

1  
2 DR. JUSTIN H BAUMANN (Orcid ID : 0000-0003-0113-0491)  
3 MR. JOHN RIPPE (Orcid ID : 0000-0002-6243-0757)  
4 MR. TRAVIS COURTNEY (Orcid ID : 0000-0002-1868-9630)  
5  
6  
7 Article type : Primary Research Articles  
8  
9

10 **Title: Nearshore coral growth declining on the Mesoamerican Barrier Reef System**  
11

12 **Running Title:** Declining extension of nearshore corals  
13

14 Justin H. Baumann<sup>1,2\*</sup>, Justin B. Ries<sup>3</sup>, John P. Rippe<sup>1</sup>, Travis A. Courtney<sup>1,3,4</sup>, Hannah E.  
15 Aichelman<sup>1,5</sup>, Isaac Westfield<sup>3</sup>, Karl D. Castillo<sup>1,6</sup>

16  
17 <sup>1</sup>Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North  
18 Carolina

19 <sup>2</sup>Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

20 <sup>3</sup>Department of Marine and Environmental Sciences, Marine Science Center, Northeastern  
21 University, Nahant, Massachusetts

22 <sup>4</sup>Scripps Institution of Oceanography, University of California San Diego, La Jolla, California

23 <sup>5</sup>Department of Biological Sciences, Boston University, Boston Massachusetts

This is the author manuscript accepted for publication and has undergone full peer review but has  
not been through the copyediting, typesetting, pagination and proofreading process, which may  
lead to differences between this version and the [Version of Record](#). Please cite this article as [doi:  
10.1111/GCB.14784](https://doi.org/10.1111/GCB.14784)

This article is protected by copyright. All rights reserved

24     <sup>6</sup>Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill,  
25     Chapel Hill, North Carolina

26  
27     \*Corresponding author: [baumannj@live.unc.edu](mailto:baumannj@live.unc.edu), (513) 307-1516

28  
29  
30     **Keywords:** reef-building coral; skeletal extension; ocean warming; *Siderastrea siderea*;  
31     *Pseudodiploria strigosa*, Caribbean coral reefs; climate change

32  
33     **Article type:** Primary Research Article

41     **ABSTRACT:**

42     Anthropogenic global change and local stressors are impacting coral growth and survival  
43     worldwide, altering the structure and function of coral reef ecosystems. Here, we show that  
44     skeletal extension rates of nearshore colonies of two abundant and widespread Caribbean corals  
45     (*Siderastrea siderea*, *Pseudodiploria strigosa*) declined across the Belize Mesoamerican Barrier  
46     Reef System (MBRS) over the past century, while offshore coral conspecifics exhibited  
47     relatively stable extension rates over the same temporal interval. This decline has caused  
48     nearshore coral extension rates to converge with those of their historically slower-growing  
49     offshore coral counterparts. For both species, individual mass coral bleaching events were  
50     correlated with low rates of skeletal extension within specific reef environments, but no single  
51     bleaching event was correlated with low skeletal extension rates across all reef environments.  
52     We postulate that the decline in skeletal extension rates for nearshore corals is driven primarily

53 by the combined effects of long-term ocean warming and increasing exposure to higher levels of  
54 land-based anthropogenic stressors, with acute thermally-induced bleaching events playing a  
55 lesser role. If these declining trends in skeletal growth of nearshore *S. siderea* and *P. strigosa*  
56 continue into the future, the structure and function of these critical nearshore MBRS coral reef  
57 systems is likely to be severely impaired.

58

## 59 INTRODUCTION

60 Global climate change is impacting ecosystems worldwide (Walther *et al.*, 2002), causing  
61 range expansions (Elmhagen *et al.*, 2015), habitat contractions (Smale & Wernberg, 2013),  
62 decreased productivity (O'Reilly *et al.*, 2003), pest outbreaks (Kurz *et al.*, 2008), phase shifts  
63 (Connell & Russell, 2010), and alterations in ecosystem structure and function (Hoegh-Guldberg  
64 & Bruno, 2010, Knowlton, 2001). For example, sea surface temperatures (SST) in the Caribbean  
65 Sea have increased by up to 0.8°C over the past century (Glenn *et al.*, 2015, Rhein, 2013),  
66 impacting the health and viability of coral reef ecosystems. As tropical corals already live near  
67 their thermal limits (Fitt *et al.*, 2001, Jokiel & Coles, 1977), even small increases in ocean  
68 temperature can have dire consequences for their survival. Increased seawater temperature is the  
69 primary cause of widespread coral bleaching, a phenomenon describing the breakdown of the  
70 obligate coral-algal symbiosis for many reef-building scleractinian corals (Jokiel & Coles,  
71 1990). Mass coral bleaching events have caused significant coral mortality across reef  
72 ecosystems globally (Hughes *et al.*, 2017), including within the Caribbean Sea (Eakin *et al.*,  
73 2010, McWilliams *et al.*, 2005).

74 Rising seawater temperatures coupled with disease outbreaks have caused major  
75 reductions in coral cover on many Caribbean reefs since the 1980s (Gardner *et al.*, 2003),  
76 induced declines in the structural complexity of local reefs (Alvarez-Filip *et al.*, 2009), and led to  
77 a shift in coral dominance from large, fast-growing, and structurally complex species (e.g.,  
78 *Acropora* sp.) to less structurally complex and more stress tolerant species that tend to be small  
79 and faster-growing (e.g., *Porites astreoides*) (Green *et al.*, 2008) or large and slower-growing,  
80 (e.g., *S. siderea*) (Alvarez-Filip *et al.*, 2013). If present warming trends continue, bleaching  
81 events on Caribbean coral reefs are predicted to increase in frequency, duration, and severity,  
82 potentially occurring every two years as soon as 2030 (Donner *et al.*, 2007) and annually by

83 approximately 2040 (Van Hooidonk *et al.*, 2015), depending on the rate of coral adaptation  
84 (Logan *et al.*, 2014). This predicted increase in coral bleaching, triggered by exposure to more  
85 intense, frequent, and/or prolonged thermal stress, would negatively impact rates of coral growth  
86 and survival, even in thermally tolerant species (Berkelmans & Van Oppen, 2006, Hoegh-  
87 Guldberg *et al.*, 2007, Hughes *et al.*, 2010).

88 Coral growth and calcification rates are influenced by many processes, including  
89 seawater temperature, sedimentation, and nutrient concentrations (e.g, see complete discussion of  
90 the environmental drivers of coral growth in Castillo *et al.*, 2014, Courtney *et al.*, 2017, Jokiel &  
91 Coles, 1977, Pratchett *et al.*, 2015). Moderate increases in temperature (up to and slightly beyond  
92 a coral's thermal optimum) have been shown to increase coral growth rates (Castillo *et al.*, 2014,  
93 Courtney *et al.*, 2017, Jokiel & Coles, 1977, Marshall & Clode, 2004, Pratchett *et al.*, 2015),  
94 while temperatures surpassing this thermal optimum by more than a degree have been shown to  
95 impair coral growth (Jokiel & Coles, 1977, Lough & Cantin, 2014, Pratchett *et al.*, 2015).

96 Local impacts, such as increased sedimentation and nutrient loading associated with  
97 human development, have been shown to correlate with slower or declining coral growth rates  
98 (Carilli *et al.*, 2010, Cooper *et al.*, 2008, D'Olivo *et al.*, 2013). However, elevated nutrient and  
99 sediment loads can also lead to increased heterotrophy, which can offset negative impacts of  
100 environmental stress and increase coral resilience (Ferrier-Pages *et al.*, 2003, Grottoli *et al.*,  
101 2006, Houlbreque & Ferrier-Pages, 2009, Mills *et al.*, 2004, Mills & Sebens, 2004).  
102 Meanwhile, observations of elevated growth rates relative to lower variability sites and  
103 increasing and/or stable growth rates through time on reefs exposed to higher degrees of  
104 environmental variability (e.g., temperature and/or nutrients) indicate that exposure to  
105 environmental variation may precondition coral populations (Carilli *et al.*, 2012, Carricart-  
106 Ganivet & Merino, 2001, Castillo *et al.*, 2012, Manzello *et al.*, 2015) potentially affording them  
107 greater resilience in the face of more frequent and/or more intense thermal stress events.  
108 Changing seawater chemistry (i.e., ocean acidification) may also lead to lower coral growth rates  
109 (e.g., Bove *et al.*, 2019, Chan & Connolly, 2013). Temporal trends in coral growth rates at any  
110 given location are dependent upon a complex network of factors due to the interactive nature of  
111 environmental variables known to influence calcification, (Courtney *et al.*, 2017, Jokiel &  
112 Coles, 1977, Pratchett *et al.*, 2015).

113 The stressors known to impact coral calcification can vary in intensity along  
114 environmental gradients, warranting comparisons of coral growth and resilience across reef  
115 environments (Baumann *et al.*, 2016, Cooper, 2008, Cooper *et al.*, 2007, Lirman & Fong, 2007,  
116 Manzello *et al.*, 2015). For example, coral reefs more proximal to the coast (i.e., nearshore reefs)  
117 generally experience more extreme environmental conditions than reefs more distal from the  
118 coast (i.e., offshore reefs), including greater thermal variability (Baumann *et al.*, 2016, Oliver &  
119 Palumbi, 2011) and land-based stressors, such as sedimentation and nutrients (Baumann *et al.*,  
120 2016, Dodge *et al.*, 1974, Fabricius, 2005, Heyman & Kjerfve, 1999). However, environmental  
121 conditions on nearshore reefs are highly site-specific, potentially driving large spatial differences  
122 in coral growth response.

123 Here, we characterize reef-wide trends in skeletal extension over the past century for two  
124 abundant and widely distributed massive Caribbean reef-building corals, *Siderastrea siderea* and  
125 *Pseudodiploria strigosa*, across five reef environments that span a nearshore-to-offshore  
126 environmental stress gradient (Baumann *et al.*, 2016) throughout the Belize Mesoamerican  
127 Barrier Reef System (MBRS). Specifically, this study addresses the following research  
128 questions: (1) What are the trends in coral growth over the past century for two species of  
129 massive corals (*S. siderea*, *P. strigosa*) on the Belize MBRS? (2) Do temporal trends in coral  
130 growth vary between reef environments? (3) What are the effects of mass bleaching events on  
131 temporal trends in coral growth? The resulting reconstructions of historical coral extension will  
132 provide a framework for predicting the growth trajectories of these resilient coral species in  
133 response to future global change.

134 **MATERIALS AND METHODS**

135 *Research sites*

136 Research sites were located along the 300 km-long coast of the Belize portion of the  
137 Mesoamerican Barrier Reef System (MBRS)—a 1,200 km-long network of coral reefs in the  
138 western Caribbean Sea extending south from the tip of the Yucatán Peninsula in Mexico,  
139 traversing the entire coast of Belize and the Atlantic coast of Guatemala, and culminating in the  
140 Islas de la Bahía (Bay Islands) off the coast of Honduras (Fig. 1). Coral cores were obtained  
141 from five different reef environments (i.e., nearshore, backreef, forereef, atoll backreef, and atoll  
142 forereef) along a putative nearshore-offshore environmental stress gradient (Fig. 1). Nearshore

143 coral cores were obtained from patch reefs within 10 km of the Belize coast. Backreef and  
144 forereef coral cores were obtained on the landward and seaward sides of the reef crest,  
145 respectively. Backreef, forereef, atoll backreef, and atoll forereef are referred to collectively as  
146 offshore reefs as they are located 30-60 km away from mainland Belize. Corals in nearshore  
147 habitats are exposed to higher summer temperatures, increased thermal variability (diurnal and  
148 seasonal), more days per year above the estimated bleaching threshold (Baumann *et al.*, 2016),  
149 elevated chlorophyll-a (used as a proxy for nutrient delivery and primary productivity)  
150 (Baumann *et al.*, 2016), and greater local anthropogenic stress (e.g., sedimentation, pollution)  
151 than offshore corals (backreef, forereef, atolls) due to their proximity to mainland Belize (Carilli  
152 *et al.*, 2010, Heyman & Kjerfve, 1999).

153 *Coral core collection*

154 A total of 124 coral cores (93 *S. siderea* and 31 *P. strigosa*) were collected from 19 sites  
155 along the Belize MBRS by SCUBA divers using a pneumatic core drill (Chicago Pneumatic CP  
156 315) in 2009 and 2012 (Castillo *et al.*, 2011) or a hydraulic core drill (Chicago Pneumatic COR 5  
157 in 2012 and CS Unitec model 2 1335 0010, 3.8 HP in 2015) equipped with a 5 cm diameter  
158 diamond tipped core bit (Castillo *et al.*, 2011) (Table S1). All of the *P. strigosa* cores (31 in  
159 total) and 37 of the *S. siderea* cores were collected in 2015. The remaining 56 *S. siderea* cores  
160 were collected in 2009 (13) and 2012 (43). All cores were extracted from colonies that appeared  
161 healthy (i.e., no bleaching, abnormalities, scarring, or disease). Cores were extracted parallel to  
162 the central growth axis of each colony. Overall, core lengths ranged from 10 to 100 cm. After  
163 extracting each core, a concrete plug was inserted into the drilled hole and the hole was sealed  
164 with Z-spar underwater epoxy to prevent bioerosion and promote re-growth of coral tissue.  
165 Cores were rinsed in ethanol, stored in PVC tubes, and transported to the University of North  
166 Carolina at Chapel Hill for analysis. Collection permits were obtained from the Belize Fisheries  
167 Department and all cores were collected and transported pursuant to local, federal, and  
168 international regulations. It should be noted that because cores were collected from apparently  
169 healthy corals, the results of this study may underestimate population-wide declines in coral  
170 growth rates over the historical study interval owing to the well-documented deleterious effects  
171 of coral diseases and growth anomalies on calcification rates (e.g., Peters, 2015 and references  
172 therein)

173 *Coral computer tomography scanning*

174 Coral cores collected in 2009 and 2012 were CT scanned on a Siemens Somatom  
175 Definition AS (120 kV, 300 mAs, 0.6 mm slice thickness) scanner at Wake Radiology Chapel  
176 Hill in 2013 using methods modified from Carilli et al. (2012). Cores collected in 2015 were  
177 scanned on a Siemens Biograph mCT (120 kV, 250 mAs, 0.6 mm slice thickness) at UNC  
178 Biomedical Research Imaging Center (BRIC). Images were reconstructed at 0.1 mm increments  
179 and exported as DICOM files.

180 Cores collected in 2009 and 2012 were scanned with the growth axis oriented  
181 perpendicular to the length of the CT table. Importantly, the perpendicular orientation of the  
182 cores on the CT scanning table was found to distort density readings slightly at the ends of each  
183 core through a phenomenon known as “beam hardening” (Brooks & Di Chiro, 1976). To rectify  
184 this issue, cores collected in 2015 were scanned in a parallel orientation relative to the CT table.  
185 However, all cores from 2009 and 2012 were slabbed and sampled for geochemical analysis  
186 before they could be re-scanned; thus, skeletal density could not be reliably measured from these  
187 cores. As a result, analyses in this study focus on annual linear extension rate as the principal  
188 growth parameter, which has been found to be a reliable proxy for annual coral calcification  
189 (Fig. 2; Supplementary Methods; Lough & Barnes, 2000), though the relative contribution of  
190 linear extension and density to calcification rate varies by species (Pratchett *et al.*, 2015).

191 Linear extension rates were measured by uploading all CT scans to the DICOM image  
192 viewing softwares OsiriX or Horos v2.0.2, which permitted visualization of annual density bands  
193 on 8-10 mm thick “digital slabs” of stacked 0.6 mm layers using “Mean” projection mode (i.e.,  
194 displays mean density of each voxel within the digital slab). Annual high- and low-density band  
195 couples were inspected visually as the distance from the top of a high density band to the bottom  
196 of the next low density band. Linear transects were then drawn parallel to the coral growth axis  
197 and within the exothecal space between corallite walls down the core using the “Length” tool in  
198 OsiriX/Horos. Density measurements were then extracted from linear transects and a custom *R*  
199 code was used to calculate the width of each annual pair of high- and low-density bands.  
200 Transects were performed in triplicate for each segment of the core in order to average out the  
201 spatial variability in linear extension within the annual growth bands. The entire length of the  
202 core was analyzed in this manner, or until it was no longer possible to resolve annual growth

203 bands due to the effects of bioerosion and/or loss of seasonal density banding. Additional details  
204 on this methodology, including example images of coral CT scans, can be found in Figure S1  
205 and in Rippe *et al.* (2018). Data for the individual cores analyzed in this experiment, including  
206 length of each growth record, are provided in Table S1.

207 *Linear extension as a proxy for calcification rate*

208 To validate the use of linear extension as a proxy of coral calcification in this study,  
209 skeletal density and calcification rate were also calculated for all cores collected and CT scanned  
210 in 2015 (n = 68 cores). Coral density standards of known mass and volume were obtained from  
211 coral cores with the same diameter as those used in the study and scanned alongside the corals to  
212 construct a standard curve for each scanning session that correlated Hounsfield unit values (CT  
213 scan output) to density (g/cm<sup>3</sup>) (DeCarlo *et al.*, (2015), Rippe *et al.*, (2018). In this study,  
214 extension rate was well correlated with calcification rate ( $p < 0.001$ ,  $R^2 = 0.919$  for *S. siderea* and  
215  $p < 0.001$ ,  $R^2 = 0.598$  for *P. strigosa*), while density is not ( $p < 0.001$ ,  $R^2 = 0.052$  for *S. siderea*  
216 and  $p < 0.001$ ,  $R^2 = 0.002$  for *P. strigosa*) (Fig. S2).

217 *Belize sea surface temperature, population, and agricultural data*

218 Hadley Centre Sea Surface Temperature (HadISST1, 1880–present) and NOAA Coral  
219 Reef Watch Degree Heating Weeks (DHW; 1994–present) data for Belize were obtained from  
220 the NOAA Environmental Research Division Data Access Program (ERDDAP) website  
221 (<http://coastwatch.pfeg.noaa.gov/erddap/griddap/index.html>) over the full available temporal.  
222 Sea surface temperature (SST) measurements from all 1° x 1° latitudinal-longitudinal grid cells  
223 within the Belize Exclusive Economic Zone were averaged annually, and linear regression was  
224 used to evaluate statistically significant changes in temperature over time.

225 Degree Heating Weeks (DHW) is a measure of accumulated thermal stress over a 12  
226 week interval measured in °C weeks where 1°C week is equal to one week of temperatures 1°C  
227 over the estimated 29.7 °C regional coral bleaching threshold for Belize (Aronson *et al.*, 2002)  
228 over a 12 week interval (Liu *et al.*, 2006). Maximum annual DHW data at 5km resolution were  
229 obtained from NOAA ERDAAP for grid cells nearest each coring site. DHW data were averaged  
230 across reef environments to compare accumulated thermal stress between each environment  
231 during reported bleaching events.

232 Population data for the country of Belize from 1980-to-present and for major coastal  
233 cities in Belize (i.e., Belize City, San Pedro, Dangriga, Punta Gorda) from 2008-to-present were  
234 obtained from the Statistical Institute of Belize website  
235 (<http://www.sib.org.bz/statistics/population>). Agricultural land use statistics for Belize from  
236 1960-to-present were obtained from the Food and Agricultural Organization of the United  
237 Nations (FAO) website (<http://www.fao.org/faostat/>). All parameters are plotted in Figure S3.

238 *Statistical analyses*

239 To evaluate long-term trends in linear extension rates across the Belize MBRS, a linear  
240 mixed-effects modeling framework was employed, which accounts for variability in individual *S.*  
241 *siderea* and *P. strigosa* core chronologies, rather than relying on a single master chronology  
242 (Castillo *et al.*, 2011). A linear regression of annual skeletal extension rates vs. year was  
243 obtained by fitting a set of mixed effects models that treated each individual core as a sampling  
244 unit and incorporated the inherent variability in core chronologies as random effects (both  
245 random slopes and random intercepts for each core chronology; Tables 1, S2). This mixed effects  
246 modeling approach was employed to address the inherent hierarchical nature of coral skeletal  
247 extension data. See Castillo *et al.* (2011) and Rippe *et al.* (2018) for further details on the  
248 advantage of this approach with respect to interpreting coral extension data.

| Species            | Reef environment | Slope    | Slope <i>p</i> -value | Number of cores |
|--------------------|------------------|----------|-----------------------|-----------------|
| <i>S. siderea</i>  | AFR              | 0.00024  | 0.599                 | 9               |
|                    | ABR              | -0.00056 | 0.141                 | 15              |
|                    | BR               | 0.00013  | 0.591                 | 33              |
|                    | FR               | -0.00030 | 0.182                 | 23              |
|                    | NS               | -0.00108 | <b>&lt;0.001</b>      | 16              |
| <i>P. strigosa</i> | FR               | -0.00183 | 0.329                 | 20              |
|                    | NS               | -0.00755 | <b>&lt;0.001</b>      | 15              |

249 Table 1: Slope of annual extension rate vs. year by species and reef environment from linear mixed effects models.  
250 Significant *p*-values (*p*<0.05) are in bold and indicate a statistically significant from zero slope for change in annual  
251 extension rate through time. 95% confidence intervals (CI) that do not overlap indicate significant differences  
252 between reef environments (see Figs. 2, 3, S3, S4). AFR, ABR, BR, FR, and NS represent atoll fore reef, atoll  
253 back reef, back reef, fore reef, and near shore, respectively.

254

255 *Linear mixed effects model selection*

256 The central goal of the present study was to describe how annual skeletal extension of *S.*  
257 *siderea* and *P. strigosa* on the Belize Mesoamerican Barrier Reef System (MBRS) varied for  
258 each species throughout time (1814-present for *S. siderea* and 1950-present for *P. strigosa*). A  
259 model testing procedure was employed for each species (Table S2; Supplementary Methods) and  
260 Akaike Information Criterion (AIC) was used to identify the best-fit model (Burnham &  
261 Anderson, 2002). AIC provides a measure of the explanatory power of a model discounted by  
262 the number of parameters that contributed to its construction; a lower value indicates a better  
263 fitting model (Burnham & Anderson, 2002).

264 Statistical analyses were carried out using the nlme package (Pinheiro *et al.*, 2017) in R (R  
265 Core Team, 2017). Slopes and the variance of slopes were extracted from each linear mixed  
266 effects model for all reef environments. 50% and 95% confidence intervals (CI) were calculated  
267 for all reef environments within each species, with 95% CI that do not overlap indicating  
268 significant differences in the rate of change in annual extension between reef environments (Figs.  
269 2, 3; Table S3, S4). *t*-tests and 95% confidence intervals were used to identify slopes that were  
270 significantly different from zero (Figs. 2, 3; Table S3, S4). This method has previously been  
271 utilized to analyze coral core data (Barkley & Cohen, 2016, Castillo *et al.*, 2011, Rippe *et al.*,  
272 2018) and has been shown to be sensitive enough to assess significant differences between small  
273 slopes (on the order of  $10^{-3}$  cm/year/year) and zero (Castillo *et al.*, 2011).

274 *Reef-environment-averaged extension rates*

275 To investigate differences in recent extension rates between reef environments, skeletal  
276 extension rates (cm/year) were averaged for all corals within a reef environment across five-year  
277 time bins from 1950-to-2014 (e.g., 1950-1954, 1955-1959, etc.) in order to smooth out year-to-  
278 year noise in coral growth associated with anomalous growth events caused by warming or local  
279 stressors. A two-way analysis of variance (ANOVA) and a TUKEY HSD test were used to  
280 determine significant differences ( $p < 0.05$ ) in average extension between reef environments  
281 within these five-year time bins (Figs. 2C, 3C; Table S3).

282 *Extension anomaly vs. mass-bleaching events*

283 To test whether reported coral bleaching events correlate with low annual extension rates,  
284 “low extension” years were identified as those with extension rates falling in the bottom 10<sup>th</sup>  
285 percentile of the core’s full growth record for each core chronology. The fraction of cores  
286 registering low extension was determined for each year in which the sample size exceeded 5 in a  
287 given reef environment (1975-present for *P. strigosa*; 1920-present for *S. siderea*). Low  
288 extension anomalies within each reef environment were then compared with years in which max  
289 DHW  $\geq 4$ , as DHW = 4 is the threshold at which significant bleaching is expected (Eakin *et al.*,  
290 2010). These high DHW years were compared with reports of historical mass-bleaching events  
291 in the Caribbean region: 1995 (McField, 1999); 1997-1998 (Aronson *et al.*, 2002, Podesta &  
292 Glynn, 2001); 2005 (Donner *et al.*, 2007, Eakin *et al.*, 2010, LaJeunesse *et al.*, 2009); 2009-2010  
293 (Alemu & Clement, 2014, Buglass *et al.*, 2016, Kemp *et al.*, 2014); and 2014-2016 (Eakin *et al.*,  
294 2016). Years that directly preceded or followed a reported bleaching event, years containing  
295 bleaching events (DHW  $\geq 4$ ), and other years that had high numbers of cores exhibiting low  
296 extension were noted and included as explanatory variables in least squares regression, thereby  
297 identifying which years contained significantly higher fractions of cores exhibiting low extension  
298 within each reef environment. The fraction of cores exhibiting low extension was then averaged  
299 for bleaching and non-bleaching years for each reef environment. The percentage of cores  
300 exhibiting low extension was then compared between bleaching and non-bleaching years via  
301 two-way analysis of variance (ANOVA) and a TUKEY HSD test ( $p < 0.05$ ; Table S5).

## 302 RESULTS

### 303 Coral linear extension trends

304 The slopes of annual skeletal extension rates vs. time for nearshore *S. siderea* from the  
305 late 19<sup>th</sup> century to present (Table 1; Fig. 2A, B, S6) and nearshore *P. strigosa* from the mid-20<sup>th</sup>  
306 century to present (Table 1; Fig. 3A, B, S7) were significantly negative (Tables 1, S3), indicating  
307 declining rates of mean skeletal extension for both coral species on nearshore reefs across the  
308 Belize MBRS. In contrast, *S. siderea* and *P. strigosa* colonies from the backreef, forereef, atoll  
309 backreef, and atoll forereef (collectively defined as “offshore” because of their  $>30$  km distance  
310 from mainland Belize) exhibited no net decrease in mean skeletal extension through time (Table  
311 1; Fig. 2A, 2B, 3A, 3B). However, it is important to note that the extension rates vs. time slopes  
312 for individual cores for both species in each of the respective reef environments varies from

positive to negative, indicating colony and site-level variability in growth responses through time (Fig. 2, 3). Skeletal extension trends that mirror these century scale trends are also seen when data are trimmed to include only the years 1980-present, an interval that includes at least 50% of all cores from each reef environment and a total of 66% of total cores (Fig S4, S5).

Nearshore *S. siderea* and *P. strigosa* exhibited higher skeletal extension rates than offshore conspecifics from at least 1990 to 2009 (Fig. 2C, 3C; Tables S3, S4; *p*-values <0.001). This trend is visually apparent as far back as 1965, but decreasing sample size further back in time may have diminished the statistical significance of this relationship (Fig. 2C, 3C; Tables S3, S4). After 2009, however, skeletal extension rates of nearshore *S. siderea* and *P. strigosa* converge with those of their offshore conspecifics (*p*-values: 0.986 and 0.186, respectively; Figs. 2C, 3C; Tables S3, S4) owing to both the decline in skeletal extension rates for the nearshore corals and the increase in skeletal extension rates for the offshore corals (Fig. 2C, 3C). Notably, nearshore and fore reef linear extension rates also converge between 1950 and 1960. Earlier convergences of nearshore and fore reef extension rates cannot be evaluated for *P. strigosa* due to the shorter temporal length of their nearshore growth record, but may have occurred.

### Environmental parameters

The average SST across all reef environments of the Belize MBRS has increased by ca. 0.5 °C since 1880 (*p*<0.01; Fig. S3A). Additionally, human population densities in local coastal cities increased by 39% and regional agricultural land area increased by 100% from the mid-20<sup>th</sup> century to present (Figs. S3B-C).

### Impacts of acute bleaching stress on coral linear extension

Mass coral bleaching was documented in the Caribbean in 1995, 1998, 2005, 2010, and 2014-2016 (see methods). Degree Heating Week (DHW) data for each reef environment indicates likely mass bleaching (DHW value  $\geq 4$ ; Liu *et al.*, 2006) at nearshore sites in 1998, 2010, and 2015, at back reef and fore reef sites in 1998 and 2010, and at atoll backreef, and atoll fore reef sites in 1998, 2005, 2009, 2010, and 2011 (Table 2). Nearshore, backreef, and fore reef sites experienced the highest DHW values in 1998, while atoll backreef and atoll fore reef experienced the highest DHW values in 2005 (Table 2). Notably, there is considerable variation in DHW values between sites within a single reef environment (Table 2). The skeletal extension

342 data from the present study was evaluated to determine whether bleaching conditions (DHW  $\geq 4$ )  
343 significantly impacted coral skeletal extension within each reef environment of the Belize  
344 MBRS. Overall, skeletal extension was significantly lower during years in which DHW  $\geq 4$  than  
345 during non-bleaching years for *S. siderea* ( $p < 0.001$ ; Table S5), but not for *P. strigosa*, although  
346 *P. strigosa* did exhibit significantly lower extension in the 2011 (i.e., DHW  $\geq 4$  in 2011) than  
347 during non-bleaching years (i.e., DHW  $< 4$ ; Fig. 4; Table S6). In general, no reef environment  
348 was more likely than any other to experience lower extension rates during bleaching years than  
349 during non-bleaching years. However, skeletal extension was anomalously low for *S. siderea* on  
350 the fore reef of the atolls following the 1995 bleaching event in spite of low DHW values (Table  
351 2). Skeletal extension was also anomalously low for *S. siderea* on the fore reef and back reef of  
352 the atolls during the 1997-1998 bleaching event and on the back reef of the atolls following the  
353 2005 bleaching event (Fig. 4; Table S6), for nearshore *S. siderea* and *P. strigosa* following the  
354 2010 bleaching event (Fig. 4; Table S6), and for nearshore *S. siderea* and fore reef corals of both  
355 species in the 2014 bleaching year (Fig. 4; Table S6). Notably, anomalously low skeletal  
356 extension rates were also observed for some non-bleaching years in both species (e.g., in 1985  
357 for nearshore *S. siderea* and in 1992 for nearshore *P. strigosa*; Fig. 4; Table S6), potentially due  
358 to other stressors [e.g., storms, human activity, or sedimentation (Hughes *et al.*, 2017, Pratchett  
359 *et al.*, 2015)] or unreported/small-scale bleaching.

360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370

Author Manuscript

371

372

373

374

375

376

377

378

379

380

381

382

| Reef<br>Environment | Site             | 1995           | 1998                   | 2003           | 2004           | 2005           | 2008           | 2009           | 2010                   | 2011           | 2015                   |
|---------------------|------------------|----------------|------------------------|----------------|----------------|----------------|----------------|----------------|------------------------|----------------|------------------------|
| Nearshore           | Average          | 0.40 ±<br>0.18 | <b>7.32 ±<br/>0.22</b> | 3.90 ±<br>0.58 | 2.46 ±<br>0.93 | 3.15 ±<br>0.55 | 3.86 ±<br>0.35 | 3.60 ±<br>0.51 | <b>4.02 ±<br/>0.26</b> | 3.77 ±<br>0.51 | <b>6.55 ±<br/>0.75</b> |
|                     | Belize<br>City   | 0.63           | <b>6.71</b>            | 3.52           | <b>5.84</b>    | <b>4.81</b>    | <b>4.42</b>    | <b>5.2</b>     | 3.49                   | <b>5.09</b>    | <b>4.49</b>            |
|                     | Dangriga         | 0.15           | <b>6.99</b>            | <b>5.41</b>    | 2.9            | 3.76           | 3.94           | <b>4.34</b>    | 3.53                   | <b>4.69</b>    | <b>5.34</b>            |
|                     | Placencia        | 0.31           | <b>7.95</b>            | <b>5.11</b>    | 1.82           | 3.27           | <b>4.82</b>    | 3.29           | <b>4.94</b>            | 3.86           | <b>6.68</b>            |
|                     | Port<br>Honduras | 0.47           | <b>7.43</b>            | 2.86           | 0.8            | 2.03           | 3.09           | 2.59           | 3.93                   | 2.58           | <b>8.6</b>             |
|                     | Snake<br>Keys    | 0.48           | <b>7.54</b>            | 2.59           | 0.93           | 1.89           | 3.04           | 2.59           | <b>4.19</b>            | 2.64           | <b>7.65</b>            |
| Backreef            | Average          | 0.82 ±<br>0.35 | <b>6.45 ±<br/>0.45</b> | 3.07 ±<br>0.20 | 2.90 ±<br>0.69 | 3.52 ±<br>0.29 | 3.22 ±<br>0.14 | 3.63 ±<br>0.33 | <b>4.04 ±<br/>0.68</b> | 3.71 ±<br>0.21 | 3.85 ±<br>0.82         |
|                     | Belize<br>City   | 1.11           | <b>6.18</b>            | 2.67           | <b>4.49</b>    | 3.58           | 3.45           | <b>4.11</b>    | 2.67                   | <b>4.21</b>    | 2.87                   |
|                     | Dangriga         | 0.60           | <b>5.67</b>            | 3.23           | 2.9            | <b>4.09</b>    | 2.8            | 3.94           | 3.65                   | 3.62           | 3.42                   |
|                     | Placencia        | 0.47           | <b>7.34</b>            | 3.27           | 1.82           | 3.22           | 3.62           | 3.42           | <b>6.23</b>            | <b>4.22</b>    | <b>4.5</b>             |
|                     | San Pedro        | 1.28           | <b>5.4</b>             | 2.55           | <b>4.33</b>    | <b>4.13</b>    | 3.07           | <b>4.23</b>    | 2.72                   | 3.27           | 1.82                   |

|                                 | Sapodilla      | 0.63           | <b>7.67</b>            | 3.61           | 0.95           | 2.57                   | 3.17           | 2.43                   | <b>4.94</b>             | 3.25                   | <b>6.62</b>    |
|---------------------------------|----------------|----------------|------------------------|----------------|----------------|------------------------|----------------|------------------------|-------------------------|------------------------|----------------|
| <b>Forereef</b>                 | <b>Average</b> | 0.73 ±<br>0.23 | <b>6.30 ±<br/>0.36</b> | 3.29 ±<br>0.10 | 3.22 ±<br>0.68 | 3.72 ±<br>0.28         | 3.19 ±<br>0.09 | 3.88 ±<br>0.35         | <b>4.032 ±<br/>0.57</b> | 3.81 ±<br>0.16         | 3.80 ±<br>0.62 |
|                                 | Alligator      | 0.75           | <b>5.74</b>            | 3.65           | 3.96           | 3.7                    | 3.1            | <b>4.04</b>            | 3.31                    | 3.76                   | 3.81           |
|                                 | Belize City    | 0.77           | <b>5.95</b>            | 2.92           | <b>4.15</b>    | <b>4.11</b>            | 3.36           | <b>4.77</b>            | 2.78                    | <b>4.31</b>            | 2.69           |
|                                 | Dangriga       | 0.60           | <b>5.67</b>            | 3.23           | 2.9            | <b>4.09</b>            | 2.8            | 3.94                   | 3.65                    | 3.62                   | 3.42           |
|                                 | Gladdens       | 0.7            | <b>7.22</b>            | 3.22           | 1.81           | 3.31                   | 3.41           | 3.52                   | <b>6.26</b>             | <b>4.26</b>            | <b>4.23</b>    |
|                                 | San Pedro      | 1.15           | <b>5.62</b>            | 3.24           | <b>5.52</b>    | <b>4.53</b>            | 3.32           | <b>4.62</b>            | 2.96                    | 3.52                   | 2.16           |
|                                 | Sapodilla      | 0.64           | <b>7.6</b>             | 3.48           | 0.96           | 2.58                   | 3.14           | 2.41                   | <b>5.23</b>             | 3.39                   | <b>6.51</b>    |
| <b>Atoll</b><br><b>Backreef</b> | <b>Average</b> | 0.90 ±<br>0.20 | <b>5.36 ±<br/>0.38</b> | 3.91 ±<br>0.05 | 3.08 ±<br>0.44 | <b>5.62 ±<br/>0.36</b> | 3.44 ±<br>0.24 | <b>4.24 ±<br/>0.36</b> | <b>5.23 ±<br/>0.68</b>  | <b>4.34 ±<br/>0.63</b> | 3.82 ±<br>0.41 |
|                                 | Glovers        | 0.77           | <b>5.77</b>            | 3.99           | 2.06           | <b>4.86</b>            | 3.22           | <b>4.13</b>            | <b>6.3</b>              | 3.31                   | <b>4.28</b>    |
|                                 | Lighthouse     | 1.13           | <b>4.63</b>            | 3.91           | 3.44           | <b>6.33</b>            | 3.91           | 3.84                   | <b>5.01</b>             | <b>4.65</b>            | <b>4.17</b>    |
|                                 | Turneffe       | 0.8            | <b>5.55</b>            | 3.82           | 3.58           | <b>5.21</b>            | 3.2            | <b>4.96</b>            | <b>4.2</b>              | <b>5.24</b>            | 3              |
| <b>Atoll</b><br><b>Forereef</b> | <b>Average</b> | 0.85 ±<br>0.26 | <b>5.32 ±<br/>0.35</b> | 3.91 ±<br>0.05 | 3.03 ±<br>0.49 | <b>5.47 ±<br/>0.44</b> | 3.44 ±<br>0.23 | <b>4.31 ±<br/>0.34</b> | <b>5.17 ±<br/>0.61</b>  | <b>4.4 ±<br/>0.57</b>  | 3.82 ±<br>0.41 |
|                                 | Glovers        | 0.62           | <b>5.91</b>            | <b>4</b>       | 2.21           | <b>5.31</b>            | 3.2            | 3.93                   | <b>6.48</b>             | 3.14                   | <b>4.28</b>    |
|                                 | Lighthouse     | 1.13           | <b>4.63</b>            | 3.91           | 3.44           | <b>6.33</b>            | 3.91           | 3.84                   | <b>5.01</b>             | <b>4.65</b>            | <b>4.17</b>    |
|                                 | Turneffe       | 0.8            | <b>5.55</b>            | 3.82           | 3.58           | <b>5.21</b>            | 3.2            | <b>4.96</b>            | <b>4.2</b>              | <b>5.24</b>            | 3              |

383 Table 2: Average maximum annual Degree Heating Weeks (DHW) for each reef environment and maximum DHW  
 384 for each site within a reef environment for all years of the instrumental record in which DHW  $\geq 4$  for any site. Years  
 385 in which mass bleaching was reported in the Caribbean region are bold. All DHW values  $\geq 4$  are bold. Average  
 386 values are reported as average  $\pm 1$  standard error of the mean.

387

388

389

390

## 391 DISCUSSION

### 392 Declining skeletal extension rates for nearshore corals

393 We postulate that the observed declines in skeletal extension rates for nearshore *S.*  
 394 *siderea* and *P. strigosa* corals may have been driven primarily by a combination increasing  
 395 seawater temperatures (Carilli *et al.*, 2012, Pratchett *et al.*, 2015), ocean acidification,  
 396 eutrophication, increasing sedimentation, coastal development, and/or land use change

397 (Fabricius, 2005, Hoegh-Guldberg *et al.*, 2007, Wiedenmann *et al.*, 2013). Additionally,  
398 nearshore reef environments historically supported higher skeletal extension rates than offshore  
399 reef environments, but recent declines in nearshore coral growth rates have caused nearshore  
400 coral growth rates to converge with offshore coral growth rates since 2010 (Tables 3, S3, S4;  
401 Fig. 2C, 3C, S4).

402 Sea surface temperature across all reef environments of the Belize MBRS has increased  
403 since 1880 ( $p<0.01$ ; Fig. S3A), and average summer SST across this reef system has increased  
404 by approximately 0.5°C since 1985 (Castillo *et al.*, 2012). Analysis of satellite SST data for the  
405 region reveals that nearshore reefs on the Belize MBRS were exposed to between 54 and 78 days  
406 per year above the estimated regional bleaching threshold of 29.7 °C (Aronson *et al.*, 2002) over  
407 the years 2003-2012 (Baumann *et al.*, 2016). In contrast, offshore reef sites experienced only 20  
408 to 40 days per year above the regional bleaching threshold during that same interval. Nearshore  
409 reefs also had warmer average annual temperatures (0.6-0.7°C warmer) as well as hotter  
410 summers than offshore reefs (Baumann *et al.*, 2016).

411 Although temperature increases up to and slightly beyond a coral's thermal optimum can  
412 increase coral skeletal growth rates (Castillo *et al.*, 2014, Courtney *et al.*, 2017, Jokiel & Coles,  
413 1977, Pratchett *et al.*, 2015), and corals become locally adapted to warmer temperatures over  
414 time (Coles & Brown, 2003), temperatures surpassing the thermal optimum by more than a  
415 degree have been shown to negatively impact coral growth (Lough & Cantin, 2014, Pratchett *et*  
416 *al.*, 2015). This negative impact of elevated temperature on coral skeletal growth rate is driven  
417 not only by the magnitude of the warming, but also by its duration (Pratchett *et al.*, 2015).  
418 Century-scale and recent (1980-present) declines in skeletal extension rates of nearshore colonies  
419 along the Belize MBRS, combined with the absence of century-scale or recent (1980-present)  
420 declines in the mean extension rates of backreef and forereef colonies (Figs. 2, 3, S4, S5),  
421 suggest that a critical threshold of thermal stress (e.g., magnitude, frequency, and/or duration)  
422 may have been exceeded for nearshore *S. siderea* and *P. strigosa* corals, but not for forereef and  
423 backreef colonies.

424 However, localized drivers such as eutrophication and sedimentation may also play a role  
425 in the convergence of nearshore and offshore coral growth rates observed in this study. Previous  
426 work has demonstrated that high sediment and riverine nutrient loads (D'Olivo *et al.*, 2013) and

427 increased turbidity (Fabricius, 2005) impair coral growth rates. Additionally, nutrient enrichment  
428 along with subsequent altering of nitrogen (N):phosphorus (P) ratio (Rosset *et al.*, 2017,  
429 Wiedenmann *et al.*, 2013) can increase bleaching susceptibility and lead to decreased growth  
430 rates (D'Olivo *et al.*, 2013, Dodge *et al.*, 1974). Coral calcification rates on nearshore reefs of the  
431 Great Barrier Reef are declining on multi-decadal timescales, while calcification rates on  
432 offshore reefs are increasing (D'Olivo *et al.*, 2013). This declining growth on nearshore reefs is  
433 attributed to the impacts of wet season river discharge of sediment and nutrients, a trend that is  
434 exacerbated by warming (D'Olivo *et al.*, 2013). As human population densities and agricultural  
435 land area have increased in Belize since the mid-20<sup>th</sup> century (Fig. S3B, C), runoff and  
436 eutrophication in the MBRS have also increased over time, with the greatest effects of these  
437 land-based changes occurring in the nearshore environments closest to the land-based runoff  
438 sources (Fig S2; Carilli *et al.*, 2009, Chérubin *et al.*, 2008, Heyman & Kjerfve, 1999, Prouty *et*  
439 *al.*, 2008). However, *S. siderea* and *P. strigosa* also metabolize N from ingested sediments and  
440 particulates (Mills *et al.*, 2004, Mills & Sebens, 2004). This N may augment coral nutrition  
441 during intervals of increased sedimentation and eutrophication, potentially mitigating some of  
442 the negative impacts of these processes. Thus, elevated nutrient and sediment loads on nearshore  
443 reefs may historically contribute to higher growth rates compared to offshore reefs, but continued  
444 nutrient and sediment loading associated with coastal development and increased runoff due to  
445 increasing human populations and/or land-use changes (Fig. S3 B,C) may have contributed to the  
446 observed decline in nearshore coral growth in recent years.

447 It is likely that increasing nutrient and sediment loading (Heyman & Kjerfve, 1999,  
448 Thattai *et al.*, 2003), coupled with increasing water temperatures and increasing duration of time  
449 that water temperatures exceed the species' bleaching threshold, are responsible for the decline  
450 in skeletal extension rates observed for nearshore colonies of the Belize MBRS in this study.  
451 This finding agrees with previous work documenting declining growth rates for *O. faveolata*  
452 corals nearest land-based impacts exhibit in the MBRS (Carilli *et al.*, 2010). The observed  
453 declines in nearshore extension rates and recent convergence of extension rates for nearshore and  
454 offshore colonies of *S. siderea* and *P. strigosa* (Fig. 2) suggests that the growth advantage that  
455 nearshore corals appear to have historically had over offshore corals has now been lost, perhaps  
456 due to the rate of warming surpassing the speed at which corals can locally adapt/acclimatize to  
457 it, coupled with eutrophication and sedimentation on nearshore reefs (Tables 3, S4; Figs. 2, 3;

458 Courtney *et al.*, 2017). If temperature and eutrophication continue to increase, nearshore coral  
459 growth rates should continue to decline—with offshore corals potentially following suit. Indeed,  
460 some offshore corals in southern Belize already exhibit declining growth rates, likely due to  
461 proximity to land-based stressors (Carilli *et al.*, 2010). Although there is metagenomic evidence  
462 that nearshore *S. siderea* have begun acclimatizing to these elevated temperatures (Davies *et al.*,  
463 2018), the observation that skeletal extension rates have continued declining for both species up  
464 to present time in nearshore reefs of the MBRS suggest that such acclimatization is not sufficient  
465 to maintain stable rates of skeletal growth under present-day nearshore environmental conditions.

466 *Recent bleaching events differentially impact corals across reef environments*

467 *Siderastrea siderea* corals exhibited anomalously low linear extension rates during years  
468 in which DHW  $\geq 4$  (and the years directly following) while *P. strigosa* corals did not, indicating  
469 that growth rates of *S. siderea* may be more susceptible to acute bleaching stress (Fig. 4; Tables  
470 S5, S6;). *Siderastrea siderea* and *P. strigosa* are classified as stress-tolerant coral species  
471 (Darling *et al.*, 2012), but *S. siderea* are often among the first coral species to bleach during a  
472 thermal stress event (Banks & Foster, 2016, Hernández-Delgado *et al.*, 2006). While the early  
473 onset of bleaching for a stress-tolerant *S. siderea* appears to be a contradiction for life history  
474 expectations, the resilience of *S. siderea* to bleaching events may suggest that early onset  
475 bleaching is part of an adaptive strategy for this coral (Buddemeier & Fautin, 1993) under  
476 elevated thermal stress and warrants further investigation.

477 Anomalously low growth is observed in nearshore colonies of both species in 2011  
478 following the 2010 bleaching event, during which DHW  $\geq 4$  (Table 2; Table S6; Fig. 4).  
479 Anomalously low growth is also observed in atoll backreef *S. siderea* during the 2005 bleaching  
480 year (DHW  $\geq 4$ ) and the year immediately following (2006) (Table 2; Table S6; Fig. 4). Average  
481 DHW for individual reef environments were  $\geq 4$  on 16 other occasions, yet anomalously low  
482 growth was not recorded during these years or during the years directly following them—  
483 including the year 1998, the only year in which every individual site was exposed to DHW  $\geq 4$   
484 (Table 2). In fact, the only year in which anomalously low growth was observed across multiple  
485 reef environments was 2014, a year in which DHW was not greater than 4, highlighting the  
486 variability in how individual bleaching events impact skeletal extension across coral species and  
487 reef environments (Fig. S8). Importantly, nearshore, backreef, forereef, and atoll forereef corals

488 did not exhibit anomalously low extension during the year in which they experienced the highest  
489 DHW (1998; Tables 2, S6), but atoll backreef *S. siderea* did (2005-2006; Tables 2, S6).  
490 Collectively, these results indicate differential growth responses to bleaching between reef  
491 environments and years and that the magnitude of acute thermal stress alone is likely not a  
492 reliable predictor of coral growth rate. This is likely due to spatial variation in warming across  
493 the MBRS, site- and depth-specific thermal variability that can reduce bleaching (Safaie *et al.*,  
494 2018, Schramek *et al.*, 2018), as well as the ability of coral populations to modify their bleaching  
495 thresholds (Coles & Brown, 2003, Palumbi *et al.*, 2014).

496 Overall, growth rates of *S. siderea* appear more susceptible to the impacts of bleaching  
497 than *P. strigosa*. Additionally, as corals on nearshore reefs only exhibited anomalously low  
498 extension rates following one of three bleaching events (DHW  $\geq 4$  on nearshore reefs; 2010)  
499 (Table 2; Table S6; Fig. 4), the observed decline in skeletal extension rates on nearshore reefs of  
500 the Belize MBRS are not likely due to the increasing frequency of mass bleaching events in  
501 recent years. Instead, the steady nature of the decline in skeletal extension of the investigated  
502 species in nearshore reef environments suggests that it is related to the increase in seawater  
503 temperatures over the same interval, coupled with the increasing influence of land-based  
504 stressors, such as increased sedimentation and eutrophication. Nevertheless, the increasing  
505 frequency of the bleaching events may indeed be exacerbating the deleterious impacts of steady  
506 anthropogenic warming on skeletal extension rates in nearshore reef environments, especially for  
507 *S. siderea*.

508 *Nearshore colonies of P. strigosa on pace to cease growing by year 2110*

509 Although both coral species studied here are considered stress-tolerant (Darling *et al.*,  
510 2012), linear extrapolation of extension trends observed here suggest that nearshore *P. strigosa*  
511 corals could cease growing by 2110 and *S. siderea* by 2370. These results suggest that coral  
512 growth on nearshore reefs along the Belize MBRS may decline substantially over the next  
513 century, even in the most stress-tolerant species, threatening reef complexity and leading to  
514 habitat loss (Alvarez-Filip *et al.*, 2013, Alvarez-Filip *et al.*, 2009).

515 These predicted declines in coral growth assume that the temporal trends in coral  
516 extension observed over the cored interval can be linearly extrapolated into the future, which is

517 predicated on the assumptions that the primary coral stressors (e.g., warming, acidification,  
518 eutrophication, sedimentation, pollution) will continue changing at the same rate and that corals'  
519 responses to these stressors will be linear. However, continued improvement of local water  
520 quality and reduction in global CO<sub>2</sub> emissions (if achieved) have the potential to mitigate some  
521 of these projected growth decreases. For example, emissions scenarios lower than or on par with  
522 the commitments of the Paris Agreement have been projected to potentially increase or at least  
523 maintain stable growth rates for Bermudan corals assuming +0.1°C/decade acclimatization rates  
524 (Courtney *et al.*, 2017). Conversely, further deterioration of water quality and/or acceleration of  
525 warming and acidification beyond rates observed over the cored interval and/or development of  
526 synergistic impacts amongst stressors would accelerate future declines in coral extension.

527

528

529 *Declining skeletal extension of nearshore corals may foretell decline of offshore corals on the*  
530 *MBRS*

531 The results of the present study reveal a decline in historically elevated nearshore  
532 calcification rates in Belize MBRS *S. siderea* and *P. strigosa* corals to match calcification rates  
533 of their offshore conspecifics. Single mass bleaching events do not reliably correlate with coral  
534 extension rates—suggesting that the long-term decline in nearshore coral extension cannot be  
535 unequivocally attributed to the increasing frequency of mass bleaching events alone, although  
536 they may play a role. Instead, long-term increases in seawater temperature and local stressors  
537 (e.g., eutrophication and sedimentation), are the more likely drivers of the observed decline in  
538 nearshore coral growth. Any advantage historically conferred to corals by inhabiting the  
539 nearshore environment appears to have substantially diminished in recent decades. Importantly,  
540 as cores were only collected from apparently healthy corals, the results of this study are  
541 indicative of growth trends for well-performing corals within each reef environment. As such,  
542 these results likely underestimate declines in coral growth rates observed here. Further research  
543 on this subject should explore the intrinsic (e.g., adaptation and acclimatization) and extrinsic  
544 (e.g., environmental gradients) processes that lead to the observed variability in growth trends  
545 within and across reef environments. Continued protection, monitoring, and management of

546 nearshore reef environments is essential to afford these corals on the Belize MBRS sufficient  
547 time to acclimatize to and, hopefully, survive this interval of rapid climate and oceanic change.

548

549

550

## 551 Competing Interests

552 The authors are not aware of any competing interests.

## 553 Authors' contributions

554 JB designed the study, carried out the research, carried out the statistical analysis, and wrote the  
555 manuscript; JBR conceived of the study, helped carry out the field component of the study,  
556 provided resources, and helped draft the manuscript; JR helped carry out the research, helped  
557 design the statistical analysis, and helped draft the manuscript; TC helped design the study,  
558 helped carry out the study, and contributed to statistical analysis; HA coordinated the field  
559 component of the study; IW helped carry out the field component of the study; KC conceived of  
560 the study, helped carry out the field component of the study, provided resources, helped draft the  
561 manuscript, and coordinated the study. All authors gave final approval for publication.

## 562 Acknowledgements

563 We thank K. Horvath, K. Cobleigh, C. Hines, A. Rash, Garbutt's Marine, and the Toledo  
564 Institute for Development and the Environment (TIDE) for field assistance, A. Foguel for  
565 development of the *RunningCoral* program for quantifying coral extension, and Wake Radiology  
566 and UNC Biomedical Research Imaging Center (BRIC) for assistance with coral CT scanning.  
567 We also thank the Belize Fisheries Department for issuance of the relevant research permits and  
568 for their continued support of our research efforts on the Belize MBRS. This research was  
569 funded by a Rufford Foundation grant to J. Baumann, NOAA grants NA11OAR431016 and  
570 NA13OAR4310186 to J. Ries and K. Castillo, and National Science Foundation grants to K.  
571 Castillo (OCE 1459522) and J. Ries (OCE 1437371).

572

573 **Figure Captions**

574 Figure 1: Map of reef sites on the Belize Mesoamerican Barrier Reef System where *Siderastrea siderea* and  
575 *Pseudodiploria strigosa* cores were extracted in 2009, 2012, and 2015. Circles and triangles represent core  
576 extraction sites for *S. siderea* and *P. strigosa*, respectively. Colors denote reef environment (nearshore = red,  
577 backreef = green, forereef = blue, atoll backreef = pink, and atoll forereef = yellow). Numbers denote total cores  
578 extracted for a particular species at a specific site.

579

580 Figure 2: (A) Results of linear model of extension rate ( $\text{cm year}^{-1}$ ) vs. time for *S. siderea* by reef environment for the  
581 1814-to-present interval. Gray lines are raw extension data, black lines are average linear models of extension for all  
582 *S. siderea* cores across all reef environments, blue lines are average linear models of extension for all *S. siderea*  
583 cores within each reef environment, and red lines are linear models of extension for individual *S. siderea* cores  
584 within reef environments. Raw (gray) and linearly modeled (red) extension chronologies highlight the variability in  
585 growth amongst colonies. (B) Slopes of linear models describing extension vs. time for each reef environment, with  
586 small points representing individual cores and large points representing average slopes of all cores within a reef  
587 environment [gray bars and colored bars are 50% and 95% confidence intervals (CI), respectively, of average slope  
588 for each reef environment]. Slopes are significantly different from each other if their 95% CI do not overlap.  
589 Likewise, slopes are significantly different from zero if their 95% CI do not overlap with the vertical red dashed line  
590 centered on zero. (C) Five-year averages of skeletal extension rate by reef environment  $\pm$  1 SE. Asterisks indicate  
591 statistically significant differences ( $p < 0.05$ ) between nearshore and forereef values.

592

593 Figure 3: Results of linear model of extension rate ( $\text{cm year}^{-1}$ ) vs. time for *P. strigosa* by reef environment for the  
594 1950-to-present interval. Gray lines are raw extension data, black lines are average linear models of extension for all  
595 *P. strigosa* cores across all reef environments, blue lines are average linear models of extension for all *P. strigosa*  
596 cores within each reef environment, and red lines are linear models of extension for individual *S. siderea* cores  
597 within reef environments. Raw (gray) and linearly modeled (red) extension chronologies highlight the variability in  
598 growth amongst colonies. (B) Slopes of linear models describing extension vs. time for each reef environment,  
599 with small points representing individual cores and large points representing average slopes of all cores within a reef  
600 environment [gray bars and colored bars are 50% and 95% confidence intervals (CI), respectively, of average slope  
601 for each reef environment]. Slopes are significantly different from each other if their 95% CI do not overlap.  
602 Likewise, slopes are significantly different from zero if their 95% CI do not overlap with the red dashed line  
603 centered on zero. (C) Five-year averages of skeletal extension rate by reef environment  $\pm$  1 SE. Asterisks indicate  
604 statistically significant differences ( $p < 0.05$ ) between nearshore and forereef values.

605

606 Figure 4: Total number of cores analyzed for each reef environment per species per year (top panel) and fraction of  
607 cores within each reef environment exhibiting anomalously low extension rates (i.e., annual extension rate in lowest  
608 10% of cores) per year (bottom panel). Higher values in bottom panel indicate greater proportion of cores within a  
609 reef environment exhibiting anomalously low extension within a given year. Black horizontal lines indicate time-  
610 averaged ratios for each reef environment (separated by species). Horizontal dashed lines indicate the 95%  
611 confidence interval for the time-averaged ratios for each reef environment. Peaks that exceed this confidence  
612 interval represent significantly ( $p < 0.05$ ) higher percentages of corals exhibiting anomalously low extension rates in  
613 a given year. Vertical dashed lines indicate years in which  $DHW \geq 4$  for each reef environment (Table 2).

614

615

## 616 References

617 Alemu JB, Clement Y (2014) Mass coral bleaching in 2010 in the southern Caribbean. *Plos ONE*, **9**,  
618 e83829.

619 Alvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R (2013) Shifts in coral-assemblage  
620 composition do not ensure persistence of reef functionality. *Scientific reports*, **3**.  
621 <https://doi.org/10.1038/srep03486>.

622 Alvarez-Filip L, Dulvy NK, Gill JA, Côté IM, Watkinson AR (2009) Flattening of Caribbean coral reefs:  
623 region-wide declines in architectural complexity. *Proceedings of the Royal Society of London B:  
624 Biological Sciences*, rspb20090339.

625 Aronson RB, Precht WF, Toscano MA, Koltes KH (2002) The 1998 bleaching event and its aftermath on a  
626 coral reef in Belize. *Marine Biology*, **141**, 435-447.

627 Banks S, Foster K (2016) Baseline Levels of *Siderastrea siderea* Bleaching under Normal Environmental  
628 Conditions in Little Cayman. *Open Journal of Marine Science*, **7**, 142.

629 Barkley HC, Cohen AL (2016) Skeletal records of community-level bleaching in *Porites* corals from Palau.  
630 *Coral Reefs*, **35**, 1407-1417.

631 Baumann JH, Townsend JE, Courtney TA, Aichelman HE, Davies SW, Lima FP, Castillo KD (2016)  
632 Temperature Regimes Impact Coral Assemblages along Environmental Gradients on Lagoonal  
633 Reefs in Belize. *Plos ONE*, **11**, e0162098. 10.1371/journal.pone.0162098.

634 Berkelmans R, Van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a  
635 'nugget of hope' for coral reefs in an era of climate change. *Proceedings of the Royal Society of  
636 London B: Biological Sciences*, **273**, 2305-2312.

637 Bove CB, Ries JB, Davies SW, Westfield IT, Umpanhowar J, Castillo KD (2019) Common Caribbean corals  
638 exhibit highly variable responses to future acidification and warming. *Proceedings of the Royal*  
639 *Society B*, **286**, 20182840.

640 Brooks RA, Di Chiro G (1976) Beam hardening in x-ray reconstructive tomography. *Physics in medicine*  
641 and biology

642 Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. *BioScience*, **43**, 320-326.

643 Buglass S, Donner SD, Alemu JB (2016) A study on the recovery of Tobago's coral reefs following the  
644 2010 mass bleaching event. *Marine Pollution Bulletin*, **104**, 198-206.

645 Burnham KP, Anderson DR (2002) *Model selection and multimodel inference: a practical information-*  
646 *theoretic approach*, Springer Science & Business Media.

647 Carilli J, Donner SD, Hartmann AC (2012) Historical temperature variability affects coral response to heat  
648 stress. *Plos ONE*, **7**, e34418.

649 Carilli JE, Norris RD, Black B, Walsh SM, Mcfield M (2010) Century-scale records of coral growth rates  
650 indicate that local stressors reduce coral thermal tolerance threshold. *Global Change Biology*,  
651 **16**, 1247-1257.

652 Carilli JE, Prouty NG, Hughen KA, Norris RD (2009) Century-scale records of land-based activities  
653 recorded in Mesoamerican coral cores. *Marine Pollution Bulletin*, **58**, 1835-1842.

654 Carricart-Ganivet JP, Merino M (2001) Growth responses of the reef-building coral *Montastraea*  
655 *annularis* along a gradient of continental influence in the southern Gulf of Mexico. *Bulletin of*  
656 *Marine Science*, **68**, 133-146.

657 Castillo KD, Ries JB, Bruno JF, Westfield IT (2014) The reef-building coral *Siderastrea siderea* exhibits  
658 parabolic responses to ocean acidification and warming. *Proceedings of the Royal Society of*  
659 *London B: Biological Sciences*, **281**, 20141856.

660 Castillo KD, Ries JB, Weiss JM (2011) Declining coral skeletal extension for fore reef colonies of  
661 *Siderastrea siderea* on the Mesoamerican Barrier Reef System, Southern Belize. *Plos ONE*, **6**,  
662 e14615.

663 Castillo KD, Ries JB, Weiss JM, Lima FP (2012) Decline of fore reef corals in response to recent warming  
664 linked to history of thermal exposure. *Nature Climate Change*, **2**, 756-760.

665 Chan NCS, Connolly SR (2013) Sensitivity of coral calcification to ocean acidification: a meta-analysis.  
666 *Global Change Biology*, **19**, 282-290. 10.1111/gcb.12011.

667 Chérubin L, Kuchinke C, Paris C (2008) Ocean circulation and terrestrial runoff dynamics in the  
668 Mesoamerican region from spectral optimization of SeaWiFS data and a high resolution  
669 simulation. *Coral Reefs*, **27**, 503-519.

670 Coles SL, Brown BE (2003) Coral Bleaching-Capacity for Acclimatization and Adaptation. *Advances in  
671 Marine Biology*, **46**, 183-213.

672 Connell SD, Russell BD (2010) The direct effects of increasing CO<sub>2</sub> and temperature on non-calcifying  
673 organisms: increasing the potential for phase shifts in kelp forests. *Proceedings of the Royal  
674 Society B: Biological Sciences*, **277**, 1409-1415. 10.1098/rspb.2009.2069.

675 Cooper TF (2008) Declining coral calcification in massive Porites in two nearshore regions of the  
676 northern Great Barrier Reef. *Global Change Biology*, **14**, 529-538, DOI:  
677 10.1111/gcb.2008.1114.issue-1113.

678 Cooper TF, De'ath G, Fabricius KE, Lough JM (2008) Declining coral calcification in massive Porites in two  
679 nearshore regions of the northern Great Barrier Reef. *Global Change Biology*, **14**, 529-538.

680 Cooper TF, Uthicke S, Humphrey C, Fabricius KE (2007) Gradients in water column nutrients, sediment  
681 parameters, irradiance and coral reef development in the Whitsunday Region, central Great  
682 Barrier Reef. *Estuarine, Coastal and Shelf Science*, **74**, 458-470.  
683 <http://dx.doi.org/10.1016/j.ecss.2007.05.020>.

684 Courtney TA, Lebrato M, Bates NR *et al.* (2017) Environmental controls on modern scleractinian coral  
685 and reef-scale calcification. *Science advances*, **3**, e1701356.

686 D'olivo J, Mcculloch M, Judd K (2013) Long-term records of coral calcification across the central Great  
687 Barrier Reef: assessing the impacts of river runoff and climate change. *Coral Reefs*, **32**, 999-  
688 1012.

689 Darling ES, Alvarez-Filip L, Oliver TA, Mcclanahan TR, Côté IM (2012) Evaluating life-history strategies of  
690 reef corals from species traits. *Ecology Letters*, **15**, 1378-1386.

691 Davies SW, Ries JB, Marchetti A, Castillo KD (2018) Symbiodinium Functional Diversity in the Coral  
692 Siderastrea siderea Is Influenced by Thermal Stress and Reef Environment, but Not Ocean  
693 Acidification. *Frontiers in Marine Science*, **5**. <https://doi.org/10.3389/fmars.2018.00150>.

694 Decarlo TM, Cohen AL, Barkley HC *et al.* (2015) Coral macrobioerosion is accelerated by ocean  
695 acidification and nutrients. *Geology*, **43**, 7-10.

696 Dodge RE, Aller RC, Thomson J (1974) Coral growth related to resuspension of bottom sediments.  
697 *Nature*, **247**, 574-576.

698 Donner SD, Knutson TR, Oppenheimer M (2007) Model-based assessment of the role of human-induced  
699 climate change in the 2005 Caribbean coral bleaching event. *Proceedings of the National  
700 Academy of Science*, **104**, 5483-5488.

701 Eakin C, Liu G, Gomez A *et al.* (2016) Global coral bleaching 2014–2017: status and an appeal for  
702 observations. *Reef Encounter*, **31**, 20-26.

703 Eakin CM, Morgan JA, Heron SF *et al.* (2010) Caribbean corals in crisis: record thermal stress, bleaching,  
704 and mortality in 2005. *Plos ONE*, **5**, e13969.

705 Elmhagen B, Kindberg J, Hellström P, Angerbjörn A (2015) A boreal invasion in response to climate  
706 change? Range shifts and community effects in the borderland between forest and tundra.  
707 *AMBIO*, **44**, 39-50. 10.1007/s13280-014-0606-8.

708 Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and  
709 synthesis. *Marine Pollution Bulletin*, **50**, 125-146.

710 Ferrier-Pages C, Witting J, Tambutte E, Sebens KP (2003) Effect of natural zooplanton feeding on the  
711 tissue and skeletal growth of the scleractinian coral *Stylophora pistillata*. *Coral Reefs*, **22**, 229-  
712 240.

713 Fitt WK, Brown BE, E. WM, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits  
714 and thermal thresholds in tropical corals. *Coral Reefs*, **20**, 51-56.

715 Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean  
716 corals. *Science*, **301**, 958-960.

717 Glenn E, Comarazamy D, González JE, Smith T (2015) Detection of recent regional sea surface  
718 temperature warming in the Caribbean and surrounding region. *Geophysical Research Letters*,  
719 **42**, 6785-6792.

720 Green D, Edmunds P, Carpenter R (2008) Increasing relative abundance of *Porites astreoides* on  
721 Caribbean reefs mediated by an overall decline in coral cover. *Marine Ecology Progress Series*,  
722 **359**, 1-10. 10.3354/meps07454.

723 Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals.  
724 *Nature*, **440**, 1186-1189. 10.1038/nature04565.

725 Hernández-Delgado EA, Toledo C, Claudio H *et al.* (2006) Spatial and taxonomic patterns of coral  
726 bleaching and mortality in Puerto Rico during year 2005. *Satellite Tools and Bleaching Response  
727 Workshop: Puerto Rico and the Virgin Islands*, 16.

728 Heyman WD, Kjerfve B (1999) Hydrological and oceanographic considerations for integrated coastal  
729 zone management in southern Belize. *Environmental Management*, **24**, 229-245.

730 Hoegh-Guldberg O, Bruno JF (2010) The Impact of Climate Change on the World's Marine Ecosystems.  
731 *Science*, **328**, 1523-1528. 10.1126/science.1189930.

732 Hoegh-Guldberg O, Mumby PJ, Hooten AJ *et al.* (2007) Coral Reefs Under Rapid Climate Change and  
733 Ocean Acidification. *Science*, **318**, 1737-1742.

734 Houlbreque F, Ferrier-Pages C (2009) Heterotrophy in Tropical Scleractinian Corals. *Biological Reviews*,  
735 **84**, 1-17. 10.1111/j.1469-185X.2008.00058.x.

736 Hughes TP, Graham NA, Jackson JB, Mumby PJ, Steneck RS (2010) Rising to the challenge of sustaining  
737 coral reef resilience. *Trends in Ecology & Evolution*, **25**, 633-642.

738 Hughes TP, Kerry JT, Álvarez-Noriega M *et al.* (2017) Global warming and recurrent mass bleaching of  
739 corals. *Nature*, **543**, 373-377.

740 Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals.  
741 *Marine Biology*, **43**, 201-208.

742 Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated  
743 temperature. *Coral Reefs*, **8**, 155-162.

744 Kemp DW, Hernandez-Pech X, Iglesias-Prieto R, Fitt WK, Schmidt GW (2014) Community dynamics and  
745 physiology of *Symbiodinium* spp. before, during, and after a coral bleaching event. *Limnology*  
746 and *Oceanography*, **59**, 788-797.

747 Knowlton N (2001) The future of coral reefs. *Proceedings of the National Academy of Sciences*, **98**, 5419-  
748 5425.

749 Kurz WA, Dymond CC, Stinson G *et al.* (2008) Mountain pine beetle and forest carbon feedback to  
750 climate change. *Nature*, **452**, 987-990.  
751 [http://www.nature.com/nature/journal/v452/n7190/supplinfo/nature06777\\_S1.html](http://www.nature.com/nature/journal/v452/n7190/supplinfo/nature06777_S1.html).

752 Lajeunesse TC, Smith RT, Finney J, Oxenford H (2009) Outbreak and persistence of opportunistic  
753 symbiotic dinoflagellates during the 2005 Caribbean mass coral 'bleaching' event. *Proceedings of*  
754 *the Royal Society of London B: Biological Sciences*, **276**, 4139-4148.

755 Lirman D, Fong P (2007) Is proximity to land-based sources of coral stressors an appropriate measure of  
756 risk to coral reefs? An example from the Florida Reef Tract. *Marine Pollution Bulletin*, **54**, 779-  
757 791.

758 Liu G, Strong AE, Skirving W, Arzayus LF (2006) Overview of NOAA coral reef watch program's near-real  
759 time satellite global coral bleaching monitoring activities. *Proceedings of the 10th international*  
760 *coral reef symposium: Okinawa*, 1783-1793.

761 Logan CA, Dunne JP, Eakin CM, Donner SD (2014) Incorporating adaptive responses into future  
762 projections of coral bleaching. *Global Change Biology*, **20**, 125-139.

763 Lough J, Barnes D (2000) Environmental controls on growth of the massive coral *Porites*. *Journal of*  
764 *Experimental Marine Biology and Ecology*, **245**, 225-243.

765 Lough JM, Cantin NE (2014) Perspectives on massive coral growth rates in a changing ocean. *The*  
766 *Biological Bulletin*, **226**, 187-202.

767 Manzello DP, Enochs IC, Kolodziej G, Carlton R (2015) Recent decade of growth and calcification of  
768 *Orbicella faveolata* in the Florida Keys: an inshore-offshore comparison. *Marine Ecology*  
769 *Progress Series*, **521**, 81-89.

770 Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and an  
771 azooxanthellate scleractinian reef coral. *Coral Reefs*, **23**, 218 - 224.

772 Mcfield MD (1999) Coral response during and after mass bleaching in Belize. *Bulletin of Marine Science*,  
773 **64**, 155-172.

774 Mcwilliams JP, Cote IM, Gill JA, Sutherland WJ, Watkinson AR (2005) Accelerating impacts of  
775 temperature-induced coral bleaching in teh Caribbean. *Ecology*, **86**, 2055-2060.

776 Mills MM, Lipschultz F, Sebens KP (2004) Particulate matter ingestion and associated nitrogen uptake by  
777 four species of scleractinian corals. *Coral Reefs*, **23**, 311-323.

778 Mills MM, Sebens KP (2004) Ingestion and assimilation of nitrogen from benthic sediments by three  
779 species of coral. *Marine Biology*, **145**, 1097-1106.

780 O'reilly CM, Alin SR, Plisnier P-D, Cohen AS, McKee BA (2003) Climate change decreases aquatic  
781 ecosystem productivity of Lake Tanganyika, Africa. *Nature*, **424**, 766-768.  
782 [http://www.nature.com/nature/journal/v424/n6950/supplinfo/nature01833\\_S1.html](http://www.nature.com/nature/journal/v424/n6950/supplinfo/nature01833_S1.html).

783 Oliver T, Palumbi S (2011) Do fluctuating temperature environments elevate coral thermal tolerance?  
784 *Coral Reefs*, **30**, 429-440.

785 Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future  
786 climate change. *Science*, **344**, 895-898.

787 Peters EC (2015) Diseases of coral reef organisms. In: *Coral reefs in the Anthropocene*. pp Page.,  
788 Springer.

789 Pinheiro J, Bates D, Debroy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package  
790 'nlme'. Linear and nonlinear mixed effects models, 3-1.

791 Podesta GP, Glynn PW (2001) The 1997-98 El Nino event in Panama and Galapagos: an update of  
792 thermal stress indices relative to coral bleaching. *Bulletin of Marine Science*, **69**, 43-59.

793 Pratchett MS, Anderson KD, Hoogenboom MO *et al.* (2015) Spatial, temporal and taxonomic variation in  
794 coral growth—implications for the structure and function of coral reef ecosystems.  
795 *Oceanography and Marine Biology: An Annual Review*, **53**, 215-296.

796 Prouty N, Hughen K, Carilli J (2008) Geochemical signature of land-based activities in Caribbean coral  
797 surface samples. *Coral Reefs*, **27**, 727-742.

798 Rhein M (2013) Observations: Ocean in Climate Change 2013 The Physical Science Basis in Working  
799 Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate  
800 Change (eds Stocker, TF *et al.*) 255–316. pp Page, Cambridge University Press.

801 Rippe JP, Baumann JH, De Leener DN, Aichelman HE, Friedlander EB, Davies SW, Castillo KD (2018)  
802 Corals sustain growth but not skeletal density across the Florida Keys Reef Tract despite ongoing  
803 warming. *Global Change Biology*, **24**, 5205-5217.

804 Rosset S, Wiedenmann J, Reed AJ, D'angelo C (2017) Phosphate deficiency promotes coral bleaching and  
805 is reflected by the ultrastructure of symbiotic dinoflagellates. *Marine Pollution Bulletin*, **118**,  
806 180-187.

807 Safaie A, Silbiger NJ, Mcclanahan TR *et al.* (2018) High frequency temperature variability reduces the risk  
808 of coral bleaching. *Nature communications*, **9**. <https://doi.org/10.1038/s41467-018-04074-2>.

809 Schramek T, Colin P, Merrifield M, Terrill E (2018) Depth-Dependent Thermal Stress Around Corals in the  
810 Tropical Pacific Ocean. *Geophysical Research Letters*, **45**, 9739-9747.

811 Smale DA, Wernberg T (2013) Extreme climatic event drives range contraction of a habitat-forming  
812 species. *Proceedings of the Royal Society B: Biological Sciences*, **280**.  
813 <https://doi.org/10.1098/rspb.2012.2829>.

814 Team RC (2017) R: A language and environment for statistical computing. R Foundation for Statistical  
815 Computing. Vienna, Austria.

816 Thattai D, Kjerfve B, Heyman W (2003) Hydrometeorology and variability of water discharge and  
817 sediment load in the inner Gulf of Honduras, western Caribbean. *Journal of Hydrometeorology*,  
818 **4**, 985-995.

819 Van Hooidonk R, Maynard JA, Liu Y, Lee SK (2015) Downscaled projections of Caribbean coral bleaching  
820 that can inform conservation planning. *Global Change Biology*, **21**, 3389-3401.

821 Walther G-R, Post E, Convey P *et al.* (2002) Ecological responses to recent climate change. *Nature*, **416**.  
822 <https://doi.org/10.1038/416389a>.

823 Wiedenmann J, D'angelo C, Smith EG, Hunt AN, Legiret F-E, Postle AD, Achterberg EP (2013) Nutrient  
824 enrichment can increase the susceptibility of reef corals to bleaching. *Nature Climate Change*, **3**,  
825 160-164.

826

827

Author Manuscript



gcb\_14784\_f1.pdf

Mexico

N

18

17

16

Author Manuscript

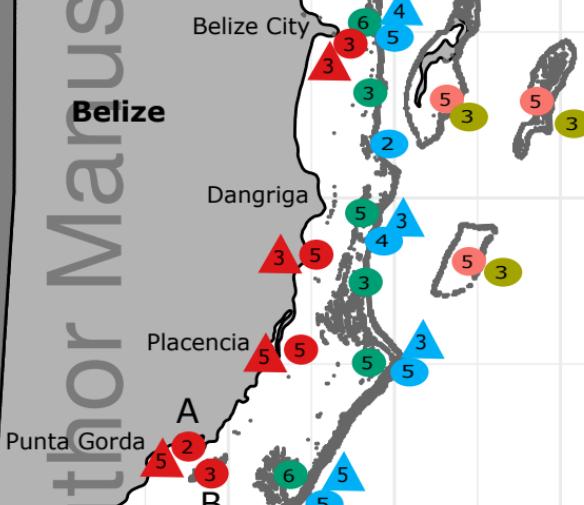
Belize

Honduras

Guatemala

-89.5

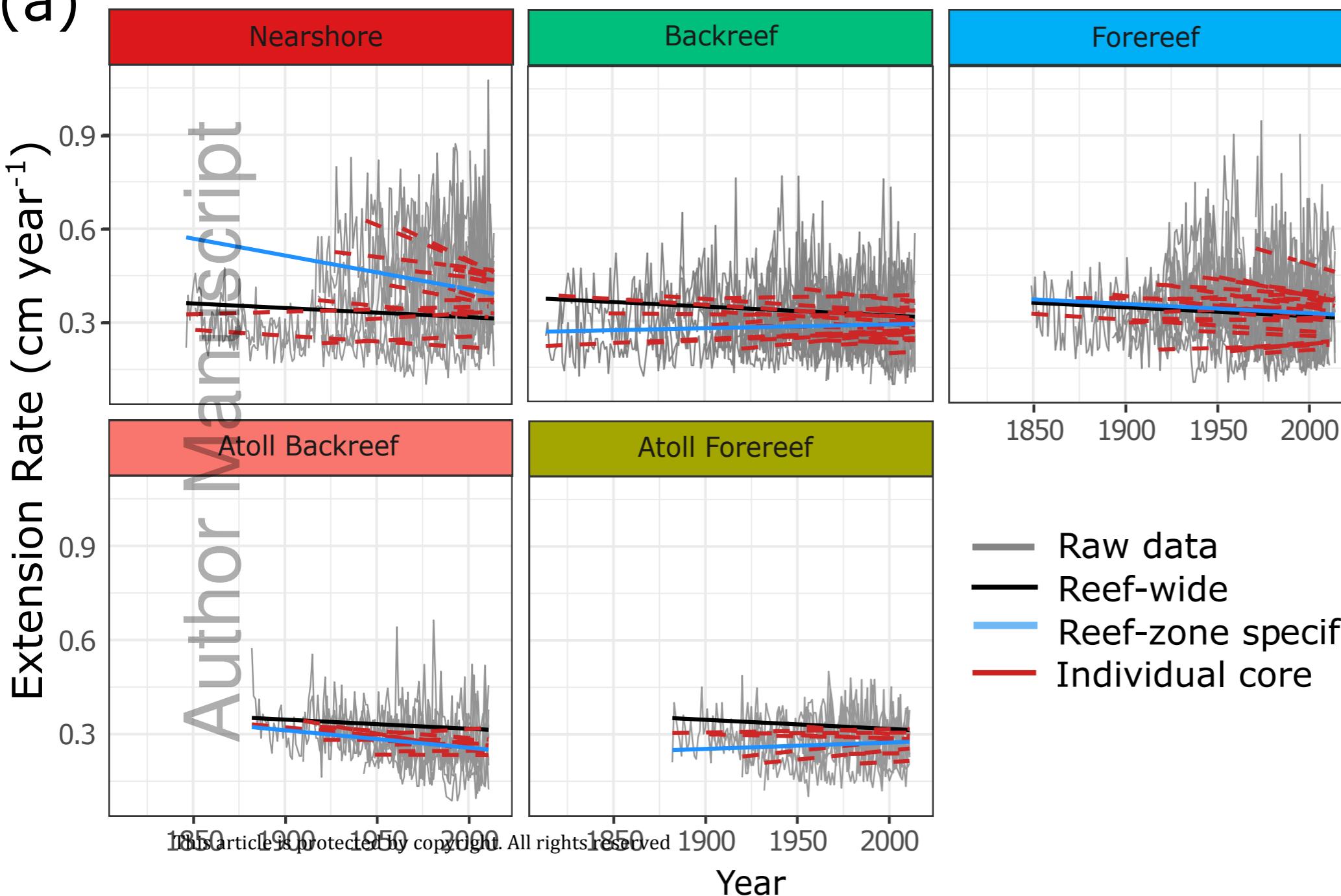
-89.0


-88.5

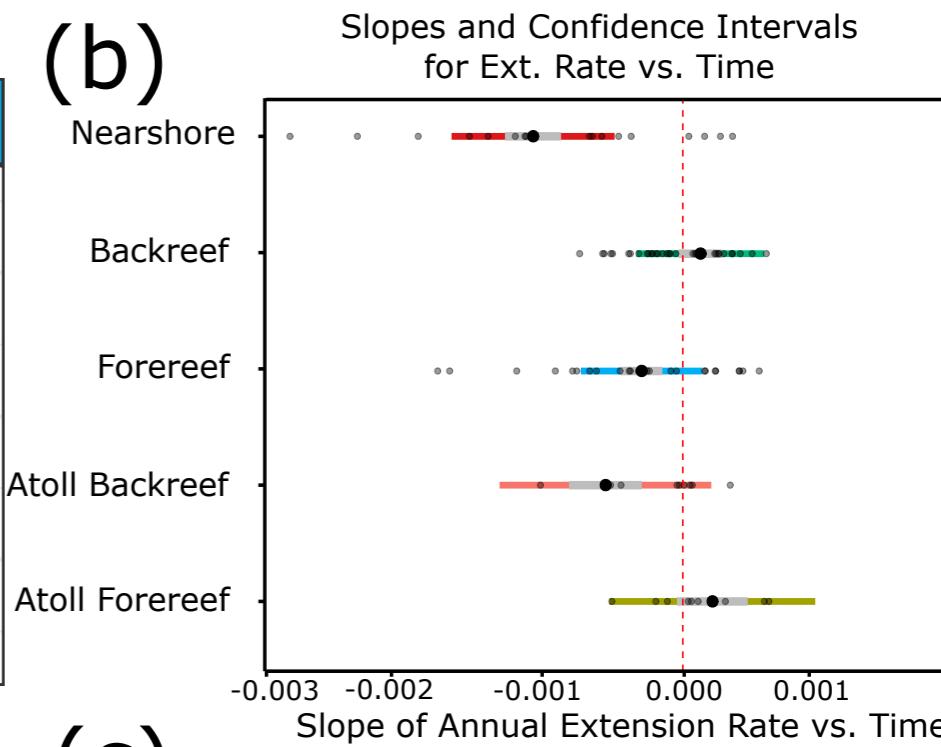
-88.0

-87.5

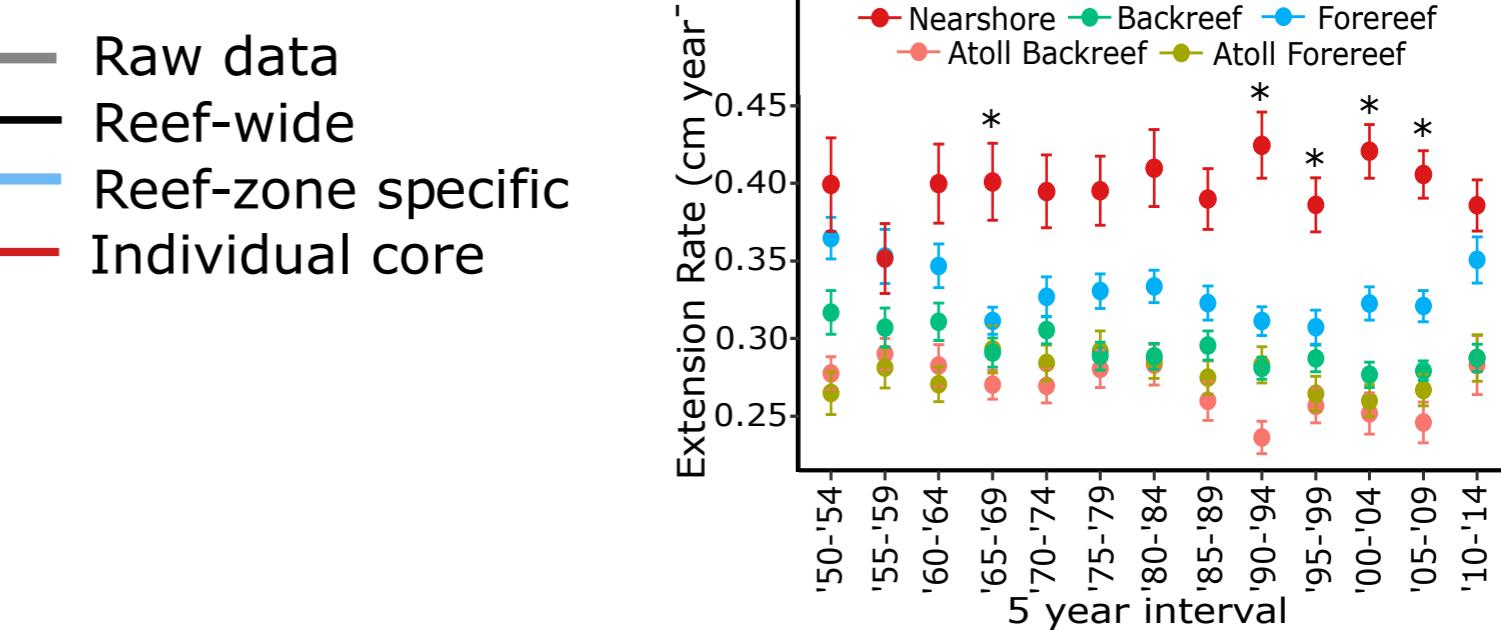
-87.0

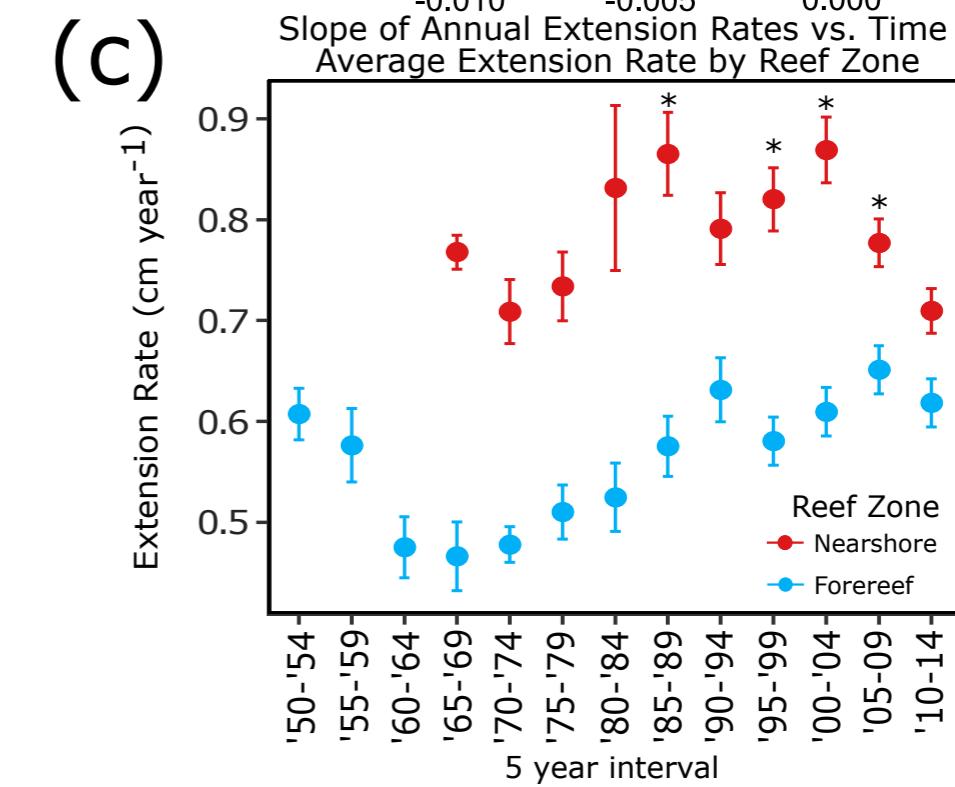
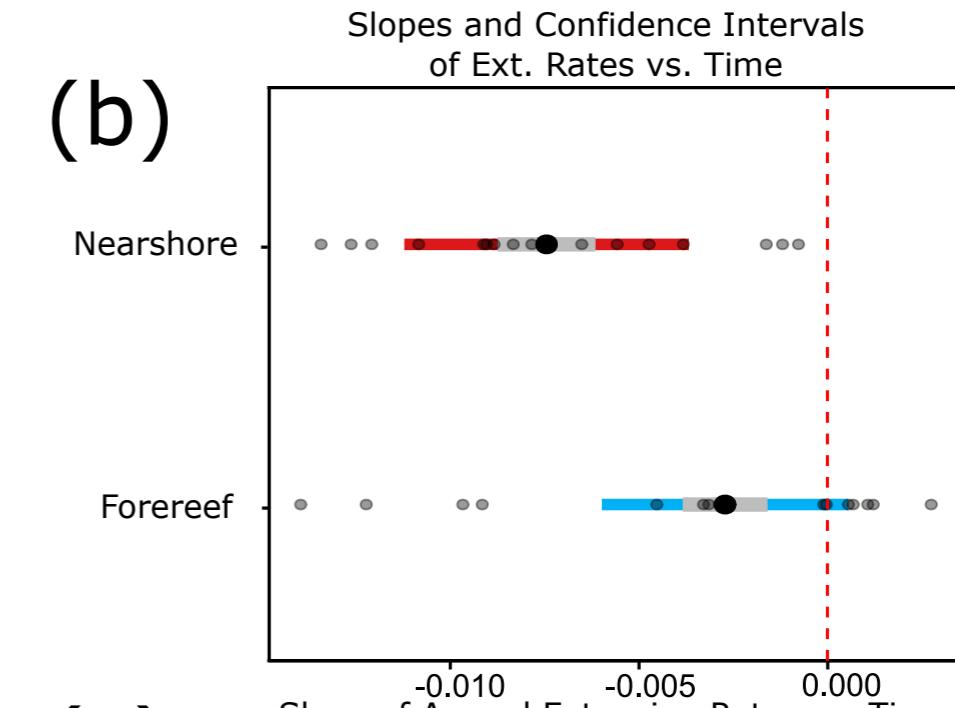
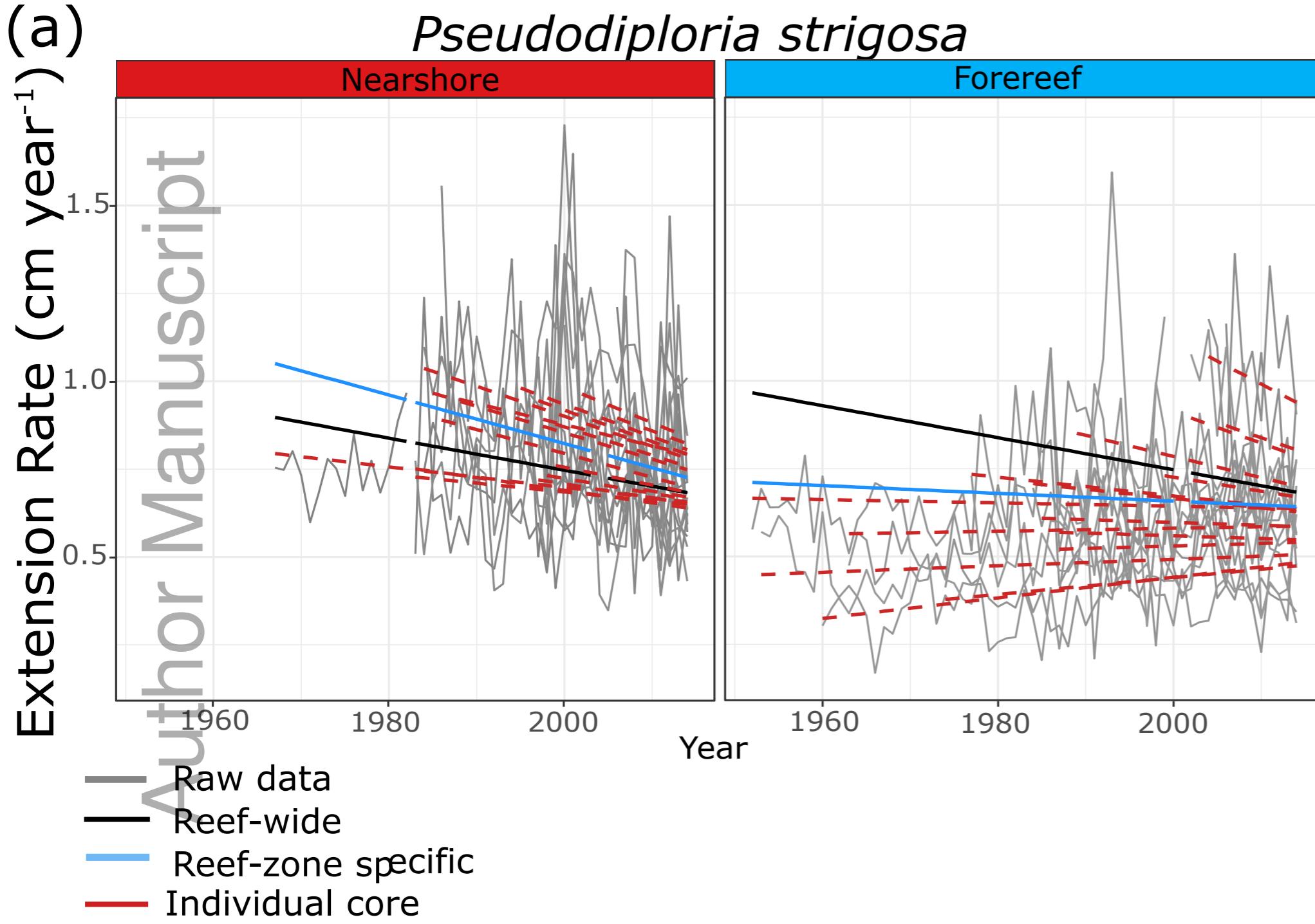

This article is protected by copyright. All rights reserved.

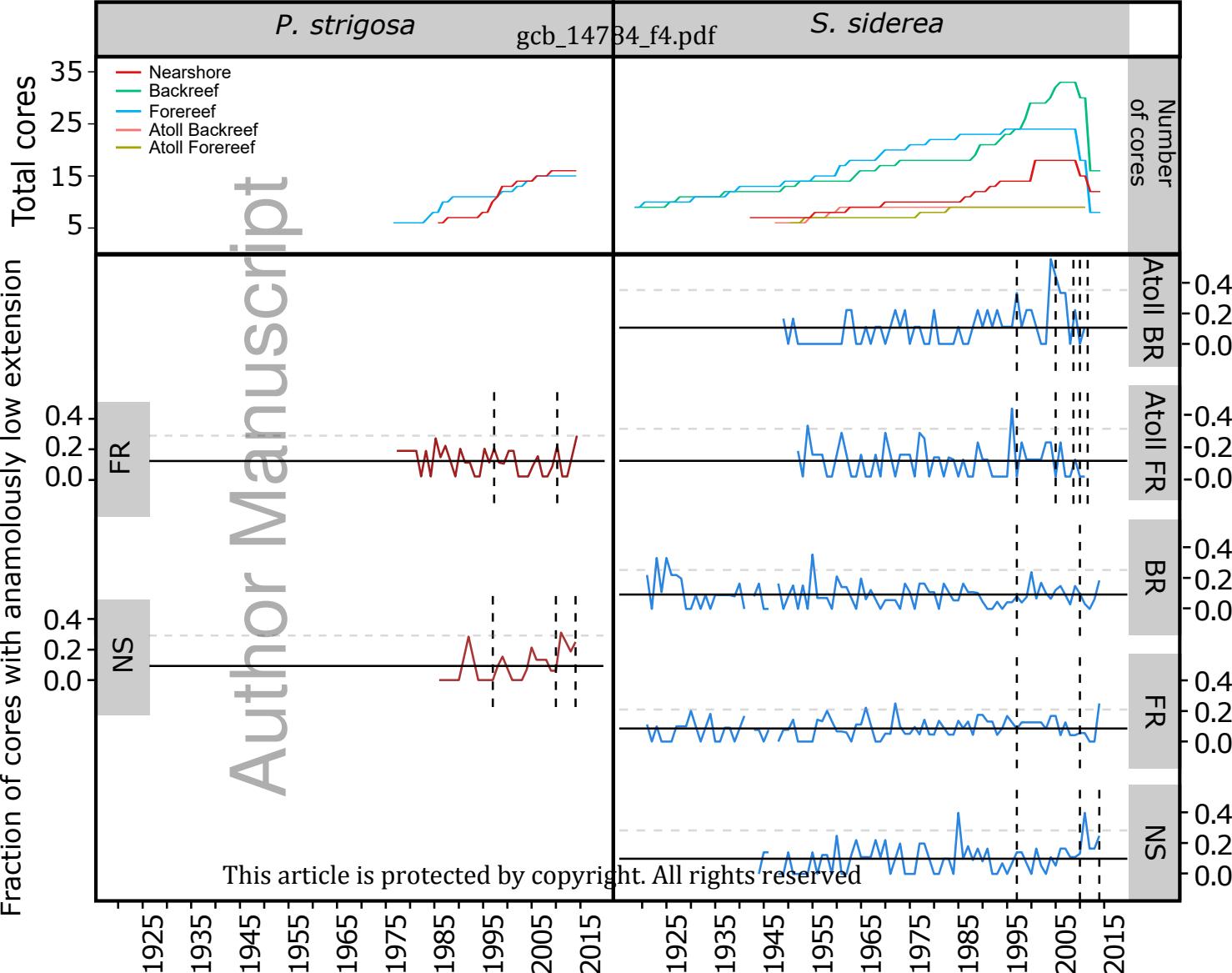



# *Siderastrea siderea*

gcf\_14784\_f2.pdf


(a)



(b)



(c)





