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ABSTRACT

Since 2007, meteorologists of the U.S. Army Test and Evaluation Command (ATEC) at Dugway Proving

Ground (DPG), Utah, have relied on a mesoscale ensemble prediction system (EPS) known as the Ensemble

Four-Dimensional Weather System (E-4DWX). This article describes E-4DWX and the innovative way in

which it is calibrated, how it performs, why it was developed, and howmeteorologists at DPGuse it. E-4DWX

has 30 operational members, each configured to produce forecasts of 48 h every 6 h on a 272-processor high

performance computer (HPC) at DPG. The ensemble’s members differ from one another in initial-, lateral-,

and lower-boundary conditions; in methods of data assimilation; and in physical parameterizations. The

predictive core of all members is the Advanced Research core of the Weather Research and Forecasting

(WRF) Model. Numerical predictions of the most useful near-surface variables are dynamically calibrated

through algorithms that combine logistic regression and quantile regression, generating statistically realistic

probabilistic depictions of the atmosphere’s future state at DPG’s observing sites. Army meteorologists view

E-4DWX’s output via customized figures posted to a restricted website. Some of these figures summarize

collective results—for example, through means, standard deviations, or fractions of the ensemble exceeding

thresholds. Other figures show each forecast, individually or grouped—for example, through spaghetti dia-

grams and time series. This article presents examples of each type of figure.

1. Introduction

a. Background

In operational forecasting, ensemble prediction sys-

tems (EPSs) have become amainstay for addressing two

unavoidable truths: 1) numerical weather prediction

(NWP) models will always be flawed, and 2) the chaotic

atmosphere’s true state will always elude any attempt at

perfect observations. Every individual simulation from

an NWP model is compromised by flaws in the model’s

numerical schemes, physical parameterizations, and

methods of data assimilation; by imperfections in initial

conditions, boundary conditions, and assimilated ob-

servations; by limitations in computers and networks;

and by dynamical instabilities in the atmosphere itself

(inertial, convective, baroclinic, etc.). No individual

simulation can capture the uncertainties that arise from

these flaws, imperfections, and limitations. An ensemble

of simulations can (Toth et al. 2001).

EPSs offer other advantages, too. The mean pre-

diction by an ensemble tends to bemore skillful than any

single prediction by one of its members (Leith 1974; Du

et al. 1997; Toth and Kalnay 1997; Ebert 2001; Ma et al.

2012). The spread among members’ predictions can be

interpreted roughly to indicate the mean prediction’s

uncertainty (Kalnay 2003). Ensembles also permit
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output fromNWP systems to be framed as probabilities.

Probabilistic guidance from an EPS is potentially much

more useful to decision-makers than is traditional

guidance from a single NWP model (e.g., Buizza 2008).

Designing an EPS for predicting mesoscale weather

is challenging. Over the finer two subranges of the

mesoscale (horizontal distances of 2–200km), weather

phenomena are smaller, more transitory, and less

predictable than the phenomena for which many early

EPSs were designed (Hamill et al. 2000; Hohenegger

and Schär 2007). Initial states do not necessarily com-

prise the full range of resolvable scales, so mesoscale

NWP models must generate finescale phenomena and

processes during forward integration, and often need

finescale perturbations to be prescribed so uncertainty

in the analysis is properly represented (e.g., Toth and

Kalnay 1993; Johnson et al. 2014; Iyer et al. 2016). At

smaller grid intervals, complex interactions occur over a

wider range of scales, which affects an ensemble’s

spread and errors (Hohenegger and Schär 2007; Clark
et al. 2009; Eckel et al. 2010; Johnson et al. 2014).

Most mesoscale models are limited-area models, so

lateral boundary conditions heavily influence solu-

tions (McDonald 1997; Pielke 2002), and uncertainty

in boundary conditions is generally underrepresented

(Nutter et al. 2004). Unlike global EPSs, which tend

to emphasize differences in the initial conditions (e.g.,

Molteni et al. 1996), mesoscale EPSs tend to empha-

size uncertainties in models—for example, treatments

of physical processes such as radiative transfer, for-

mation of clouds and precipitation, and eddies in the

boundary layer (Bouttier et al. 2012). Many methods

for generating ensemble perturbations are less appro-

priate for short-term modeling at the fine mesoscale

than for modeling at the temporal and spatial scales for

which the methods were originally developed (Eckel

and Mass 2005). Sufficient natural spread can be elu-

sive (Hamill et al. 2000; Eckel et al. 2010; Romine et al.

2014; Schwartz et al. 2014). Large errors in mesoscale

models that are not fully taken into account can trans-

late to unrealistically small ensemble spreads and large

systemic errors in an ensemble as a whole (Eckel et al.

2010; Berner et al. 2015).

Despite such challenges to ensemble prediction with

mesoscale models, phenomena of mesoscale size and

duration nonetheless are very important for many users

of numerical weather predictions. Meteorologists at

the U.S. Army Dugway Proving Ground (DPG), Utah

are one such group. Since 2007, they have used an EPS

known as the Ensemble Four-Dimensional Weather

System (E-4DWX) as a primary tool for supporting test

exercises (Liu et al. 2007). In 2014, E-4DWX was ex-

tended to three more government test sites in the Great

Basin of the United States: White Sands Missile Range

(WSMR), New Mexico; Yuma Proving Ground (YPG),

Arizona; and Electronic Proving Ground (EPG), Ari-

zona. For brevity, this paper focuses on just DPG’s ex-

perience with E-4DWX.

b. Testing and forecasting at DPG

One of DPG’s primary missions is to test equipment

that detects chemical and biological hazards. Such tests

are very sensitive to mesoscale and microscale weather.

Numerical predictions influence whether and how tests

are conducted. Numerical analyses influence how the

results from tests are interpreted. Skillful guidance is

required about the dispersion of chemical or biological

agent simulants that are released into the open air near

the ground. This guidancemust be based on detailed and

accurate numerical predictions of temperature, static

stability, wind speed, and wind direction over mesoscale

and microscale distances and times.

It can be costly to delay or cancel a test because of poor

weather guidance. The nature of testing at DPG and

other sites of the U.S. Army Test and Evaluation Com-

mand (ATEC), and the weather-related decisions that

have to be made there by users of NWP forecasts, are

particularly amenable to probabilistic guidance, which

can feed into cost–loss analyses and similar frameworks in

ways that deterministic guidance cannot. For example, if

you know the cost C and loss L associated with taking

FIG. 1. Domains 1 (dx5 30km), 2 (dx5 10km), and3 (dx5 3.3km)

of E-4DWX.OnlyDPGhas a formal domain 3. For the three other test

facilities (YPG, EPG, and WSMR) local subregions of domain 2 are

used for theensembleproducts.The thindashedwhite line insideDPG’s

domain 3 marks the region depicted in Fig. 2.
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action (e.g., canceling a test) to avoid certain weather

(e.g., 10-m wind speed. 20ms21), then you should take

action if P . C/L, wherein P is the probability of that

weather as predicted by a calibrated ensemble (Murphy

1977). (There ismuchmore about calibration in section 2d.)

c. Weather at DPG

Semiarid DPG is located at the southern end of the

Great Salt LakeDesert, roughly 100km southwest of Salt

Lake City, Utah, on the bed of ancient Lake Bonneville.

Narrow, compact mountain ranges rise more than a ki-

lometer above the dry soil and scrubby vegetation on the

desert floor. During high pressure weather patterns,

nocturnal drainage flows often develop along the slopes

of the mountains and the gently inclined terrain at their

bases, and the nocturnal boundary layer is often strongly

stable (e.g., Rife et al. 2002; Lehner et al. 2015; Grachev

et al. 2016; Jeglum et al. 2017). Vast, smooth salt flats, or

playas, lay to the west and north of the primary test sites

at DPG (Massey et al. 2017). Playas are moist and highly

reflective, so the near-surface air above them is relatively

cool during the day and relatively warm at night. The

resultant local temperature gradients drive thermally di-

rect ‘‘salt breezes’’ (Rife et al. 2002). Gap flows accelerate

through low spots in the ranges under certain conditions

(Jeglum et al. 2017).

Interacting with these and other locally forced phe-

nomena are additional synoptic,mesoscale, andmicroscale

features that characterize weather in the Intermountain

West (Fernando et al. 2015; Jeglum andHoch 2016). These

complex interactions challenge meteorologists at DPG

and the E-4DWX NWP system that they use (de-

scribed in section 2 below). Years of monitoring how

members contribute to the overall skill of the ensem-

ble have demonstrated that no single configuration of

E-4DWX outperforms all others in every case, and no

single source of initial and boundary conditions has

proved altogether superior. Therefore, rather than run a

single model with a configuration selected a priori, it is

more effective to run an ensemble of configurations

that perform well in at least some circumstances.

E-4DWX was first installed at DPG in 2007. Since

then, we are not aware of a single test at DPG that was

canceled solely because of unpredicted adverse weather.

FIG. 2. Locations of SAMS observing stations at DPG. Numbered stations are the sources

of data that are the basis for subsequent figures. To provide geographic context, the perimeter

of this region is outlined in Fig. 1.
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Meteorologists attribute some of their success to

E-4DWX. There have been situations in which E-4DWX

predicted that marginal weather was likely, and a test

was conducted anyway because the risk was deemed

acceptable. In these situations, test participants can

sometimes accomplish a reduced set of objectives. There

have also been situations in which enough ensemble

members predicted unacceptable weather that a test

was canceled, even though the standard deterministic

forecast that is run as baseline guidance atDPGpredicted

acceptable weather.

2. E-4DWX

a. Framework and NWP core

E-4DWX is a generic, multitier framework that in-

tegrates processing and assimilation of observations

with ensemble prediction, can be rapidly configured for

use anywhere over the globe, and can readily in-

corporate new advancements by the community en-

gaged in research on mesoscale ensemble prediction.

A skillful EPS relies on a skillful deterministic NWP

model and a high quality data assimilation system

TABLE 1. TheE-4DWXmembers at the time of writing. Please see the technical note on theWRFModel v.3 (Skamarock et al. 2008) for

more information about the schemes in the table. Options for LBCs are NAM and GFS. The option for the land surface model (LSM) is

Noah. Options for the surface-layer scheme (Surf) are the MM5 Monin–Obukhov (M–O), Eta, Mellor–Yamada–Nakanishi–Niino

(MYNN), and quasi-normal scale elimination (QNSE). Options for the ABL scheme are Yonsei University (YSU), Mellor–Yamada–

Janjić (MYJ), Bougeault–Lacarrère (B–L), MYNN level 2.5, QNSE, and University of Washington (aka Bretherton and Park) (UW).

Options for the cumulus scheme (Cu), which is only applied on domains 1 and 2 except as noted, are Kain–Fritsch (K–F), Grell–Freitas

(G–F), and Betts–Miller–Janjić (BMJ). Options for the microphysics scheme (Micro) are WRF single-moment 6-class (WSM6), new

Thompson et al. (Th), WRF single-moment 5-class (WSM5), Morrison double-moment (Mor), and WRF double-moment 5-class

(WDM5). Options for the shortwave radiation scheme (SW) are Goddard (Gd), Dudhia (Du), and Community Atmosphere Model

(CAM). Options for the longwave radiation scheme (LW) are Rapid Radiative Transfer Model (RRTM) and CAM. The last column

denotes the two control runs (control), a configuration with a cumulus scheme used on domain 3 (Cu D3), a configuration without data

assimilation (No DA), two configurations to which stochastic kinetic-energy backscatter is applied (SKEBS) with different random

number streams (1 and 2), and two configurations that have lower boundary conditions shifted by 30 km (Shift) and employ a Kalman

filter (KF) with different nudging coefficients (1 and 2).

Member LBC LSM Surf ABL Cu Micro SW LW Notes

1 NAM Noah M–O YSU K–F WSM6 Gd RRTM Control

2 GFS Noah M–O YSU K–F WSM6 Gd RRTM Control

3 NAM Noah M–O YSU G–F WSM6 Gd RRTM

4 NAM Noah Eta MYJ K–F WSM6 Gd RRTM

5 NAM Noah M–O YSU K–F Th Gd RRTM

6 NAM Noah M–O YSU K–F WSM5 Gd RRTM

7 NAM Noah M–O YSU K–F Mor Gd RRTM

8 GFS Noah Eta B–L K–F WSM6 Gd RRTM

9 GFS Noah MYNN MYNN K–F WSM6 Gd RRTM

10 GFS Noah QNSE QNSE K–F WSM6 Gd RRTM

11 GFS Noah M–O UW K–F WSM6 Gd RRTM

12 GFS Noah M–O YSU K–F WSM6 CAM CAM

13 GFS Noah M–O YSU BMJ WSM6 Gd RRTM

14 GFS Noah M–O YSU K–F WSM6 Du RRTM

15 GFS Noah M–O YSU G–F WSM6 Gd RRTM

16 GFS Noah M–O YSU BMJ WSM6 Gd RRTM Cu D3

17 NAM Noah Eta B–L K–F WSM6 Gd RRTM

18 NAM Noah QNSE QNSE K–F WSM6 Gd RRTM

19 NAM Noah MYNN MYNN K–F WSM6 Gd RRTM

20 NAM Noah M–O YSU K–F WSM6 Du RRTM

21 NAM Noah M–O YSU K–F WSM6 CAM CAM

22 NAM Noah M–O YSU BMJ WSM6 Gd RRTM

23 GFS Noah M–O YSU K–F Th Gd RRTM

24 GFS Noah M–O YSU K–F WDM6 Gd RRTM

25 GFS Noah M–O YSU K–F Mor Gd RRTM

26 GFS Noah M–O YSU K–F WSM6 Gd RRTM No DA

27 GFS Noah M–O YSU K–F WSM6 Gd RRTM SKEBS 1

28 GFS Noah M–O YSU K–F WSM6 Gd RRTM SKEBS 2

29 GFS Noah M–O YSU K–F WSM6 Du RRTM Shift KF 1

30 GFS Noah M–O YSU K–F WSM6 Du RRTM Shift KF 2
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(Buizza et al. 2005). An EPS built on a poor model will

produce forecast errors that are rooted in the de-

ficiencies of the model itself, not in the inevitable un-

certainties in the atmosphere’s initial state (Kalnay

2003). The NWP core of E-4DWX is the Advanced

Research version of the Weather Research and

Forecasting (WRF) Model (v.3.5.1 at the time of writ-

ing). Early versions of E-4DWX also used the fifth-

generationMesoscaleModel (MM5) developed by The

Pennsylvania State University and NCAR, but the

current version does not. The framework of E-4DWX is

sufficiently flexible that in the future a variety of other

mesoscale models could also be added.

E-4DWX comprises 30 operational NWP members

(i.e., excluding test members). Each runs on three one-

way nested computational domains of grid intervals dx

of 30.0, 10.0, and 3.3 km (Fig. 1). There are 37 levels,

roughly one-third of which are in the lowest 1 km. The

single 3.3-km domain of 76 3 76 points is positioned

over DPG. Forecast data for the other three supported

test facilities are drawn from the larger, coarser domain

with the 10-km grid interval. The 48-h forecasts are

initialized four times per day at 0000, 0600, 1200, and

1800 UTC. E-4DWX is executed at DPG on a 272-

processor Linux cluster.

Atmospheric observations, some from special observing

platforms known as surface atmospheric measurement

systems (SAMS; Fig. 2), are assimilated by E-4DWX via

the Real-Time Four-Dimensional Data Assimilation Sys-

tem (RTFDDA; Liu et al. 2008), which employs New-

tonian relaxation to nudge the model toward observations

during the assimilation cycle. This is a computationally

efficient, robust method of assimilating data continuously

rather than intermittently, thereby pairingmore closely the

time of an observation to its corresponding time in the

simulation (Stauffer and Seaman 1994).

Part of the spread among members in E-4DWX

develops from differences in the initial conditions

(ICs), lateral boundary conditions (LBCs), and land

surface (LS) characteristics. Some members draw

their ICs and LBCs from the North American Me-

soscale Forecast System (NAM), others from the

Global Forecast System (GFS). To approximate the

effects of phase errors in LBCs from the NAM and

GFS, the fields from the two models are shifted hor-

izontally by 30 km (one grid cell) west–east and

north–south for two members. This method and the

distance of 30 km are based on our trial-and-error

tests; shifts of two grid cells produce unrealistically

large errors. To perturb ICs for some members, we

modify the assimilated observations and the weights

and radii of influence in RTFDDA. The modifications

to the observations are in the form of random and

fixed errors (biases) up to 1.58C and 1.5m s21, chosen

empirically to be consistent with RTFDDA’s typical

analysis errors near the ground and in the lower tro-

posphere. Finally, physical parameterizations vary

among most members, so E-4DWX includes multi-

model spread as well. Table 1 summarizes the 30

configurations.

To make greatest use of E-4DWX, meteorologists at

DPG need the probabilistic predictions from the sys-

tem to comprise realistic heterogeneity on the tempo-

ral and spatial scales of the weather that most

influences tests. There are many challenges to using

mesoscale ensembles for true probabilistic predictions

spanning from several hours to several days. In addi-

tion to the challenges described in the introduction,

NWP models are often biased. One way of mitigating

bias (among other undesirable qualities) in an EPS is

through calibration (Warner 2011). That is the focus of

the next subsection.

TABLE 2. Regressors used to calibrate selected variables from E-4DWX.

Regressor Notes Used in

24-h persistence Observed weather 24 h earlier LR, QR

Ensemble median Ensemble-median forecast at validation time LR, QR

Ensemble mean Ensemble-mean forecast at validation time LR, QR

Ensemble spread Standard deviation of the forecast ensemble at

validation time

LR, QR

Ensemble mean divided by the

forecast standard deviation

Steepness of logistic function can vary with standard

deviation of the forecast ensemble

LR, QR

Constant Climatology LR, QR

LR-predicted quantile Retained from LR step in calibration QR

Corresponding quantile Corresponding (interpolated) quantile from the

raw 30-member forecast ensemble

QR

Each member of the 30-member

(uncalibrated) raw ensemble

Each member of the raw 30-member forecast

ensemble used as independent regressor

LR, QR
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b. Calibration

During postprocessing, part of the output from

E-4DWX is calibrated—made statistically reliable—

such that the probability of conditions predicted by

E-4DWX matches as well as possible the observed fre-

quency of those conditions (Wilks 2006b). This means

that E-4DWX’s predictions are statistically indistin-

guishable from observations for the subset of variables

being calibrated: surface air pressure, air temperature

at 2m (AGL throughout the article), relative humidity

at 2m, and wind speed and vector wind components at

10m. Currently, calibration is being applied only to

predictions interpolated to instrumented sites. Benefits

of calibration include the following:

d reducing the forecast error of the ensemble mean,

partly by reducing bias; the mean of a calibrated,

properly perturbed, and sufficiently large ensemble

theoretically has on average as little as one-half the

error variance of any of the ensemble’s members

(Leith 1974);
d increasing the ensemble’s reliability, resolution, and

sharpness, including for predicting the likelihood of

extreme and potentially devastating weather (e.g.,

Hamill et al. 2004)—calibration does not guarantee

more skillful predictions of extremes, however (e.g.,

Mylne 2002); and
d providing an indication of forecast uncertainty

through the spread among ensemble members (e.g.,

Hagedorn et al. 2012), an indication that often is

limited and inexact (e.g., Hopson 2014).

Over the last several decades, methods for calibrating

EPSs and for evaluating their calibration have been based

on linear regression (e.g., Atger 2003; Diomede et al.

2014), logistic regression (e.g., Hamill et al. 2004; Wilks

2006a; Hamill et al. 2008; Bentzien and Friederichs 2012;

Johnson and Wang 2012; Roulin and Vannitsem 2012),

nonhomogeneous Gaussian regression (e.g., Gneiting

et al. 2005; Hagedorn et al. 2008), ensemble kernel density

model output statistics (e.g., Glahn et al. 2009), ensemble

dressing (e.g., Roulston and Smith 2003;Wang andBishop

2005; Fortin et al. 2006;Wilks andHamill 2007), ensemble

regression (e.g., Unger et al. 2009), Bayesian model av-

eraging (e.g., Raftery et al. 2005; Sloughter et al. 2007;

Wilson et al. 2007; Kleiber et al. 2011), spatial Bayesian

model averaging (e.g., Berrocal et al. 2007), simultaneous

quantile regression (e.g., Tokdar and Kadane 2012),

quantile-to-quantile mapping (e.g., Hamill and Whitaker

2006; Diomede et al. 2014), rank histograms and other

indicators of reliability (e.g., Hamill and Colucci 1997;

Eckel andWalters 1998; Krzysztofowicz and Sigrest 1999;

Atger 2003; Johnson and Wang 2012), spread–skill re-

lationships (e.g., Atger 1999), analogs (e.g., Hamill and

Whitaker 2006; Diomede et al. 2014; Junk et al. 2015),

geostatistical model averaging (e.g., Kleiber et al. 2011),

parametricmixturemodels (e.g., Bentzien andFriederichs

2012), object-based methods (e.g., Nehrkorn et al. 2014),

and artificial neural networks (e.g., Yuan et al. 2007).

The calibration developed for E-4DWX is novel in two

ways. 1) We combine logistic regression (Hamill and

Whitaker 2006; Wilks and Hamill 2007) with quantile re-

gression (Koenker andBassett 1978) to improve numerical

predictions at discrete, evolving probability intervals

rather than at fixed climatological thresholds. 2) To ensure

the ensemble’s reliability (Hopson 2014), we preprocess it,

then explicitly condition the training of the final post-

processing model on the (now calibrated) ensemble dis-

persion. All aspects of the calibration algorithms employ a

common framework to ensure that the results are statisti-

cally robust. Regressions are always performed with cross-

validation tominimize the likelihood of overfitting; in each

pass through the dataset, half of the data are used to fit the

regression, and the other half are used to evaluate the fit.

The subsamples are then reversed. Logistic regression and

quantile regression are explained inmore detail in the next

two subsections.

FIG. 3. Air temperature at 2m (AGL in all figures) at DPG’s

SAMS 01 during June–August 1979–2001. Each value from the

previous day is used as a 24-h persistence forecast. The red line is the

fit of the central tendency (mean) from the standard linear re-

gression, the middle black line is the fit of the 0.5 quantile (median),

the upper black line is the 0.9 quantile, and the lower black line is the

0.1 quantile. The mean and median are similar but diverge as tem-

perature increases. The fits of the 0.1 and 0.9 quantiles converge as

temperature increases, indicating the data are heteroscedastic.
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1) LOGISTIC REGRESSION

Logistic regression (LR) is a well-established ap-

proach for fitting data to the logit function (e.g., Hilliker

and Fritsch 1999; Hamill and Whitaker 2006; Wilks and

Hamill 2007). It is useful for our application because

probabilistic predictions—for instance, from an ensem-

ble such as E-4DWX—can be expressed categorically as

meeting or not meeting a series of thresholds. Logistic

regression handles such cases of binary predictands

quite well. It results in probabilities that are correctly

bounded by 0 and 1, and it accommodates residuals that

are non-Gaussian. Please see the text by Wilks (2006b)

for more information about logistic regression, and for a

comparison between it and alternative methods of re-

gression for binary predictands. Papers byMessner et al.

(2014a,b) offer examples of recent advancements in LR.

2) QUANTILE REGRESSION

When a probability density function (PDF) is seg-

mented into two or more probability intervals, a quan-

tile is what separates one interval from another. For

example, if a PDF were divided into two such intervals

of equal probability, the single quantile between them

would be the median. Quantile regression (QR) is an

absolute-error estimator that can conditionally fit spe-

cific quantiles of a regressand’s distribution (beyond just

the median) without relying on the assumption that the

regressand or residuals are distributed parametrically

(Koenker and Bassett 1978). Probability distributions

need not be Gaussian, for example. QR offers several

other benefits, too. Because the conditional fit in QR is

based on absolute error, it is less sensitive to outliers

than are squared-error estimators (Portnoy and

Koenker 1997). QR also accommodates distributions of

data with heteroscedastic variances (i.e., when variance

is a function of a predictand’s magnitude). One of the

first applications of QR in atmospheric science was by

Bremnes (2004) to forecasts of precipitation.

TheQR algorithms used to fit specific quantiles can be

explained as follows. Assume fyig is a set of observa-

tions of the regressand y, and {xi} is an associated set of

predictors. Just as in standard linear regression, a linear

function of x can be used to estimate a specific quantile

qu of y:

q
u
(x

i
;b)5b

0
1 �

n

k51

b
k
x
ik
1 r

i
, (1)

with residual ri 5 yi 2 qu(xi;b)and u 2 (0, 1), wherein b

is a vector of unknown coefficients. However, instead of

minimizing the squared residuals, as is done with stan-

dard linear regression, in QR a weighted iterative min-

imization of {ri} is performed to estimate b:

min�
n

i51

r
u
(r

i
)5 arg min

b
�
n

i51

r
u
[y

i
2 q

u
(x

i
;b)] , (2)

with a weighting function of arbitrary quantity a

defined as

FIG. 4. Rank histograms of E-4DWX’s (a) uncalibrated and (b) calibrated 24-h forecasts of 2-m air temperature

atDPG’s SAMS 01 every 6 h at 1331 different valid times from 0000UTC 8 Jun 2013 through 1800UTC 14 Jul 2014.

The red dashed lines bound the 95% confidence limits for perfectly calibrated forecasts. Both histograms are based

on nine quantiles that separate the data into 10 intervals (i.e., bins).
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A powerful benefit of QR is that minimizing the

cost function in (2) leads to a statistically flat rank

histogram, which characterizes a calibrated ensem-

ble prediction (i.e., a prediction that is equivalent

to a random draw from an underlying—usually un-

known—distribution). In addition, although QR con-

strains the resultant quantile estimators to satisfying this

requirement, at the same time it also constrains the esti-

mators to optimal sharpness (Wilks 2006b), generating

PDFs that are narrower than a PDF from a purely

climatological distribution.

3) SPECIFIC STEPS FOR COMBINING LR AND QR

In the first step of our implementation of LR and QR

to calibrate E-4DWX, we start with an archive of ob-

servations at the sites for which we want calibrated

guidance. From that archive we estimate the climato-

logical PDF of a variable of interest, such as 2-m air

temperature. This is the prior PDF. To characterize this

distribution, 99 equally spaced quantiles qc,m are used to

segment the PDF into 100 bins. For each quantile,

FIG. 5. Time series of (a) uncalibrated and (b) calibrated 24-h forecasts (color) from E-4DWX at 100 different

times from 0000UTC 11 Jun 2014 (time 888) through 1200UTC 13 Jul 2014 (time 987). Superposed on the panels is

the observed 2-m air temperature (8C; black) every 6 h at DPG’s SAMS 01. Calibration mitigates periods of bias in

the uncalibrated forecast and increases the ensemble spread, as enlarged for clarity in the gray inset boxes, which

span the same arbitrarily chosen period of time. The red ovalmarks 26 Jun 2014, the valid time of the data presented

in Fig. 6. Data in these two panels are ordered sequentially at intervals of 6 h for times when data were available;

spans of missing data are skipped.

TABLE 3. MAE in 10-m wind speed (m s21) and 2-m temperature (8C) at SAMS 01, 04, and 08 in uncalibrated and calibrated 24-h

forecasts from E-4DWX at 100 different times from 0000 UTC 11 Jun through 1200 UTC 13 Jul 2014. The time span matches the time

series in Fig. 5.

MAE (m s21 or 8C)

Station Variable Before calibration After calibration

SAMS 01 10-m wind speed 1.20 1.08

SAMS 04 10-m wind speed 1.26 1.19

SAMS 08 10-m wind speed 1.20 1.13

SAMS 01 2-m temperature 2.18 2.00

SAMS 04 2-m temperature 1.80 1.73

SAMS 08 2-m temperature 1.97 1.83
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Pr(V#q
c,m

)5
m

M1 1
, (4)

wherein V is the validation value, such as from a future

observation, and m is one of the M (99, in this case)

quantiles that separate the equally spaced probability

bins to be calibrated.

Using past numerical predictions and their corre-

sponding observations—these two datasets together

compose the training data—we then apply LR to esti-

mate out-of-sample models for exceeding each of the 99

quantiles. For each prediction day, a conditional cu-

mulative distribution function (CDF) is formed. The

predictors’ values (input) are properties of an individual

forecast. If the past numerical predictions used for

training are skillful, the result is a conditional CDF that

is sharper than one from climatology. At this stage in the

process, the conditional CDF from the training data is

still defined in terms of the 99 quantiles.

The next step is to interpolate those 99 quantiles of the

conditional CDF to fewer N quantiles. For E-4DWX,

we chose N5 9. The specific choice is arbitrary. It

should balance computational cost and granularity,

which N5 9 does for our purposes. Granularity is par-

ticularly important if one is concerned about precision at

the ends of the distribution, where the least likely and

most likely outcomes are found. With N5 9, the lowest

probability threshold that can be predicted is 10%, the

highest 90%. Values that have probabilities in the range

of 0%–10% are all grouped into the former bin, 90%–

100% into the latter. To discriminate between proba-

bilities of 1% and 2%, for instance, or between 98% and

99%, one would need at least N5 99:

As follows from the definition of quantile presented

above, a calibratedN-member ensemble will haveN1 1

equally weighted probability bins, and for each we can

find corresponding predictions of variables simply by

choosing daily predicted quantiles qn,f associated with

probability Pr(V # qn,f )5n/(N1 1), wherein n is an

ensemble member from an (interpolated) ensemble of

size N. The resultant nine-member (i.e., 9 quantiles, 10

bins) interpolated ensemble’s PDF is narrower than the

PDF from the original 99 quantiles, as one would expect.

We call this ensemble interpolated to emphasize that it is

not the group of original, unmodified 30 dynamical

members of E-4DWX, but rather an ‘‘ensemble’’ of nine

quantiles that describe the statistical distribution of the

training data.

Next, QR is applied to the nine quantiles that now

characterize the training data, following the equations

presented in the previous subsection. The regressors for

the QR include the LR quantiles from the earlier step,

along with the other regressors listed in Table 2. A

graphical depiction of howQRoptimally determines the

relationship of a regressor on specific quantiles of the

regressand, with no parametric assumptions, is pre-

sented in Fig. 3. To make the example clear and simple,

the data in Fig. 3 are from a single regressor: 24-h per-

sistence forecasts of 2-m air temperature at SAMS 01 at

DPG (Fig. 2) during June–August 1979–2001, to which

(1)–(3) have been applied for the 0.1, 0.5 (median), and

0.9 quantiles. The red line is the fit for the central ten-

dency (mean) calculated from standard linear re-

gression. The black lines, from bottom to top, are the fits

for q0:1, q0:5 (median), and q0:9. The fits for the mean and

median are similar, but they diverge with increasing

temperature. That the black lines fitted to the three

quantiles are not parallel signifies a heteroscedastic

distribution.

Applying LR and QR using regressors that are func-

tions of ensemble spread (Table 2) accounts for day-to-

day variability in the spread and for varying dynamical

stability (error growth rate). Nearly flat rank histograms

are also guaranteed by a good fit of the quantile re-

gression equations. But regressors based on ensemble

spread do not guarantee resolution in the ensemble

FIG. 6. Example of PDFs of an original uncalibrated (solid black)

and a calibrated (blue) 24-h ensemble forecast fromE-4DWXof 2-m

air temperature (8C) at DPG’s SAMS 01 at 1800 UTC 26 Jun 2014.

Comparison to the observation of 25.98C (red bar) and the clima-

tological PDF for summer (dashed black) demonstrates how cali-

bration reduces bias, broadens spread, and increases sharpness.
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predictions. For example, consider the pathological case

pointed out by Hamill (2001) in which a flat rank his-

togram can belie an ensemble that might not sample

from the correct distribution of any single observation

used for validation. This can occur if LR and QR are

both fitted to a dataset that spans many dynamical

regimes.

To overcome this pitfall, in the next step we explicitly

condition the training data on the ensemble dispersion.

We sort the predicted nine daily forecast quantiles (from

the QR step above) into three equally populated bins of

low, medium, and high dispersion, which ensures that the

predictions are reliable with respect to the full dataset.

The choice of three bins for the sorting is not requisite,

but the number is limited by the training sample size.

Sorting into bins can be thought of as identifying ‘‘spread

analogs’’ in the local state space. For other examples of

analogs in ensemble postprocessing, please see the papers

by Hamill and Whitaker (2006), Hopson and Webster

(2010), and Delle Monache et al. (2013).

After the predictions are sorted, the QR equations are

then applied anew to the distributions in each of the three

bins (i.e., on the conditioned dataset), using the same

procedure described above. This allows the raw ensemble

predictions to self-diagnose periods of relative stability or

instability, which informs its own postprocessing.

In the final step of processing the training data, the

results from the initial application of the QR—before

sorting data by dispersion—are compared to the results

from QR applied after sorting data by dispersion. For

each site and forecast lead time, we determine which is

the better of the two applications of QR, and it is thatQR

model that is applied to calibrate the current forecast

for a given site and forecast lead time. Themetrics we use

for determining the better QR model are Brier score,

rank probability skill score, root-mean-square error

(RMSE), receiver operating characteristic (ROC), and a

measure of the rank histogram’s flatness.

Once every step of processing the training data is

completed (as described above), the calibration of the

current ensemble prediction consists of submitting the

output from the ensemble members to a very similar

series of steps, starting with the LR and ending with the

QR model chosen for the given site and lead time, as

described in the previous paragraph.

3. Performance

a. Effectiveness of calibration

Rank histograms of forecasts from 9 June 2013

through 13 July 2014 are evidence that calibration

produces realistically dispersive, unbiased ensemble

forecasts (Fig. 4). The U-shaped histogram before cal-

ibration (Fig. 4a) signifies that too many observations fall

outside of the envelope of members’ predictions (i.e.,

insufficient dispersion). The histogram’s asymmetry,

heavier to the right, signifies that the number of obser-

vations higher than the highest prediction exceeds

the number of observations lower than the lowest pre-

diction (i.e., low bias). Calibration corrects these two

FIG. 7. E-4DWX’s uncalibrated (red) and calibrated (blue) probability (%) of (a) 2-m air temperature # 08–58C (from left to

right) and (b) 10-m wind speed $ 2.5, 5.0, and 10.0 m s21 (from left to right) at SAMS 01 for the span of time depicted in the gray

inset boxes in Fig. 5. For reference, observed 2-m air temperature and 10-m wind speed are also plotted (black) in (a) and (b),

respectively. Uncalibrated and calibrated probabilities are constrained to a minimum of 10% and a maximum of 90% owing to the

choice of nine quantiles [see section 2d(3)]. Probabilities within the range 10%–90% are interpolated and therefore are not limited

to multiples of 10%.

2204 WEATHER AND FORECAST ING VOLUME 32

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:36 PM UTC



deficiencies (Fig. 4b). Results are similar at other lead

times and for other variables (not shown).

How calibration modifies output from E-4DWX’s

members at individual valid times is more clearly il-

lustrated in Fig. 5, which presents uncalibrated and

calibrated time series of 24-h predictions of 2-m air

temperature at DPG’s SAMS 01 (Fig. 2). The modifi-

cations are easiest to see in the gray inset boxes that

enlarge the same short, arbitrarily chosen window of

time on the panels. Calibration broadens the envelope

of temperatures spanned by the members and re-

centers the midpoint between the members with the

lowest and highest forecasts. As a result, the envelope

more frequently bounds the time series of observa-

tions that for verification were superposed on the

forecasts. Also as a result, mean forecasts are im-

proved (Table 3). The degree of improvement de-

pends, of course, on the skill of the uncalibrated mean,

which is already quite high for the stations listed in

Table 3. (The next subsection elaborates on the skill of

the uncalibrated E-4DWX.)

Drawn from the time series in Fig. 5, the individual

case of 26 June 2014 (Fig. 6) further illustrates the

improvements in the first and second moments of the

ensemble PDF. The biased, uncalibrated ensemble

(solid black line) has a bimodal PDF mostly to the left

of the observation (red bar). The unbiased, calibrated

PDF (blue line) is a more useful forecast because it is

reliable and sharp. The climatological PDF (dashed

black line) is reliable but not sharp. The uncalibrated

ensemble is sharper than climatology but less reliable.

Where the uncalibrated PDF in Fig. 6 is located

along the x axis, and where the envelope of members’

predictions is located along the y axis in Fig. 5, are

functions of the uncalibrated E-4DWX’s bias. How-

ever, bias cannot be determined from any individual

FIG. 8. MAE in (a) 2-m air temperature (8C) and (b) 10-m wind speed (m s21) as a function

of forecast lead time on E-4DWX’s domain 3 (dx 5 3.3 km) in 2015 calculated from

uncalibrated forecasts interpolated to 31 observation sites. The thick black line marks the

ensemble mean. The thin colored lines mark individual ensemble members. Member 26 in

purple (see Table 1) has the largest initial MAE and approximately flat error growth

thereafter because it has no data assimilation.

DECEMBER 2017 KN I EVEL ET AL . 2205

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:36 PM UTC



prediction or any statistically small collection of pre-

dictions. The fact that the observation (red bar) in

Fig. 6 does not fall in the middle of the bimodal PDF

(solid black line) does not indicate bias any more than

rolling a 2 or a 12 one time with a pair of six-sided dice

indicates bias—that the dice are ‘‘loaded,’’ in gamblers’

parlance. Only through a statistically large number of

predictions (or dice rolls) are biases revealed.

To get a better sense of how calibration can poten-

tially alter a meteorologist’s experience, we focus again

on the sequence of 24-h forecasts in the gray inset of

Fig. 5. Those forecasts valid for an unusual cool spell in

June 2014 include several within a few degrees of 08C.
If a meteorologist were asked by a test director about

the probability of temperatures approaching freezing,

the differences between the uncalibrated and cali-

brated output from E-4DWX might be meaningful.

Figure 7a presents E-4DWX’s uncalibrated and cali-

brated 24-h forecasts of the probability of 2-m air

temperature # 08–58C in increments of 18C. At the

granularity of the ensemble, calibration has no effect

on probabilistic forecasts of#08 and#18, both of which

fall in the lowest bin of 0%–10% chance (horizontal

blue line and, hidden underneath it, red line in the first

two of the six panels). There is an effect for #58C (last

of the five panels), but it is small. For #28–48C the

effects are larger. At a threshold of 38C (fourth of

the six panels) calibration increases the probability

from #10% to 25%. If we refer to the cost–loss model

from section 1b, this difference equates to a calibrated

loss threshold that is 40% of the uncalibrated loss

threshold. If we imagine that a hypothetical test during

the same cool spell is sensitive not just to tempera-

ture but also to wind, the effects of calibration are

even more important (Fig. 7b). At a threshold of

5m s21, calibration increases the forecast probability

from #15% during the period to 65% at one point

(middle panel in Fig. 7b).

FIG. 9. Bias in (a) 2-m air temperature (8C) and (b) 10-mwind speed (m s21) as a function of

forecast lead time onE-4DWX’s domain 3 (dx5 3.3 km) in 2015 calculated fromuncalibrated

forecasts interpolated to 31 observation sites. The thick black line marks the ensemble mean.

The thin colored lines mark individual ensemble members. Horizontal black lines mark

zero bias.
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b. Overall skill of E-4DWX without calibration

As mentioned earlier, at the time of writing, cali-

bration is only applied to a small subset of E-4DWX’s

output: surface air pressure, temperature at 2m, rela-

tive humidity at 2m, and wind speed (including in

terms of each horizontal component) at 10m, and only

at specific locations where observations are available.

Many of the graphical products on which DPG’s me-

teorologists rely are based on the ensemble’s full 4D

gridded output, so it is not sufficient that calibration

produce highly skillful results. E-4DWX’s predictions

must be skillful even without calibration.

As expected, ensemble mean forecasts from E-4DWX

have the most consistently low mean absolute error

(MAE) over the entire 48h of lead time (Fig. 8) com-

pared with the forecasts of individual members, although

for subsets of lead times there are a few members that

produce slightly better forecasts of 2-m air temperature,

but not of 10-mwind speed. (Recall from the introduction

that themean prediction by an ensemble tends to bemore

skillful than any individual member’s prediction.) The

mean forecast is biased high in temperature and wind

speed (Fig. 9), but less so than the forecasts frommany of

the 30 members. The bias in the mean does not result

from one or two extremely biased outlying members,

but rather from a predominance of moderately biased

members. Plots ofRMSEand correlation (not shown) are

consistent with plots of MAE: the ensemble mean per-

forms best overall.

Before E-4DWX was deployed at DPG, meteorolo-

gists used only a deterministic version of 4DWX—which

they still use in addition to the ensemble—so it is infor-

mative to compare the ensemble mean to the deter-

ministic forecast from either of the two control members

of the ensemble (Figs. 10–13). The configuration of the

deterministic system includes a fourth domain with a

FIG. 10.MAE in 2-m air temperature (8C) at DPG’s SAMS 15 and 26 from the E-4DWX

ensemble mean (red) and the control member (blue) as a function of forecast lead time on

E-4DWX’s domain 3 (dx 5 3.3 km) in 2015. Results from these two stations are repre-

sentative of the sites where the mean provided (a) the most (labeled ‘‘best case’’) and

(b) the least (labeled ‘‘worst case’’) improvement over the control member. Forecasts are

uncalibrated.
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grid interval of 1.1 km, but its third domain is directly

comparable to the finest domain of any of E-4DWX’s

members, including each control. Compared to the sec-

ond of the controls (member 2 in Table 1), E-4DWX’s

ensemble mean has similar or lower MAEs in 2-m air

temperature (Fig. 10) and 10-m wind speed (Fig. 12) at

every SAMS station at DPG, but themean ismore biased

than the control member at some stations (Figs. 11 and

13). The control member tends to predict lower 2-m air

temperatures than does the ensemblemean, regardless of

station, lead time, and time of day (not shown). It follows,

then, that at stations where E-4DWX has a pronounced

high bias, the control member has a bias closer to zero.

For context on the control member’s subtle, gradual

cooling over the 48-h forecasts in Fig. 11, for which we do

not yet have a complete explanation, please see the paper

by Massey et al. (2016).

The undulations with a period of 6 h in some panels in

Figs. 8 and 13 arise because at many stations E-4DWX’s

MAE and bias in 2-m air temperature andMAE in 10-m

wind speed are functions of where the initialization time

and the lead time fall during the 24h of the day.

E-4DWX’s initialization times are fixed at 0000, 0600,

1200, and 1800 UTC. On these plots’ axes (Figs. 8–13)

each given lead time (e.g., 27 h from the four initializa-

tions on a given day) corresponds to four fixed points

during the diurnal cycle (e.g., 0300, 0900, 1500, and 2100

UTC on the following day, respectively). As a result, the

superposition of 1) varying analysis skill and forecast

skill as a function of initialization time; 2) oscillating

forecast skill as a function of where the valid time falls in

the diurnal cycle, ignoring the slow shifts in the local

solar cycle through the year; and 3) declining forecast

skill as a function of lead time all combine to produce

the 6-hourly undulations. A good illustration of the ef-

fect is Fig. 14, which shows the performance of the de-

terministic 4DWX at DPG in 2013. At a given lead time,

the model’s bias depends on the forecast’s initialization

time (Fig. 14a), and for a given forecast, the bias oscil-

lates as a function of lead time, depending on where that

lead time falls in the diurnal cycle (Fig. 14b). When

all initializations are combined (heavy black line in

FIG. 11. As in Fig. 10, but bias in 2-m air temperature (8C) at DPG’s SAMS 15 and 03.

Horizontal black lines mark zero bias.
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Fig. 14a), the result is an undulating overall bias versus

lead time.

Diurnally fluctuating biases in 2-m air temperature, as

exemplified in Fig. 14b, are common inNWP forecasts at

DPG and elsewhere in the semiarid and arid western

United States (e.g., Cheng and Steenburgh 2005; Hart

et al. 2005; Zheng et al. 2012). The deterministic 4DWX

and the individual members of E-4DWX tend to un-

derpredict the cool of the night (i.e., nighttime air tem-

perature has a high bias) and the warmth of the day (i.e.,

daytime air temperature has a low bias). Sources of this

bias include how the thermal conductivity of soil is

characterized in themodel code (Massey et al. 2014) and

howmoisture in the upper levels of soil is overestimated

in land surface analyses (Massey et al. 2016).

4. Products

Each cycle of E-4DWX generates nearly half a ter-

abyte of output. How the vast amount of data from

E-4DWX or any other EPS is organized and provided

to meteorologists determines the system’s success or

failure as much as does any of an EPS’s other com-

ponents (Buizza et al. 2005). To generate useful

products from E-4DWX, during each forecast cycle an

elaborate set of algorithms is run on the computa-

tional nodes of the host Linux cluster. By the time the

combinations of ensemble members, domains, lead

times, atmospheric variables, vertical levels, etc. are

considered, the output products number in the hun-

dreds of thousands per cycle. The products’ develop-

ment has been guided by the meteorologists at DPG

and by the testing that they support because, as

Palmer (2002) recommended, EPS predictions should

be expressed in terms of the most relevant user vari-

ables. Graphics (weather maps, time series, etc.) are

generated with the NCAR Command Language

(NCL) and with Read/Interpolate/Plot (RIP). These

graphics are then transferred to what is known as a

4DWXData Application Server (DAS), a Linux node

that is separate from the cluster that hosts the NWP

components of E-4DWX. The DAS includes a web

server that allows registered users to view products

from E-4DWX via a collection of web pages.

FIG. 12. As in Fig. 10, but MAE in 10-m wind speed (m s21) at DPG’s SAMS 07 and 29.
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a. Weather maps

1) ENSEMBLE MEAN

The most frequently used products from E-4DWX

are based on the ensemble mean. The mean is avail-

able to meteorologists through weather maps that

present the same fields found on maps derived from

the control members (not shown). Therefore, the

variables and display formats on these maps are fa-

miliar to the meteorologists, but the specific guidance

itself is more skillful than if based only on a single

deterministic run (see sections 2 and 3).

Standard surface and upper-level maps are generated

by E-4DWX. In addition, profiles of wind and temper-

ature for common test locations are included with the

ensemble-mean suite of products. Conditions in the

lower troposphere are what most affect testing at DPG,

so products include a series of plots displaying wind

speed and direction from altitudes of 10m to 2km

(not shown).

2) EXCEEDANCE

As emphasized elsewhere in this paper, many of the tests

at DPG are sensitive to weather in a binary fashion. Con-

ditions beyond certain thresholds make tests impossible,

invalid, dangerous, or otherwise unacceptable. In such cases

guidance from E-4DWX is most valuable when cast as

likelihoods that thresholds will be exceeded. Probabilities

are generated by counting the number of ensemble mem-

bers that meet or exceed a threshold, then dividing the

countby the total number of ensemblemembers. Figure 15a

is an example. Probabilistic output from exceedance plots

also allows meteorologists to infer how uncertainty in

E-4DWX predictions varies in space and time.

3) MEAN AND STANDARD DEVIATION

Variability in the predictions among ensemble mem-

bers can be conveyed through plots of standard de-

viation from the mean (Fig. 15b). Higher standard

deviations indicate areas of more uncertainty where

model forecasts tend to be less reliable.

FIG. 13. As in Fig. 10, but bias in 10-m wind speed (m s21) at DPG’s SAMS 06 and 23.

Horizontal black lines mark zero bias.
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4) SPAGHETTI PLOTS

Output from all ensemble members can be plotted spa-

tially on the whimsically named spaghetti plot (Fig. 16a).

These plots, too, provide guidance on uncertainty. When

lines are tightly spaced around similar solutions from a

collection of ensemble members, confidence in predictions

is relatively high. Spaghetti plots are especially useful for

depicting when the ensemble’s overall spread comprises

several spatial clusters of distinct solutions.

b. Meteograms

Most tests at DPG occur at specific locations where

weather stations have been installed. For these sites,

E-4DWXprovides output from all ensemble members as

meteorograms (commonly shortened in the community to

meteograms). An example is Fig. 16b, in which each en-

semble quantile’s calibrated prediction of 10-m wind

speed is plotted as a function of time. The ensemblemean

(green) and spread of61 standard deviation (yellow) are

then superposed on the individual forecasts. Other me-

teograms present 2-m temperature, 2-m relative humid-

ity, altitude of the ABL, 10-m wind roses, and 1-h

accumulated precipitation (not shown). E-4DWX also

provides data in other formats very similar to a meteo-

gram, such as time series of box-and-whisker plots (not

shown). Recent observations and predictions are often

presented together on meteograms (black line in

Fig. 16b) so meteorologists can consider E-4DWX’s re-

cent performance when developing their weather

guidance.

c. Wind roses

One means of conveying E-4DWX’s distribution of

wind predictions is through a wind rose (Fig. 17). On this

type of plot, the azimuth corresponds to the direction of

origin, discretized into 16 bins or sectors (e.g., a northerly

wind is plotted in the sector centered on azimuth 08).
Within each sector, the radial dimension of shading from

nearer the center of the rose outward indicates the per-

centage of members predicting wind direction within that

sector. Range rings mark every 20% of the ensemble’s

membership.Wind speed predictions are displayed in the

sectors according to the hues on a color bar. In Fig. 17 for

example, the ensemble predicts easterly winds from 0 to

6ms21 from the initialization time of 0600 UTC until

1200 UTC, after which the winds back to northwesterly.

Winds weaken between 0000 and 0300 UTC on day 2,

then turn southerly and increase to 4–10ms21 among the

members predicting the highest speeds.

5. Summary

This paper is an overview of E-4DWX, an ensemble

prediction system (EPS) that has been used for test sup-

port at Dugway Proving Ground (DPG) in northwestern

Utah since 2007. In 2014, three more U.S. Army test fa-

cilities adopted a slightly lower-resolution version of the

system: White Sands Missile Range, Yuma Proving

Ground, and Electronic Proving Ground.

The 30 operational members of E-4DWX each

produce forecasts of 48 h every 6 h on a 272-processor

FIG. 14. Deterministic 4DWX’s bias in 2-m air temperature (8C) in 2013 (a) within domain 4 (dx 5 1.1 km) as

a function of lead time (h) from eight separate initialization times (colors; see key) and (b) within domains

1 (dx 5 30 km), 2 (dx 5 10 km), 3 (dx 5 3.3 km), and 4 (dx 5 1.1 km) as a function of valid time (UTC) from all

initialization times combined. Biases are calculated from uncalibrated forecasts initialized every 3 h between

0200 and 2300 UTC each day, interpolated to all observation sites.

DECEMBER 2017 KN I EVEL ET AL . 2211

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:36 PM UTC



high performance computer at DPG. All members are

based on the WRF Model. Spread is generated

through variations in members’ initial-, lateral-, and

lower-boundary conditions, as well as in physical

parameterizations.

E-4DWX’s calibration is innovative. For locations

where observations are available, the most useful near-

surface variables are dynamically calibrated through a

combination of logistic and quantile regressions, ex-

plicitly conditioned on ensemble dispersion. Calibration

FIG. 15. Instantaneous forecasts of (a) the uncalibrated probability of 10-m wind speed exceeding 5m s21 and

(b) the uncalibrated mean (blue contours with black labels) and standard deviations (colored shading) of 2-m air

temperature (8C). In (a) the colors mark grid cells in which 0 (white), 1–9 (yellow), 10–20 (orange), and more than

21 (red) members of the 30-member E-4DWX predicted that the wind speed threshold would be exceeded at the

valid time. In (b) the local maxima (H) andminima (L) are indicated. Both forecasts are on domain 3 (dx5 3.3 km)

at unspecified times and dates. DPG is outlined in black, the Great Salt Lake is blue in (a) and white in (b), and

black dots mark sites of observations at 2 and 10m.

FIG. 16. Forecasts of (a) regions of uncalibrated precipitation $ 0.1mm (liquid equivalent) from the cumulus

scheme in the previous hour (red contours) by individual ensemblemembers whose initial and boundary conditions

were from the NAM (dashed) or GFS (solid), and (b) calibrated 10-m wind speed (m s21) as a function of forecast

lead time at SAMS 22 at DPG. In (a) DPG is outlined in thick black, the Great Salt Lake is in thin black, and black

dots mark sites of observations at 2 and 10m. In (b), the E-4DWX quantiles are in red, the ensemble mean is in

green,61 standard deviation is in yellow, and observations are in black. Forecasts are on domain 3 (dx5 3.3 km) at

unspecified times and dates.
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is applied within a cross-validation framework to mini-

mize the likelihood of overfitting. For the calibrated

variables, E-4DWX is realistically dispersive and un-

biased. Rank histograms following calibration against a

reference dataset generally fall within the 95% confi-

dence bounds for statistically perfect calibration. For

individual ensemble forecasts, the most noticeable ef-

fects of calibration are to broaden the spread among

members and to shift the mean of their distribution

toward a less biased value.

Without calibration, E-4DWX’s ensemble means of

2-m temperature and 10-m wind speed (among the

variables of most concern tometeorologists at DPG) are

skillful but tend to be biased high, owing to a pre-

dominance of moderately biased members, not a few

extremely biased members. During the full 48 h of lead

times, the ensemble mean consistently has lower MAEs

overall than even E-4DWX’s best-performingmembers.

For subsets of lead times, there are a few members that

sometimes produce slightly better forecasts of 2-m air

temperature, but not of 10-m wind speed. The ensemble

mean also has consistently lower RMSEs and higher

correlations than individual members.

Each cycle of E-4DWX generates nearly half a ter-

abyte of output that is translated into graphical products

whose design is based on requests from meteorologists.

Products display means, standard deviations, or frac-

tions of the ensemble exceeding a threshold, as well as

predictions from individual members of the ensemble.

Although likelihood and uncertainty from an EPS are

valuable, many test participants are inexperienced with

weather guidance in those terms and still prefer binary

go/no-go (yes/no) recommendations from a meteorolo-

gist. Meteorologists at DPG are working to determine

how best to use and communicate the confidence and

uncertainty information from E-4DWX. In our view,

calibrated probabilistic guidance and some notion of

the repercussions of action or inaction are requisite

for using weather forecasts to make rational, objective

decisions.
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