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ABSTRACT

Since 2007, meteorologists of the U.S. Army Test and Evaluation Command (ATEC) at Dugway Proving
Ground (DPG), Utah, have relied on a mesoscale ensemble prediction system (EPS) known as the Ensemble
Four-Dimensional Weather System (E-4DWX). This article describes E-4DWX and the innovative way in
which it is calibrated, how it performs, why it was developed, and how meteorologists at DPG use it. E-4DWX
has 30 operational members, each configured to produce forecasts of 48 h every 6 h on a 272-processor high
performance computer (HPC) at DPG. The ensemble’s members differ from one another in initial-, lateral-,
and lower-boundary conditions; in methods of data assimilation; and in physical parameterizations. The
predictive core of all members is the Advanced Research core of the Weather Research and Forecasting
(WRF) Model. Numerical predictions of the most useful near-surface variables are dynamically calibrated
through algorithms that combine logistic regression and quantile regression, generating statistically realistic
probabilistic depictions of the atmosphere’s future state at DPG’s observing sites. Army meteorologists view
E-4DWX’s output via customized figures posted to a restricted website. Some of these figures summarize
collective results—for example, through means, standard deviations, or fractions of the ensemble exceeding
thresholds. Other figures show each forecast, individually or grouped—for example, through spaghetti dia-
grams and time series. This article presents examples of each type of figure.

1. Introduction
a. Background

In operational forecasting, ensemble prediction sys-
tems (EPSs) have become a mainstay for addressing two
unavoidable truths: 1) numerical weather prediction
(NWP) models will always be flawed, and 2) the chaotic
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atmosphere’s true state will always elude any attempt at
perfect observations. Every individual simulation from
an NWP model is compromised by flaws in the model’s
numerical schemes, physical parameterizations, and
methods of data assimilation; by imperfections in initial
conditions, boundary conditions, and assimilated ob-
servations; by limitations in computers and networks;
and by dynamical instabilities in the atmosphere itself
(inertial, convective, baroclinic, etc.). No individual
simulation can capture the uncertainties that arise from
these flaws, imperfections, and limitations. An ensemble
of simulations can (Toth et al. 2001).

EPSs offer other advantages, too. The mean pre-
diction by an ensemble tends to be more skillful than any
single prediction by one of its members (Leith 1974; Du
et al. 1997; Toth and Kalnay 1997; Ebert 2001; Ma et al.
2012). The spread among members’ predictions can be
interpreted roughly to indicate the mean prediction’s
uncertainty (Kalnay 2003). Ensembles also permit
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output from NWP systems to be framed as probabilities.
Probabilistic guidance from an EPS is potentially much
more useful to decision-makers than is traditional
guidance from a single NWP model (e.g., Buizza 2008).

Designing an EPS for predicting mesoscale weather
is challenging. Over the finer two subranges of the
mesoscale (horizontal distances of 2-200km), weather
phenomena are smaller, more transitory, and less
predictable than the phenomena for which many early
EPSs were designed (Hamill et al. 2000; Hohenegger
and Schir 2007). Initial states do not necessarily com-
prise the full range of resolvable scales, so mesoscale
NWP models must generate finescale phenomena and
processes during forward integration, and often need
finescale perturbations to be prescribed so uncertainty
in the analysis is properly represented (e.g., Toth and
Kalnay 1993; Johnson et al. 2014; Iyer et al. 2016). At
smaller grid intervals, complex interactions occur over a
wider range of scales, which affects an ensemble’s
spread and errors (Hohenegger and Schir 2007; Clark
et al. 2009; Eckel et al. 2010; Johnson et al. 2014).

Most mesoscale models are limited-area models, so
lateral boundary conditions heavily influence solu-
tions (McDonald 1997; Pielke 2002), and uncertainty
in boundary conditions is generally underrepresented
(Nutter et al. 2004). Unlike global EPSs, which tend
to emphasize differences in the initial conditions (e.g.,
Molteni et al. 1996), mesoscale EPSs tend to empha-
size uncertainties in models—for example, treatments
of physical processes such as radiative transfer, for-
mation of clouds and precipitation, and eddies in the
boundary layer (Bouttier et al. 2012). Many methods
for generating ensemble perturbations are less appro-
priate for short-term modeling at the fine mesoscale
than for modeling at the temporal and spatial scales for
which the methods were originally developed (Eckel
and Mass 2005). Sufficient natural spread can be elu-
sive (Hamill et al. 2000; Eckel et al. 2010; Romine et al.
2014; Schwartz et al. 2014). Large errors in mesoscale
models that are not fully taken into account can trans-
late to unrealistically small ensemble spreads and large
systemic errors in an ensemble as a whole (Eckel et al.
2010; Berner et al. 2015).

Despite such challenges to ensemble prediction with
mesoscale models, phenomena of mesoscale size and
duration nonetheless are very important for many users
of numerical weather predictions. Meteorologists at
the U.S. Army Dugway Proving Ground (DPG), Utah
are one such group. Since 2007, they have used an EPS
known as the Ensemble Four-Dimensional Weather
System (E-4DWX) as a primary tool for supporting test
exercises (Liu et al. 2007). In 2014, E-4DWX was ex-
tended to three more government test sites in the Great
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Basin of the United States: White Sands Missile Range
(WSMR), New Mexico; Yuma Proving Ground (YPG),
Arizona; and Electronic Proving Ground (EPG), Ari-
zona. For brevity, this paper focuses on just DPG’s ex-
perience with E-4DWX.

b. Testing and forecasting at DPG

One of DPG’s primary missions is to test equipment
that detects chemical and biological hazards. Such tests
are very sensitive to mesoscale and microscale weather.
Numerical predictions influence whether and how tests
are conducted. Numerical analyses influence how the
results from tests are interpreted. Skillful guidance is
required about the dispersion of chemical or biological
agent simulants that are released into the open air near
the ground. This guidance must be based on detailed and
accurate numerical predictions of temperature, static
stability, wind speed, and wind direction over mesoscale
and microscale distances and times.

It can be costly to delay or cancel a test because of poor
weather guidance. The nature of testing at DPG and
other sites of the U.S. Army Test and Evaluation Com-
mand (ATEC), and the weather-related decisions that
have to be made there by users of NWP forecasts, are
particularly amenable to probabilistic guidance, which
can feed into cost-loss analyses and similar frameworks in
ways that deterministic guidance cannot. For example, if
you know the cost C and loss L associated with taking
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FIG. 1. Domains 1 (dx = 30km), 2 (dx = 10km), and 3 (dx = 3.3 km)
of E-4DWX. Only DPG has a formal domain 3. For the three other test
facilities (YPG, EPG, and WSMR) local subregions of domain 2 are
used for the ensemble products. The thin dashed white line inside DPG’s
domain 3 marks the region depicted in Fig. 2.
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FIG. 2. Locations of SAMS observing stations at DPG. Numbered stations are the sources
of data that are the basis for subsequent figures. To provide geographic context, the perimeter
of this region is outlined in Fig. 1.

action (e.g., canceling a test) to avoid certain weather
(e.g., 10-m wind speed > 20ms '), then you should take
action if P > C/L, wherein P is the probability of that
weather as predicted by a calibrated ensemble (Murphy
1977). (There is much more about calibration in section 2d.)

c. Weather at DPG

Semiarid DPG is located at the southern end of the
Great Salt Lake Desert, roughly 100 km southwest of Salt
Lake City, Utah, on the bed of ancient Lake Bonneville.
Narrow, compact mountain ranges rise more than a ki-
lometer above the dry soil and scrubby vegetation on the
desert floor. During high pressure weather patterns,
nocturnal drainage flows often develop along the slopes
of the mountains and the gently inclined terrain at their
bases, and the nocturnal boundary layer is often strongly
stable (e.g., Rife et al. 2002; Lehner et al. 2015; Grachev
et al. 2016; Jeglum et al. 2017). Vast, smooth salt flats, or
playas, lay to the west and north of the primary test sites
at DPG (Massey et al. 2017). Playas are moist and highly
reflective, so the near-surface air above them is relatively
cool during the day and relatively warm at night. The
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resultant local temperature gradients drive thermally di-
rect “‘salt breezes” (Rife et al. 2002). Gap flows accelerate
through low spots in the ranges under certain conditions
(Jeglum et al. 2017).

Interacting with these and other locally forced phe-
nomena are additional synoptic, mesoscale, and microscale
features that characterize weather in the Intermountain
West (Fernando et al. 2015; Jeglum and Hoch 2016). These
complex interactions challenge meteorologists at DPG
and the E-4DWX NWP system that they use (de-
scribed in section 2 below). Years of monitoring how
members contribute to the overall skill of the ensem-
ble have demonstrated that no single configuration of
E-4DWX outperforms all others in every case, and no
single source of initial and boundary conditions has
proved altogether superior. Therefore, rather than run a
single model with a configuration selected a priori, it is
more effective to run an ensemble of configurations
that perform well in at least some circumstances.

E-4DWX was first installed at DPG in 2007. Since
then, we are not aware of a single test at DPG that was
canceled solely because of unpredicted adverse weather.
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TABLE 1. The E-4DWX members at the time of writing. Please see the technical note on the WRF Model v.3 (Skamarock et al. 2008) for
more information about the schemes in the table. Options for LBCs are NAM and GFS. The option for the land surface model (LSM) is
Noah. Options for the surface-layer scheme (Surf) are the MMS Monin-Obukhov (M-0), Eta, Mellor—Yamada-Nakanishi-Niino
(MYNN), and quasi-normal scale elimination (QNSE). Options for the ABL scheme are Yonsei University (YSU), Mellor-Yamada—
Janji¢ (MYJ), Bougeault-Lacarrere (B-L), MYNN level 2.5, QNSE, and University of Washington (aka Bretherton and Park) (UW).
Options for the cumulus scheme (Cu), which is only applied on domains 1 and 2 except as noted, are Kain-Fritsch (K-F), Grell-Freitas
(G-F), and Betts—Miller-Janji¢ (BMJ). Options for the microphysics scheme (Micro) are WRF single-moment 6-class (WSM6), new
Thompson et al. (Th), WRF single-moment 5-class (WSMS5), Morrison double-moment (Mor), and WRF double-moment 5-class
(WDMS5). Options for the shortwave radiation scheme (SW) are Goddard (Gd), Dudhia (Du), and Community Atmosphere Model
(CAM). Options for the longwave radiation scheme (LW) are Rapid Radiative Transfer Model (RRTM) and CAM. The last column
denotes the two control runs (control), a configuration with a cumulus scheme used on domain 3 (Cu D3), a configuration without data
assimilation (No DA), two configurations to which stochastic kinetic-energy backscatter is applied (SKEBS) with different random
number streams (1 and 2), and two configurations that have lower boundary conditions shifted by 30 km (Shift) and employ a Kalman
filter (KF) with different nudging coefficients (1 and 2).

Member LBC LSM Surf ABL Cu Micro Sw LW Notes
1 NAM Noah M-O YSU K-F WSM6 Gd RRTM Control
2 GFS Noah M-O YSU K-F WSM6 Gd RRTM Control
3 NAM Noah M-O YSU G-F WSM6 Gd RRTM

4 NAM Noah Eta MY]J K-F WSM6 Gd RRTM

5 NAM Noah M-O YSU K-F Th Gd RRTM

6 NAM Noah M-O YSU K-F WSM5 Gd RRTM

7 NAM Noah M-O YSU K-F Mor Gd RRTM

8 GFS Noah Eta B-L K-F WSM6 Gd RRTM

9 GFS Noah MYNN MYNN K-F WSM6 Gd RRTM

10 GFS Noah QNSE QNSE K-F WSM6 Gd RRTM

11 GFS Noah M-O Uw K-F WSM6 Gd RRTM

12 GFS Noah M-O YSU K-F WSM6 CAM CAM

13 GFS Noah M-O YSU BMJ WSM6 Gd RRTM

14 GFS Noah M-O YSU K-F WSM6 Du RRTM

15 GFS Noah M-O YSU G-F WSM6 Gd RRTM

16 GFS Noah M-O YSU BMJ WSM6 Gd RRTM Cu D3
17 NAM Noah Eta B-L K-F WSM6 Gd RRTM

18 NAM Noah QNSE QNSE K-F WSM6 Gd RRTM

19 NAM Noah MYNN MYNN K-F WSM6 Gd RRTM

20 NAM Noah M-O YSU K-F WSM6 Du RRTM

21 NAM Noah M-O YSU K-F WSM6 CAM CAM

22 NAM Noah M-O YSU BMJ WSM6 Gd RRTM

23 GFS Noah M-O YSU K-F Th Gd RRTM

24 GFS Noah M-O YSU K-F WDM6 Gd RRTM

25 GFS Noah M-O YSU K-F Mor Gd RRTM

26 GFS Noah M-O YSU K-F WSM6 Gd RRTM No DA
27 GFS Noah M-O YSU K-F WSM6 Gd RRTM SKEBS 1
28 GFS Noah M-O YSU K-F WSM6 Gd RRTM SKEBS 2
29 GFS Noah M-O YSU K-F WSM6 Du RRTM Shift KF 1
30 GFS Noah M-O YSU K-F WSM6 Du RRTM Shift KF 2
Meteorologists attribute some of their success to 2. E-4DWX

E-4DWX. There have been situations in which E-4DWX
predicted that marginal weather was likely, and a test
was conducted anyway because the risk was deemed
acceptable. In these situations, test participants can
sometimes accomplish a reduced set of objectives. There
have also been situations in which enough ensemble
members predicted unacceptable weather that a test
was canceled, even though the standard deterministic
forecast that is run as baseline guidance at DPG predicted
acceptable weather.
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a. Framework and NWP core

E-4DWX is a generic, multitier framework that in-
tegrates processing and assimilation of observations
with ensemble prediction, can be rapidly configured for
use anywhere over the globe, and can readily in-
corporate new advancements by the community en-
gaged in research on mesoscale ensemble prediction.

A skillful EPS relies on a skillful deterministic NWP
model and a high quality data assimilation system
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TABLE 2. Regressors used to calibrate selected variables from E-4DWX.

Regressor Notes Used in
24-h persistence Observed weather 24 h earlier LR, QR
Ensemble median Ensemble-median forecast at validation time LR, QR
Ensemble mean Ensemble-mean forecast at validation time LR, QR
Ensemble spread Standard deviation of the forecast ensemble at LR, QR
validation time
Ensemble mean divided by the Steepness of logistic function can vary with standard LR, QR
forecast standard deviation deviation of the forecast ensemble
Constant Climatology LR, QR
LR-predicted quantile Retained from LR step in calibration QR
Corresponding quantile Corresponding (interpolated) quantile from the QR
raw 30-member forecast ensemble
Each member of the 30-member Each member of the raw 30-member forecast LR, QR

(uncalibrated) raw ensemble

ensemble used as independent regressor

(Buizza et al. 2005). An EPS built on a poor model will
produce forecast errors that are rooted in the de-
ficiencies of the model itself, not in the inevitable un-
certainties in the atmosphere’s initial state (Kalnay
2003). The NWP core of E-4DWX is the Advanced
Research version of the Weather Research and
Forecasting (WRF) Model (v.3.5.1 at the time of writ-
ing). Early versions of E-4DWX also used the fifth-
generation Mesoscale Model (MMS5) developed by The
Pennsylvania State University and NCAR, but the
current version does not. The framework of E-4DWX is
sufficiently flexible that in the future a variety of other
mesoscale models could also be added.

E-4DWX comprises 30 operational NWP members
(i.e., excluding test members). Each runs on three one-
way nested computational domains of grid intervals dx
of 30.0, 10.0, and 3.3km (Fig. 1). There are 37 levels,
roughly one-third of which are in the lowest 1 km. The
single 3.3-km domain of 76 X 76 points is positioned
over DPG. Forecast data for the other three supported
test facilities are drawn from the larger, coarser domain
with the 10-km grid interval. The 48-h forecasts are
initialized four times per day at 0000, 0600, 1200, and
1800 UTC. E-4DWX is executed at DPG on a 272-
processor Linux cluster.

Atmospheric observations, some from special observing
platforms known as surface atmospheric measurement
systems (SAMS; Fig. 2), are assimilated by E-4ADWX via
the Real-Time Four-Dimensional Data Assimilation Sys-
tem (RTFDDA; Liu et al. 2008), which employs New-
tonian relaxation to nudge the model toward observations
during the assimilation cycle. This is a computationally
efficient, robust method of assimilating data continuously
rather than intermittently, thereby pairing more closely the
time of an observation to its corresponding time in the
simulation (Stauffer and Seaman 1994).
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Part of the spread among members in E-4DWX
develops from differences in the initial conditions
(ICs), lateral boundary conditions (LBCs), and land
surface (LS) characteristics. Some members draw
their ICs and LBCs from the North American Me-
soscale Forecast System (NAM), others from the
Global Forecast System (GFS). To approximate the
effects of phase errors in LBCs from the NAM and
GFS, the fields from the two models are shifted hor-
izontally by 30km (one grid cell) west-east and
north-south for two members. This method and the
distance of 30km are based on our trial-and-error
tests; shifts of two grid cells produce unrealistically
large errors. To perturb ICs for some members, we
modify the assimilated observations and the weights
and radii of influence in RTFDDA. The modifications
to the observations are in the form of random and
fixed errors (biases) up to 1.5°C and 1.5ms ™!, chosen
empirically to be consistent with RTFDDA’s typical
analysis errors near the ground and in the lower tro-
posphere. Finally, physical parameterizations vary
among most members, so E-4DWX includes multi-
model spread as well. Table 1 summarizes the 30
configurations.

To make greatest use of E-4DWX, meteorologists at
DPG need the probabilistic predictions from the sys-
tem to comprise realistic heterogeneity on the tempo-
ral and spatial scales of the weather that most
influences tests. There are many challenges to using
mesoscale ensembles for true probabilistic predictions
spanning from several hours to several days. In addi-
tion to the challenges described in the introduction,
NWP models are often biased. One way of mitigating
bias (among other undesirable qualities) in an EPS is
through calibration (Warner 2011). That is the focus of
the next subsection.
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F1G. 3. Air temperature at 2m (AGL in all figures) at DPG’s
SAMS 01 during June-August 1979-2001. Each value from the
previous day is used as a 24-h persistence forecast. The red line is the
fit of the central tendency (mean) from the standard linear re-
gression, the middle black line is the fit of the 0.5 quantile (median),
the upper black line is the 0.9 quantile, and the lower black line is the
0.1 quantile. The mean and median are similar but diverge as tem-
perature increases. The fits of the 0.1 and 0.9 quantiles converge as
temperature increases, indicating the data are heteroscedastic.

b. Calibration

During postprocessing, part of the output from
E-4DWX is calibrated—made statistically reliable—
such that the probability of conditions predicted by
E-4DWX matches as well as possible the observed fre-
quency of those conditions (Wilks 2006b). This means
that E-4DWX’s predictions are statistically indistin-
guishable from observations for the subset of variables
being calibrated: surface air pressure, air temperature
at 2m (AGL throughout the article), relative humidity
at 2m, and wind speed and vector wind components at
10m. Currently, calibration is being applied only to
predictions interpolated to instrumented sites. Benefits
of calibration include the following:

o reducing the forecast error of the ensemble mean,
partly by reducing bias; the mean of a calibrated,
properly perturbed, and sufficiently large ensemble
theoretically has on average as little as one-half the
error variance of any of the ensemble’s members
(Leith 1974);

e increasing the ensemble’s reliability, resolution, and
sharpness, including for predicting the likelihood of
extreme and potentially devastating weather (e.g.,
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Hamill et al. 2004)—calibration does not guarantee
more skillful predictions of extremes, however (e.g.,
Mylne 2002); and

e providing an indication of forecast uncertainty
through the spread among ensemble members (e.g.,
Hagedorn et al. 2012), an indication that often is
limited and inexact (e.g., Hopson 2014).

Over the last several decades, methods for calibrating
EPSs and for evaluating their calibration have been based
on linear regression (e.g., Atger 2003; Diomede et al.
2014), logistic regression (e.g., Hamill et al. 2004; Wilks
2006a; Hamill et al. 2008; Bentzien and Friederichs 2012;
Johnson and Wang 2012; Roulin and Vannitsem 2012),
nonhomogeneous Gaussian regression (e.g., Gneiting
et al. 2005; Hagedorn et al. 2008), ensemble kernel density
model output statistics (e.g., Glahn et al. 2009), ensemble
dressing (e.g., Roulston and Smith 2003; Wang and Bishop
2005; Fortin et al. 2006; Wilks and Hamill 2007), ensemble
regression (e.g., Unger et al. 2009), Bayesian model av-
eraging (e.g., Raftery et al. 2005; Sloughter et al. 2007,
Wilson et al. 2007; Kleiber et al. 2011), spatial Bayesian
model averaging (e.g., Berrocal et al. 2007), simultaneous
quantile regression (e.g., Tokdar and Kadane 2012),
quantile-to-quantile mapping (e.g., Hamill and Whitaker
2006; Diomede et al. 2014), rank histograms and other
indicators of reliability (e.g., Hamill and Colucci 1997;
Eckel and Walters 1998; Krzysztofowicz and Sigrest 1999;
Atger 2003; Johnson and Wang 2012), spread-skill re-
lationships (e.g., Atger 1999), analogs (e.g., Hamill and
Whitaker 2006; Diomede et al. 2014; Junk et al. 2015),
geostatistical model averaging (e.g., Kleiber et al. 2011),
parametric mixture models (e.g., Bentzien and Friederichs
2012), object-based methods (e.g., Nehrkorn et al. 2014),
and artificial neural networks (e.g., Yuan et al. 2007).

The calibration developed for E-4DWX is novel in two
ways. 1) We combine logistic regression (Hamill and
Whitaker 2006; Wilks and Hamill 2007) with quantile re-
gression (Koenker and Bassett 1978) to improve numerical
predictions at discrete, evolving probability intervals
rather than at fixed climatological thresholds. 2) To ensure
the ensemble’s reliability (Hopson 2014), we preprocess it,
then explicitly condition the training of the final post-
processing model on the (now calibrated) ensemble dis-
persion. All aspects of the calibration algorithms employ a
common framework to ensure that the results are statisti-
cally robust. Regressions are always performed with cross-
validation to minimize the likelihood of overfitting; in each
pass through the dataset, half of the data are used to fit the
regression, and the other half are used to evaluate the fit.
The subsamples are then reversed. Logistic regression and
quantile regression are explained in more detail in the next
two subsections.
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FI1G. 4. Rank histograms of E-4DWX’s (a) uncalibrated and (b) calibrated 24-h forecasts of 2-m air temperature
at DPG’s SAMS 01 every 6 h at 1331 different valid times from 0000 UTC 8 Jun 2013 through 1800 UTC 14 Jul 2014.
The red dashed lines bound the 95% confidence limits for perfectly calibrated forecasts. Both histograms are based
on nine quantiles that separate the data into 10 intervals (i.e., bins).

1) LOGISTIC REGRESSION

Logistic regression (LR) is a well-established ap-
proach for fitting data to the logit function (e.g., Hilliker
and Fritsch 1999; Hamill and Whitaker 2006; Wilks and
Hamill 2007). It is useful for our application because
probabilistic predictions—for instance, from an ensem-
ble such as E-4DWX—can be expressed categorically as
meeting or not meeting a series of thresholds. Logistic
regression handles such cases of binary predictands
quite well. It results in probabilities that are correctly
bounded by 0 and 1, and it accommodates residuals that
are non-Gaussian. Please see the text by Wilks (2006b)
for more information about logistic regression, and for a
comparison between it and alternative methods of re-
gression for binary predictands. Papers by Messner et al.
(2014a,b) offer examples of recent advancements in LR.

2) QUANTILE REGRESSION

When a probability density function (PDF) is seg-
mented into two or more probability intervals, a quan-
tile is what separates one interval from another. For
example, if a PDF were divided into two such intervals
of equal probability, the single quantile between them
would be the median. Quantile regression (QR) is an
absolute-error estimator that can conditionally fit spe-
cific quantiles of a regressand’s distribution (beyond just
the median) without relying on the assumption that the
regressand or residuals are distributed parametrically
(Koenker and Bassett 1978). Probability distributions
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need not be Gaussian, for example. QR offers several
other benefits, too. Because the conditional fit in QR is
based on absolute error, it is less sensitive to outliers
than are squared-error estimators (Portnoy and
Koenker 1997). QR also accommodates distributions of
data with heteroscedastic variances (i.e., when variance
is a function of a predictand’s magnitude). One of the
first applications of QR in atmospheric science was by
Bremnes (2004) to forecasts of precipitation.

The QR algorithms used to fit specific quantiles can be
explained as follows. Assume {y;} is a set of observa-
tions of the regressand y, and {x;} is an associated set of
predictors. Just as in standard linear regression, a linear
function of x can be used to estimate a specific quantile

qo of y:

n
9y(x;B) =By + X Byt 1 (M)
with residual 7; = y; — g¢(x;; 8)and 6 € (0, 1), wherein 8
is a vector of unknown coefficients. However, instead of
minimizing the squared residuals, as is done with stan-
dard linear regression, in QR a weighted iterative min-
imization of {r;} is performed to estimate B:

min ; pg(r,‘) =arg rrgn ;pg[yi - qg(xi;ﬁ)] s (2)

with a weighting function of arbitrary quantity a
defined as
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FIG. 5. Time series of (a) uncalibrated and (b) calibrated 24-h forecasts (color) from E-4DWX at 100 different
times from 0000 UTC 11 Jun 2014 (time 888) through 1200 UTC 13 Jul 2014 (time 987). Superposed on the panels is
the observed 2-m air temperature (°C; black) every 6 h at DPG’s SAMS 01. Calibration mitigates periods of bias in
the uncalibrated forecast and increases the ensemble spread, as enlarged for clarity in the gray inset boxes, which
span the same arbitrarily chosen period of time. The red oval marks 26 Jun 2014, the valid time of the data presented
in Fig. 6. Data in these two panels are ordered sequentially at intervals of 6 h for times when data were available;

spans of missing data are skipped.
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A powerful benefit of QR is that minimizing the
cost function in (2) leads to a statistically flat rank
histogram, which characterizes a calibrated ensem-
ble prediction (i.e., a prediction that is equivalent
to a random draw from an underlying—usually un-
known—distribution). In addition, although QR con-
strains the resultant quantile estimators to satisfying this
requirement, at the same time it also constrains the esti-
mators to optimal sharpness (Wilks 2006b), generating

PDFs that are narrower than a PDF from a purely
climatological distribution.

3) SPECIFIC STEPS FOR COMBINING LR AND QR

In the first step of our implementation of LR and QR
to calibrate E-4DWX, we start with an archive of ob-
servations at the sites for which we want calibrated
guidance. From that archive we estimate the climato-
logical PDF of a variable of interest, such as 2-m air
temperature. This is the prior PDF. To characterize this
distribution, 99 equally spaced quantiles g, are used to
segment the PDF into 100 bins. For each quantile,

TABLE 3. MAE in 10-m wind speed (ms™!) and 2-m temperature (°C) at SAMS 01, 04, and 08 in uncalibrated and calibrated 24-h
forecasts from E-4DWX at 100 different times from 0000 UTC 11 Jun through 1200 UTC 13 Jul 2014. The time span matches the time

series in Fig. 5.

MAE (ms™ ! or °C)

Station Variable Before calibration After calibration
SAMS 01 10-m wind speed 1.20 1.08
SAMS 04 10-m wind speed 1.26 1.19
SAMS 08 10-m wind speed 1.20 1.13
SAMS 01 2-m temperature 2.18 2.00
SAMS 04 2-m temperature 1.80 1.73
SAMS 08 2-m temperature 1.97 1.83
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FIG. 6. Example of PDFs of an original uncalibrated (solid black)
and a calibrated (blue) 24-h ensemble forecast from E-4DWX of 2-m
air temperature (°C) at DPG’s SAMS 01 at 1800 UTC 26 Jun 2014.
Comparison to the observation of 25.9°C (red bar) and the clima-
tological PDF for summer (dashed black) demonstrates how cali-
bration reduces bias, broadens spread, and increases sharpness.

m
M+1

Pr(V=gq,)= (4)
wherein V is the validation value, such as from a future
observation, and m is one of the M (99, in this case)
quantiles that separate the equally spaced probability
bins to be calibrated.

Using past numerical predictions and their corre-
sponding observations—these two datasets together
compose the training data—we then apply LR to esti-
mate out-of-sample models for exceeding each of the 99
quantiles. For each prediction day, a conditional cu-
mulative distribution function (CDF) is formed. The
predictors’ values (input) are properties of an individual
forecast. If the past numerical predictions used for
training are skillful, the result is a conditional CDF that
is sharper than one from climatology. At this stage in the
process, the conditional CDF from the training data is
still defined in terms of the 99 quantiles.

The next step is to interpolate those 99 quantiles of the
conditional CDF to fewer N quantiles. For E-4DWX,
we chose N =09. The specific choice is arbitrary. It
should balance computational cost and granularity,
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which N =9 does for our purposes. Granularity is par-
ticularly important if one is concerned about precision at
the ends of the distribution, where the least likely and
most likely outcomes are found. With N =9, the lowest
probability threshold that can be predicted is 10%, the
highest 90%. Values that have probabilities in the range
of 0%-10% are all grouped into the former bin, 90%—
100% into the latter. To discriminate between proba-
bilities of 1% and 2%, for instance, or between 98% and
99%, one would need at least N = 99.

As follows from the definition of quantile presented
above, a calibrated N-member ensemble will have N + 1
equally weighted probability bins, and for each we can
find corresponding predictions of variables simply by
choosing daily predicted quantiles g, associated with
probability Pr(V = g,y) =n/(N + 1), wherein n is an
ensemble member from an (interpolated) ensemble of
size N. The resultant nine-member (i.e., 9 quantiles, 10
bins) interpolated ensemble’s PDF is narrower than the
PDF from the original 99 quantiles, as one would expect.
We call this ensemble interpolated to emphasize that it is
not the group of original, unmodified 30 dynamical
members of E-4DWX, but rather an “ensemble” of nine
quantiles that describe the statistical distribution of the
training data.

Next, QR is applied to the nine quantiles that now
characterize the training data, following the equations
presented in the previous subsection. The regressors for
the QR include the LR quantiles from the earlier step,
along with the other regressors listed in Table 2. A
graphical depiction of how QR optimally determines the
relationship of a regressor on specific quantiles of the
regressand, with no parametric assumptions, is pre-
sented in Fig. 3. To make the example clear and simple,
the data in Fig. 3 are from a single regressor: 24-h per-
sistence forecasts of 2-m air temperature at SAMS 01 at
DPG (Fig. 2) during June-August 1979-2001, to which
(1)-(3) have been applied for the 0.1, 0.5 (median), and
0.9 quantiles. The red line is the fit for the central ten-
dency (mean) calculated from standard linear re-
gression. The black lines, from bottom to top, are the fits
for qo1, o5 (median), and go 9. The fits for the mean and
median are similar, but they diverge with increasing
temperature. That the black lines fitted to the three
quantiles are not parallel signifies a heteroscedastic
distribution.

Applying LR and QR using regressors that are func-
tions of ensemble spread (Table 2) accounts for day-to-
day variability in the spread and for varying dynamical
stability (error growth rate). Nearly flat rank histograms
are also guaranteed by a good fit of the quantile re-
gression equations. But regressors based on ensemble
spread do not guarantee resolution in the ensemble
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F1G. 7. E-4DWX’s uncalibrated (red) and calibrated (blue) probability (%) of (a) 2-m air temperature = 0°-5°C (from left to
right) and (b) 10-m wind speed = 2.5, 5.0, and 10.0m s~ (from left to right) at SAMS 01 for the span of time depicted in the gray
inset boxes in Fig. 5. For reference, observed 2-m air temperature and 10-m wind speed are also plotted (black) in (a) and (b),
respectively. Uncalibrated and calibrated probabilities are constrained to a minimum of 10% and a maximum of 90% owing to the
choice of nine quantiles [see section 2d(3)]. Probabilities within the range 10%-90% are interpolated and therefore are not limited

to multiples of 10%.

predictions. For example, consider the pathological case
pointed out by Hamill (2001) in which a flat rank his-
togram can belie an ensemble that might not sample
from the correct distribution of any single observation
used for validation. This can occur if LR and QR are
both fitted to a dataset that spans many dynamical
regimes.

To overcome this pitfall, in the next step we explicitly
condition the training data on the ensemble dispersion.
We sort the predicted nine daily forecast quantiles (from
the QR step above) into three equally populated bins of
low, medium, and high dispersion, which ensures that the
predictions are reliable with respect to the full dataset.
The choice of three bins for the sorting is not requisite,
but the number is limited by the training sample size.
Sorting into bins can be thought of as identifying “‘spread
analogs” in the local state space. For other examples of
analogs in ensemble postprocessing, please see the papers
by Hamill and Whitaker (2006), Hopson and Webster
(2010), and Delle Monache et al. (2013).

After the predictions are sorted, the QR equations are
then applied anew to the distributions in each of the three
bins (i.e., on the conditioned dataset), using the same
procedure described above. This allows the raw ensemble
predictions to self-diagnose periods of relative stability or
instability, which informs its own postprocessing.

In the final step of processing the training data, the
results from the initial application of the QR—before
sorting data by dispersion—are compared to the results
from QR applied after sorting data by dispersion. For
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each site and forecast lead time, we determine which is
the better of the two applications of QR, and it is that QR
model that is applied to calibrate the current forecast
for a given site and forecast lead time. The metrics we use
for determining the better QR model are Brier score,
rank probability skill score, root-mean-square error
(RMSE), receiver operating characteristic (ROC), and a
measure of the rank histogram’s flatness.

Once every step of processing the training data is
completed (as described above), the calibration of the
current ensemble prediction consists of submitting the
output from the ensemble members to a very similar
series of steps, starting with the LR and ending with the
QR model chosen for the given site and lead time, as
described in the previous paragraph.

3. Performance
a. Effectiveness of calibration

Rank histograms of forecasts from 9 June 2013
through 13 July 2014 are evidence that calibration
produces realistically dispersive, unbiased ensemble
forecasts (Fig. 4). The U-shaped histogram before cal-
ibration (Fig. 4a) signifies that too many observations fall
outside of the envelope of members’ predictions (i.e.,
insufficient dispersion). The histogram’s asymmetry,
heavier to the right, signifies that the number of obser-
vations higher than the highest prediction exceeds
the number of observations lower than the lowest pre-
diction (i.e., low bias). Calibration corrects these two
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FIG. 8. MAE in (a) 2-m air temperature (°C) and (b) 10-m wind speed (m s~ ') as a function
of forecast lead time on E-4DWX’s domain 3 (dx = 3.3km) in 2015 calculated from
uncalibrated forecasts interpolated to 31 observation sites. The thick black line marks the
ensemble mean. The thin colored lines mark individual ensemble members. Member 26 in
purple (see Table 1) has the largest initial MAE and approximately flat error growth
thereafter because it has no data assimilation.

deficiencies (Fig. 4b). Results are similar at other lead
times and for other variables (not shown).

How calibration modifies output from E-4DWX’s
members at individual valid times is more clearly il-
lustrated in Fig. 5, which presents uncalibrated and
calibrated time series of 24-h predictions of 2-m air
temperature at DPG’s SAMS 01 (Fig. 2). The modifi-
cations are easiest to see in the gray inset boxes that
enlarge the same short, arbitrarily chosen window of
time on the panels. Calibration broadens the envelope
of temperatures spanned by the members and re-
centers the midpoint between the members with the
lowest and highest forecasts. As a result, the envelope
more frequently bounds the time series of observa-
tions that for verification were superposed on the
forecasts. Also as a result, mean forecasts are im-
proved (Table 3). The degree of improvement de-
pends, of course, on the skill of the uncalibrated mean,
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which is already quite high for the stations listed in
Table 3. (The next subsection elaborates on the skill of
the uncalibrated E-4DWX.)

Drawn from the time series in Fig. 5, the individual
case of 26 June 2014 (Fig. 6) further illustrates the
improvements in the first and second moments of the
ensemble PDF. The biased, uncalibrated ensemble
(solid black line) has a bimodal PDF mostly to the left
of the observation (red bar). The unbiased, calibrated
PDF (blue line) is a more useful forecast because it is
reliable and sharp. The climatological PDF (dashed
black line) is reliable but not sharp. The uncalibrated
ensemble is sharper than climatology but less reliable.

Where the uncalibrated PDF in Fig. 6 is located
along the x axis, and where the envelope of members’
predictions is located along the y axis in Fig. 5, are
functions of the uncalibrated E-4DWX’s bias. How-
ever, bias cannot be determined from any individual



2206

WEATHER AND FORECASTING

VOLUME 32

a) Bias in 2-m air temperature

temperature ('C)

F T

_1 T T T T TTT | T TTT | T T T | T TTT | T TTT | T T T | T TTT |
00 12 24 36 48
3
1b) Bias in 10-m wind speed -
v ] §
E ] P s ]
- 1] == T ~
Ry =an—N— A g
10 i B
O_ - - -
(7)) —

‘1 L
00

12

24 36 48

forecast lead time

FIG. 9. Bias in (a) 2-m air temperature (°C) and (b) 10-m wind speed (m s ') as a function of
forecast lead time on E-4DWX’s domain 3 (dx = 3.3 km) in 2015 calculated from uncalibrated
forecasts interpolated to 31 observation sites. The thick black line marks the ensemble mean.
The thin colored lines mark individual ensemble members. Horizontal black lines mark

zero bias.

prediction or any statistically small collection of pre-
dictions. The fact that the observation (red bar) in
Fig. 6 does not fall in the middle of the bimodal PDF
(solid black line) does not indicate bias any more than
rolling a 2 or a 12 one time with a pair of six-sided dice
indicates bias—that the dice are “loaded,” in gamblers’
parlance. Only through a statistically large number of
predictions (or dice rolls) are biases revealed.

To get a better sense of how calibration can poten-
tially alter a meteorologist’s experience, we focus again
on the sequence of 24-h forecasts in the gray inset of
Fig. 5. Those forecasts valid for an unusual cool spell in
June 2014 include several within a few degrees of 0°C.
If a meteorologist were asked by a test director about
the probability of temperatures approaching freezing,
the differences between the uncalibrated and cali-
brated output from E-4DWX might be meaningful.
Figure 7a presents E-4DWX’s uncalibrated and cali-
brated 24-h forecasts of the probability of 2-m air
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temperature =0°-5°C in increments of 1°C. At the
granularity of the ensemble, calibration has no effect
on probabilistic forecasts of =0°and <1°, both of which
fall in the lowest bin of 0%-10% chance (horizontal
blue line and, hidden underneath it, red line in the first
two of the six panels). There is an effect for =5°C (last
of the five panels), but it is small. For =2°-4°C the
effects are larger. At a threshold of 3°C (fourth of
the six panels) calibration increases the probability
from =10% to 25%. If we refer to the cost-loss model
from section 1b, this difference equates to a calibrated
loss threshold that is 40% of the uncalibrated loss
threshold. If we imagine that a hypothetical test during
the same cool spell is sensitive not just to tempera-
ture but also to wind, the effects of calibration are
even more important (Fig. 7b). At a threshold of
5ms !, calibration increases the forecast probability
from =15% during the period to 65% at one point
(middle panel in Fig. 7b).
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F1G. 10. MAE in 2-m air temperature (°C) at DPG’s SAMS 15 and 26 from the E-4DWX
ensemble mean (red) and the control member (blue) as a function of forecast lead time on
E-4DWX’s domain 3 (dx = 3.3km) in 2015. Results from these two stations are repre-
sentative of the sites where the mean provided (a) the most (labeled ““best case’”) and
(b) the least (labeled “‘worst case’”) improvement over the control member. Forecasts are

uncalibrated.

b. Overall skill of E-4DW X without calibration

As mentioned earlier, at the time of writing, cali-
bration is only applied to a small subset of E-4DWX’s
output: surface air pressure, temperature at 2m, rela-
tive humidity at 2m, and wind speed (including in
terms of each horizontal component) at 10 m, and only
at specific locations where observations are available.
Many of the graphical products on which DPG’s me-
teorologists rely are based on the ensemble’s full 4D
gridded output, so it is not sufficient that calibration
produce highly skillful results. E-4DWX’s predictions
must be skillful even without calibration.

As expected, ensemble mean forecasts from E-4DWX
have the most consistently low mean absolute error
(MAE) over the entire 48h of lead time (Fig. 8) com-
pared with the forecasts of individual members, although
for subsets of lead times there are a few members that
produce slightly better forecasts of 2-m air temperature,
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but not of 10-m wind speed. (Recall from the introduction
that the mean prediction by an ensemble tends to be more
skillful than any individual member’s prediction.) The
mean forecast is biased high in temperature and wind
speed (Fig. 9), but less so than the forecasts from many of
the 30 members. The bias in the mean does not result
from one or two extremely biased outlying members,
but rather from a predominance of moderately biased
members. Plots of RMSE and correlation (not shown) are
consistent with plots of MAE: the ensemble mean per-
forms best overall.

Before E-4DWX was deployed at DPG, meteorolo-
gists used only a deterministic version of 4D WX—which
they still use in addition to the ensemble—so it is infor-
mative to compare the ensemble mean to the deter-
ministic forecast from either of the two control members
of the ensemble (Figs. 10-13). The configuration of the
deterministic system includes a fourth domain with a
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FIG. 11. As in Fig. 10, but bias in 2-m air temperature (°C) at DPG’s SAMS 15 and 03.
Horizontal black lines mark zero bias.

grid interval of 1.1km, but its third domain is directly
comparable to the finest domain of any of E-4DWX'’s
members, including each control. Compared to the sec-
ond of the controls (member 2 in Table 1), E-4DWX’s
ensemble mean has similar or lower MAEs in 2-m air
temperature (Fig. 10) and 10-m wind speed (Fig. 12) at
every SAMS station at DPG, but the mean is more biased
than the control member at some stations (Figs. 11 and
13). The control member tends to predict lower 2-m air
temperatures than does the ensemble mean, regardless of
station, lead time, and time of day (not shown). It follows,
then, that at stations where E-4DWX has a pronounced
high bias, the control member has a bias closer to zero.
For context on the control member’s subtle, gradual
cooling over the 48-h forecasts in Fig. 11, for which we do
not yet have a complete explanation, please see the paper
by Massey et al. (2016).

The undulations with a period of 6 h in some panels in
Figs. 8 and 13 arise because at many stations E-4DWX’s
MAE and bias in 2-m air temperature and MAE in 10-m
wind speed are functions of where the initialization time
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and the lead time fall during the 24h of the day.
E-4DWX’s initialization times are fixed at 0000, 0600,
1200, and 1800 UTC. On these plots’ axes (Figs. 8-13)
each given lead time (e.g., 27 h from the four initializa-
tions on a given day) corresponds to four fixed points
during the diurnal cycle (e.g., 0300, 0900, 1500, and 2100
UTC on the following day, respectively). As a result, the
superposition of 1) varying analysis skill and forecast
skill as a function of initialization time; 2) oscillating
forecast skill as a function of where the valid time falls in
the diurnal cycle, ignoring the slow shifts in the local
solar cycle through the year; and 3) declining forecast
skill as a function of lead time all combine to produce
the 6-hourly undulations. A good illustration of the ef-
fect is Fig. 14, which shows the performance of the de-
terministic4ADWX at DPG in 2013. At a given lead time,
the model’s bias depends on the forecast’s initialization
time (Fig. 14a), and for a given forecast, the bias oscil-
lates as a function of lead time, depending on where that
lead time falls in the diurnal cycle (Fig. 14b). When
all initializations are combined (heavy black line in
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FIG. 12. As in Fig. 10, but MAE in 10-m wind speed (ms™!) at DPG’s SAMS 07 and 29.

Fig. 14a), the result is an undulating overall bias versus
lead time.

Diurnally fluctuating biases in 2-m air temperature, as
exemplified in Fig. 14b, are common in NWP forecasts at
DPG and elsewhere in the semiarid and arid western
United States (e.g., Cheng and Steenburgh 2005; Hart
et al. 2005; Zheng et al. 2012). The deterministic 4DWX
and the individual members of E-4DWX tend to un-
derpredict the cool of the night (i.e., nighttime air tem-
perature has a high bias) and the warmth of the day (i.e.,
daytime air temperature has a low bias). Sources of this
bias include how the thermal conductivity of soil is
characterized in the model code (Massey et al. 2014) and
how moisture in the upper levels of soil is overestimated
in land surface analyses (Massey et al. 2016).

4. Products

Each cycle of E-4DWX generates nearly half a ter-
abyte of output. How the vast amount of data from
E-4DWX or any other EPS is organized and provided
to meteorologists determines the system’s success or
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failure as much as does any of an EPS’s other com-
ponents (Buizza et al. 2005). To generate useful
products from E-4DWX, during each forecast cycle an
elaborate set of algorithms is run on the computa-
tional nodes of the host Linux cluster. By the time the
combinations of ensemble members, domains, lead
times, atmospheric variables, vertical levels, etc. are
considered, the output products number in the hun-
dreds of thousands per cycle. The products’ develop-
ment has been guided by the meteorologists at DPG
and by the testing that they support because, as
Palmer (2002) recommended, EPS predictions should
be expressed in terms of the most relevant user vari-
ables. Graphics (weather maps, time series, etc.) are
generated with the NCAR Command Language
(NCL) and with Read/Interpolate/Plot (RIP). These
graphics are then transferred to what is known as a
4DWX Data Application Server (DAS), a Linux node
that is separate from the cluster that hosts the NWP
components of E-4DWX. The DAS includes a web
server that allows registered users to view products
from E-4DWX via a collection of web pages.
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FIG. 13. As in Fig. 10, but bias in 10-m wind speed (ms~') at DPG’s SAMS 06 and 23.
Horizontal black lines mark zero bias.

a. Weather maps

1) ENSEMBLE MEAN

The most frequently used products from E-4DWX
are based on the ensemble mean. The mean is avail-
able to meteorologists through weather maps that
present the same fields found on maps derived from
the control members (not shown). Therefore, the
variables and display formats on these maps are fa-
miliar to the meteorologists, but the specific guidance
itself is more skillful than if based only on a single
deterministic run (see sections 2 and 3).

Standard surface and upper-level maps are generated
by E-4DWX. In addition, profiles of wind and temper-
ature for common test locations are included with the
ensemble-mean suite of products. Conditions in the
lower troposphere are what most affect testing at DPG,
so products include a series of plots displaying wind
speed and direction from altitudes of 10m to 2km
(not shown).
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2) EXCEEDANCE

As emphasized elsewhere in this paper, many of the tests
at DPG are sensitive to weather in a binary fashion. Con-
ditions beyond certain thresholds make tests impossible,
invalid, dangerous, or otherwise unacceptable. In such cases
guidance from E-4DWX is most valuable when cast as
likelihoods that thresholds will be exceeded. Probabilities
are generated by counting the number of ensemble mem-
bers that meet or exceed a threshold, then dividing the
count by the total number of ensemble members. Figure 15a
is an example. Probabilistic output from exceedance plots
also allows meteorologists to infer how uncertainty in
E-4DWX predictions varies in space and time.

3) MEAN AND STANDARD DEVIATION

Variability in the predictions among ensemble mem-
bers can be conveyed through plots of standard de-
viation from the mean (Fig. 15b). Higher standard
deviations indicate areas of more uncertainty where
model forecasts tend to be less reliable.
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FIG. 14. Deterministic 4DWX’s bias in 2-m air temperature (°C) in 2013 (a) within domain 4 (dx = 1.1km) as
a function of lead time (h) from eight separate initialization times (colors; see key) and (b) within domains
1 (dx = 30km), 2 (dx = 10km), 3 (dx = 3.3km), and 4 (dx = 1.1km) as a function of valid time (UTC) from all
initialization times combined. Biases are calculated from uncalibrated forecasts initialized every 3 h between
0200 and 2300 UTC each day, interpolated to all observation sites.

4) SPAGHETTI PLOTS

Output from all ensemble members can be plotted spa-
tially on the whimsically named spaghetti plot (Fig. 16a).
These plots, too, provide guidance on uncertainty. When
lines are tightly spaced around similar solutions from a
collection of ensemble members, confidence in predictions
is relatively high. Spaghetti plots are especially useful for
depicting when the ensemble’s overall spread comprises
several spatial clusters of distinct solutions.

b. Meteograms

Most tests at DPG occur at specific locations where
weather stations have been installed. For these sites,
E-4DWX provides output from all ensemble members as
meteorograms (commonly shortened in the community to
meteograms). An example is Fig. 16b, in which each en-
semble quantile’s calibrated prediction of 10-m wind
speed is plotted as a function of time. The ensemble mean
(green) and spread of *+1 standard deviation (yellow) are
then superposed on the individual forecasts. Other me-
teograms present 2-m temperature, 2-m relative humid-
ity, altitude of the ABL, 10-m wind roses, and 1-h
accumulated precipitation (not shown). E-4DWX also
provides data in other formats very similar to a meteo-
gram, such as time series of box-and-whisker plots (not
shown). Recent observations and predictions are often
presented together on meteograms (black line in
Fig. 16b) so meteorologists can consider E-4DWX’s re-
cent performance when developing their weather
guidance.
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c. Wind roses

One means of conveying E-4ADWX’s distribution of
wind predictions is through a wind rose (Fig. 17). On this
type of plot, the azimuth corresponds to the direction of
origin, discretized into 16 bins or sectors (e.g., a northerly
wind is plotted in the sector centered on azimuth 0°).
Within each sector, the radial dimension of shading from
nearer the center of the rose outward indicates the per-
centage of members predicting wind direction within that
sector. Range rings mark every 20% of the ensemble’s
membership. Wind speed predictions are displayed in the
sectors according to the hues on a color bar. In Fig. 17 for
example, the ensemble predicts easterly winds from 0 to
6ms ' from the initialization time of 0600 UTC until
1200 UTC, after which the winds back to northwesterly.
Winds weaken between 0000 and 0300 UTC on day 2,
then turn southerly and increase to 4-10ms ™' among the
members predicting the highest speeds.

5. Summary

This paper is an overview of E-4DWX, an ensemble
prediction system (EPS) that has been used for test sup-
port at Dugway Proving Ground (DPG) in northwestern
Utah since 2007. In 2014, three more U.S. Army test fa-
cilities adopted a slightly lower-resolution version of the
system: White Sands Missile Range, Yuma Proving
Ground, and Electronic Proving Ground.

The 30 operational members of E-4DWX each
produce forecasts of 48 h every 6 h on a 272-processor
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FIG. 15. Instantaneous forecasts of (a) the uncalibrated probability of 10-m wind speed exceeding 5ms™! and

(b) the uncalibrated mean (blue contours with black labels) and standard deviations (colored shading) of 2-m air
temperature (°C). In (a) the colors mark grid cells in which 0 (white), 1-9 (yellow), 10-20 (orange), and more than
21 (red) members of the 30-member E-4DWX predicted that the wind speed threshold would be exceeded at the
valid time. In (b) the local maxima (H) and minima (L) are indicated. Both forecasts are on domain 3 (dx = 3.3 km)
at unspecified times and dates. DPG is outlined in black, the Great Salt Lake is blue in (a) and white in (b), and
black dots mark sites of observations at 2 and 10 m.

high performance computer at DPG. All members are
based on the WRF Model. Spread is generated
through variations in members’ initial-, lateral-, and
lower-boundary conditions, as well as in physical
parameterizations.

E-4DWX’s calibration is innovative. For locations
where observations are available, the most useful near-
surface variables are dynamically calibrated through a
combination of logistic and quantile regressions, ex-
plicitly conditioned on ensemble dispersion. Calibration

Cumulus rainfall = 0.1 mm

Wind speed (m s™)
5

— quantiles
— mean
—— observations

forecast lead time (h)

FIG. 16. Forecasts of (a) regions of uncalibrated precipitation = 0.1 mm (liquid equivalent) from the cumulus
scheme in the previous hour (red contours) by individual ensemble members whose initial and boundary conditions
were from the NAM (dashed) or GFS (solid), and (b) calibrated 10-m wind speed (ms ') as a function of forecast
lead time at SAMS 22 at DPG. In (a) DPG is outlined in thick black, the Great Salt Lake is in thin black, and black
dots mark sites of observations at 2 and 10 m. In (b), the E-4DWX quantiles are in red, the ensemble mean is in
green, +1 standard deviation is in yellow, and observations are in black. Forecasts are on domain 3 (dx = 3.3 km) at
unspecified times and dates.
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FI1G. 17. Time series of E-4DWX’s mean 10-m wind speed (thick
black line; ms™') and ensemble members’ wind directions (wind
roses) at an unspecified site. This 48-h uncalibrated forecast (plus 6 h
of data assimilation at the start of the period, to the left of the red
semicircle along the x axis) is on domain 3 (dx = 3.3km) on an un-
specified day during the spring. Each wind rose shows for a given
time of day (UTC) the percentage of ensemble members (range rings
at intervals of 20%) that predict ranges of wind speed (colors) from
specific directions (sectors 22.5° wide). Each rose’s position along the
y axis marks the ensemble’s mean wind speed at that time.

is applied within a cross-validation framework to mini-
mize the likelihood of overfitting. For the calibrated
variables, E-4DWX is realistically dispersive and un-
biased. Rank histograms following calibration against a
reference dataset generally fall within the 95% confi-
dence bounds for statistically perfect calibration. For
individual ensemble forecasts, the most noticeable ef-
fects of calibration are to broaden the spread among
members and to shift the mean of their distribution
toward a less biased value.

Without calibration, E-4DWX’s ensemble means of
2-m temperature and 10-m wind speed (among the
variables of most concern to meteorologists at DPG) are
skillful but tend to be biased high, owing to a pre-
dominance of moderately biased members, not a few
extremely biased members. During the full 48h of lead
times, the ensemble mean consistently has lower MAEs
overall than even E-4DWX’s best-performing members.
For subsets of lead times, there are a few members that
sometimes produce slightly better forecasts of 2-m air
temperature, but not of 10-m wind speed. The ensemble
mean also has consistently lower RMSEs and higher
correlations than individual members.

Each cycle of E-4DWX generates nearly half a ter-
abyte of output that is translated into graphical products
whose design is based on requests from meteorologists.
Products display means, standard deviations, or frac-
tions of the ensemble exceeding a threshold, as well as
predictions from individual members of the ensemble.
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Although likelihood and uncertainty from an EPS are
valuable, many test participants are inexperienced with
weather guidance in those terms and still prefer binary
go/no-go (yes/no) recommendations from a meteorolo-
gist. Meteorologists at DPG are working to determine
how best to use and communicate the confidence and
uncertainty information from E-4DWX. In our view,
calibrated probabilistic guidance and some notion of
the repercussions of action or inaction are requisite
for using weather forecasts to make rational, objective
decisions.
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