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ABSTRACT: Cloud-to-ground (CG) lightning substantially impacts human health and property. However, the relations
between U.S. lightning activity and the Madden–Julian oscillation (MJO) and El Niño–Southern Oscillation (ENSO), two
predictable drivers of global climate variability, remain uncertain, in part because most lightning datasets have short re-
cords that cannot robustly reveal MJO- and ENSO-related patterns. To overcome this limitation, we developed an empiri-
cal model of 6-hourly lightning flash count over the contiguous United States (CONUS) using environmental variables
(convective available potential energy and precipitation) and National Lightning Detection Network data for 2003–16.
This model is shown to reproduce the observed daily and seasonal variability of lightning over most of CONUS. Then, the
empirical model was applied to construct a proxy lightning dataset for the period 1979–2021, which was used to investigate
the summer MJO–lightning relationship at daily resolution and the winter–spring ENSO–lightning relationship at seasonal
resolution. Overall, no robust relationship between MJO phase and lightning patterns was found when seasonality was
taken into consideration. El Niño is associated with increased lightning activity over the coastal Southeast United States
during early winter, the Southwest during winter through spring, and the Northwest during late spring, whereas La Niña is
associated with increased lightning activity over the Tennessee River valley during winter.

SIGNIFICANCE STATEMENT: Cloud-to-ground lightning is dangerous for humans via direct strikes or through
triggering wildfires, generating air pollution, etc. How lightning activity can be affected by climate remains unclear, and
it is challenging to study their links because the data record for lightning is short. With the available lightning record,
we developed a model that relates lightning flash counts over the United States to environmental factors. This model
well represents observed fluctuations in daily and seasonal lightning over most of the United States. Because the model
only needs environmental information to predict lightning flash counts, we were able to construct a longer record of
predicted lightning based on the longer data record of environmental variables. With this dataset, we investigated the
links between lightning and climate and found that the state of sea surface temperatures in the tropical Pacific (El
Niño–Southern Oscillation) is linked to changes in U.S. lightning patterns in winter and spring.
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1. Introduction

Cloud-to-ground (CG) lightning has large impacts on eco-
system health as well as human life and property (Koshak
et al. 2015). In particular, CG lightning is a natural trigger for
wildfires and can generate ground-level nitrogen oxides that
lead to the production of tropospheric ozone (Kang et al.
2020). More generally, lightning characteristics, such as flash
rate and polarity, have been linked to thunderstorm forma-
tion and structure (Goodman and MacGorman 1986; Branick
and Doswell 1992) as well as severe weather events, such as
hail and tornadoes (MacGorman and Burgess 1994).

Although lightning has substantial impacts, relatively little
is understood about its relation to large-scale climate variabil-
ity. For instance, only a few studies have investigated the rela-
tionship between lightning and El Niño–Southern Oscillation

(ENSO), which is the dominant mode of predictable climate
variability on seasonal and interannual time scales. Dowdy
(2016) showed a statistical relation between ENSO and sea-
sonal lightning activity in over 20% of the region 358S–358N
in some seasons, and Muñoz et al. (2016) used ENSO and
other sea surface temperature (SST) patterns to predict sea-
sonal lightning activity in northwestern Venezuela. LaJoie
and Laing (2008) and Laing et al. (2008) found a spatially spo-
radic winter ENSO–lightning relationship over the Gulf Coast
with an increase of lightning activity during El Niño in an 8-yr
dataset (1995–2002). Koehler (2020) also found a positive re-
lation between El Niño and U.S. lightning activity in a 26-yr
dataset (1993–2018). However, their use of an annual (January–
December) ENSO index and contiguous United States
(CONUS) totals precluded the resolution of spatial and
temporal details of the ENSO–lightning relationship and
mixed ENSO states from one winter to the next. Overall, an
ENSO influence on U.S. lightning activity is plausible since
ENSO explains a considerable proportion of U.S. precipita-
tion variability (L’Heureux et al. 2015; Nigam and Sengupta
2021) and has been found to modulate the frequency of hail
and tornadoes in winter and spring (Allen et al. 2015b;
Koch et al. 2021; Tippett and Lepore 2021).
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Likewise, few studies have examined the relation between
lightning activity and the Madden–Julian oscillation (MJO),
which is the dominant mode of predictable climate variability on
subseasonal time scales. Lightning density in MJO-associated
tropical mesoscale convective systems evolves with MJO life
cycle (Virts and Houze 2015). Abatzoglou and Brown (2009)
linked June–September anomalous lightning activity to MJO
phase in an 18-yr dataset (1990–2007). Once again, modulation
of U.S. lightning activity by the MJO is plausible since the MJO
modulates U.S. precipitation (Becker et al. 2011) and may mod-
ulate spring and summer tornado activity (Thompson and
Roundy 2013; Baggett et al. 2018; Kim et al. 2020), though this
relationship is less robust than the ENSO–tornado relationship
(Tippett 2018; Moore and McGuire 2020).

A challenge in investigating the relation between light-
ning and climate is that the ideal tools for studying climate
relations}observational data and physics-based models}have
their limitations. Lightning datasets often are relatively short or
inhomogeneous, making it difficult to identify significant rela-
tionships between lightning activity and climate modes of vari-
ability as well as to discern trends due to a changing climate
(Romps et al. 2014; Romps 2019; Finney et al. 2018). The most
realistic physics-based representations of lightning are those used
for weather, not climate time scales. In convection-permitting
models, lightning is often parameterized based on cloud
dynamics and microphysics (Price and Rind 1994; Michalon
et al. 1999; Mansell et al. 2005; McCaul et al. 2009; Yair et al.
2010; Lynn et al. 2012; Fierro et al. 2013). However, these
model simulations tend to be relatively short with few ensem-
ble members, making it difficult to extract a robust ENSO or
MJO signal in lightning activity compared to the model-based
studies for ENSO- or MJO-modulated temperature and pre-
cipitation patterns.

Empirical models provide an alternative approach by pre-
dicting lightning characteristics based on environmental fac-
tors (Romps et al. 2014; Stolz et al. 2017). Romps et al. (2014)
developed a simple lightning proxy based on the product of
convective available potential energy (CAPE), precipitation,
and a scaling factor. This CAPE times precipitation (CP)
proxy is attractive for many reasons. CAPE and precipitation
are readily available in many reanalysis products and forecast/
climate models (Saha et al. 2014; Vitart et al. 2017; Lepore
et al. 2018; Pegion et al. 2019), and both CAPE (Jung and
Kirtman 2016) and precipitation (Becker et al. 2014; DelSole
et al. 2017) are forecasted with some skill on long-range time
scales. Despite its simplicity, the CP proxy represents subsea-
sonal CG lightning activity fairly well (Tippett and Koshak
2018). In addition, there is theoretical basis for how CAPE
and precipitation might be modulated on various time scales.
Also, the relationships between lightning, CAPE, and precipi-
tation are well documented (Petersen and Rutledge 1998;
Murugavel et al. 2012; Xu et al. 2013). For example, Romps
et al. (2014) and Murugavel et al. (2012) estimated future in-
creasing lightning trends in climate projections, using the cor-
responding CAPE and precipitation projections to explain
these trends.

Yet the CP proxy has substantial limitations. While its simple
calculation is attractive for practical purposes, a proportionality

constant is the only tunable parameter. The CP proxy cannot
capture land–ocean lightning contrasts (Romps et al. 2018), at-
testing to its missing physical processes. Consequently, its ability
to capture CG lightning variability differs by region and season.
For example, Tippett et al. (2019) analyzed CP proxy perfor-
mance in representing CG lightning climatology and variability
and found that CP proxy performance declined west of the
Rocky Mountains and during the summer season. Other studies
that analyzed the CP proxy in other regions of the world found
that its performance varied by region or season, e.g., it under-
performed during Indian monsoon season relative to the pre-
monsoon season (Dewan et al. 2018) and underperformed in
the plateau region of southwest China relative to other terrains
(Zhao et al. 2022). However, the CP proxy may still be a useful
tool when and where its performance is adequate.

The purposes of this study are to 1) develop a CG lightning
proxy that generalizes its functional dependence on CAPE
and precipitation, 2) evaluate the performance in capturing
observed lightning variability on daily and seasonal time
scales during the 2003–16 period, and 3) demonstrate use of
the CG lightning proxy in assessing the influence of climate
variability on CG lightning activity during the longer 1979–
2021 period. The data and methods used for constructing the
lightning proxy and conducting the remaining analysis are de-
tailed in section 2. In section 3, the results are presented in
three parts. First, the new lightning proxy is compared to
lightning observations and the CP proxy for the 2003–16
period. Then, two applications of the lightning proxy are ex-
plored: 1979–2021 daily proxy data are used to analyze the
MJO–lightning relationship in summer, and 1979–2021 sea-
sonal proxy data are used to analyze the ENSO–lightning re-
lationship in winter through late spring. These example
applications complement previous work using shorter records
of lightning observations (e.g., Abatzoglou and Brown 2009;
LaJoie and Laing 2008; Laing et al. 2008). The longer light-
ning proxy could provide further insight into these relation-
ships. In addition, this analysis provides information about
the potential for lightning prediction on long-range time
scales from MJO and ENSO, two major sources of predict-
ability on subseasonal-to-seasonal time scales. A summary of
the results as well as a discussion of its connection to findings
from previous literature and future work needed are given in
section 4.

2. Data and methods

a. Data

CG lightning flash count data are taken from the National
Lightning Detection Network (NLDN) for the 2003–16 pe-
riod during which the network is reliable and there are few
missing days (Cummins and Murphy 2009; Koshak et al.
2015). There are nine days without data, which are excluded
from analysis, and there is a notable increase in lightning
counts during 2016 that may be from a change in the NLDN
Total Lightning Processor (Nag et al. 2016). Lightning counts
are summed over CONUS land for every 6 h (at 0000, 0600,
1200, and 1800 UTC) and at a 18 3 18 grid resolution. We use
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the total number of CG flashes, which is the sum of negative po-
larity flashes and positive polarity flashes with currents greater
than 15 kA. The positive polarity threshold accounts for cloud
pulses that are frequently misclassified as low-amplitude, positive
CG lightning (Biagi et al. 2007; Cummins andMurphy 2009).

Mixed-layer CAPE (J kg21) and precipitation (mm day21)
data are taken from North American Regional Reanalysis
(NARR) for the 1979–2021 period (Mesinger et al. 2006).
NARR provides data at a 3-h resolution with 32-km native
grid spacing, which we convert to a 6-h and 18 3 18 resolution.
Mixed-layer CAPE in NARR is calculated from the mean
equivalent potential temperature between the 0–180-hPa
layer. Because NARR assimilates latent heating profiles, pre-
cipitation is better estimated in NARR than other global re-
analyses (Bukovsky and Karoly 2007; Cui et al. 2017). Despite
noted deficiencies of CAPE values in reanalysis (Gensini et al.
2014), CAPE biases are smaller in NARR than other reanaly-
sis products (King and Kennedy 2019).

MJO is defined by the real-time multivariate (RMM) index
(Wheeler and Hendon 2004), which uses the normalized com-
bined empirical orthogonal function (EOF) of outgoing long-
wave radiation, 200-hPa zonal wind, and 850-hPa zonal wind
between 158S and 158N to construct eight phases of the MJO.
We only consider active MJO phases when the RMM ampli-
tude is greater than or equal to 1.

ENSO is defined by the Oceanic Niño Index (ONI). ONI is
taken from the Climate Prediction Center and is computed by
averaging the SST anomalies over the Niño-3.4 region (58N–58S,
1208–1708W), and a 3-month running mean is applied. El Niño is
defined by an ONI greater than or equal to 0.58C, and La Niña is
defined by an ONI less than or equal to20.58C.

b. Poisson regression

We fit the 6-hourly CG lightning flash counts for the 2003–16
period using a Poisson regression (PR). In the PR model, the
probability of the 6-hourly lightning flash count N taking on the
values n5 0, 1, 2, … is

P(N 5 n) 5 e2mmn

n!
, (1)

where m is the expected value of N. The expected value m

depends log-linearly on the vector x of environmental
predictors:

m ; exp(bTx), (2)

where b is the vector of corresponding regression coefficients.
The regression coefficients are estimated by maximizing the
log-likelihood from Eq. (1) of the observed lightning flash
counts given the environmental variables. Here, the sample
size is 3 676 016 which is the number of land grid points times
the number of 6-hourly periods during 2003–16. We include
an intercept term b0 in the regression as well as an offset term
which accounts for the different areas of the 18 3 18 grid
boxes. Therefore, the expected lightning flash count m in a
grid box and within a 6-hourly interval is

m 5 exp[b0 1 bTx 1 log(Dlat Dlon cosf)], (3)

where Dlat and Dlon are the longitude and latitude spacings
in degrees (both here are 1), respectively; and f is the
latitude.

Three functional forms for the dependence of m on precipi-
tation and CAPE are tested. PR Model 1 uses log(CAPE 3

Precipitation) as its predictor variable. PR Model 2 uses
log(CAPE) and log(Precipitation) as its predictor variables. PR
Model 3 uses log(CAPE), log(Precipitation), [log(CAPE)]2,
and [log(Precipitation)]2 as its predictor variables. The three
models are nested in the sense that PR Model 3 is a special case
of PR Model 2, and PR Model 2 is special case of PR Model 1,
which facilitate their comparison. Using log(CAPE) and
log(Precipitation) as predictors means that m has the follow-
ing functional forms:

PR Model 1 : m ; (CAPE 3 Precipitation)b1 ,
PR Model 2 : m ; (CAPE)b1 (Precipitation)b2 ,
PR Model 3 : m ; (CAPE)b1 (Precipitation)b2

3 exp{b3[log(CAPE)]2
1 b4[log(Precipitation)]2},

where b 5 {b1, b2, … } are the corresponding coefficients for
each predictor. We calculate deviance to determine goodness
of fit, with a smaller deviance indicating a better fit. We per-
form leave-one-year-out jackknife resampling to quantify the
uncertainty in the estimates of the regression coefficients. For
example, we leave out 2003 and estimate the PR coefficients
with the 2004–16 data, then leave out 2004 and estimate the
PR coefficients with the 2003 and 2005–16 data, and so on.
We use the 2.5th and 97.5th percentiles of the resulting coeffi-
cients as 95% confidence intervals. The spatial and temporal
rank correlations between observed and predicted flash
counts are computed to evaluate performance.

After selecting and fitting a PR model, CAPE and precipi-
tation data from 1979 to 2021 are used in the PR model as a
proxy for 6-hourly lightning flash counts, which are aggre-
gated to daily and seasonal resolution. For the MJO analysis,
we calculate flash anomaly composites. For the ENSO analy-
sis, we calculate the rank correlation between the 3-month
running season flash anomaly (daily mean removed) and
ONI. In addition, difference composites of lightning flashes
are computed, which is the average of the lightning flashes
during El Niño subtracted from the average of the lightning
flashes during La Niña.

c. Statistical significance

A bootstrapping test (with replacement) is used to assess
the statistical significance of the temporal rank correlations.

A Wilcoxon rank sum test is used to assess the statistical
significance of the difference between El Niño and La Niña
composites. The Wilcoxon rank sum test procedure is non-
parametric i.e., does not assume known distribution and es-
sentially compares the medians of the composited sets.

We use a two-sided permutation test that preserves day of
the year to calculate the statistical significance of the MJO
composites. Each iteration of the permutation test scrambles
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the years of the MJO data while preserving day of the year.
We perform 1000 permutations. The p value of the composite
is 2 3 min(f, 1 2 f) where f is the fraction of permutations
whose composites equal or exceed the observed composite.
The design of the permutation test accounts for the seasonal-
ity and autocorrelation of the data.

The Wilcoxon rank sum and permutation tests are per-
formed at each grid point. The false discovery rate (FDR)
procedure from Benjamini and Hochberg (1995) is used to
assess the statistical significance of the correlation and (dif-
ference) composite maps. The two-sided p value is calcu-
lated at every land grid point and sorted from smallest to
largest. Then, the sorted p values are compared to the se-
quence a/S, 2a/S, 3a/S, … , where S is the number of land
grid points (S 5 860) and a is the selected FDR, which we
set at 10% here.

3. Results

a. PR model development and performance

We begin by comparing the environmental dependence of
the flash count data with that of CP and the three PR models.

First, we examine their dependence on CAPE3 Precipitation
(which is proportional to CP), CAPE, and precipitation
separately (Fig. 1). The flash density data binned by CAPE 3

Precipitation show an approximate power-law dependence
(linear on a log–log plot; Fig. 1a black line). The slope of
the binned flash density data on the log-log plot is less than
one which differs substantially from that of CP (blue line)
whose slope is equal to 1 by construction. The PR Model 1
with slope equal to 0.726 (Table 1; Fig. 1a orange line) better
matches the flash count data. In the PR Model 2, the CAPE
and precipitation exponents are fairly close to each other
(0.684 and 0.754) to that of CAPE 3 Precipitation in the PR
Model 1. The dependence of PR Model 2 on CAPE3 Precip-
itation (green line) is nearly indistinguishable from that of PR
Model 1 (orange line). With the addition of squared log
terms, the PR Model 3 is able to match the departure of the
flash data from pure power-law dependence on CAPE 3

Precipitation. Binning the observed flash data, CP, and the
three PR models by CAPE and precipitation separately
show similar behavior (Figs. 1b,c). The dependence of CP is
mostly linear when binned by CAPE and precipitation sepa-
rately but this behavior is not guaranteed by the functional

FIG. 1. Comparison of average 6-hourly lightning density (flashes per 110 3 110 km2, i.e., 18 3 18 grid box at the equator) with the CP
proxy and PR models binned by (a) CAPE 3 Precipitation values, (b) CAPE values, and (c) Precipitation values. Observed data are
shown with a black line, with the gray shading indicating the expected range of 95% of the means. Values for the CP proxy and PR models
are shown with the respective colored lines. See Table 1 for the variables and coefficients of the PRmodels tested.

TABLE 1. Summary of the Poisson regression models tested.

PR Model 1 PR Model 2 PR Model 3

Deviance 6.493 3 108 6.483 3 108 6.385 3 108

Predictor Coefficient
95% confidence

interval Coefficient
95% confidence

interval Coefficient
95% confidence

interval

Intercept 20.911 [20.930, 20.861] 20.709 [20.719, 20.680] 0.393 [0.380, 0.418]
log(CP) 0.726 [0.723, 0.730] } } } }

log(CAPE) } } 0.684 [0.683, 0.689] 0.250 [0.249, 0.260]
log(Precipitation) } } 0.754 [0.750, 0.760] 0.634 [0.631, 0.641]
log(CAPE)2 } } } } 0.0390 [0.0385, 0.0400]
log(Precipitation)2 } } } } 0.0327 [0.0323, 0.0335]
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form of CP. The mismatch between the dependence of CP
and observed flash density on CAPE is larger than that for
precipitation.

Figure 2 shows the joint dependence of the flash density,
CP, and PR Model 3 on CAPE and precipitation. The isolines
of the flash density data (Fig. 2a, white lines) are not straight
lines on the log-log axes, further indicating the departure of
flash density data from pure power-law dependence on
CAPE and precipitation, especially for low values of precipi-
tation (i.e., CAPE matters more). On the other hand, the iso-
lines of CP are linear. Consequently, CP underestimates flash
density for low values of CAPE and precipitation and overes-
timates flash density for high values of CAPE and precipita-
tion (Figs. 2b,d). The isolines of PR Model 3 better match
the behavior of the observed isolines of the flash count data
(Fig. 2c). Overall, the PR Model 3 better fits the observed de-
pendence of flash counts on CAPE and precipitation than
does the CP proxy, especially for extreme low or high values
of CAPE and precipitation (Fig. 2e). The PR Model 3 for
6-hourly lightning is

m 5 exp{0:393 1 0:25 log(CAPE) 1 0:039[log(CAPE)]2

1 0:634 log(Precipitation) 1 0:0327[log(Precipitation)]2}
3 Dlat Dlon cosf: (4)

The remainder of the analysis, including all descriptions of
PR-predicted lightning, will use PR model 3.

Maps of the total lightning flashes for 2003–16 show where
lightning flashes occur most and least often. Observed light-
ning flash counts are highest along the Gulf Coast and Great
Plains and are lowest along the West Coast (Fig. 3a). This
overall pattern is reproduced by the CP proxy and PR model
east of the Rocky Mountains (Figs. 3b,c). Both CP and the
PR model underestimate flash counts over the Rocky Moun-
tain states (west of 1008W) and overestimate flash counts over
the West Coast and Upper Midwest (Figs. 3d,e). The largest
bias in magnitude is over the West Coast, while the largest
bias in spatial extent is over the Rocky Mountains. The bias
of the PR model is reduced compared to that of CP (i.e., ratio
closer to 1) over the Rocky Mountains and Upper Midwest

FIG. 2. Comparison of average 6-hourly lightning density values (flashes per 1103 110 km2, i.e., 18 3 18 grid box at the equator) binned
by CAPE and precipitation for (a) observations, (b) CP proxy, and (c) PRModel 3, and the ratio of (d) CP proxy predicted lightning den-
sity to observed lightning density and (e) PR-predicted lightning density to observed lightning density.
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(Fig. 3e). However, the PR overestimation of flash counts is
increased over the West Coast and Pacific Northwest.

One possible reason that the PR model performs worse
than the CP proxy on the West Coast and Pacific Northwest is
that the PR model coefficient for log(Precipitation) is greater
than log(CAPE) (0.634 versus 0.25, respectively; cf. Table 1),
whereas the CP proxy weights CAPE and precipitation
equally. Climatologically, CAPE values are low across the
western United States, but the West Coast receives higher
rainfall than the rest of the western United States, resulting in
the PR model predicting too high lightning flash density.
When we trained the PR model with only West Coast (west
of 1208W) data, the coefficient for log(Precipitation) de-
creased to 0.32 and the intercept coefficient decreased to
21.17, which confirms the differing regional sensitivity in the
data of flash counts to precipitation. Lightning flash count de-
pends less on precipitation on the West Coast and there are
fewer flashes overall compared to the rest of the contiguous
United States, and, by using the same weight for precipitation
everywhere, we overestimate lightning flashes over the West
Coast. Due to the improved fit of the PR model to the ob-
served data compared to the CP proxy, we drop the CP proxy
and focus on the PR model.

The degree to which the PR model matches observed vari-
ability varies depending on season and region. We focus on

the rank correlation between observed and PR-predicted
flash counts at daily and seasonal time resolution because
these are the relevant time scales for MJO and ENSO influen-
ces, respectively. PR model performance for daily data is
greatest east of the Rocky Mountains during the warm season
(April–September). Skill is worse over the Northwest United
States, northern plains, and Northeast United States during
the cool season (October–March; Figs. 4a–c,k,l). These re-
gions of low skill are located where, climatologically, there
are few lightning flashes (but more than 10 lightning flashes
occurred during the 14-yr period in that month and so were
not masked) and low variance in lightning (cf. Fig. 3; Tippett
et al. 2019). PR model performance for seasonal totals
(Fig. 5) is similar to that for daily data, but spatially the corre-
lation skill is noisier due to the smaller sample size. Interest-
ingly, despite the high rank correlation in daily summer
flashes over the Southeast United States, rank correlation for
the summer seasonal totals for the Southeast United States is
reduced. Overall, skill is low over the West Coast, Northwest
United States, and the eastern United States, especially dur-
ing the winter (cf. Figs. 5a,b,k,l).

Seasonal and regional details of PR model skill are summa-
rized in Tables 2 and 3. Some of these temporal rank correla-
tion values are higher than would be expected from the
spatial rank correlation maps for winter (cf. Fig. 4l versus

FIG. 3. (top) Number of lightning flashes between 2003 and 2016 in observations, using the CP proxy, and using the PR model.
(bottom) Ratio between CP proxy total lightning flashes and observed total lightning flashes and ratio between PR-predicted total lightning
flashes and observed total lightning flashes.
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FIG. 4. The 2003–16 gridpoint rank correlation between daily observed and PR-predicted flash anomalies grouped by month. The
sample size is the number of days in the month times 14 years. Gray grid points indicate where 10 or fewer observed lightning flashes
occurred over the 14-yr period for that particular month.
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FIG. 5. The 2003–16 gridpoint rank correlation between seasonal observed and PR-predicted flash anomalies. Sample size is 14 years.
Gray grid points indicate where 30 or fewer observed lightning flashes occurred over the 14-yr period for that particular season.
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Table 2, December in top row) and are lower than would be
expected from the spatial rank correlation maps for summer
(cf. Fig. 4g versus Table 2, July in top row), demonstrating
that spatial aggregation can increase or decrease correlation.
There is a statistically significant correlation between daily
observed and PR-predicted total lightning flash counts east of
1208W (CONUS excluding the West Coast) year-round
(Table 2, top row). Daily PR-predicted total flashes are highly
correlated with daily observed total flashes during winter and
spring in particular. There is a statistically significant correlation
between seasonal observed and PR-predicted total lightning
flash counts east of 1208W during October–June, excluding the
MAM season (Table 3, top row). In the warm season, correla-
tions between daily observed and PR-predicted total flashes
are higher than correlations between seasonal observed and
PR-predicted total flashes (top rows of Table 2, April–October
versus Table 3, MAM–SON). During the warm season, when
there are high day-to-day values and fluctuations in flash counts,
temporal aggregation (via a seasonal summation) does not im-
prove PR model performance. Conversely, in DJF and JFM,
correlations between seasonal observed and PR-predicted total
flashes are higher than correlations between daily observed and
PR-predicted total flashes (top rows of Table 2, January and
February versus Table 3, DJF and JFM). Unlike during the
warm season, temporal and spatial aggregation of flashes during
the cool season benefits correlation skill.

Although the model fails to capture CONUS-wide seasonal
flash count during some parts of the year, it still performs well
for some regions after spatial aggregation. For example, sea-
sonal PR-predicted total CONUS flash counts in summer and
fall are poorly correlated with observed total CONUS flash
counts (Table 3, top row), but predicted total flash counts are
well correlated with observed total flash counts over the
Northwest and Southwest (Table 3, second and third rows).
Despite some large regional biases in lightning climatology,
the variability is well captured by the model. This is especially

true when using rank correlation, which is insensitive to sys-
tematic amplitude errors.

In brief, we determined that the PR model can generally re-
produce many of the observed aspects of the climatology and
variability of lightning. The MJO analysis during JJAS with
daily data in the next subsection is appropriate given the PR
model performance is good over these months and over all re-
gions on this time scale. Similarly, ENSO analysis during DJF
through MJJ is generally appropriate given PR model perfor-
mance during these seasons. There are noted discrepancies,
e.g., poor performance over Northwest during winter through
midspring, that should be kept in mind.

b. MJO–lightning relationship

Motivated by previous work that found statistically signifi-
cant relations between active MJO phases and CONUS light-
ning activity during JJAS (Abatzoglou and Brown 2009),
we computed maps of anomalous flash counts during active
MJO phases for the period 2003–16 (Fig. S1 in the online
supplemental material). We found essentially no statistically
significant flash count anomalies in any of the MJO phases.
Although the period is relatively short, the number of active
phase days in the analysis is not excessively small; phase 7 has
the fewest active days (63), and phase 1 has the most (237).
We conclude that any MJO signal in flash counts is too mod-
est to be robustly detected in this sample.

We repeated the MJO composite analysis using the PR-
predicted values over the same 2003–16 period and again
found essentially no statistically significant anomalies in any
of the MJO phases (Fig. S2). Nevertheless, PR-predicted flash
anomaly composites show that the PR model is at least
broadly capturing similar patterns to the observations on the
days that go into the MJO composites. The average (over
MJO phases) pattern correlation between the observed and
PR-predicted flash anomaly composites is 0.65.

TABLE 2. Rank correlations between observed and PR-predicted daily total flashes within region, grouped by month. All (bolded)
correlations are considered significant at the 1% level.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

CONUS east of 1208W 0.8 0.88 0.88 0.89 0.85 0.72 0.66 0.67 0.67 0.70 0.77 0.86
Northwest (418–508N, 1028–1258W) 0.59 0.63 0.69 0.60 0.77 0.80 0.86 0.85 0.72 0.60 0.69 0.69
Southwest (308–418N, 1028–1258W) 0.70 0.78 0.71 0.78 0.85 0.82 0.66 0.66 0.80 0.86 0.78 0.72
Tennessee River valley (338–428N, 848–938W) 0.71 0.73 0.82 0.92 0.89 0.84 0.85 0.86 0.81 0.80 0.79 0.77
Northeast (378–508N, 658–908W) 0.63 0.57 0.72 0.84 0.86 0.86 0.88 0.85 0.80 0.70 0.61 0.64
Southeast (248–378N, 768–858W) 0.74 0.82 0.87 0.91 0.88 0.64 0.68 0.66 0.75 0.85 0.78 0.79

TABLE 3. Rank correlations between observed and PR-predicted seasonal total flashes within region. Bolded correlations are
considered significant at the 10% level.

DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ

CONUS east of 1208W 0.91 0.95 0.82 0.32 0.51 0.64 0.41 0.4 0.33 0.35 0.76 0.81
Northwest (418–508N, 1028–1258W) 0.61 0.0 0.03 0.0 0.42 0.48 0.64 0.82 0.71 0.74 0.31 0.77
Southwest (308–418N, 1028–1258W) 0.54 0.68 0.87 0.84 0.94 0.5 0.63 0.51 0.56 0.54 0.89 0.38
Tennessee River valley (338–428N, 848–938W) 0.85 0.92 0.64 0.44 0.58 0.77 0.58 0.27 0.31 0.44 0.52 0.75
Northeast (378–508N, 658–908W) 0.62 0.82 0.81 0.60 0.42 0.13 0.04 0.16 0.30 0.67 0.70 0.64
Southeast (248–378N, 768–858W) 0.59 0.78 0.63 0.46 0.09 0.12 0.19 0.35 0.07 0.32 0.66 0.73
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The relatively good relation between flash count and PR
composites in addition to the strong rank correlation of PR
with daily flash counts during this time of year (Fig. 4) sub-
stantiates the strategy of using the PR model to examine the
MJO–lightning relationship in the longer period 1979–2021
during which reanalysis data are available. Using a long pe-
riod permits the detection of MJO signals that were too small
to be detected in the 14-yr lightning dataset.

Despite the longer period, we also find for the 1979–2021
period that there are essentially no statistically significant PR
flash anomalies in any of the MJO phases (Fig. 6), and anoma-
lies are relatively small (at most, 0.1–0.2 standard deviations
away from climatology in some regions). While some of the
1979–2021 PR-predicted patterns are consistent with the
2003–16 observed patterns (e.g., MJO phase 6 composites),
the lack of statistical significance from the permutation test
and FDR correction suggests these similarities might be due
to chance rather than MJO variability.

These MJO–lightning results differ from Abatzoglou and
Brown (2009), which found statistically significant relations
between MJO phase and JJAS lightning counts. Like the
study here, they used NLDN data at daily resolution aggre-
gated to a 18 3 18 grid. Some data and methodological differ-
ences might explain the differing results. For example,
Abatzoglou and Brown (2009) used JJAS lightning data for
the period 1990–2007 which differs from the 2003–16 period
used here. However, our PR modeled data analysis over the
longer period of 1979–2021 also showed no statistically signifi-
cant associations. In addition, they assessed statistical signifi-
cance using a Wilcoxon rank sum test and did not account for
multiple testing. We used a permutation test and a FDR con-
trol procedure. Accounting for multiple testing is important
because when a statistical significance test is applied at many
grid points with, for instance, a 5 0.05, then the null hypothe-
sis is expected to be rejected 5% of the time when it is true
(type I error), and the presence of spatial correlation leads to
an even higher type I error rate (Wilks 2016). The FDR pro-
cedure used here is designed to avoid such type I errors.
Moreover, its behavior here appears to be reasonable (i.e.,
not overly strict) since before the FDR procedure, on aver-
age, only 8% of the land points pass the statistical significance
test at the nominal 5% level.

Of the possible explanations for the differing results, the ap-
plication of the Wilcoxon rank sum test deserves attention.
The Wilcoxon rank sum test addresses the question of whether
two sets of samples come from the same distribution. In partic-
ular, the Wilcoxon rank sum test is designed to detect stochas-
tic dominance. A random variable X has stochastic dominance
over a random variable Y if P(X . z) $ P(Y . z) for all
thresholds z and is strictly greater for some thresholds. In the
application here, the Wilcoxon rank sum test decides whether
the observed lightning flash counts are higher for a particular
MJO phase compared to the other phases. This comparison as-
sumes that all other factors are held fixed, and, when that is
not the case, a confounding factor can produce an apparent re-
lation in variables that are otherwise unrelated (DelSole and
Tippett 2022). The annual cycle is the most common con-
founding factor in climate studies, and not accounting for it

leads to detecting links in quantities whose only link is that
they share annual cycle phasing. Figure 7 shows that CONUS
lightning count mean (solid black line) and variance (dashed
black line) have strong seasonality, with highest values in sum-
mer. MJO phase frequency also presents seasonality (Fig. 7
color bars), especially in the 14-yr period considered here. It is
possible, for example, that the mostly negative JJAS flash
anomalies in MJO phase 5 (Fig. 6e) might be due to phase 5
being most frequent in September when lightning activity is
relatively low. We assessed the impact of failing to account for
seasonality by applying the Wilcoxon rank sum test to data
whose seasonality exactly matched that of the observed flash
count data but which had no relation with MJO phase. We
constructed such a dataset by randomly permuting the years of
the summed CONUS lightning flash count data while main-
taining day of the year. We then applied the Wilcoxon rank
sum test with a significance level of a 5 0.05. In this situation
the null hypothesis of no relation is true, and p values , 0.05
constitute type I errors. We computed type I error rates for
each MJO phase and repeated this procedure with 1000 ran-
dom permutations of the years. Table 4 (first row) shows the
type I error rates are far from their desired value of 5%. We
note that removing the seasonal mean leaves the ranks un-
changed and likewise the results of the rank sum test are the
same. One strategy to account for seasonality is to remove the
daily flash count climatology. Table 4 (second row) shows that
removing the daily flash count climatology reduces the type I
error rates but they remain far from their desired value of 5%.
Seasonality of the lightning flash count variance as well as
autocorrelation are possible reasons why removal of the daily
climatology was inadequate. On the other hand, the permuta-
tion test which accounts for seasonality and autocorrelation
has type I error rates that are close to 5% (Table 4. third row).
Hence, we conclude that the difference between previous re-
sults and ours regarding MJO–lightning links may be due at
least in part to differences in statistical significance testing
methodology.

c. ENSO–lightning relationship

We first examined ENSO influence on observed and PR-
predicted lightning activity for the 2003–16 period during
the six 3-month overlapping seasons DJF–MJJ. Because the
period is short and contains few ENSO events (four complete
El Niño events and five complete La Niña events), statistical
significance is not expected. Maps of rank correlation between
ONI and observed lightning flash anomaly (Figs. S3a–f) and
maps of El Niño–La Niña difference composites (Figs. S3g–l)
show no statistical significance. Likewise, the PR-predicted
data show no statistically significant evidence for an ENSO
signal during the period 2003–16 in either rank correlations or
difference composites (Figs. S4a–f,g–l, respectively). Rank
correlations between ONI and regionally summed lightning
flash count anomalies for DJF–MJJ (Fig. S5) show: mostly
positive correlations for the Northwest and statistical signifi-
cance for FMA–MJJ, positive correlations for the Southwest
and statistical significance for DJF–MJJ, negative correlations
for the Tennessee River valley and statistical significance in
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FIG. 6. The 1979–2021 JJAS composites of PR-predicted flash count anomalies by
(active) MJO phase. Anomalies are with respect to a daily climatology. Black contours
indicate anomalies that are 0.1 and 0.2 standard deviations away from climatology. Black
stippling indicates statistically significant values.
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FMA, and mostly negative values for the coastal Southeast
but no statistical significance.

The similarities between the observed and PR results for
ENSO rank correlations (average pattern correlation 0.59)
and for ENSO composites (average pattern correlation 0.64)
further supports using the PR model to examine the ENSO–

lightning relation in the longer period 1979–2021. In addi-
tion, rank correlations between ONI and the regionally
summed lightning flash anomalies are generally consistent
for all regions.

We use rank correlation maps (Figs. 8a–f) and El Niño–La
Niña difference composites (Figs. 8g–l) to examine the rela-
tion between ENSO and PR-predicted lightning activity dur-
ing winter and spring over the longer period 1979–2021. The
two measures are complementary, with rank correlation
showing the strength of the relationship and the El Niño–La
Niña difference composites showing their expected magni-
tude. Four regions stand out as having large-scale ENSO sig-
nals during some periods in winter and spring: Northwest,
Southwest, Tennessee River valley, and coastal Southeast.
The domains for these regions are displayed in Fig. 8a and de-
scribed in Tables 2 and 3. The rank correlation maps indicate

more regions with statistically significant links between
ENSO and PR-predicted lightning, likely because correlation
utilizes the full dataset, as well as ONI amplitude, and is less
sensitive to outliers than the composites. During the midwin-
ter months, El Niño has a modest relationship with increased
PR lightning activity over the coastal Southeast (Fig. 8a), with
expected ENSO-modulated PR lightning activity on the order
of 102–103 flashes (;30%–40% more than normal; Fig. 8g).
During the winter through early spring months, El Niño is as-
sociated with increased PR lightning activity over the South-
west, and La Niña is associated with increased PR lightning
activity over the Tennessee River valley (Figs. 8a,b), though
the signal over the Tennessee River valley is statistically sig-
nificant only for the DJF season. Because this season has
fewer flashes climatologically (Tippett et al. 2019), the ex-
pected difference in ENSO-modulated PR lightning activity
is on the order of 102 flashes (;30% more than normal;
Figs. 8g,h), though locally differences are on the order of 103

flashes. During spring, El Niño is associated with increased
PR lightning activity over the Southwest (Figs. 8c,d), and the
difference in ENSO-modulated PR lightning activity is on the
order of 102 in FMA (;40%–50% more than normal; Fig. 8i)

FIG. 7. The 2003–16 proportion of days in each (active) MJO phase, with overlaid seasonal
cycle of total CONUS lightning climatology (solid black) and variance (dotted black). The white
dashed box denotes season of interest for MJO–lightning analysis.

TABLE 4. Type I error rate at the 0.05 significance level, which is Freq(p value ,0.05), using the Wilcoxon rank sum test for the
observed 2003–16 MJO composites and randomized lightning flash data (top) with seasonal mean removed, (middle) with daily mean
removed, and (bottom) using the permutation test.

Phase

1 2 3 4 5 6 7 8

Rank sum test, removed seasonal climatology 0.98 0.34 0.82 0.99 1.0 0.21 0.69 0.59
Rank sum test, removed daily climatology 0.18 0.24 0.20 0.16 0.10 0.25 0.26 0.26
Permutation test 0.05 0.05 0.04 0.04 0.06 0.04 0.06 0.05
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FIG. 8. (a)–(f) The 1979–2021 rank correlation between PR-predicted seasonal lightning flash count anomalies and ONI. All
insignificant correlations have amplitudes less than RFDR, which is shown in top-right corner. (g)–(l) The 1979–2021 difference
composites (El Niño–La Niña) of PR-predicted seasonal lightning flash count anomalies. Black stippling indicates statistically
significant values. Domain boxes in (a) indicate regions of interest (see text for details).
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and 103 flashes in MAM (;50%–60% more than normal;
Fig. 8j). El Niño is associated with increased PR lightning
activity over the Northwest in the late spring (Figs. 8e,f).
However, the difference composites do not indicate a clear posi-
tive signal related to El Niño (Figs. 8k,l), suggesting there might
be asymmetries between El Niño- and La Niña-modulated pat-
terns of PR lightning activity in this region.

We explain ENSO influence on PR-predicted lightning activity
in these regions and seasons by examining the relationship be-
tween ENSO and the large-scale environmental variables in the
PR model (CAPE and precipitation). The ENSO–precipitation
relationship helps explain ENSO modulation during winter
over the coastal Southeast during midwinter (cf. Fig. 9g versus
Fig. 8a). The ENSO–CAPE relationship helps best explains
ENSOmodulation of lightning activity over the Tennessee River
valley, including its peak in winter through early spring (cf.
Figs. 9a–c versus Figs. 8a–c). Both CAPE and precipitation can
be useful explanatory variables to describe ENSO modulation
patterns and seasonality over the Southwest (cf. Figs. 9a–d,g–j
versus Figs. 8a–d) and Northwest (cf. Figs. 9e,f,k,l versus
Figs. 8e,f).

As a summary, we took each 3-month season of (PR-
predicted) regionally summed lightning flash, CAPE, or pre-
cipitation anomaly for the Northwest, Southwest, Tennessee
River valley, or coastal Southeast and correlated it with
ENSO (Fig. 10), which describes the major takeaways for the
1979–2021 ENSO–lightning analysis:

• Over the Northwest, there is a positive correlation between
ENSO and lightning activity}hence El Niño (La Niña) is as-
sociated with increased (decreased) lightning activity}that
peaks in late spring and early summer (Fig. 10a magenta
line). This is explained by El Niño–related (La Niña–related)
increases (decreases) in both CAPE and precipitation over
the region (Figs. 10b,c magenta lines).

• Over the Southwest, there is a positive correlation between
ENSO and lightning activity–hence El Niño (La Niña) is as-
sociated with increased (decreased) lightning activity–that
peaks in the winter and spring (Fig. 10a green line). This is
best explained by El Niño–related (La Niña–related) in-
creases (decreases) in both CAPE and precipitation over
the region (Figs. 10b,c green lines).

• Over the Tennessee River valley, there is a negative correla-
tion between ENSO and lightning activity–hence La Niña
(El Niño) is associated with increased (decreased) lightning
activity–that peaks during winter (Fig. 10a gold line). This is
best explained by La Niña–related (El Niño–related) increases
(decreases) in CAPE over the region (Fig. 10b gold line).

• Over the coastal Southeast, there is a positive correlation be-
tween ENSO and lightning activity–hence El Niño (La Niña)
is associated with increased (decreased) lightning activity–that
peaks in winter (Fig. 10a purple line). This is best explained by
El Niño–related (La Niña–related) increases (decreases) in
precipitation over the region (Fig. 10c purple line).

The weak ENSO signal in PR lightning activity over the
Tennessee River valley and coastal Southeast can perhaps be
attributed to the contrasting ENSO signals in CAPE and

precipitation. For instance, when the ENSO–PR lightning
link over the Tennessee River valley is highest in late winter,
the ENSO–CAPE correlation is negative and the ENSO–

precipitation correlation is positive over the region.

4. Summary and discussion

Despite its substantial impacts, relatively little is known
about the relation of lightning with predictable large-scale cli-
mate variability. In this study, we modeled 2003–16 lightning
activity over the United States using Poisson regression (PR),
relating lightning flash counts data to CAPE and precipitation
values. The PR model more accurately captured the depen-
dence of flash counts on the environmental factors compared
to previous models. In particular, the PR model with the best
performance used log(CAPE), log(CAPE)2, log(Precipita-
tion), and log(Precipitation)2 terms as predictors. Correla-
tions between the observed and PR-predicted lightning flash
counts at daily and seasonal scales show that the PR model
overall represents daily and seasonal variability well. We did
not detect a robust MJO–lightning or ENSO–lightning rela-
tionship for the short 2003–16 period, but we found observed
and PR-predicted patterns were similar. Therefore, with the
PR model, we constructed a lightning proxy for longer period
1979–2021. For the 1979–2021 period, we found no evidence
that the lightning activity is related to active MJO phases dur-
ing JJAS. However, ENSO was associated with anomalous
PR lightning flash patterns. La Niña is associated with in-
creased lightning activity over the Tennessee River valley
during winter, and El Niño is associated with increased light-
ning activity over the coastal Southeast during winter, the
Southwest during winter and spring, and the Northwest dur-
ing late spring and early summer. In terms of the magnitude
of lightning flash anomalies during ENSO phases, most differ-
ences are on the order of 102 more (or fewer) flashes per sea-
son except for some localized differences on the order of 103

more flashes, e.g., Montana and Wyoming in early summer.
The PR lightning proxy also provides insight into how ENSO in-
fluences CAPE and precipitation patterns, including the sea-
sonal evolution of the ENSO–CAPE and ENSO–precipitation
link. As a result, ENSOmay be a potentially useful predictor for
winter through late spring lightning activity, valuable for protect-
ing public safety as well as for understanding increased risk of
lightning-caused wildfires and thunderstorm-related impacts.

The PR approach has its limitations. For example, western
U.S, especially West Coast, lightning climatology was not well
represented. It has been found that lightning along the West
Coast involves different mechanisms/processes than lightning
over the rest of the contiguous United States (Zipser 1994;
Holle et al. 2016). The West Coast has a high number of posi-
tive CG flashes that are not associated with severe weather
(Zajac and Rutledge 2001; Koshak et al. 2015; Medici et al.
2017) but might be associated with greater ice clouds (Fuchs
et al. 2015; Mülmenstädt et al. 2015). The PR model does not
take into account other important environmental factors, e.g.,
wet-bulb temperature (Koshak et al. 2015), warm cloud depth
(Stolz et al. 2017), midlevel humidity (Westermayer et al.
2017), and cloud-top height (Finney et al. 2018), which may
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FIG. 9. The 1979–2021 rank correlation between ONI and (a)–(f) seasonal CAPE anomaly and (g)–(l) seasonal precipitation anomaly.
Black stippling indicates statistically significant values.
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limit its representation of lightning across many climates and
terrains. Noting the western U.S. deficiencies, fitting the data
separately shows a systematically different base rate and de-
pendence on CAPE and precipitation that might be due to
differing precipitation/lightning processes or missing physics.
We did find that we could improve lightning climatology and
skill by adding lifted condensation level (LCL) as a predictor
in the PR model (not shown), reducing the biases over the
western United States by accounting for the lower cloud ba-
ses, warm rain processes, and/or greater precipitation effi-
ciency in the western United States (Mülmenstädt et al. 2015;
Fuchs et al. 2015; Tippett et al. 2019). Regardless, the PR
model with the LCL predictor did not impact nor improve
representation of lightning variability and, by extension, the
MJO– or ENSO–lightning relationship, motivating the choice
to exclude the LCL in the model for the purpose of this study.
While PR-predicted lightning flash counts of the PR model

during 2003–16 were comparable to observations, it is not
guaranteed that the PR model would perform well outside
this data-fitting period, especially if there were long-term
trends involved (Stainforth et al. 2007; Camargo et al. 2014).
Overall, MJO–lightning and ENSO–lightning results were
qualitatively similar when using the CP proxy predicted light-
ning data (not shown).

Because of the high variability of lightning and its strong
seasonality, the PR model performs better at daily resolution
in the warm season and at seasonal resolution in the cool sea-
son (cf. Tables 2 and 3). During seasons and in regions with
high lightning variability, temporal and/or spatial aggregation
does not improve PR model performance. This dependence
of skill on time scale may reflect that during climatologically
active times of the year, aggregation over a season requires
accurate representation over many days, whereas during cli-
matologically inactive times of the year, aggregation over a

FIG. 10. The 1979–2021 rank correlation between ONI and regionally summed (a) PR-predicted lightning flash
anomaly, (b) CAPE anomaly, and (c) precipitation anomaly. Markers and any thicker lines between points indicate
seasons when rank correlation is statistically significant at the 90% confidence level determined by bootstrapping
method with 1000 iterations.
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season requires accurate representation over fewer days.
Likewise, the dependence of skill on region may reflect that
over climatologically active locations, spatial aggregation re-
quires accurate representation over many grid points. The
time scale of climate drivers as well as season or region of in-
terest should be considered when using the lightning proxy.
For example, the lightning proxy may perform better for
shorter (i.e., subseasonal) climate time scales, especially in the
warm season. However, overall, ENSO and MJO spatial pat-
terns of PR-predicted lightning look similar to the ENSO and
MJO spatial patterns of observed lightning during 2003–16
(cf. supplemental Figs. 1–4), suggesting that the PR model can
capture large-scale, low-frequency variability in lightning ac-
tivity and is still useful in investigating climate links and
patterns.

The lack of statistically significant MJO–lightning relations
in our study is different from the MJO–lightning patterns
found in Abatzoglou and Brown (2009). Methodological dif-
ferences may play a role. Here, we demonstrated that failing
to account for seasonality in MJO phase frequency and light-
ning climatology resulted in type I errors (rejecting the null
hypothesis when it is true) in as many as 100% of cases. This
behavior may provide an explanation for why the results here
differ from previous ones which did not take seasonality into
consideration. The lack of a clear relation between the MJO
and lightning has implications for subseasonal prediction
of lightning activity and its indirect impacts (e.g., wildfire
ignition).

Over the eastern United States, the link between ENSO
and lightning might be expected to be similar to that between
ENSO and severe convective storm activity. For instance,
there is a documented relationship between La Niña and
increased frequency of tornado and hail events over the
Tennessee River valley in late winter and early spring (Allen
et al. 2015a; Koch et al. 2021; Tippett and Lepore 2021), which
can be associated with ENSO-related CAPE patterns. How-
ever, the ENSO signals in lightning are generally weaker than
the ENSO signals in severe thunderstorms. We hypothesize
that the contrasting ENSO signals in CAPE and precipitation
may be reducing the ENSO signal in lightning, especially over
the Tennessee River valley. On the other hand, for severe
thunderstorms, additional environmental factors become rele-
vant, such as storm relative helicity (SRH). ENSO influences
patterns of SRH and CAPE similarly}i.e., La Niña increases
both CAPE and SRH in the region (Lepore et al. 2018; Koch
et al. 2021)}and the ENSO signal in SRH is stronger than
(convective) precipitation in climate forecast models, which can
overpower any opposing precipitation signals in the region.

The NLDN is one of the most reliable datasets of lightning ob-
servations available, but future work should consider, when avail-
able, the reclassified NLDN data, which estimates 2015–22
lightning counts with improved detection methods (W. J. Koshak
2023, personal communication). Future work should also con-
sider how this PR model could be used to understand how other
climate modes of variability may influence lightning activity as
well as for identifying trends. Global lightning trends are not well
understood, and there is general disagreement on whether light-
ning activity will increase or decrease with a warming climate

(Price and Rind 1994; Finney et al. 2018; Romps 2019). Some
studies have reported that U.S. CG lightning has increased
(Romps et al. 2014; Romps 2019), including over the Great Plains
where severe thunderstorms are frequent (Villarini and Smith
2013). However, these studies use datasets with short records, so
there would be benefit from a comprehensive analysis over a lon-
ger period of time and over the entire United States.
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