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ABSTRACT
The Arctic troposphere has warmed faster than the global average over the last several decades. It was
suggested that atmospheric northward energy transport (ANET) into the Arctic had contributed to
tropospheric warming in the Arctic. Here we calculate ANET based on the NCEP/NCAR reanalysis data
from 1979 to 2012. During this period the zonally integrated energy flux into the Arctic has decreased rather
than increased in all seasons. However, the trends are statistically insignificant except for the winter and annual
mean fluxes. For the winter season, the transient eddy flux of energy increases over Greenland and the
Greenland Sea and decreases over west-central Siberia (WCS). Trends in meridional wind variance and
vorticity also indicate increasing transient eddy activity over Northern Canada, the Greenland Sea and the
Norwegian Sea and decreasing activity over WCS. Inter-winter variations in local vorticity over the WCS are

significantly anti-correlated with the Arctic climate.
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1. Introduction

Arctic amplification (AA) of global warming has been
observed in both the upper and lower troposphere in the
last few decades (e.g., Graversen et al., 2008; Alexeev et al.,
2012; Screen et al., 2012). Chung et al. (2013) evaluated the
warming in the Arctic using four different reanalysis data
sets and radio-soundings for the period 1979-2011. Sig-
nificant warming trends are found for all seasons in all data
sets, and two times greater rates of warming are found in the
lower troposphere than in the upper troposphere. The
annual mean surface temperature poleward of 70°N in-
creased by a range of 1.75+0.29 K to 2.71+0.28 K over 33
years, 4—6 times larger than the global average surface air
temperature increase (Arguez et al., 2013), and the warming
in winter months (December—January—February, hereafter
DJF) was about twice as large as in summer months (June—
July—August). With four-times present CO, in the atmos-
phere, contemporary global climate models predict a surface
warming of 4.3 K in the tropics (30°S-30°N) and 11.2 K in
the Arctic (60°N—90°N), with a range of 3—6 K and 5-16 K,
respectively (Pithan and Mauritsen, 2014). AA of climate
change has been observed in geological records and is now
recognised as an inherent characteristic of the global climate
system (Serreze and Barry, 2011). Multiple feedback effects

*Corresponding author.
email: Songmiao.Fan@noaa.gov

can contribute to AA, including albedo, lapse rate and water
vapour (Cai, 2005; Winton, 2006; Taylor et al., 2013;
Graversen et al., 2014; Pithan and Mauritsen, 2014). Addi-
tional warming may result from changes in arctic vegetation
(Swann et al., 2010) and black carbon in snow (Flanner et al.,
2007).

The arctic warming over the past decade has been
accompanied by a rapid decline in sea ice concentrations in
the polar region (Comiso et al., 2008; Comiso, 2012).
Changes in sea ice extent impact heat fluxes between the
ocean and the atmosphere (Smedrud et al., 2013), and may
have contributed to the Arctic surface warming (Serreze
et al., 2009; Screen and Simmonds, 2010). In model simu-
lations, local sea ice and sea surface temperature (SST)
trends explain a large portion of the observed Arctic near-
surface warming, whereas remote SST changes explain the
majority of observed warming aloft (Screen et al., 2012).
Over longer time scales, the multidecadal oscillation of the
Atlantic meridional overturning circulation (AMOC) may
modulate Arctic sea ice and surface air temperature (SAT)
(Chylek et al., 2009; Mahajan et al., 2011; Peings and
Magnusdottir, 2014).

The vertical structure of the recent arctic warming as
represented in observed data and reanalysis products has
gained much deserved attention (Graversen et al., 2008;
Alexeev et al., 2012; Screen et al., 2012; Chung et al., 2013).
The warming aloft is not attributable to shortwave and
longwave (LW) feedbacks, nor to changes in sea ice and SST
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within the Arctic. Graversen et al. (2008) proposed atmos-
pheric northward energy transport (ANET) as an important
mechanism for the recent arctic warming. Mid-tropospheric
temperatures in the Arctic are sensitive to advection of
energy into the Arctic: the 500 hPa temperature field in the
Arctic was found to be positively correlated with ANET
across 60°N with a lag of 5 days (Graversen et al., 2008). The
correlation may be robust on the synoptic time scale, but, on
longer time scales, a reduced zonal-mean meridional tem-
perature gradient may cause a decrease of energy transport
(Serreze and Barry, 2005).

Other studies have searched for changes in large-scale
atmospheric circulation patterns as potential causes. Re-
mote SST patterns might affect arctic meteorological con-
ditions through teleconnections (Screen et al., 2012; Perlwitz
etal., 2015). However, details of the dynamical processes are
not known to date. In a recent study based on the ERA-
Interim reanalysis product, Woods et al. (2013) found that
the interannual variability of intense moisture intrusions
across 70°N is strongly correlated with variability in winter-
mean surface downward LW radiation and skin temperature
averaged over the Arctic. The intense intrusions are caused
by large-scale blocking patterns which deflect mid-latitude
cyclones and their associated moisture poleward. The above
studies thus emphasise the importance of understanding the
variability in large-scale circulation and its impacts on
energy transport into the Arctic, the surface energy budget
and top-of-atmosphere (TOA) net radiative flux.

In this study, we first extend the analysis of Graversen
et al. (2008) based on ERA-40 reanalysis data to NCEP/
NCAR reanalysis data. We examine energy transport by
planetary and transient waves through height—longitude
cross-sections and by the zonal mean circulation (ZMC).
Section 2 describes the data and methods. Section 3 presents
the energy fluxes and trends. Section 4 discusses inter-annual
variations in winter. Section 5 summarises the results and
conclusions.

2. Data and analysis method

The total energy per unit mass of air is given by E =c, T+
gz+Lq+ %(u>+v?), where ¢, is heat capacity, T is tem-
perature, g is gravity, z is geopotential height, L is latent
heat, q is specific humidity, u is zonal wind and v is
meridional wind. The energy balance in a polar cap is given
by Peixoto and Oort (1992) (Eq. 13.38 with the over bars for
time averaging neglected):

x/
— [ (¢,T+gz+ Lq)dm
A gz+Lq)

dxd
:// (cpT+gz+Lq)V gp+FTA—FBA

wall

where m is mass, c;, is heat capacity at constant pressure, v
is meridional wind, x is zonal distance, p is pressure (p =
psC at a sigma-level, ps =surface pressure), Fra and Frg
are downward energy fluxes at top and bottom of the
atmosphere, respectively.

We calculate mass-weighted surface-TOA and surface-
400 hPa northward fluxes of internal energy (denoted by vT),
potential energy (vz) and latent heat (vq) using the NCEP/
NCAR reanalysis data from 1979 to 2012 (Kalnay et al.,
1996). The reanalysis data is archived at 6-hourly intervals,
28 vertical sigma-levels, 192 longitude bands and 94 latitude
bands. The kinetic energy flux is small and is neglected. We
decompose the fluxes into contributions by stationary waves
(denoted by v*q*, v¥*T* and v*z*) and transient eddies (v'q’,
v'T” and v’Z’) and by the monthly ZMC ([v][q], [V][T] and
[v][z]) (Peixoto and Oort, 1992). We define transient eddies as
departures from monthly mean quantities in each grid, and
stationary waves as departures from zonal mean averages for
each vertical level and in each month. Vertically averaged
zonal mean v is subtracted from the mean v in each layer to
ensure a zero net mass flux through a “wall” encircling the
Arctic and to eliminate spurious results (Trenberth, 1991;
Graversen, 2006). We also calculate monthly, mass-weighted
variances of meridional wind (v’v’), mean positive relative
vorticity (vort) and the time fraction for which vort >1.0 x
10 7% s~ ! as measures of cyclone activity (Sorteberg and
Walsh, 2008). Analyses are performed for twelve 30°-wide
longitudinal sectors (Fig. 1). The time series for each cross-
section are analysed for interannual variability and linear
trends from 1979 to 2012. Unless otherwise noted all
analyses are performed for northern winter (DJF).

3. Energy fluxes by transient eddy and trends

In this section, we present an analysis of poleward energy
fluxes. Figure 2 shows the ANET fluxes at 65.7°N and
71.4°N, which are divided by the encircled surface areas. The
monthly mean fluxes (Fig. 2a) at 71.4°N are in good agree-
ment with a previous calculation at 70°N based on a 10-year
data set (Nakamura and Oort, 1988, as tabulated in Serreze
and Barry, 2005). The annual cycle of ANET shows a broad
peak from November to March and a minimum from May to
July/August. The annual and seasonal mean ANET show
large interannual variations and downward trends (Fig. 2b—f).
The linear trends from 1979 to 2012 are shown in Table 1 for
ANET at 65.7°N. The annual and winter trends are significant
at 2 standard deviations (s.d.), while the trends in other seasons
are insignificant. In comparison, calculations of ANET based
on ERA-40 reanalysis data for 1979-2001 show a downward
trend in winter and an upward trend in summer (Graversen,
2006; Graversen et al., 2008). The trend in ANET at 60°N
explains only a fraction (e.g., 20-30% near 700 hPa) of the
temperature trends in summer (Graversen et al., 2008).
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A partitioning of the ANET in winter is shown in Table 2.
Transport of sensible heat is much larger than latent heat
and together they tend to warm the Arctic. Transport of
geopotential energy is dominated by the ZMC which tends
to cool the Arctic. Transport by stationary waves is com-
parable to that by transient eddies. The total flux at 65.7°N
(2516 TW) is larger than that at 71.4°N (1545 TW) due to a
net radiative cooling in between the latitudes.

Figure 3 shows the averages and linear trends of the energy
flux terms by transient eddies through the cross-sections
from the surface to ~400 hPa in winters from 1979 to 2012,
and the same for the variances of v and for the averages of
positive vorticity. The effect of transient baroclinic waves on
energy transport are most pronounced below 400 hPa. The
largest energy fluxes occur over the Greenland Sea (GS)
(Sector 12), the Norwegian Sea (NS) (Sector 1) and the
Chukchi Sea (Sector 7), where the air is warmer and contains
more water vapour than over land. The land—ocean contrast
is more pronounced for latent heat (Fig. 3a) than sensible
heat (Fig. 3c). The sensible heat fluxes are greater than the
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Longitude sections used in this study (adapted from Sorteberg and Walsh, 2008). Each section is referred to by a number (1-12)

Arctic Circle (66.6°N).

latent heat fluxes by more than a factor of 2. The lowest fluxes
are estimated for cross-sections (4 and 5) over Central Siberia
and the mountainous region to the east of 120°E where the air
is extremely cold and dry under persistent high pressures.
More transient eddy activity occurs over the North Atlantic
than other regions as indicated by the variances of v (Fig. 3g)
and the mean positive local vorticities (Fig. 31), contributing
to the land-ocean contrast in eddy fluxes of energy.
Consistent decreases from 1979 to 2012 in transient eddy
activities and associated energy fluxes are shown for cross-
sections 3 and 4 (60°—120°E) over regions south of the Kara
Sea and Taymyr Peninsula in western and central Siberia
(Figs. 1 and 3). Winter blocking frequency was found to have
increased for the same time period over western and central
Siberia as shown by the time-series of average frequency for
40°-80°N and 60°—120°E (Barnes et al., 2014). Less sig-
nificant but apparent increases of northward energy fluxes
are shown in Fig. 3b, d and f for cross-sections 10—12 (270°—
360°E, Fig. 1) over the regions extending from the Baffin
Islands/Bay to Greenland and the GS. Transient eddy
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Zonally and vertically integrated poleward heat transport (F.,y) calculated at 65.7°N and 71.4°N, respectively. The fluxes are

normalised by the enclosed polar surface areas to facilitate inter-comparison with radiative fluxes. (a) Monthly mean fluxes for the period
1979-2012; N&O indicates 10-year average fluxes calculated at 70°N by Nakamura and Oort (1988). (b)—(f) Annual, DJF, MAM, JJA and

SON mean fluxes.

activity appears to have become stronger over the NS and the
GS (sections 1 and 12, Fig. 3h and j).

4. Interannual variability of transport in the
North Atlantic and Siberia

In this section, we examine the interannual variability as well
as the long-term trend in transient eddies in the northern
Atlantic and Siberia. Figure 4 shows the winter mean
positive vorticity and the time fraction of high vorticity
(TFHV: vort>1.0x10"° s~ ') in the mid-troposphere

Table 1. Linear trends of atmospheric northward energy transport
at 65.7°N (divided by the total area north of the latitude) between
1979 and 2012

Trend +s.d.
(Wm2a")

Annual —0.134+0.04
DJF —0.26+0.10
MAM —0.0740.07
JIA —0.0340.04
SON —0.1140.08

(approximately 400-700 hPa) over the GS and the NS
(30°W to 30°E) and over west-central Siberian (WCS) (60°E
to 120°E), respectively. Over the GS and NS, the mean vort is
generally above the long-term average during 2000-2012
and is lower during the earlier period (Fig. 4a). The TFHV

Table 2. Partitioning of atmospheric northward energy transport
(in terawatt) in winter (DJF) between 1979 and 2012

Flux terms 65.7°N 71.4°N
Stationary

[v¥q*] 90 20
[v¥T*] 1205 285
[v¥z*] 742 951
Transient

[v’q] 240 128
[v'T’] 1145 771
[v’z'] 231 156
Mean circulation

Vil 8 9
[VI[T] 145 189
[Vl[z] —1288 —964
Total 2516 1545
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Fig. 3. Average wintertime (DJF) northward energy fluxes by transient eddies through cross-sections ( ~400 hPa — surface, 30° longitude
bins) at 65.7°N near the Arctic Circle, variances of v-wind, positive vorticities and their respective linear trends between 1979 and 2012. Cross-
section index increases eastward from 0° to 360°. Variances of v-wind and positive vorticities are calculated at 65.7°N and 71.4°N and
averaged. (a) latent heat flux [v’q’], (b) d[v’q’]/dt, (c) sensible heat flux [v’T’], (d) d[v'T’]/dt, (e) potential energy flux [v’z’], (f) d[v’z’]/dt,
(g) v-wind variance [v'v’], (h) d/[v’v’]/dt, (i) positive vorticity [vort], (j) d[vort]/dt. Dashed lines indicate + 1-o for the linear trends.

shows large year-to-year variations but no clear trend middle years and below average in the later years (Fig. 4b).
(Fig. 4c). Over the WCS, mean vort is often above the The TFHYV also shows a general decrease from 1980 to 2012
long-term average in the early years, close to average in the and large interannual variations (Fig. 4d).
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vorticity over the GS and NS (c¢) and W and C Siberia (d).

To demonstrate the impact of cyclone variability and

trends shown in Fig. 4 on arctic climate, we calculate the

winter mean precipitable water, skin temperature, upward
TOA LW radiation and downward surface LW radiation
north of 70°N, derived from NCEP reanalysis data (Fig. 5).

Fig. 5.
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These parameters show similar interannual variations and

long-term trends with large correlation coefficients between
each pair, except for the TOA LW flux. The skin tempera-
ture and the downward surface LW flux are also similar to
those derived from the ERA-Interim reanalysis data for
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longwave flux at the surface (d), averaged for the polar region north of 70°N

Winter mean precipitable water (a), skin temperature (b), upward longwave flux at top-of-atmosphere (c) and downward
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Table 3. Correlation coefficients between winter average parameters”

Polar cap average (>70°N) Downward LW surface

Precipitable water

Skin temperature Upward LW TOA™*

Zonal section average
400-700 hPa ( ~70°N)

30°W-30°E [vor] 0.34
TFHV 0.33
60°E—120°E [vor] —0.41
TFHV —0.73
700-1000 hPa (~70°N)
30°W-30°E [vort] 0.12
TFHV 0.37
60°E—120°E [vord] —0.46
TFHV —0.66

0.18 0.34 0.10

0.23 0.27 —0.13
—0.26 —0.43 —0.12
—0.69 —0.67 —0.17
—0.01 0.08 ~0.20

027 0.29 —0.04
—0.33 —0.50 —0.25
—0.60 —0.66 027

#LW =longwave flux; [vorr] =mean positive vorticity; TFHV =time fraction of high vorticity (vors >10~> s~ 1); bold font for p <0.01.

*#TOA is top-of-atmosphere.

1990-2010 (Woods et al., 2013), whose interannual varia-
tions were found to be associated with intense moisture
intrusions to the Arctic.

Table 3 shows correlation coefficients calculated for mean
positive vorticity with the Arctic mean climate parameters
and for TFHV with the same parameters. Significant nega-
tive correlations (at p <0.01) are found between TFHV over
the WCS and the downward surface LW flux (r = —0.73 for
TFHYV 400-700 hPa), precipitable water ( —0.69) and skin
temperature ( —0.67) (compare curves in Fig. 4d and 5). The
correlation between TFHV and TOA LW flux is insignif-
icant (—0. 17). The correlation coefficients are smaller for
700—1000 hPa TFHYV and for mean positive vorticity in both
layers. Similar correlations are insignificant over the north-
ern Atlantic. These correlations suggest that the cyclonic
circulation (or a lack of) over the WCS may vary with and
even possibly plays a role in driving winter climate in the
Arctic. The causes of circulation changes over Siberia are
beyond the scope of this paper.

5. Summary

In this study we calculate the ANET to the Arctic based on
meteorological data from the NCEP/NCAR reanalysis for
the period of 1979-2012. During this period the ANET
decreased in all seasons, while the Arctic temperature
increased and sea ice decreased. The downward trends are
statistically significant for winter and annual mean fluxes,
but not for other seasons. We calculated the energy fluxes,
the mean variance of v and the mean positive local vorticity
by cross-sections (400 hPa — surface, every 30° from 0° to
360°E) for each winter. Linear regressions of the time-series
show a general increase of transient eddy activity and
associated energy fluxes over the northern Atlantic, and a
general decrease over the west and central Siberia. Inter-
winter variations in transient eddy activity, as measured by

the time fraction of high local vorticity, over the WCS are
significantly anti-correlated with the Arctic climate.
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