhich years contained significantly higher fractions of cores exhibiting low extension
within each teefienvironment. The fraction of cores exhibiting low extension was then averaged
for bleaching,and non-bleaching years for each reef environment. The percentage of cores
exhibitingdow extension was then compared between bleaching and non-bleaching years via

two-way analysis of variance (ANOVA) and a TUKEY HSD test (»p<0.05; Table S5).
RESULTS
Coral linear.extension trends

The slopes of annual skeletal extension rates vs. time for nearshore S. siderea from the
late 19% century to present (Table 1; Fig. 2A, B, S6) and nearshore P. strigosa from the mid-20™
century to present (Table 1; Fig. 3A, B, S7) were significantly negative (Tables 1, S3), indicating
declining ratessof mean skeletal extension for both coral species on nearshore reefs across the
Belize MBRS. In contrast, S. siderea and P. strigosa colonies from the backreef, forereef, atoll
backreef, and atell forereef (collectively defined as “offshore” because of their >30 km distance
from mainland Belize) exhibited no net decrease in mean skeletal extension through time (Table
1; Fig. 2A, 2B, 3A, 3B). However, it is important to note that the extension rates vs. time slopes

for individual cores for both species in each of the respective reef environments varies from
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positive to negative, indicating colony and site-level variability in growth responses through time
(Fig. 2, 3). Skeletal extension trends that mirror these century scale trends are also seen when
data are trimmed to include only the years 1980-present, an interval that includes at least 50% of

all cores from each reef environment and a total of 66% of total cores (Fig S4, S5).

Nearshore S. siderea and P. strigosa exhibited higher skeletal extension rates than
offshore conspecifics from at least 1990 to 2009 (Fig. 2C, 3C; Tables S3, S4; p-values <0.001).
This trend is visually apparent as far back as 1965, but decreasing sample size further back in
time may have diminished the statistical significance of this relationship (Fig. 2C, 3C; Tables S3,
S4). After 20095'however, skeletal extension rates of nearshore S. siderea and P. strigosa
converge with those of their offshore conspecifics (p-values: 0.986 and 0.186, respectively; Figs.
2C, 3C; Tables.S3, S4) owing to both the decline in skeletal extension rates for the nearshore
corals and the increase in skeletal extension rates for the offshore corals (Fig. 2C, 3C). Notably,
nearshore and forereef linear extension rates also converge between 1950 and 1960. Earlier
convergences of nearshore and forereef extension rates cannot be evaluated for P. strigosa due to

the shorter temporal length of their nearshore growth record, but may have occurred.
Environmental parameters

The average SST across all reef environments of the Belize MBRS has increased by ca.
0.5 °C since 1880 (p<0.01; Fig. S3A). Additionally, human population densities in local coastal
cities increased:by 39% and regional agricultural land area increased by 100% from the mid-20®

century to present (Figs. S3B-C).
Impacts of acutesbleaching stress on coral linear extension

Mass coral bleaching was documented in the Caribbean in 1995, 1998, 2005, 2010, and
2014-2016 (see methods). Degree Heating Week (DHW) data for each reef environment
indicates likely mass bleaching (DHW value > 4; Liu et al., 2006) at nearshore sites in 1998,
2010, and 20457 at back reef and forereef sites in 1998 and 2010, and at atoll backreef, and atoll
forereef sitesuin. 1998, 2005, 2009, 2010, and 2011 (Table 2). Nearshore, backreef, and forereef
sites experienced the highest DHW values in 1998, while atoll backreef and atoll forereef
experienced the highest DHW values in 2005 (Table 2). Notably, there is considerable variation

in DHW values between sites within a single reef environment (Table 2). The skeletal extension
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data from the present study was evaluated to determine whether bleaching conditions (DHW > 4)
significantly impacted coral skeletal extension within each reef environment of the Belize
MBRS. Overall, skeletal extension was significantly lower during years in which DHW > 4 than
during non-bleaching years for S. siderea (p<0.001; Table S5), but not for P. strigosa, although
P. strigosa didwexhibit significantly lower extension in the 2011 (i.e., DHW >4 in 2011) than
during non-bleaching years (i.e., DHW < 4; Fig. 4; Table S6). In general, no reef environment
was more likely'than any other to experience lower extension rates during bleaching years than
during non=ble€aching years. However, skeletal extension was anomalously low for S. siderea on
the forereef of the atolls following the 1995 bleaching event in spite of low DHW values (Table
2). Skeletal.extension was also anomalously low for S. siderea on the forereef and backreef of
the atolls during'the 1997-1998 bleaching event and on the backreef of the atolls following the
2005 bleaching event (Fig. 4; Table S6), for nearshore S. siderea and P. strigosa following the
2010 bleaching event (Fig. 4; Table S6), and for nearshore S. siderea and forereef corals of both
species in the 2014 bleaching year (Fig. 4; Table S6). Notably, anomalously low skeletal
extension rates'were also observed for some non-bleaching years in both species (e.g., in 1985
for nearshore Sssiderea and in 1992 for nearshore P. strigosa; Fig. 4; Table S6), potentially due
to other stressors [e.g., storms, human activity, or sedimentation (Hughes ef al., 2017, Pratchett

et al., 2015)}or unreported/small-scale bleaching.
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Reef |site

Environment |

Nearshore “Ayerage
\
\

Belize

City

[
‘ Dangriga

Placencia
‘7
‘ Port
Honduras

|
‘ Snake

‘ Keys

A\jerage
\

Backreef

—
Belize
|

City
Dangriga
Placencia

San Pedro

1995

0.40 +
0.18
0.63

0.15
0.31
0.47

0.48

0.82 +
0.35
1.11

0.60
0.47
1.28

1998

732+
0.22
6.71

6.99
7.95
7.43

7.54

6.45 +
0.45
6.18

5.67
7.34
5.4

2003

3.90 +
0.58
3.52

541
5.11
2.86

2.59

3.07
0.20
2.67

3.23
3.27
2.55

2004 2005
246+ 3,15+
0.93 0.55

5.84 4.81
2.9 3.76
1.82 3.27
0.8 2.03
0.93 1.89
290+ 352+
0.69 0.29
4.49 3.58
2.9 4.09
1.82 322
4.33 4.13
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2008

3.86 +
0.35
4.42

3.94
4.82
3.09

3.04

322+
0.14
3.45

2.8
3.62
3.07

2009

3.60 +
0.51

4.34
3.29
2.59

2.59

3.63+
0.33
4.11

3.94
3.42
4.23

2010

4.02 £
0.26
3.49

3.53
4.94
3.93

4.19

4.04 +
0.68
2.67

3.65
6.23
2.72

2011

377+
0.51
5.09

4.69
3.86
2.58

2.64

371+
0.21
4.21

3.62
4.22
3.27

2015

6.55+
0.75
4.49

5.34
6.68
8.6

7.65

385+
0.82
2.87

3.42
4.5
1.82
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385
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388

389

390

391

392

393
394
395
396

Sapodilla 0.63 7.67 3.61 0.95 2.57 3.17 2.43 4.94 3.25
Forereef Average 073+ 630+ 329+ 322+ 372+ 319+ 388+ 4.032+ 381+
0.23 0.36 0.10 0.68 0.28 0.09 0.35 0.57 0.16

Alligator 0.75 5.74 3.65 3.96 3.7 3.1 404 331 3.76
_Belize City 077 5.95 292 415 411 336 471 278 4.31
“Dangriga 060 567  3.23 29 4.09 28 394 365 3.62
Gladdens 0.7 7.22 3.22 1.81 3.3l 3.41 3.52 6.26 4.26
wSan Pedro 1.15 5.62 324 552 453 332 462 296 3.52
“mSapodilla 0.64 7.6 3.48 096  2.58 314 241 5.23 3.39
Atoll £ Average 090+ 536+ 391+ 3.08+ 562+ 344+ 424+ 523+ 434+
Backreef 020 038  0.05 044 036 024 036 068  0.63
~ [Glovers 0.77 5.77 3.99 206 4.86 3.22 4.13 6.3 331
= fehthouse 1.13 4.63 391 344 6.33 3.91 384 5.01 4.65
Toneffe 0.8 5.55 382 358 521 32 4.96 4.2 5.24
Atoll ‘ Average 085+ 532+ 391+ 303+ 547+ 344+ 431+ 517+ 44z
Forereef 026 035  0.05 049 044 023 0.34  0.61 0.57
e 062 591 4 221 531 32 393 6.48 3.14
LLiighthouse 1.13 4.63 3.91 344 633 3.91 384 5.01 4.65
| Turneffe 0.8 5.55 3.82 358 521 32 4.96 4.2 5.24

Table 2: A@I‘age maximum annual Degree Heating Weeks (DHW) for each reef environment and maximum DHW
for each siteswithin a reef environment for all years of the instrumental record in which DHW > 4 for any site. Years
in which mass bleaching was reported in the Caribbean region are bold. All DHW values > 4 are bold. Average

values are reported as average = 1 standard error of the mean.

DISCUSSION
Decliningsskeletal extension rates for nearshore corals

We postulate that the observed declines in skeletal extension rates for nearshore S.
siderea and P. strigosa corals may have been driven primarily by a combination increasing
seawater temperatures (Carilli et al,, 2012, Pratchett et al,, 2015), ocean acidification,

eutrophication, increasing sedimentation, coastal development, and/or land use change
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(Fabricius, 2005, Hoegh-Guldberg et al., 2007, Wiedenmann et al., 2013). Additionally,
nearshore reef environments historically supported higher skeletal extension rates than offshore
reef environments, but recent declines in nearshore coral growth rates have caused nearshore

coral growth rates to converge with offshore coral growth rates since 2010 (Tables 3, S3, S4;

Fig. 2C, 3C,.S4).

Sed"surface temperature across all reef environments of the Belize MBRS has increased
since 1880u(p<0.01; Fig. S3A), and average summer SST across this reef system has increased
by approximately 0.5°C since 1985 (Castillo ef al., 2012). Analysis of satellite SST data for the
region reveals:that nearshore reefs on the Belize MBRS were exposed to between 54 and 78 days
per year above the estimated regional bleaching threshold of 29.7 °C (Aronson et al., 2002) over
the years 2003-2012 (Baumann et al., 2016). In contrast, offshore reef sites experienced only 20
to 40 days per year above the regional bleaching threshold during that same interval. Nearshore
reefs alsohad warmer average annual temperatures (0.6-0.7°C warmer) as well as hotter

summers than offshore reefs (Baumann et al., 2016).

Although temperature increases up to and slightly beyond a coral’s thermal optimum can
increase coral skeletal growth rates (Castillo et al., 2014, Courtney et al., 2017, Jokiel & Coles,
1977, Pratchett et al., 2015), and corals become locally adapted to warmer temperatures over
time (Coles & Brown, 2003), temperatures surpassing the thermal optimum by more than a
degree have been shown to negatively impact coral growth (Lough & Cantin, 2014, Pratchett et
al., 2015). This negative impact of elevated temperature on coral skeletal growth rate is driven
not only by, the/magnitude of the warming, but also by its duration (Pratchett et al., 2015).
Century-scale'and recent (1980-present) declines in skeletal extension rates of nearshore colonies
along the Belize" MBRS, combined with the absence of century-scale or recent (1980-present)
declines in the mean extension rates of backreef and forereef colonies (Figs. 2, 3, S4, S5),
suggest that a critical threshold of thermal stress (e.g., magnitude, frequency, and/or duration)
may have beensexceeded for nearshore S. siderea and P. strigosa corals, but not for forereef and

backreef colonies.

However, localized drivers such as eutrophication and sedimentation may also play a role
in the convergence of nearshore and offshore coral growth rates observed in this study. Previous

work has demonstrated that high sediment and riverine nutrient loads (D’Olivo et al., 2013) and
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increased turbidity (Fabricius, 2005) impair coral growth rates. Additionally, nutrient enrichment
along with subsequent altering of nitrogen (N):phosphorus (P) ratio (Rosset et al., 2017,
Wiedenmann et al., 2013) can increase bleaching susceptibility and lead to decreased growth
rates (D’Olivo et al., 2013, Dodge et al., 1974). Coral calcification rates on nearshore reefs of the
Great BarrieswReef are declining on multi-decadal timescales, while calcification rates on
offshore reefs are increasing (D’Olivo et al., 2013). This declining growth on nearshore reefs is
attributed to"th€"impacts of wet season river discharge of sediment and nutrients, a trend that is
exacerbated by*warming (D’Olivo ef al., 2013). As human population densities and agricultural
land area 'have /increased in Belize since the mid-20™ century (Fig. S3B, C), runoff and
eutrophicationsin the MBRS have also increased over time, with the greatest effects of these
land-based ‘¢hanges occurring in the nearshore environments closest to the land-based runoff
sources (Fig S2; Carilli et al., 2009, Chérubin et al., 2008, Heyman & Kjerfve, 1999, Prouty et
al., 2008). However, S. siderea and P. strigosa also metabolize N from ingested sediments and
particulates\(Mills et al., 2004, Mills & Sebens, 2004). This N may augment coral nutrition
during intervalstof increased sedimentation and eutrophication, potentially mitigating some of
the negative'impacts of these processes. Thus, elevated nutrient and sediment loads on nearshore
reefs mayhastorically contribute to higher growth rates compared to offshore reefs, but continued
nutrient and*Sediment loading associated with coastal development and increased runoff due to
increasing human populations and/or land-use changes (Fig. S3 B,C) may have contributed to the

observed decline in nearshore coral growth in recent years.

It is likely that increasing nutrient and sediment loading (Heyman & Kjerfve, 1999,
Thattai et al., 2003), coupled with increasing water temperatures and increasing duration of time
that water temperatures exceed the species’ bleaching threshold, are responsible for the decline
in skeletal extension rates observed for nearshore colonies of the Belize MBRS in this study.
This finding agrees with previous work documenting declining growth rates for O. faveolata
corals nearest land-based impacts exhibit in the MBRS (Carilli et al., 2010). The observed
declinesgin nearshore extension rates and recent convergence of extension rates for nearshore and
offshore colonies of S. siderea and P. strigosa (Fig. 2) suggests that the growth advantage that
nearshore corals appear to have historically had over offshore corals has now been lost, perhaps
due to the rate of warming surpassing the speed at which corals can locally adapt/acclimatize to

it, coupled with eutrophication and sedimentation on nearshore reefs (Tables 3, S4; Figs. 2, 3;
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Courtney et al., 2017). If temperature and eutrophication continue to increase, nearshore coral
growth rates should continue to decline—with offshore corals potentially following suit. Indeed,
some offshore corals in southern Belize already exhibit declining growth rates, likely due to
proximity to land-based stressors (Carilli ef al., 2010). Although there is metagenomic evidence
that nearshozesS. siderea have begun acclimatizing to these elevated temperatures (Davies ef al.,
2018), the observation that skeletal extension rates have continued declining for both species up
to presefit time in nearshore reefs of the MBRS suggest that such acclimatization is not sufficient

to maintain'stable rates of skeletal growth under present-day nearshore environmental conditions.
Recent bleaching events differentially impact corals across reef environments

Siderastrea siderea corals exhibited anomalously low linear extension rates during years
in which DHW'= 4 (and the years directly following) while P. strigosa corals did not, indicating
that growth rates of S. siderea may be more susceptible to acute bleaching stress (Fig. 4; Tables
S5, S6;). Siderastrea siderea and P. strigosa are classified as stress-tolerant coral species
(Darling et_al.,.2012), but S. siderea are often among the first coral species to bleach during a
thermal stress event (Banks & Foster, 2016, Herndndez-Delgado et al., 2006). While the early
onset ofibleaching for a stress-tolerant S. siderea appears to be a contradiction for life history
expectationsgsthe resilience of S. siderea to bleaching events may suggest that early onset
bleaching is part of an adaptive strategy for this coral (Buddemeier & Fautin, 1993) under

elevated thermal stress and warrants further investigation.

Angmalously low growth is observed in nearshore colonies of both species in 2011
following the*2010 bleaching event, during which DHW > 4 (Table 2; Table S6; Fig. 4).
Anomalously low growth is also observed in atoll backreef S. siderea during the 2005 bleaching
year (DHW > 4) and the year immediately following (2006) (Table 2; Table S6; Fig. 4). Average
DHW for individual reef environments were > 4 on 16 other occasions, yet anomalously low
growth wassmet recorded during these years or during the years directly following them—
including the year 1998, the only year in which every individual site was exposed to DHW > 4
(Table 2). In faet, the only year in which anomalously low growth was observed across multiple
reef environments was 2014, a year in which DHW was not greater than 4, highlighting the
variability in how individual bleaching events impact skeletal extension across coral species and

reef environments (Fig. S8). Importantly, nearshore, backreef, forereef, and atoll forereef corals
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did not exhibit anomalously low extension during the year in which they experienced the highest
DHW (1998; Tables 2, S6), but atoll backreef S. siderea did (2005-2006; Tables 2, S6).
Collectively, these results indicate differential growth responses to bleaching between reef
environments and years and that the magnitude of acute thermal stress alone is likely not a
reliable predietor of coral growth rate. This is likely due to spatial variation in warming across
the MBRS;site< and depth-specific thermal variability that can reduce bleaching (Safaie et al.,
2018, S¢hramek'er al., 2018), as well as the ability of coral populations to modify their bleaching
thresholds (Coles & Brown, 2003, Palumbi ef al., 2014).

Overall; growth rates of S. siderea appear more susceptible to the impacts of bleaching
than P. strigosa. Additionally, as corals on nearshore reefs only exhibited anomalously low
extension ratessfollowing one of three bleaching events (DHW > 4 on nearshore reefs; 2010)
(Table 2; TablesS6; Fig. 4), the observed decline in skeletal extension rates on nearshore reefs of
the Belizel MBRS are not likely due to the increasing frequency of mass bleaching events in
recent years. Instead, the steady nature of the decline in skeletal extension of the investigated
species in nearshore reef environments suggests that it is related to the increase in seawater
temperatureswover the same interval, coupled with the increasing influence of land-based
stressors, such-as increased sedimentation and eutrophication. Nevertheless, the increasing
frequency of the bleaching events may indeed be exacerbating the deleterious impacts of steady
anthropogenic warming on skeletal extension rates in nearshore reef environments, especially for

S. siderea.
Nearshore ¢celonies of P. strigosa on pace to cease growing by year 2110

Although both coral species studied here are considered stress-tolerant (Darling et al.,
2012), linearsextrapolation of extension trends observed here suggest that nearshore P. strigosa
corals could cease growing by 2110 and S. siderea by 2370. These results suggest that coral
growth on nearshore reefs along the Belize MBRS may decline substantially over the next
century,séven in the most stress-tolerant species, threatening reef complexity and leading to

habitat loss (Alvarez-Filip et al., 2013, Alvarez-Filip et al., 2009).

These predicted declines in coral growth assume that the temporal trends in coral

extension observed over the cored interval can be linearly extrapolated into the future, which is
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predicated on the assumptions that the primary coral stressors (e.g., warming, acidification,
eutrophication, sedimentation, pollution) will continue changing at the same rate and that corals’
responses to these stressors will be linear. However, continued improvement of local water
quality and reduction in global CO, emissions (if achieved) have the potential to mitigate some
of these projeeted growth decreases. For example, emissions scenarios lower than or on par with
the commitments of the Paris Agreement have been projected to potentially increase or at least
maintain“stable“growth rates for Bermudan corals assuming +0.1°C/decade acclimatization rates
(Courtney et al';2017). Conversely, further deterioration of water quality and/or acceleration of
warming and acidification beyond rates observed over the cored interval and/or development of

synergistic ampaets amongst stressors would accelerate future declines in coral extension.

Declining skeletal extension of nearshore corals may foretell decline of offshore corals on the

MBRS

The=results of the present study reveal a decline in historically elevated nearshore
calcification rates in Belize MBRS S. siderea and P. strigosa corals to match calcification rates
of their 'offshore conspecifics. Single mass bleaching events do not reliably correlate with coral
extension rates—suggesting that the long-term decline in nearshore coral extension cannot be
unequivocally attributed to the increasing frequency of mass bleaching events alone, although
they may play a'role. Instead, long-term increases in seawater temperature and local stressors
(e.g., eutrophieation and sedimentation), are the more likely drivers of the observed decline in
nearshoremcoralwgrowth. Any advantage historically conferred to corals by inhabiting the
nearshoré“environment appears to have substantially diminished in recent decades. Importantly,
as cores were only collected from apparently healthy corals, the results of this study are
indicative of growth trends for well-performing corals within each reef environment. As such,
these results likely underestimate declines in coral growth rates observed here. Further research
on this subject should explore the intrinsic (e.g., adaptation and acclimatization) and extrinsic
(e.g., environmental gradients) processes that lead to the observed variability in growth trends

within and across reef environments. Continued protection, monitoring, and management of
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nearshore reef environments is essential to afford these corals on the Belize MBRS sufficient

time to acclimatize to and, hopefully, survive this interval of rapid climate and oceanic change.
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Figure Captions

Figure 1: Map of reef sites on the Belize Mesoamerican Barrier Reef System where Siderastrea siderea and
Pseudodiploria strigosa cores were extracted in 2009, 2012, and 2015. Circles and triangles represent core
extraction sites for S. siderea and P. strigosa, respectively. Colors denote reef environment (nearshore = red,
backreef = green, forereef = blue, atoll backreef = pink, and atoll forereef = yellow). Numbers denote total cores

extracted fora particular species at a specific site.

Figure 2: (A) Results of linear model of extension rate (cm year™!) vs. time for S. siderea by reef environment for the
1814-to-present interval. Gray lines are raw extension data, black lines are average linear models of extension for all
S. siderea cores aeress all reef environments, blue lines are average linear models of extension for all S. siderea
cores within each reef environment, and red lines are linear models of extension for individual S. siderea cores
within reef environments. Raw (gray) and linearly modeled (red) extension chronologies highlight the variability in
growth amongst colonies. (B) Slopes of linear models describing extension vs. time for each reef environment, with
small points representing individual cores and large points representing average slopes of all cores within a reef
environment (gray.bars and colored bars are 50% and 95% confidence intervals (CI), respectively, of average slope
for each reef environment). Slopes are significantly different from each other if their 95% CI do not overlap.
Likewise, slopesiare significantly different from zero if their 95% CI do not overlap with the vertical red dashed line
centered onzerom(€) Five-year averages of skeletal extension rate by reef environment + 1 SE. Asterisks indicate

statistically significant differences (p < 0.05) between nearshore and forereef values.

Figure 3: Results of linear model of extension rate (cm year') vs. time for P. strigosa by reef environment for the
1950-to-presentinterval. Gray lines are raw extension data, black lines are average linear models of extension for all
P. strigosa cores across all reef environments, blue lines are average linear models of extension for all P. strigosa
cores within each.reef environment, and red lines are linear models of extension for individual S. siderea cores
within reef environments. Raw (gray) and linearly modeled (red) extension chronologies highlight the variability in
growth amongst colonies. (B) Slopes of linear models describing extension vs. time for each reef environment,
with small poinatsgepresenting individual cores and large points representing average slopes of all cores within a reef
environment [gray bars and colored bars are 50% and 95% confidence intervals (CI), respectively, of average slope
for each reef envirenment]. Slopes are significantly different from each other if their 95% CI do not overlap.
Likewise, slopes are significantly different from zero if their 95% CI do not overlap with the red dashed line
centered on zero. (C) Five-year averages of skeletal extension rate by reef environment + 1 SE. Asterisks indicate

statistically significant differences (p < 0.05) between nearshore and forereef values.
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Figure 4: Total number of cores analyzed for each reef environment per species per year (top panel) and fraction of
cores within each reef environment exhibiting anomalously low extension rates (i.e., annual extension rate in lowest
10% of cores) per year (bottom panel). Higher values in bottom panel indicate greater proportion of cores within a
reef environment exhibiting anomalously low extension within a given year. Black horizontal lines indicate time-
averaged ratios for each reef environment (separated by species). Horizontal dashed lines indicate the 95%
confidence intervalfor the time-averaged ratios for each reef environment. Peaks that exceed this confidence
interval represent significantly (p < 0.05) higher percentages of corals exhibiting anomalously low extension rates in

a given year. Veitical dashed lines indicate years in which DHW > 4 for each reef environment (Table 2).
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