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ABSTRACT

Aim For over 80 years, the Maine baitworm trade has shipped live polychaete

worms and packing algae ‘wormweed’ to distributors world-wide, while also

consistently transferring a wide diversity and abundance of hitchhiking organ-

isms of all life stages to numerous recipient communities. Here, we investigate

this potent, yet underestimated, invasion vector using an important recipient

region (the Mid-Atlantic) to examine the stepwise species transfer and survival

along four stages of the vector.

Location Maine and Mid-Atlantic region (New Jersey, Delaware, Maryland,

Virginia and North Carolina), USA.

Methods We quantified taxonomic identities and abundances of organisms

associated with packing algae at four stages along the vector pathway during

summer 2011: (1) Maine source habitats; (2) bait boxes from Maine distribu-

tors; (3) bait boxes from distributors in five Mid-Atlantic States; and (4) bait

bags from retailers in five Mid-Atlantic States. We also examined functional

diversity based on significant physical and life history characteristics and

assessed genetic diversity for two common hitchhiking snail species.

Results We identified 17,798 live macro-organisms across 58 taxa, including

marine macro-invertebrates, macroalgae, vascular plants and semi-terrestrial or

aquatic invertebrates, present in bait boxes and bags. In all measures of diver-

sity and abundance, we observed decreases of live marine macro-invertebrates

across sequential stages of the vector from source to recipient regions. Signifi-

cant differences in community composition were also observed between stages

and were driven by isopods (taxonomic diversity) and isopods, amphipods and

some gastropods (functional diversity).

Main conclusions The lack of management in the face of the sheer magnitude

and diversity of organisms that are transported via the live marine bait trade

underscores how this is an underappreciated vector that could be a consider-

able source of successful invasions globally.

Keywords

biological invasions, bloodworm, introduced, marine, Mid-Atlantic (USA),

packing algae, wormweed.

INTRODUCTION

The accidental movement of organisms by human aided

transport mechanisms (vectors) has become a major contribu-

tor to the homogenization of marine biotas globally (Ruiz &

Carlton, 2003; Lockwood et al., 2005). In coastal ecosystems,

vectors such as ships’ hull fouling and ballast water are recog-

nized as important conveyors of organisms across natural dis-

persal barriers, contributing strongly to invasion dynamics

(Carlton & Geller, 1993; Ruiz et al., 2000). However, a diverse
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range of other vectors can also be potent mechanisms of

biological invasion and subsequent ecological impact (Carlton

1992; Weigle et al., 2005). One such vector is the live bait

trade, which delivers bait and associated organisms via over-

night shipping to commercial distributors, bait shops and

individual patrons world-wide. Bait vectors differ from other

types of live trade, because bait and associated organisms are

often used and sometimes released in natural habitats where

they have opportunities to successfully establish and spread

(Lau, 1995).

Due to their large size, marine polychaetes are used as live

bait by recreational fishermen for a wide variety of fish spe-

cies (Brown, 1993). In the USA, Maine is the largest supplier

of marine bait for recreational fishing (Cohen et al., 2001).

The Maine industry harvests ‘wild-caught’ polychaetes [pri-

marily bloodworms Glycera dibranchiata Ehlers 1868 and

sandworms Nereis (Alitta) virens Sars 1835] from intertidal

mudflats throughout coastal Maine. Worms are then packed

in shallow newspaper-lined cardboard boxes, which are filled

with ‘wormweed’ [i.e. a free-living growth form of the brown

algae Ascophyllum nodosum (Linnaeus) Le Jolis 1863 ecad

scorpioides] and frozen ice packs and shipped overnight to

distributors world-wide (Creaser et al., 1983; Crawford,

2001).

While the freshwater live bait trade has been explored as

a mechanism for introducing both vertebrates and inverte-

brates (e.g. Keller et al., 2007; Drake et al., 2015), the

Maine marine baitworm trade differs significantly as a

transport mechanism because it transfers a wide diversity

and abundance of hitchhiking organisms of all life stages

(including gravid females) that are naturally associated with

wormweed, resulting in the relocation of relatively intact

communities. Previous studies have identified > 50 taxa,

comprised of algae, invertebrates, fungi and protists (in-

cluding harmful microalgae) in bait boxes (Cohen et al.,

2001; Haska et al., 2011). In San Francisco Bay, Lau (1995)

found that 40% of anglers discarded both leftover bait and

wormweed into the water and introductions of multiple

species have been associated with this vector there (see Dis-

cussion). Other than the study by Lau (1995), the end-user

behaviour of marine fishermen using wormweed is an

unknown variable but is presently being investigated by

other researchers (M. Paolissio, pers. comm.). While past

research has demonstrated the vector’s operation and some

understanding of entrained species richness (e.g. Cohen

et al., 2001; Haska et al., 2011; Cohen, 2012), the potential

scope of biotic transfer may be vastly underestimated, espe-

cially in terms of live species richness and abundance of

organisms delivered to recipient regions.

More broadly, the Maine bait trade has well-known source

and recipient regions, resulting in consistent, predictable and

repeated transfers of biota over time. These characteristics

have important implications for invasion dynamics and also

provide a highly tractable system to examine the stepwise

species transfer and survival process. In our study, we evalu-

ate the scope and operation of this vector by measuring

diversity (taxonomic, functional and genetic), abundance and

community composition at four stages along the vector path-

way: from Maine field sites (i.e. wormweed habitats) to

Maine distributors to Mid-Atlantic distributors and finally to

Mid-Atlantic retailers. Our investigation provides a model

for understanding similar vector pathways that distribute

biota world-wide.

METHODS

To assess the richness and abundance of marine invertebrates

transported through the live Maine marine baitworm trade,

we quantified the taxonomic identities and number of indi-

viduals at four discrete stages along the vector pathway from

Maine to the Mid-Atlantic, USA (Fig. 1), including: (1) nat-

ural wormweed source habitats in Maine [e.g. saltmarsh and

shoreline habitats where free-living Ascophyllum grows and is

collected (Maine field – MEf)]; (2) bait boxes packed with

wormweed purchased directly from Maine distributors

(MEd) and shipped to the Smithsonian Environmental

Research Center (SERC, Edgewater, Maryland); (3) bait

boxes purchased directly from Mid-Atlantic distributors

(MAd) in five Mid-Atlantic states: New Jersey, Delaware,

Maryland, Virginia and North Carolina; and (4) bait bags

purchased from two local bait retailers (MAr) in each of the

five states. In addition to measures of taxonomic diversity,

we also assigned all taxa to functional categories and calcu-

lated functional diversity across the four stages of the vector.

Finally, we assessed the genetic diversity of two common

hitchhiking snail species and measured haplotype diversity

across the first three stages of the vector.

Sample collection

For each of the four stages, we collected samples during

summer 2011 to coincide with the season of expected maxi-

mum abundance and species richness for field sites at tem-

perate latitudes and the greatest number of hitchhikers in

Maine baitworm shipments (Haska et al., 2011). Details for

collections by stage are outlined below.

Maine Field (MEf)

We selected five sites (Fig. 1) that are actively used for

wormweed collections (P. Thayer, Maine Department of

Marine Resources, pers. comm.). At low tides in July 2011,

we collected wormweed from six randomly positioned

0.5 m2 quadrats along a 30-m intertidal transect line running

parallel to the water’s edge at the elevation where the free-

living Ascophyllum occurred at highest densities. All worm-

weed was collected from each quadrat. When empty quadrats

were encountered, haphazard re-positioning of the quadrat

to the nearest location with wormweed present augmented

the collection. Wormweed from the six quadrats was com-

bined and randomly divided into three replicate quarts

(0.95 L) per site. Within 12 h of collection, all wormweed
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was closely examined for associated biota (see ‘Sample Anal-

ysis’ below).

Bait boxes from Maine Distributors (MEd)

We identified five Maine baitworm distributors from the

Boothbay region northwards (Fig. 1). Each distributor

shipped a bait box of 250 worms with wormweed to SERC

every week for 3 weeks. The distributors were aware they

were sending bait boxes to SERC, but did not know the pre-

mise of this study.

Bait boxes from Mid-Atlantic Distributors (MAd)

We identified one distributor in each of five Mid-Atlantic

States (NJ, DE, MD, VA and NC) from whom we purchased

a bait box of 250 worms every week for 3 weeks (Fig. 1). All

bait boxes were purchased from the distributor, placed in an

insulated cooler and driven to SERC for analysis.

Bait bags from Mid-Atlantic Retailers (MAr)

We obtained five bait bags (a plastic bag containing a small

amount of wormweed and 10–12 worms) from 10 Mid-At-

lantic retailers (Fig. 1) every week for 3 weeks (total = 150

bait bags). Collectively, the volume of wormweed in five bait

bags equalled one quart. Five of these retailers were the same

MAds from whom we purchased bait boxes, and five were

additional bait shops, one from each Mid-Atlantic state. We

categorized all of the bait bag sources as Mid-Atlantic retail-

ers (MAr = 10). Both MAds and MArs were chosen based

on their advertised sale of live bloodworms, proximity to

major recreational fishing areas and geographic location in

the Mid-Atlantic region. Bait bags were purchased, placed in

a cooler and driven to SERC for analysis.

Sample analysis

Taxonomic richness and abundance

Replicate samples of wormweed from each vector stage were

refrigerated (5 °C) to keep wormweed, associated organisms

and bloodworms (when applicable) cool while awaiting

examination (≤ 12 h). For bait boxes and bags, bloodworms

were separated from wormweed, and wormweed was sepa-

rated into three 1-quart containers to create three replicate

volumes for each box. Replicates of wormweed and blood-

worms were rinsed separately in artificial saltwater (30 ppt)

to dislodge any associated organisms. Rinse water was sieved

(63 lm) to retrieve dislodged biota. Wormweed from each

replicate was then visually inspected for all biota, which were

removed, placed into glass specimen dishes and examined

under a stereomicroscope (409). Organisms were assigned

to coarse taxonomic groupings (e.g. family or genus) based

on clear morphological signatures, assessed (and separated)

as ‘live’ or ‘dead’ based on movement in response to stimuli

(light and touch) and preserved in 70% ethanol for further

examination and identification to lowest possible taxonomic

level (species whenever possible). Counts were recorded to

provide measures of richness and abundance per taxa.

Functional diversity

Functional groups were classified using five dimensions which

describe significant physical and life history characteristics in

marine benthic communities (See Table S1 in Supporting

Figure 1 Map and schematic of

sampling regime for the four stages of

the baitworm vector from the source

(Maine field) to recipient regions (Mid-

Atlantic) during summer 2011. MEf,

Maine field sites; MEd, Maine

distributors; MAd, Mid-Atlantic

distributors; MAr, Mid-Atlantic retailers.

In some cases, bait bags were bought

from the same MAd and MAr (i.e. these

Mid-Atlantic distributors are also Mid-

Atlantic retailers), and these MAd/MAr

are represented by a star symbol plus an

inverted triangle.
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Information; adapted from Wahl, 2009): body size (small,

medium, large or very large); growth form (encrusting, mas-

sive, bushy or filamentous); trophic type (autotroph, suspen-

sion feeder, deposit feeder, predator or grazer); modularity

(solitary or colonial); and motility (attached, crawling, swim-

ming, drifting or burrowing). These traits could theoretically

generate 800 functional groups.

Genetic diversity

Two frequent hitchhikers in the baitworm vector, L. saxatilis

(rough periwinkle) and L. littorea (common periwinkle),

were chosen for genetic diversity analyses because they were

common across the vector and thereby had sufficient num-

bers for population genetics analyses. Furthermore, they both

occur as non-native populations in California (Carlton &

Cohen, 1998; Chang et al., 2011), and L. saxatilis is thought

to have been introduced via the Maine bait vector (Carlton

& Cohen, 1998). Snails were collected from MEf, MEd and

MAd. We also included supplementary population data from

nearby Maine field sites which was previously sampled and

sequenced for L. littorea (Blakeslee et al., 2008) and L. sax-

atilis (A.M. Blakeslee, unpublished).

Mitochondrial DNA was extracted from the snail’s foot

using a standard CTAB method (France et al., 1996). For

L. littorea, a 624-bp fragment of the cytochrome b gene was

amplified using primers and protocols from Blakeslee et al.

(2008). For L. saxatilis, we amplified a 757-bp fragment of

the cytochrome oxidase I gene using the following forward

and reverse primers (A.M. Blakeslee, unpublished): LSCOI-

BLA-F: TTCTCCCTGGGTTTGGTATG; LSCOIBLA-R: AAAT

GGGCTTTTGTTCATCG. PCR protocols followed those used

previously for L. littorea (Blakeslee et al., 2008). Sequencing

was completed at the Smithsonian Institution’s Laboratory of

Analytical Biology (Suitland, Maryland, USA) in both for-

ward and reverse directions. Sequences were assembled and

inspected by eye for ambiguities using LaserGene DNASTAR,

Inc., Madison, WI, USA (10.1.1).

Statistical analyses

Data from one Maine distributor were an outlier and excluded

from the analyses below; this distributor used unprinted news-

paper (rather than wormweed) for packaging, which was lar-

gely devoid of live hitchhikers (one live snail and one live

cricket across all bait boxes). The remaining data were anal-

ysed using univariate and multivariate methods. While we

documented occurrences of both marine and terrestrial

macro-organisms, our analyses focused on marine macro-in-

vertebrates only, which comprised the majority of individuals

and were best resolved taxonomically. One-way ANOVAs

tested differences across vector stages for several dependent

variables: abundance, taxonomic richness and functional

diversity. Homogeneity of variances and normality was tested

using the Levene Median test and Shapiro–Wilk test, respec-

tively. Kruskal–Wallis ANOVA on ranks using Dunn’s test was

used for all pairwise comparisons when data were not nor-

mally distributed, and significance was assigned for P < 0.05.

To investigate community composition at all four vector

stages, abundance was square-root-transformed to decrease

the importance of very abundant species. Transformed values

were used to create a resemblance matrix using S17 Bray–Cur-
tis similarity index (Bray & Curtis, 1957). These data were

compared using the different vector stages of sampling as fac-

tors, and non-metric multidimensional scaling plots (MDS)

were generated to visualize differences among vector stages.

One-way analysis of similarity (ANOSIM) and multiple pair-

wise comparisons were used to determine whether significant

differences in taxa assemblages existed between pairs of stages.

SIMPER analysis was conducted on the square-root-trans-

formed data to determine which taxa were driving the differ-

ences observed. ANOSIM, MDS and SIMPER analyses were

performed using PRIMER 6 (Clarke & Gorley, 2006).

To minimize the underestimation of local taxonomic rich-

ness, rarefaction analyses were employed to construct accu-

mulation curves using PRIMER 6 (Clarke & Gorley, 2006)

and the second-order jackknife estimator (Jack2; Smith &

van Belle, 1984). Jack2 has been shown to be the best estima-

tor for characterizing marine benthic communities (Can-

ning-Clode et al., 2008). Because a clearly asymptoting

accumulation curve indicates complete capture of the total

taxa richness in a population (Gotelli & Colwell, 2001), Jack2

estimator curves and taxa accumulation curves converging

on the same asymptote were assumed to reflect ade-

quate sampling (Walther & Morand, 1998).

Littorina spp. sequences were aligned using Geneious 7.1.7

(Biomatters Ltd., Auckland, New Zealand) and collapsed into

haplotypes using TCS 1.21 (Clement et al., 2000). For each

species, we calculated fixation indices for population pairs

based on pairwise differences between haplotypes (ФST), test-

ing significance of differentiation in Arlequin 3.11 (Excoffier

et al., 2005). Pairwise ФST spatial patterns were explored using

MDS analysis (PRIMER 6; Clarke & Gorley, 2006) between

and among the four stages. Finally, we estimated expected

haplotype richness (compared to observed haplotype richness)

for each stage using ESTIMATES 8.20 (Colwell, 2009).

RESULTS

We identified 58 live taxa that were alive in bait boxes and

bags at distributors (MEd, MAd, MAr), excluding field collec-

tions prior to distribution (MEf) (see Table S2). In addition

to baitworms and wormweed, live biota included marine

macro-invertebrates (37 taxa), macroalgae (8 taxa), vascular

plants (2 taxa) and semi-terrestrial or aquatic invertebrates

(11 taxa). Live marine invertebrates included gravid individu-

als for some taxa and egg cases for snails and flatworms. Eight

additional marine invertebrate taxa were only found as dead

individuals in bait boxes or bags, and further additional taxa

were detected only in the field collections (see Table S2).

In total, we detected and characterized 17,798 live macro-

organisms; 99% of these were marine invertebrates, which
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constituted 96.7–99.7% of each vector stage (see Table S3).

Below, we examine further measures of abundance and

diversity that focus on marine invertebrates alone, due to the

dominance and relatively high taxonomic resolution for this

group. When considering all taxonomic groups combined,

the same overall patterns are seen across vector stages, but

the level of taxonomic identification is highly uneven outside

the marine invertebrates (see Table S3).

Abundance

The mean number of live marine macro-invertebrates per stan-

dardized sample decreased across sequential stages of the vec-

tor (Fig. 2a). Pairwise comparisons revealed that abundance of

live organisms in the initial stage in Maine (MEf) differed sta-

tistically from that at the Mid-Atlantic distributors (MAd,

MAr), but other comparisons were not significant. The rela-

tively high abundances of live organisms in Maine field (MEf)

samples were driven by large numbers of isopods (Jaera alb-

ifrons Leach 1814, range 14–805), Littorine snails (L. saxatilis,

range 0–336; and L. obtusata, range 0–102), marine mites (e.g.

Halacaridae, range 0–491), flatworms (range 0–364) and free-

living nematodes (range 0–716). The dominance of these par-

ticular organisms at the MEf stage was also reflected in their

mean abundances, compared to those for other taxa, but was

less pronounced at subsequent stages (see Table S2).

Mortality of organisms contributed partly to the overall

abundance decline across stages, as indicated by the decline in

percentage of total live organisms. There was an overall signifi-

cant difference among stages, such that mean percentage live

marine macro-invertebrates from MEf (84%) was significantly

higher than all other stages; the other three stages were not sig-

nificantly different from one another (58–67%) (see Table S3).

Taxonomic richness

Both total and average taxonomic richness decreased from

MEf to MAr for live marine macro-invertebrates. There was

a significant decline in the mean taxonomic richness of live

marine macro-invertebrates between Maine vector stages

(MEf, MEd) and Mid-Atlantic stages (MAd, MAr) (Fig. 2b;

see Table S3). Rarefaction analyses further indicated that a

much larger species pool existed at the MEf stage than was

included in our samples. The difference between the

observed (38 taxa) and expected (57 taxa) values at this stage

represented a 50% increase in taxonomic richness (Fig. 3; see

Table S3). In contrast, the expected values of taxonomic

richness for the other three vector stages were only 9–19%
above observed values, suggesting samples at the distributor

and retail levels captured the majority of taxa.

The combination of taxonomic richness and abundance

defined live marine macro-invertebrate community structure,

which differed significantly across the four different stages

(Fig. 4a, see Table S4). The most similar taxa compositions

were between MEd and MAd, and the most dissimilar were

MEf and MAr (see Table S4). A single species, the isopod

J. albifrons, contributed the most (18.4–21.51%) to total

average dissimilarity between stages (see Table S4), except

for the comparison of MAd and MAr (where community

composition was similar).

Functional diversity

Mean functional richness decreased from Maine stages (MEf,

MEd) to Mid-Atlantic stages (MAd, MAr) for live marine

macro-invertebrates (Fig. 2c, see Table S3). Similar to trends

observed in taxonomic richness, rarefaction curves suggested

that 25% more functional groups exist in MEf than were
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Figure 2 Mean abundance (� SE) (a), taxonomic richness

(� SE) (b) and functional richness (� SE) (c) of live marine

invertebrates found in replicate quarts during summer 2011 at

each stage of the vector: Maine field (MEf), Maine distributor

(MEd), Mid-Atlantic distributor (MAd) and Mid-Atlantic

retailer (MAr). Capitalized letters above the bars indicate

pairwise significant differences (P < 0.05).
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actually observed, but increases between observed and

expected functional richness also existed for MEd (12.5%)

and MAd (25%) (see Table S3). Only MAr showed no

increase between observed and expected values.

Functional diversity also defined live marine macro-inver-

tebrate community structure and differed significantly across

the four different stages (Fig. 4b, see Table S4). The stages

with the most similar functional group compositions were

MAd and MAr, and the most dissimilar were MEf and MAr

(see Table S4). In all cases, MMGSC (medium body size,

massive growth form, grazing trophic type, solitary modular-

ity and crawling motility) (e.g. amphipods, isopods and

(a) (b)

(c) (d)

Figure 3 Rarefaction curves for live marine invertebrates across the four stages of sampling from replicate quarts of packing algae:

Maine Field (MEf) (a), ME Distributor (MEd) (b), Mid-Atlantic distributor (MAd) (c), Mid-Atlantic Retailer/Bait shop (MAr) (d).

Circles represent the accumulated observed richness (sobs) (� SE), and diamonds represent jackknife second-order (Jack2) estimated

richness (� SE) across sampled individuals. The y-axis scale is standard across the four panels, but the x-axis is scaled differently to

demonstrate the patterns and the abundance of individuals at each stage.

(a) (b)

Figure 4 Multidimensional scaling plot of abundances of live marine invertebrates during summer 2011 across the four stages of

sampling from replicate quarts: Maine Field (MEf), ME Distributor (MEd), Mid-Atlantic distributor (MAd), Mid-Atlantic Retailer/Bait

shop (MAr) using two measures of diversity: taxonomic (a) and functional (b). (a) Taxonomic diversity: ANOSIM global R = 0.21;

significance level of sample statistic = 0.1%; pairwise tests between all stages at the R significance level are between 0.1 and 1.9%, except

for MAd and MAr (86.5%) and MEd and MAr (53.8%). (b) Functional diversity: ANOSIM global R = 0.32; significance level of sample

statistic = 0.1%; pairwise tests between all stages at the R significance level are between 0.1 and 3.9%, except for MAd and MAr

(84.3%). One outlier (MEd) with 0 abundance was excluded from this analysis.
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some gastropods) contributed the most to average dissimilar-

ity (37.86–46.25%) (see Tables S4 and S1).

While not included above in comparisons of functional

diversity across vector stages, the distribution of reproductive

modes for the cumulative species pool is also noteworthy. Of

the 41 marine macro-invertebrate taxa recorded in our study,

54% have direct development (see Table S2). Another 36%

brood larvae, lay eggs or have the capacity for asexual repro-

duction. Only 10% of all marine macro-invertebrate taxa

observed are considered free-spawning.

Genetic diversity of Littorina spp.

We had greater success obtaining sequence data for L. sax-

atilis than L. littorea, and both species were encountered

more frequently in field samples than bait box stages, result-

ing in greater numbers of samples for MEf than for MEd or

MAd. Altogether, we obtained 177 sequences for L. saxatilis

(105 MEf, 30 MEd, 42 MAd) and 64 sequences for L. ittorea

(53 MEf, 0 MEd, 11 MAd).

In MEf, L. saxatilis is represented by two abundant haplo-

types (red and blue in Fig. 5a), which are also the most

abundant (and sometimes exclusive) haplotypes found in

MEd and MAd. The red haplotype is more prevalent in

southern than northern Maine populations. Such variation

in haplotype frequencies was also seen at the distributor level

(MEd, MAd), reflecting different geographic sources of

wormweed. In comparison, L. littorea had much greater hap-

lotype diversity in MEf, with a relatively small subset

detected in MAd due to low sample size from distributors

and relatively high haplotype diversity (Fig. 5c).

Both periwinkle species declined in observed and expected

genetic diversities across all vector stages (MEf, MEd, MAd).

Rarefaction curves suggest that both species are under-sam-

pled for haplotype richness in MEf. Rarefaction curves

on MEd and MAd samples suggest very few additional

(a)

(b)

(c)

(d)

Figure 5 Haplotype frequency maps and rarefaction curves of observed and estimated haplotype richness for two of the most common

species found in the live bait vector, the marine snails, Littorina saxatilis (LS,a–b) and Littorina littorea (LL, c–d), across three stages of

sampling (MEf, MEd and MAd, except for L. littorea MEd because sequence data could not be obtained). Map a and c: haplotype

frequency for each snail found from MEf, MEd and MAd. The rarefaction curves showing observed haplotype richness (Sobs) (� SE)

and expected haplotype richness (Jack2) (� SE) are depicted in b at the MEf stage and in d at the MEd and MAd stage for both snail

species.
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haplotypes would be expected in the MEd or MAd stages for

L. saxatilis, while the MAd stage for L. littorea suggests more

haplotypes would be expected with further sampling. How-

ever, fewer L. littorea were found at this stage than for

L. saxatilis, suggesting a possible artefact of low sampling for

L. littorea (see Table S3, Fig. 5b, d).

DISCUSSION

The Maine live bait worm trade is a potent vector for the

ongoing introduction of live marine organisms around the

globe (Weigle et al., 2005; Haska et al., 2011; Cohen, 2012),

especially when wormweed is used for packing material and

contains a diverse range of associated organisms. To date, at

least 114 taxa have been found alive in baitworm shipments

from Maine to other geographic regions, including 58 taxa

in this study and 56 additional taxa reported in previous

studies (Haska et al., 2011; Cohen, 2012). Moreover, the

cumulative species richness associated with these shipments

is still underestimated, particularly as (1) the microorgan-

isms, epibiota and parasites have received relatively little in-

depth analysis, and (2) the species pool and environmental

conditions change through time.

While doubling the known number of live species trans-

ferred by the Maine baitworm vector, our study provides the

first formal analysis of changes in biota associated with

sequential stages of the vector and insight into the species

pool at each stage, focusing on macro-invertebrates. The

highest mean (per sample) values for abundance, species

richness and functional richness were observed in Maine

(MEf, MEd), and these were significantly lower upon arrival

to the Mid-Atlantic (MAd, MAr). Rarefaction curves also

indicate that the cumulative species pools were smallest in

the Mid-Atlantic (MAd, MAr) and were well characterized

by our sampling effort, with observed and predicted species

richness reaching the same asymptote (Fig. 3). In contrast,

the observed species richness was higher for Maine field sam-

ples than Mid-Atlantic distributors and retailers, and the pre-

dicted species richness was > 50% greater than the observed

value for Maine field samples. Taken together, these data

indicate that species richness is underestimated in Maine

field samples, even for well-studied macro-invertebrates, and

only a subset of species have been detected downstream at

the Mid-Atlantic (MAd, MAr) stages. Similar patterns existed

when considering genetic diversity for the snails Littorina

spp. (Fig. 5).

Studies to date provide only brief snapshots in time of the

biota transferred by this vector (e.g. Haska et al., 2011;

Cohen, 2012). While rarefaction curves indicate more taxa

are available in Maine for transport than were detected in

our samples, this is likely to be influenced by temporal and

spatial variation (i.e. when and where wormweed is being

collected) over both short and long time-scales. This varia-

tion affects the cumulative taxonomic richness entrained in

wormweed at Maine distributors and, ultimately, which taxa

arrive to recipient regions due to several mechanisms. First,

invertebrate populations undergo temporal (seasonal and

annual) fluctuation in abundance such that the probability

of collecting resident species should increase over time

(Soberon & Llorente, 1993). Second, fluctuations in abun-

dance and environmental conditions should affect the num-

ber of individuals (per taxa) arriving to Maine distribution

hubs as well as the probability that some taxa will survive

one or more transfer events to recipient regions. Third, the

actual taxonomic richness in Maine is changing through

time, due to invasions and range expansions (e.g. Thayer &

Stahlnecker, 2006; Neefus et al., 2008), which further

increase the cumulative number of taxa being entrained over

longer time periods. For example, although not observed in

our samples to date, several marine invaders have success-

fully colonized Maine’s coastal waters from other locations

[e.g. the Asian shore crab (Hemigrapsus sanguineus), several

tunicates (Didemnum sp., Botrylloides violaceus, Styela clava)

and a bryozoan (Membranipora membranacea)] and could be

spread through the global transfer of wormweed (Yarish

et al., 2009).

While we have focused on taxonomic richness, the same

concept applies to genetic or intraspecific diversity, whereby

an increasing number of distinct genotypes should be trans-

ferred over time (e.g. Littorina spp.) including possible new

invading haplotypes (e.g. Carcinus maenas; Darling et al.,

2008). Moreover, both taxonomic richness and genetic diver-

sity can ultimately influence functional diversity. Most taxa

successfully transported through the live bait pathway exhib-

ited medium body size, massive growth form, grazing trophic

type, solitary modularity and crawling motility (e.g. amphi-

pods, isopods and some gastropods) as functional traits.

However, these patterns could also be temporally and spa-

tially influenced. Specifically, while we focused on the trans-

fer of organisms during the summer, different functional

traits could be common in other seasons (e.g. Frainer et al.,

2014). Seasonal or interannual changes in abundance and

diversity have not yet been explored.

Scaling Up: scope of the maine baitworm trade

The potential for species invasions is affected not only by the

number of species transferred but also the duration and

magnitude of transfers. In general, the probability of an inva-

sion event should increase with the number and abundance

of species being introduced. Furthermore, duration of vector

operation also serves to increase the cumulative species rich-

ness transferred and the frequency of introductions, which

increase probability of establishment (Lockwood et al., 2005;

Colautti et al., 2006; Hedge et al., 2014). In this context, it is

useful to note that the Maine baitworm vector has been in

operation since the 1930s (Creaser et al., 1983). Since its

inception the exact number of worms shipped is unknown,

but Creaser et al. (1983) report the annual number of landed

bloodworms from 1946 to 1964 (16,197,316 � 2,081,476),

and the Maine Department of Marine Resources (2014)

reported that an average of 563,939 � 142,553 pounds of
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worms were landed from 1964 to 2013. In our study, there

were 250 bloodworms (~2 lbs) per bait box, suggesting an

average of 168,807 � 10,613 boxes have been shipped per

year since 1946, with a cumulative number of over 11 mil-

lion boxes from 1946 to 2013. Based on average numbers of

live marine macro-invertebrates found in bait boxes on arri-

val to the Mid-Atlantic (Fig. 3), over 1.2 billion live macro-

invertebrates may have been transferred with Maine bait-

worms in the past 67 years (1946–2013). However, due to

the lack of reporting requirements for the movement of this

vector across state lines, the exact number of bait boxes that

arrive into particular states is unknown.

While a primary market for Maine’s live bait trade is the

US Atlantic coast, shipments are also made to the US Gulf

and Pacific coasts, Italy, France and Spain (Creaser et al.,

1983; Crawford, 2001). The history and magnitude of ship-

ments to different regions is not fully known, but some esti-

mates exist for worms and associated macro-invertebrates for

California and Spain (Cohen et al., 2001 and Costa et al.,

2006, respectively), raising concern about potential invasions.

We note that the mode of live bait transport has changed

through time (now dominated by overnight shipment),

which likely reduces in-transit mortality and increases the

international reach of this vector.

Distinctive attributes of the vector

The Maine bait vector is fundamentally different than many

other well-known marine vectors in several respects (Weigle

et al., 2005). First, unlike ballast water or hull fouling, bait

transfers are designed explicitly to maximize in-transport

survival by providing favourable environmental conditions

and rapid delivery. Second, bait and associated organisms are

released frequently into the wild, given their utilization in

natural environments (Lau, 1995). A recent study by Drake

et al. (2015) found that freshwater live bait anglers released

unused bait into the environment (rather than discarding it)

due to convenience; moreover, there was a misconception

that released bait could actually provide ecological benefits to

natural resources. Third, a large component of the species

transferred with Maine baitworms are non-target species

associated with wormweed, constituting a habitat occupied

by resident biota. Fourth, most of the invertebrates we

observed transferred with bait are adults or juveniles, and

many reproduce by direct development or brooding. As par-

asite prevalence is often size/age-dependent, the transfer of

parasitized invertebrates is also likely enhanced in the bait

vector (Chang et al., 2011; Blakeslee et al., 2012) compared

with ballast water, where larval forms are common. In fact,

several live snails found in bait boxes were parasitized (data

not shown). In addition, the reproductive mode for the

majority of bait-borne invertebrates (i.e. direct development)

may reduce Allee effects (and increase establishment proba-

bility) as compared to those that reproduce via free-spawn-

ing long-duration planktonic larvae (Miller et al., 2007).

Fifth, bait shipments originate from a single source region

and operate year-round, resulting in repeated inoculation to

the same recipient waters over years to decades. While such

repeated inoculation increases probability of establishment

(Drake & Lodge, 2004; Von Holle & Simberloff, 2005) due

to variation in environmental or biotic conditions, continued

transfer of novel genotypes can also alter invasion dynamics

(Saltonstall, 2002; Cox, 2004; Roman & Darling, 2007).

Finally, such sustained inoculation to many different global

regions also serves to increase the likelihood of invasion

opportunity beyond that found in a single recipient region.

Impact and management of the vector

Bait boxes have the potential to become a real-life Pandora’s

box, in which the contents of this seemingly insignificant

vector can have far-reaching negative consequences. In San

Francisco Bay, a global hotspot for invasions, multiple inva-

sions have been attributed to the Maine algal packing mate-

rial (wormweed). These include the packing alga itself,

Ascophyllum nodosum (Miller et al., 2004), the periwinkle

snail Littorina saxatilis (Carlton & Cohen, 1998), and the

European green crab Carcinus maenas (Lau, 1995; Cohen

et al. 1995, Cohen et al., 2001). While we found only two

dead C. maenas in bait bags, Cohen et al. (2001) ‘occasion-

ally’ observed individuals in bait boxes shipped to California,

and others have reported live individuals in wormweed at

Maine baitworm dealerships (Cohen et al., 2001; Crawford,

2001).

These three introduced taxa have population and commu-

nity level impacts in various global regions. Littorina saxatilis

has been shown to impact algal bloom dynamics (Lotze &

Worm, 2000), compete with other snail species (Reid, 1996),

prey on newly settled barnacles (Carlton & Cohen, 1998)

and host several parasite species, even in non-native popula-

tions (Blakeslee et al., 2012). The European green crab,

Carcinus maenas, which is now established on all continents

except Antarctica (Carlton & Cohen, 2003; Hidalgo et al.,

2005; Roman, 2006), has been documented to compete with

and prey upon ecologically and commercially important

molluscs and crustaceans and cause habitat modification

through direct and indirect mechanisms (e.g. Grosholz et al.,

2000; Breen & Metaxas, 2008; Sungail et al., 2013; Garbary

et al., 2014). Carcinus maenas has been estimated to cause

over $22 million dollars of damage each year in the USA

alone (Williams & Grosholz, 2008). Both attached and free-

living tufts of Ascophyllum nodosum have been reported peri-

odically in introduced regions [e.g. Chesapeake Bay (Orris,

1980), San Francisco Bay (Miller et al., 2004) and North

Carolina (Schneider & Searles, 1991)]. Ascophyllum nodosum

has a major structuring role in marine intertidal and subtidal

habitats, having both direct and indirect effects as the canopy

provides shelter, shade and protection (Jenkins et al., 1999).

While significant momentum and regulations exist for

managing some marine vectors, such as ballast water (IMO,

2003; ICES, 2005), similar efforts have not emerged for

marine bait, which remains largely unmanaged in both the
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source and recipient regions (Weigle et al., 2005; Yarish

et al., 2009; Cohen, 2012). In addition, some US states have

regulations on the use, sale or transport of live bait in fresh-

water systems (Litvak & Mandrak, 1993, 2000; Meronek

et al., 1995; Kerr et al., 2005; Peters & Lodge, 2009), but

such efforts are lagging in marine ecosystems. This relative

lack of management and policy attention in marine systems

probably stems from the fact that the majority of species are

relatively small, inconspicuous and understudied (and possi-

bly undetected) in packing materials, despite documented

impacts of significant bait-associated invasions. The United

Nations recently called for voluntary risk assessments and

appropriate measures to manage that risk for the import or

transport of live bait (UN, 2014).

With the apparent lack of current regulations on the live

marine bait trade, there are several possibilities that could be

employed voluntarily by either the source or recipient

regions to decrease the number of hitchhikers. One Maine

live bait dealer packages bloodworms in unprinted newspa-

per dipped in salt water, which virtually eliminates all hitch-

hikers and keeps the worms in good condition (AEF,

personal observation). Other alterative packaging exists, such

as charcoal or sawdust, which are both used in Europe to

transport live bait (Crawford, 2001). While a complete

change in packaging materials could have negative impacts

on the livelihood of wormweed harvesters, there are other

possible methods to retain wormweed and decrease hitchhik-

ers. These include requiring all distributors and retailers to

dispose of wormweed and provide customers with worms

only (Cohen, 2012), washing wormweed in tap water or

hypersaline water to create an osmotic shock (Blakeslee,

AMH; Fowler, AE; Couture, JL; Grosholz, ED; Ruiz, GM;

Miller AW, unpublished data), or freezing wormweed for

several days prior to shipment. While each of these methods

may seem simple, managers, industry and the public will

need to weigh the cost and practicality of changing packing

materials in an industry that has used wormweed since at

least the 1950s (Creaser et al., 1983) against the risk of new

invasions and unwanted impacts. Due to the complicated

nature of vector management operating across different sec-

tors and geographic boundaries, an integrated approach is

needed along these axes to explore viable options that mini-

mize such unintended species transfers. Given the scale of

species transfer with Maine baitworms, combined with the

other bait distribution networks, there is an urgent need to

rapidly advance management strategies for coastal marine

ecosystems and their associated invasion risks.
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