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ABSTRACT: Forecast sensitivity to observation (FSO) methods have become increasingly popular over the past two dec-
ades, providing the ability to quantify the impacts of various observing systems on forecasts without having to conduct
costly data denial experiments. While adjoint- and ensemble-based FSO are employed in many global operational systems,
their use for regional convection-allowing data assimilation (DA) and forecast systems have not been fully examined. In
this study, ensemble FSO (EFSO) is explored for high-frequency convective-scale DA for a severe weather case study over
the Dallas–Fort Worth testbed. This testbed, originally established by the Collaborative Adaptive Sensing of the Atmo-
sphere (CASA) project, aims to improve high-resolution DA systems by assimilating a variety of existing state and regional
mesoscale observing systems to fill gaps of conventional observing networks. This study utilizes EFSO to estimate relative
impacts of nonconventional surface observations against conventional observations, and further incorporates assimilated
radar observations into EFSO. Results show that, when applying advected localization and a neighborhood upscale averag-
ing technique, EFSO estimates remain correlated and skillful with the actual error reduction of all assimilated observations
for the duration of 2-h forecasts. The ability for EFSO to verify against other metrics (surface T, u, y , q) beside energy
norms is also demonstrated, emphasizing that EFSO can be used to evaluate impacts of specific parts of the forecast system
rather than integrated quantities. Partitioned EFSO revealed that while conventional and radar observations contributed
to most of the total energy, nonconventional observations contributed a significant percentage (up to 25%) of the total im-
pact to surface thermodynamic fields.

KEYWORDS: Convective storms/systems; Short-range prediction; Data assimilation; Diagnostics; Ensembles;
Regional models

1. Introduction

Current state-of-the-art data assimilation (DA) systems as-
similate a wide variety of observations from many different
platforms, from in situ surface stations, weather balloons, and
aircraft data, to remote sensing satellite and radar platforms.
This combination of observations improves the overall accuracy
of analyses and subsequent forecasts. As such, advancements in
DA methodologies along with the ever-increasing volume of
observations being assimilated have aided in improving opera-
tional forecast accuracy by an average of about one day per de-
cade over the last 40–50 years (Bauer et al. 2015). An essential
component of continuing this improvement into the future is de-
termining the added value or impact of existing and proposed
observing systems on forecasts. It is of great interest to thus de-
velop methods which efficiently quantify observational impact
on forecasts by different types or platforms of observations.

The most straightforward method of determining observation
impact for existing observation systems is to conduct sets of ob-
serving system experiments (OSEs). In the OSE approach, im-
pact is determined by comparing a control experiment with an
experiment that either withholds (data denial) or adds (data addi-
tion) a set of observations, and the differences among experiment
forecasts directly quantify the impact of this set of observations.
Such an approach has been used many times over the last few

decades (e.g., Zapotocny et al. 2002, 2007; Benjamin et al. 2010;
Carlaw et al. 2015; James and Benjamin 2017; Gasperoni et al.
(2018, hereafter G18; Degelia et al. 2019; Morris et al. 2021).
However, it can be computationally demanding to run multiple
sets of experiments in modern DA and forecast systems to deter-
mine observational impact. As such, OSE studies are typically
limited to either case studies or small time periods and only a few
subsets of observations.

A more computationally efficient approach to quantifying
observation impact was developed by Langland and Baker
(2004), who introduced an adjoint-based technique to calculate
the forecast sensitivity to observation (FSO) impact within their
3D-variational DA system. Gelaro and Zhu (2009) found that
the FSO technique generally agreed with results of data denial
experiments. The FSO method has been used in many different
forecasting systems since then (e.g., Cardinali 2009; Gelaro et al.
2010; Weissmann et al. 2012; Lorenc and Marriott 2014). While
it is a valuable tool for diagnosing forecast impacts of observa-
tions without OSEs, FSO requires adjoint operators of the fore-
cast model that are difficult to develop.

An ensemble-based alternative to the adjoint-based FSO
technique was explored by Ancell and Hakim (2007), where
sensitivity with respect to observation increments is defined as
a function of linear regression of ensemble forecast perturba-
tions for a defined forecast metric. Liu and Kalnay (2008) and
Li et al. (2010) proposed another ensemble-based FSO tech-
nique by defining sensitivity as a function of the forecast er-
ror, similar to Langland and Baker (2004), with successfulCorresponding author: Nicholas Gasperoni, ngaspero@ou.edu
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application to tropical cyclone forecasting by Kunii et al. (2012).
Kalnay et al. (2012) derived a simpler formation, called ensem-
ble FSO (EFSO), which utilizes readily available output from
any ensemble Kalman filter (EnKF; Evensen 1994). Ota et al.
(2013) successfully applied this EFSO formulation to the Na-
tional Centers for Environmental Prediction (NCEP) operational
global EnKF system. More recently, Buehner et al. (2018) com-
bined the ensemble-based and adjoint-based FSO techniques to es-
timate observation impact within a hybrid ensemble–variational
(EnVar) system.

While most global operational centers now use some fla-
vor of FSO for monitoring of observation impact, their use
in convection-permitting numerical weather prediction and
DA systems have been limited. However, operational ensemble
convection-allowing DA and forecast systems such as the
NOAA Warn-on-Forecast System (WoFS; e.g., Lawson et al.
2018) and Rapid Refresh Forecast System (RRFS; Carley et al.
2021) are now feasible. As with global systems, it will be of in-
terest to apply an FSO method to monitor observation impact
within these high-resolution regional systems. Further, a report
by the United States National Research Council (2009) recom-
mended the integration of existing and future mesoscale observing
networks into a Nationwide Network of Networks (NNoN). As
shown in data denial case studies of Carlaw et al. (2015), G18, and
Morris et al. (2021), assimilating dense nonconventional meso-
scale surface observations in a NNoN testbed can lead to im-
provements in convection initiation (CI) and prediction of severe
hail- and tornado-producing storms. Given the large diversity of
datasets involved with a NNoN approach, and added costs of
running ensemble-based convective-scale DA and forecast sys-
tems such as RRFS, it is essential that a method such as EFSO
can accurately and efficiently identify the impacts of different
observations on a given high-resolution forecast.

Only a few studies so far have demonstrated the usefulness of
EFSO within a convective-scale modeling system (Sommer and
Weissmann 2014, 2016; Necker et al. 2018). Sommer and Weis-
mann (2014) demonstrated that EFSO provides good agree-
ment with data denial impact for a 2.8-km-horizontal-resolution
model at 0-, 3-, and 6-h forecast valid times. Later, Sommer and
Weissmann (2016) modified the EFSO method to verify against
observations directly. Necker et al. (2018) further expanded the
convective-scale implementation of EFSO to different verifica-
tion observations, including radar-derived precipitation. They
found that EFSO estimates are particularly sensitive to biases
within the observations or model. Although these studies estab-
lish that EFSO can work with a convective-scale model, the DA
system assimilated only conventional observations every 3 h.

Future convection-allowing ensemble forecast systems such
as RRFS will use more-frequent DA and include assimilation
of radar reflectivity. To this point, EFSO has not been tested
with convective-scale assimilation at higher cycling frequen-
cies, and application of EFSO impact of assimilating radar ob-
servations and newer nonconventional observing systems DA
have only recently begun (Casaretto et al. 2023a,b). In this pa-
per, the EFSO method will be applied to the same case study
explored in G18 over the Dallas–Fort Worth NNoN testbed
(National Research Council 2012). Different from Sommer
and Weissmann (2014), we test EFSO in a convective-scale

DA approach, which includes high-frequency 5-min cycling of
conventional observations, radar reflectivity and radial veloc-
ity, and dense nonconventional surface observations from sev-
eral platforms. As in Necker et al. (2018), it is expected that
different verification metrics should be used for a convective-
scale DA and forecast system than integrated energy norms,
which may obscure impacts of smaller-scale observations. Here,
given the emphasis of new surface observations, we are interested
in verifying against surface variables directly. As a first step for
convective-scale DA implementation, the EFSO estimate of im-
pact is compared directly with actual overall forecast error reduc-
tion to identify its overall accuracy. The impact of 5-min DA is
assessed on forecasts ranging from 0 to 2 h in length. Further, we
test the impact of choosing advected or static localizations on the
accuracy of EFSOmetric.Although forecast durations are shorter
for convective-scale studies, the sensitivity of EFSO accuracy to
the localization time-forecast component has not been studied to
this point at this scale. Additionally, we compare contributions of
different observations by observing platform, variable, and verifi-
cation metrics to assess impacts, with subjective comparisons to
data denial experiments fromG18.

The rest of the paper is organized as follows. In section 2,
the EFSO methodology and verification metrics will be intro-
duced. In section 3, the experiment setup will be discussed, with
a definition of diagnostics used for comparing EFSO with actual
forecast error reduction. In section 4, the results of the applica-
tion of EFSO are shown, including analysis of different localiza-
tions, different verification metrics, and contributions of EFSO
partitioned by observing variable and platform types. A sum-
mary and discussion are provided in section 5.

2. EFSO methodology for convective scales

The adjoint-based FSO of Langland and Baker (2004) defines
a cost function, J, as the squared forecast error reduction:

J 5 eTt|0Cet|0 2 eTt|2nCet|2n 5 (et|0 2 et|2n)TC(et|0 1 et|2n), (1)

where et|2n and et|0 are arrays of forecast errors at each grid
point and state variable valid at time t, initialized from consec-
utive DA analyses at times 2n and 0, respectively (n is the
DA cycling time interval). The matrix of weights C is typically
included which defines the integrated energy norm transfor-
mation, allowing the whole modeling system to be evaluated
within the impact metric. The most common energy norms
used are the dry and moist total energy norms (Ehrendorfer
et al. 1999).

Equation (1) is summarized as the total forecast impact of
all observations assimilated at time 0. When J is negative the
magnitude of error in et|0 is less than the magnitude of error
in et|2n, which can be interpreted as beneficial impact. Con-
versely, when J is positive the observations at time 0 resulted
in an increase in forecast error, thus a detrimental impact.

Kalnay et al. (2012) derived an ensemble-based FSO metric
generalizable to any EnKF based on the above definition of
observation impact (1). If we let xf

t|0 define the deterministic
forecast valid at time t initialized from the mean analysis at
time 0 (xa

0), and xtrutht as the truth valid at time t, then the

MONTHLY WEATHER REV I EW VOLUME 152572

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:35 PM UTC



error terms in (1) can be written as et|2n 5 x
f
t|2n 2 xtrutht and

et|0 5 x
f
t|0 2 xtrutht . With these definitions, Kalnay et al. (2012)

used the Kalman gain update for the mean analysis xa
0 to de-

rive the EFSO form of observation impact:

J ’
1

K 2 1
dyT0 R

21HXa
0 X

fT
t|0 (et|0 1 et|2n), (2)

where dy0 is the observation innovation vector for observa-
tions assimilated at time 0, H is the linear observation opera-
tor that transforms ensemble perturbations to observation
space, R contains observation error covariances, and Xa

0 and
X
f
t|0 are m 3 K analysis and forecast ensemble perturbation

matrices, respectively (m5 size of model state, K5 ensemble
size). Each column in X

f
t|0 can be computed using the full non-

linear model, although Kalnay et al. (2012) showed that a tan-
gent linear approximation was used to derive (2).

Covariance localization is necessary for the EFSO method in
(2) to limit sampling error, just as with any ensemble-based DA
method that uses relatively small ensembles to estimate cova-
riances for a model with high degrees of freedom. Localization
of (2) is applied directly to the matrix product Ya

0X
fT
t|0 5 HXa

0X
fT
t|0

of size p 3 m (p 5 number of observations), which estimates
model error covariances between the analysis in observation
space and forecast at valid time t. Defining the so-called impact
localization matrix rI, the form of EFSO modified by localiza-
tion can be written as

J ’
1

K 2 1
dyT0 R

21[rI+(Ya
0 X

fT
t|0 )](et|0 1 et|2n): (3)

The localization matrix rI defines a p 3 m matrix, where ev-
ery state observation and gridpoint pair can have a unique lo-
calization weight.

Kalnay et al. (2012) and Ota et al. (2013) showed that the
EFSO localization function should account for the time-forecast
component. Gasperoni and Wang (2015) further explained
how the proper choice of EFSO localization is inherently linked
to the DA localization, in addition to other dependencies in-
cluding the time-forecast component. Although an added layer
of complexity, this link with the localization used during DA
helps to constrain the problem. A simple method such as the ad-
vected localization of Ota et al. (2013) may work well even for
convective-scale DA, since advection is an important compo-
nent to signal propagation for many variables. Griewank et al.
(2023) also demonstrated the need for accurate signal propaga-
tion methods may work well for ensemble sensitivity methods;
however, for longer lead teams with more uncertain propaga-
tion, explicit covariance matrix inversion methods may be nec-
essary for accurate impact estimates.

An additional consideration for the application of EFSO
on the convective scale is the choice of cost function metric
for quantifying impact. An integrated energy norm may not
be appropriate to describe the impacts at convective scales,
where we may be interested in only specific parts of the
modeling system such as the performance of convection de-
scribed by hydrometeor variables in the state (often repre-
sented as reflectivity). Such a need was similarly identified
and tested by Necker et al. (2018) for convective-scale model

forecast impacts over Europe. For the CI case study examined
here (described in section 3), we are mainly interested in the
near-surface fields, given the strong dependence of CI on the
resultant details of those fields. Using a total energy metric
may hide some of these details within a high-resolution fore-
cast. For these reasons, near-surface fields (us, y s, Ts, qs) will
be studied in addition to energy norms to see what differences
exist when applying EFSO to error measures other than inte-
grated energy norms.

The localized EFSO form in (3) is a summed quantity, as
with the actual squared error reduction of (1). However, this
sum can be decomposed into contributions from each obser-
vation and model state pair, revealing the important utility of
EFSO. We can partition impacts by any subset within the sum
of (3), such as the impacts by individual observations or sub-
sets of observations (e.g., by platform, observing variable, or
observation type) as done in most EFSO studies.

3. Experiment setup

a. Control experiment overview

The model and DA settings for this study are equivalent to
the GSI-based EnKF DA and WRF forecast system de-
scribed in G18, specifically the control experiment that assim-
ilates all observation sources. The 3 April 2014 case is used, a
high-impact severe weather case featuring large damaging
hail, wind, and a few small tornadoes in the testbed region be-
tween 1800 and 2200 UTC (NCDC 2014). A 43-member en-
semble was initialized at 0300 UTC 3 April 2014 on a mesoscale
grid with 12-km horizontal resolution, with conventional obser-
vations except radar (Table 1) assimilated every 3 h from 0600
to 1500 UTC. At 1500 UTC, a 351 3 351 3 50 inner grid with
2.4-km horizontal resolution is initialized (Fig. 1), including two-
way feedback with the 12-km outer mesoscale grid. After an
hour to spinup convective-scale processes, 5-min cycling of all
data sources}conventional, nonconventional, and radar}is
conducted from 1600 to 1800 UTC on this inner grid (Fig. 2).

All conventional in situ observations were obtained from
the NAM Data Assimilation System (NDAS) data stream in
prepbufr format. Nonconventional surface observations were
obtained through the Meteorological Data Assimilation In-
gest System (MADIS). Radar reflectivity and radial velocity
was obtained from NEXRAD and assimilated to capture pre-
existing precipitation and help remove spurious convection
that develops within the high-frequency cycling period. A full
list of assimilated observing types is given in Table 1.

The Gaspari and Cohn (GC) (1999) function is used with
an explicit cutoff radius for covariance localization. On the
inner grid, assumed observation error standard deviation and
horizontal localization radii are varied by observation net-
work density and type (Table 1). Localization values for
mesonet and radar observations are similar to past studies
who have used them (e.g., Sobash and Stensrud 2015 and
Johnson et al. 2015, respectively). All observation types em-
ployed a vertical localization of 0.55 during DA in natural
log coordinates.
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Further details of the case study overview, model, and DA
settings are described in G18.

b. EFSO settings

The EFSO method is the same as that used in Ota et al.
(2013), adapted to interface with WRF Model input data for
this study. Multiple verification metrics are tested for EFSO ac-
curacy. The moist total energy (MTE) norm is tested as with
most other EFSO studies [i.e., Eq. (9) of Ota et al. 2013]. We
also include dry total energy (DTE, no moisture component)
and kinetic energy (KE, only horizontal wind components).

Other nonintegrated metrics will include near-surface model
levels partitioned by state variable: us, y s, Ts, qs.

The control experiment setup described in section 3a in-
cludes 25 five-minute DA cycles over the 2-h period from
1600 to 1800 UTC on 3 April 2014. The 2-h free forecasts
were run for each of the 25 ensemble analyses between 1600
and 1800 UTC (Fig. 2), and EFSO is computed at 10-min
forecast intervals. Each DA cycle offers a different sample
from which EFSO can be calculated for a given forecast verifi-
cation time. In this study, the truth is assumed to be a verify-
ing analysis. Since the latest valid time for EFSO evaluation is
at 2000 UTC, we continue 5-min DA cycling from 1800 to

FIG. 1. Inner grid domain for DA experiments, with markers showing location and types of ob-
servations (listed in Table 1) assimilated between 1600 and 1800 UTC.

TABLE 1. List of observations assimilated in this study. C and NC refer to conventional and nonconventional. Observation errors
are defined for surface pressure, temperature, moisture (RH), and wind observations, respectively, with the exception of radar
(reflectivity and radial velocity). Observation errors for upper-air observations are taken from default table in GSI.

Observation category Full name C or NC? Observation error Localization scale (km)

ConvUpperAir Upper-air observations (radiosondes, NOAA wind
profilers, GPS precipitable water, aircraft)

C GSI default 200

NEXRAD Next-generation weather radar C 5 dBZ, 2.0 m s21 (Vr) 20
ASOS/AWOS Automated surface observing system, Automated

weather observing system (surface)
C 0.5426 hPa, 0.88C,

2.705%, 1.5 m s21
200

OK/TX Mesonet Oklahoma Mesonet (McPherson et al. 2007), West
Texas Mesonet (Schroeder et al. 2005)

C 0.75 hPa, 1.08C, 3.5%,
1.5 m s21

80

ERNET Earth networks stations (https://www.
earthnetworks.com)

NC 1.125 hPa, 1.58C, 5.0%,
2.0 m s21

40

CWOP Citizen weather observer program (http://www.
wxqa.com/)

NC 1.5 hPa, 2.08C, 7.0%,
2.5 m s21

40

MoPED Mobile platform environmental data network
(Heppner 2013)

NC As in ERNET 40

MiscMeso Miscellaneous surface stations from federal and
state agencies (G18)

NC As in ERNET 40
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2000 UTC to have verifying analyses available for all fore-
casts (Fig. 2). One caveat of this study is that model biases
and errors are correlated with the forecast, which may affect
the EFSO estimates because the same DA system is used for
the verifying analysis. However, given the frequent DA cy-
cling in this study, the impact of near-surface model biases
from the verifying analysis should be reduced (e.g., Sobash
and Stensrud 2015). Further, Kotsuki et al. (2019) showed
that better accuracy of EFSO is attained when no posterior
inflation is applied to the analysis ensemble, such that the
Kalman gain for the EFSO estimate is consistent with the
Kalman gain used during EnKF to produce the analysis
mean. Given the application of covariance inflation during
DA cycling to maintain sufficient ensemble spread, another
caveat in this study is that EFSO may overestimate impact
especially in dense observing regions as a result of applying
inflation to the ensemble analysis.

Multiple horizontal localization methods are tested for the
EFSO metric and compared for accuracy against the actual im-
pact, defined as the actual forecast error reduction caused by
the assimilation of all observations in a given DA cycle [i.e., us-
ing Eq. (1)]. The first is static localization, applying the same
GC localization as that used during DA for each observation
type (EFSOnoadv). The next is advected localization, where the
center of the GC localization is moved utilizing the average of
the analysis and forecast horizontal wind at each vertical level,
following Ota et al. (2013). EFSO estimates with two advected
localization coefficients of 0.75 and 1.5 are tested (EFSOadv0.75
and EFSOadv1.5, respectively). The former is equivalent to the
optimal value found in Ota et al. (2013), while the latter tests
the sensitivity to this choice of coefficient. A visual demonstra-
tion of 200-km GC localization and advected localization for a
30-min forecast is shown in Fig. 3. The center of the advected lo-
calization has shifted eastward and morphed to a northeast–

FIG. 2. The 5-min-cycled DA setup for EFSO experiments. Red indicates analyses and 2-h forecasts used for EFSO
impact estimates, and green indicates further cycling to provide verifying analyses for the entire EFSO forecast evalu-
ation period.

FIG. 3. (a) Static 200-km GC localization function. (b) Advected GC localization (coef5 0.75) using t5 30-min fore-
cast. White dot indicates location of observation.
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southwest-oriented elliptical shape, in accordance with the wind
flow. Note that the vertical localization for EFSO follows the
same settings as DA (0.55 in natural log pressure)

c. Diagnostics for evaluation

As described in section 2, the essence of EFSO is in its ability to
diagnose the partial sums of the total impact in (3) by subsets of ob-
servations, making it a useful tool for monitoring and improving
ensemble-based DA systems. However, before examining these
partitioned impacts, we seek to assess the overall quality of EFSO
estimates for high-frequency convective-scale DA and forecasts.

Another approach is to sum up the EFSO contributions of all
observations on the impact at a given grid point. This approach
can allow for direct comparisons of 2D maps of EFSO with the
maps of actual error reduction of all assimilated observations in
each 5-min DA cycle, since the domain-wide sum of actual error
reduction [Eq. (1)] can similarly be partitioned by grid point.
Two statistical verification metrics are used in this evaluation:
pattern correlation and a skill score (SS) metric based on mean-
absolute-error (MAE). Pattern correlation, r, is defined as the
Pearson coefficient of linear correlation between values of two
variables (EFSO and Actual) at equivalent horizontal gridpoint
locationsm on two different maps:

r 5
∑
m
(EFSOm 2 EFSO)(Actualm 2 Actual)

��������������������������������������������������������������
∑
m
(EFSOm 2 EFSO)2∑

m
(Actualm 2 Actual)2

√ , (4)

where overbars denote domain-wide averages.

The SS is defined as

SS 5 1 2
MAE
MAEref

, (5)

where MAE5 ∑m|EFSOm 2Actualm| and MAEref 5

∑m(|EFSOm|1 |Actualm|), and an ideal SS is 1. The reference
MAE used for (5) is similar in concept to the reference used for
computing fractions skill score (FSS; Roberts and Lean 2008).
In this case, it defines zero skill as the hypothetical situation
where nonzero locations of EFSO do not overlap the nonzero
locations of actual impact. Unlike FSS, the SS here may go be-
low zero if, for example, EFSO impact values are the opposite
sign compared to the actual impact at many locations. MAE is
chosen because we do not want to overemphasize extreme de-
partures in the comparison.

As a final consideration, EFSO is compared both at gridpoint
scale and at coarser scales. Verification at convection-permitting
scales often employ neighborhood averaging techniques to pre-
vent small displacement errors from causing outsized negative
scores in the verifications (e.g., Roberts and Lean 2008). To
avoid these issues, maps of EFSO and actual impact are re-
gridded to 20- and 40-km NOAA grids.1 This upscaling is per-
formed by spatially averaging within each 20- or 40-km grid cell
all impact values from the 2.4-km grid found within that cell,

FIG. 4. Two-dimensional maps of (a)–(c) actual impact and (d)–(f) EFSOadv0.75-estimated impact in terms of moist total energy
(J kg21), plotted on (a),(d) the original integration 2.4-km domain; (b),(e) the upscaled 20-km domain; and (c),(f) the 40-km domain.
All panels depict 1-h forecast impact initialized by analysis at 1730 UTC 14 Apr 2014.

1 The 20- and 40-km grids are NCEP 212 and 215 grids, respec-
tively, defined at https://www.nco.ncep.noaa.gov/pmb/docs/on388/
tableb.html.
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similar to neighborhood averaging techniques described in
Schwartz and Sobash (2017).

4. EFSO results

a. Comparison of EFSO estimated impact with actual
error reduction

1) SUBJECTIVE EVALUATION

Two-dimensional patterns of impact are shown in Fig. 4,
where each gridpoint value is a vertical integral of energy
components from the MTE formula. At analysis time (not
shown), the EFSO and actual impact patterns match very
closely, with only minor differences. At 60-min forecast time
(Figs. 4a,d), the patterns begin to diverge, though the general lo-
cations of large impact values are the same. Convective activity
is forming ahead of the dryline in Texas and the cold front in
Oklahoma, which manifests as strong areas of small-scale bene-
ficial and detrimental impacts along those areas. Similar small-
scale variations are seen in Arkansas, associated with ongoing
convection in that area. The effect of upscaling to 20- and
40-km grids allows for a much clearer subjective evaluation of
the regions with small-scale variations in Figs. 4a and 4d. For ex-
ample, the Arkansas and DFW testbed regions had generally
large-scale beneficial impacts from observations, while in north-
east Oklahoma the impact regions are only at smaller scales. It
is also apparent that the EFSO estimates in the bottom row
match these large-scale variations of actual impact, with the ex-
ception of the region in southeast Texas.

2) OBJECTIVE EVALUATION—PATTERN CORRELATION

AND SKILL

Though subjective results show general agreement of
EFSO with actual error reduction, cycle-average statistics at
different forecast times can summarize the comparison with
actual impact for different verification metrics, grid scales,
and localization settings. The first is DA cycle-averaged

pattern correlation in Fig. 5 for energy norm verification. On
the 2.4-km grid, the correlation starts off high, around 0.8, at
t 5 0 but drops off quickly for each metric. The use of advected
localization does improve the correlations at 10–20-min forecast
times, but beyond that correlation is weak (below 0.3). How-
ever, the 40-km upscaling improves the pattern correlations by
around 0.1–0.3. When combining the upscaling with advected
localization in EFSOadv0.75, the pattern correlation remains
above 0.3 for longer, out to 30–40 forecast minutes for KE and
DTE and for the full 2-h forecast in MTE.

Correlations for surface metrics are shown in Fig. 6. In con-
trast to energy norms, the 2.4-km EFSO of surface variables
have a slower drop off in correlation with forecast time. Using a
weak correlation threshold of 0.3, the 2.4-km EFSO for surface
variables is accurate up to 50 min, even as high as 80 min for
surface moisture. Additionally, surface thermodynamic varia-
bles match for longer (60–70 min) than either wind component
(20–30 min). Further, correlations on the 40-km grid are simi-
larly higher than on the 2.4-km grid. For surface wind, this
boosts correlations to above 0.3 out to 60–80 min, and for tem-
perature correlation is above 0.3 out to 90 min (EFSOadv1.5).
The best pattern correlation is seen in surface moisture, having
moderate correlation ($0.5) for the entire 2-h forecast.

Skill is assessed next to compare the magnitudes of error in
EFSO estimates, shown for 40-km comparison in Figs. 7 and 8.
For energy norms (Fig. 7), the skill of KE only remains above
the baseline climatology for the first 20–30 min of the forecast;
however, in DTE and MTE the skill remains higher than base-
line by as much as 0.3 for the full forecast duration. This baseline
is defined as the SS of using the domain- and cycle-averaged im-
pact as the estimate at all grid points. Although MTE and DTE
are similar in skill, MTE has slightly higher skill by the end of
the forecast than DTE.

In terms of surface verification metrics (Fig. 8), skill in
EFSO is similarly higher than the baseline for all metrics and
forecast hours. The skill dropoff is faster in the first 20 min of
the forecast compared to the energy norms. However, EFSO

FIG. 5. Pattern correlation of EFSO estimate compared to actual impact, averaged over the number of DA cycles available (25) for
(a) kinetic energy, (b) dry total energy, and (c) moist total energy. Black lines indicate static GC localization (EFSOnoadv), while blue and
green lines indicate EFSO estimates using advected localization with weighting coefficients of 0.75 (EFSOadv0.75) and 1.5 (EFSOadv1.5),
respectively. Solid and dashed lines indicate correlations computed on the original 2.4-km grid and upscaled 40-km grid, respectively.
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estimates in Ts and qs have higher SS than surface wind or en-
ergy norm components for longer ($40 min) forecast lengths,
ending with the highest skill of 0.4 by the 120-min forecast
(EFSOadv1.5).

In summary, pattern correlations on upscaled grid demon-
strate a linear relationship out to 30 min for KE and DTE,
60–90 min for us, y s, and Ts, and for the entire 120-min fore-
cast for MTE and qs, with qs having the best overall correla-
tion. The skill of EFSO in DTE, MTE, and surface evaluation
metrics remains well above the baseline climatology through-
out the 2-h forecast. In other words, EFSO is capable of
matching actual patterns of impact on 5-min DA cycling for
these durations, especially when upscaling is used. These re-
sults are consistent with Necker et al. (2018), who found sub-
stantial sensitivity of convective-scale EFSO accuracy when
applying an upscaling technique within the verification metric
up to 10 3 10 grid points (28 km 3 28 km in their simula-
tions). More accurate estimates are attained when upscaling

EFSO to at least ;8Dx to avoid double-penalty issues of con-
vective scales, where large magnitude errors in verification
are caused by small displacements (e.g., a storm which is mis-
placed by 10 km). The results also suggest increased accuracy
of EFSO for verifying MTE and surface moisture, which will
be further explored in section 4c.

b. Impact of localization choice on EFSO accuracy

In addition to upscaling, the use of advected localization
further boosts correlation values by as much as 0.3 when eval-
uating energy norms (Fig. 5), with slightly better correlations
for EFSOadv0.75 compared to EFSOadv1.5 especially at lon-
ger forecast lengths. This improvement in correlation of up to
0.3 using a moving localization compared to static localization
is similar in scale to the improvement seen in Ota et al. (2013)
for EFSO application within the Global Forecast System. SS
is similarly boosted by 0.1–0.2 (Fig. 7), with substantial differ-
ences as early as 10–20 min into the forecast. EFSOadv1.5 has

FIG. 6. As in Fig. 5, but for impact of surface verification fields of (a) zonal wind, (b) meridional wind, (c) temperature,
and (d) specific humidity.
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higher skill than EFSOadv0.75, especially for the 20–60-min
forecast period. An optimal coefficient greater than unity
could suggest processes other than physical advection are con-
tributing to the impact metric.

For surface verification, it is apparent that EFSOadv1.5 has
better matching patterns than EFSOadv0.75 for all surface
metrics except zonal wind (Fig. 6). However, the difference
(0.05–0.1) between those two is smaller than their differences
to EFSOnoadv or when comparing 2.4- to 40-km correlations.
For all surface metrics except us, EFSO with advected localiza-
tion has higher skill (by 0.1) than EFSOnoadv (Fig. 8). Further,
EFSOadv1.5 has consistently better skill than EFSOadv0.75 for
forecast lengths over 30 min (by about 0.05).

A subjective evaluation of EFSO for different localizations
is shown in Fig. 9, zoomed into the DFW domain on the
20-km upscaled grid. For a shorter (30-min) forecast, it is diffi-
cult to see many subjective differences between EFSOnoadv
and EFSOadv1.5; however, the error reduction of EFSOadv1.5
compared toEFSOnoadv (Fig. 9c) demonstrates that EFSOadv1.5
is more accurate than EFSOnoadv at most of the locations plotted.
On the other hand, it is easier to see the subjective effect of ad-
vected localization for a 90-min forecast (bottom row, Fig. 9). For
example, the beneficial impact region centered near 338N, 988W
extends too far westward and does not cover the northernmost
part of the actual impact region for EFSOnoadv (Fig. 9d). Con-
versely, EFSOadv1.5 properly removes this spurious westward
beneficial impact and further extends the region to the northeast to
better match the actual impact region (Fig. 9e). The error reduc-
tion (Fig. 9f) reflects that these subjective improvements are
overall more accurate for EFSOadv1.5 than EFSOnoadv;
however, these are not universal improvements at all location,
which is an indication that the optimal coefficient for advected
localization may vary by underlying flow. The EFSO estimate
may benefit further from an adaptive localization technique that
better reflects the time-forecast component for different flow and
dynamical regimes. Note that we attempted the regression confi-
dence factor (RCF) technique of Gasperoni and Wang (2015),
but were not able to improve upon simple advected localization

(not shown). RCF was able to adaptively capture the time-
forecast component adequately; however, worse EFSO es-
timates were likely due to having no tie with localization
shape during DA, which was demonstrated as an important
dependence for optimal localization choice in EFSO within
previous idealized two-layer model experiments (Gasperoni
andWang 2015).

The results of this section reveals the importance of consider-
ing the time-forecast component to EFSO localization. Some
previous studies on EFSO ignore the forecast component and
apply static localization, arguing that it is unimportant for short
forecast lengths (e.g., Sommer and Weismann 2014; Hotta et al.
2017; Necker et al. 2018). However, it is shown here for convec-
tive-scale, high-frequency 5-min DA cycling that the forecast
component of localization is important for maximizing EFSO
skill out to 2 h, and could have noticeable differences on EFSO
skill for forecast lengths as short as 20–30 min depending on
chosen evaluation metric.

c. Partitioned EFSO impact results by observation
variable, platform, and evaluation metric

In this section, the DA cycle-averaged EFSO impact is parti-
tioned by different observation platforms and variables to assess
their relative importance on the ensemble DA and forecast sys-
tem. Here, we will compare DA cycle-averaged partitioned
sums for the 30-min impact of EFSOadv1.5, since we can be
confident based on results of sections 3a and 3b that that these
estimates generally compare most favorably with the actual 30-
min forecast impact.

1) PARTITIONED EFSO–ENERGY NORMS

Figures 10a, 10c, and 10d shows summed EFSO impacts of en-
ergy norms partitioned by observing type in four categories. Note
that the well-sited and calibrated Oklahoma and West Texas
mesonets are included within conventional surface observations.
All sources have a negative summed EFSO, indicating beneficial
impacts for all observation types. The largest sum for each energy

FIG. 7. MAE-based SS of 2D EFSO maps [Eq. (5)] averaged over all 25 DA cycles for EFSOnoadv (black), EFSOadv0.75 (blue), and
EFSOadv1.5 (green). Skill using energy norm verification metrics (a) KE, (b) DTE, and (c) MTE, verified on the 40-km grid. Dashed black
line is baseline climatology, the SS of using the domain- and cycle-averaged impact value over all grid points in the domain at each forecast
hour.

G A S P E RON I E T A L . 579FEBRUARY 2024

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:35 PM UTC



norm is from radar observations. Conventional surface observa-
tions and upper-air observations have roughly equal contribu-
tions to KE and DTE, about one-third of the impact for radar.
However, for MTE, conventional surface observations contribute
twice as much as upper-air observations, in part because there
are very few moisture observations from upper-air sources. The
nonconventional surface observation category shows the least
amount of impact, with minimal contributions to KE and DTE
and a small contribution to MTE that is roughly 15% of the size
of the EFSO sum of conventional surface observations. Averag-
ing EFSO by observation counts (Figs. 10b,d,f) reveals that radar
reflectivity has the least impact per observation on energy norms,
which ties its large, summed impact to the volume of observa-
tions. This is similar to other FSO works that show that the per-
observation impact from remotely sensed satellite radiances is
low despite having one of the largest sums (e.g., Ota et al. 2013;
Kim et al. 2017). Conventional upper-air observations and sur-
face stations are the most impactful per observation, with surface
stations having a much larger influence in MTE than KE and

DTE. Nonconventional surface observations have a substantially
higher impact per observation on MTE in particular, just under
half of the impact of conventional surface observations. These re-
sults suggest a high sensitivity of beneficial forecast evolution in
this case to the assimilation of moisture observations, echoing the
results of data denial experiments in G18.

When partitioning by observing variable (Fig. 11), we can
see the largest beneficial contributions come from radar re-
flectivity, radar radial velocity, and in situ wind observations
to KE and DTE, in similar amounts. However, in terms of
MTE, the reflectivity observations have by far the most con-
tribution to impact. This further underscores the importance
that the large volume of reflectivity observations have on
moisture and related hydrometeors. Among thermodynamic
observations, moisture impacts MTE more substantially than
temperature. The only observing variable with detrimental
impact are surface pressure observations for DTE and
MTE, though the magnitude of this impact is small com-
pared to the sum. Casaretto et al. (2023a) also reported on

FIG. 8. As in Fig. 7, but for skill of EFSO using surface verification metrics of (a) zonal wind, (b) meridional wind,
(c) temperature, and (d) specific humidity.
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average detrimental impacts from surface pressure obser-
vations, validated by data denial experiments. Limited im-
pact is seen in precipitable water observations since they
were only available for one cycle (1715 UTC) during the
experimental DA period.

2) PARTITIONED EFSO–NEAR-SURFACE

VERIFICATION FIELDS

Partitioning EFSO for near-surface evaluation metrics re-
veals some differences compared to energy norms (Fig. 12).
While radar and conventional upper-air observations contrib-
uted the majority to the total energy norm impact, in terms of
surface verification these sums are much smaller. This smaller
influence makes sense because the former observations largely
influence locations above the surface. Further, there is a detri-
mental impact for radar observations in terms of us, although
this is only a small percentage of the sum (about 7%, Fig. 12e).

For surface wind verification, conventional surface observations
have the highest impact, together representing over 85% of the
sums (Figs. 12e,f). These sources also have the highest contribu-
tions to Ts and qs, but interestingly ASOS observations have the
biggest influence on qs (47%) while the Oklahoma and Texas
mesonets affect Ts most strongly (62%). The latter is a result of
these observations having better coverage to analyze a frontal
zone located across Oklahoma and Texas during the case (see
Fig. 3 of G18)

In terms of nonconventional surface observations, each
source has a small but beneficial impact, with larger percentage
impacts in terms of thermodynamic verification metrics than
wind verification metrics. Specifically, when summing up contri-
butions from ERNET, CWOP, and miscellaneous mesonets,
there is a near 25% contribution to Ts and qs (Figs. 12g,h), com-
pared to only 5%–10% for us and y s (Figs. 12e,f). Among indi-
vidual sources, the miscellaneous mesonet observations have
the largest influence on qs of 13%, while ERNET and CWOP

FIG. 9. (a),(d) EFSOnoadv-estimated impact in surface moisture; (b),(e) EFSOadv1.5-estimated impact in surface moisture; and
(c),(f) error reduction of advected localization estimate, defined as |EFSOadv1.5 2 Actual| 2 |EFSOnoadv 2 Actual|. Plots are valid for
(top) the 30-min forecast impact of 1730 UTC analysis and (bottom) the 90-min forecast impact of 1630 UTC analysis on upscaled 20-km
grid. Black solid and dashed contours show actual impact values of20.25 and 0.25 g2 kg22, respectively.
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are roughly equal and around 5%. This large influence from the
miscellaneous mesonet may be tied to moisture observations
from a hydromet network near the Colorado River (large clus-
ter of black dots in southwest Texas, Fig. 1), which was also
noted as having a large influence in data denial impact experi-
ments from G18. In terms of Ts, ERNET observations have the
largest influence, near 15%, while miscellaneous mesonet obser-
vations have a near 8% influence and CWOP only a small
(;1%) percentage.

In the rightmost column of Fig. 13, the EFSO contributions
are averaged per observation as well as per area of influence,
defined using the localization radius for each type (Table 1).
The latter averaging by area of influence is meant to take into
account the different scales of observation impact}a single
observation with 200-km localization will more likely have
larger forecast influence than a single observation with 20-km
localization. With this normalization, the observations from
miscellaneous mesonets have the largest contributing magni-
tudes to all surface variables except meridional wind. When

compared to Fig. 1, it appears that these observations do well
to fill in the gaps in more data sparse areas, especially in
southern Texas in the moisture-rich region near the dryline
for this case. The more mixed order of impacts per observa-
tion and per square kilometer suggests that part of the larger
influence from conventional observations in the summed im-
pacts is due to the larger localization radius applied during
DA. It also demonstrates that impacts of nonconventional ob-
servations go beyond their larger observation counts and
density.

Finally, in terms of observing variables (Fig. 13), the largest
influence for each surface metric comes from observations of
the same variable (i.e., moisture observations for qs, tempera-
ture observations for Ts, etc.). Although this finding is not
surprising, it does provide a good sanity check for EFSO esti-
mates of these new verification metrics. Furthermore, com-
paring percentage contributions to total EFSO, we see that
80%–90% of verifying us and y s comes from wind observa-
tions, while for thermodynamic verification (Ts and qs),

FIG. 10. (left) Summed and (right) per-observation average impact estimate of EFSOadv1.5 from 40-km upscaled
grid, partitioned by observation types: conventional upper air, radar, conventional surface, and nonconventional sur-
face. EFSO quantities shown for verification metrics (a),(b) KE; (c),(d) DTE; and (e),(f) MTE. Note the bars of radar
EFSO in (b) and (d) are not visible due to their small magnitude (.20.013 1026).
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smaller percentages (65% and 70%) come from temperature
and moisture observations, respectively. The reduced percent-
age is accompanied by higher percentages from wind observa-
tions of 15%–25%. The higher wind observation percentage
contribution for thermodynamic verification demonstrates the
impact of advection on surface temperature and moisture
forecasts, as well as the general enhanced sensitivity to wind
near the dryline and cold-frontal boundaries that were preva-
lent in this case.

The results of partitioned EFSO suggest a reduced impact
of nonconventional observations when compared to the im-
pact of nonconventional observations within Casaretto et al.
(2023a). Further, they suggest a larger influence from mois-
ture observations than other similar studies (e.g., Casaretto
et al. 2023a; Necker et al. 2018). This study covers just one
case in a different region than the aforementioned studies – in
particular a region where enhanced sensitivity to forecast pre-
cipitation is related to the dryline gradient and position, as
well as the supply of moisture available south and east of the
dryline that feeds the convection. Further, in the case of

Casaretto et al. (2023a) many of the impactful nonconven-
tional observations were located in areas with less density of
conventional observations near mountainous terrain. Here,
the coverage of conventional stations is more uniform (Fig. 1)
and most of the nonconventional stations are located in obser-
vation-dense metropolitan areas. Still, we show here that non-
conventional surface observations have a relatively small but
measurable impact to the forecast, a result that is shared sub-
jectively by G18 for this case.

d. Effect of nonlinearity on EFSO accuracy

Surface zonal wind impact for longer lead times (60 and
120 min, Fig. 14) is used to demonstrate the effect of nonli-
nearity on the EFSO accuracy. The actual impact field shows
extensive small gridscale areas of beneficial and detrimental
impact. One such area in the western part of the domain ap-
pears to reflect convective rolls and cells found in the bound-
ary layer. However, EFSO is unable to capture such fine-scale
details, and instead shows broad areas of beneficial impact.
This difference further grows for longer 120-min forecasts. Al-
though upscaling may reduce some of these small-scale differ-
ences (e.g., Fig. 4), it cannot fully account for these
differences in the resolution of gridscale impacts. These pat-
terns suggest an inability for the tangent linear approximation
to account for all nonlinear dynamics as the forecast time in-
crease, this negatively affecting EFSO accuracy.

Model spin up is also a concern for another nonlinear vari-
able, surface pressure, where the correlation is also low and at
parts even negative (not shown). In fact, the only two observing
variables to show detrimental summed EFSO impacts in this
study were surface pressure for DTE and MTE (Figs. 11b,c),
and radar reflectivity for us (Fig. 13a). A single observation ex-
periment with a pressure observation demonstrated how ex-
treme nonlinearity can negatively affect EFSO accuracy even
just 10 min into the forecast (not shown). Complications of sur-
face pressure observations have been noted in Necker et al.
2018, and both Chen and Kalnay (2020) and Casaretto et al.
(2023a) found detrimental impacts from surface pressure obser-
vations. These examples demonstrate the need to further study
EFSO accuracy for variables and verification metrics that are
particularly sensitive to nonlinear processes.

5. Summary and discussion

This study explored the application of the ensemble-based
forecast sensitivity to observations (EFSO) metric to a con-
vective-scale DA and forecast system. Though a few previ-
ous studies (Sommer and Weissmann 2014, 2016; Necker
et al. 2018) had applied EFSO to a convective-scale model,
this is one of the first such studies to explore for convective-
scale, high-frequency, 5-min DA, with the inclusion of non-
conventional surface and radar observations. Furthermore,
we explored the use of different verification metrics other
than energy norms. The need for upscaling of EFSO esti-
mates onto coarser 20- and 40-km grids was also explored,
with direct comparisons in maps of EFSO estimate impact
against maps of actual error reduction. This upscaling is sim-
ilar to neighborhood averaging, where each coarse grid box

FIG. 11. As in Fig. 10, but for EFSO sums partitioned by observing
variable.
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represents the average of all values of EFSO from the origi-
nal high-resolution (2.4 km) grid.

The control experiment from the 3 April 2014 CI case study
of G18 was used for the EFSO experiments. Each 5-min DA
cycle in the 2-h inner grid (1600–1800 UTC) allowed for
25 samples to compare EFSO estimates with the actual impact.
Three EFSO estimates were tested with different localization set-
tings for the EFSO estimate: a static localization equivalent to the
DA localization (EFSOnoadv), and two advected localizations
with coefficients of 0.75 and 1.5 (EFSOadv0.75 and EFSOadv1.5),
respectively. The advected localization method follows Ota et al.
(2013) of proportionally moving the DA localization by the mean
horizontal analysis and forecast wind, multiplied by the chosen
coefficient.

A summary of findings is as follows:

• EFSO is feasible for convective-scale 5-min DA cycling.
Cycle-average pattern correlation and MAE-based SS showed
that skillful estimates can be attained for the full 2-h forecast
period examined in this study. Furthermore, nearly all obser-
vation platforms and variable types had beneficial impacts for
each verification metric.

• Upscaling and advected localization can substantially im-
prove EFSO estimates. Although the 2.4-km gridscale EFSO
had some correlation with the actual error reduction, this
was limited to 30–60-min forecasts at best depending on

verification metric. However, upscaling to 20- or 40-km grids
boosted correlation values by 0.3 or more and resulted in
skillful estimates for the entire 2-h forecast duration. Ad-
vected localization could further boost pattern correlation
and skill score by around 0.1–0.2, especially for forecast
lengths above 30 min.

• Other verification metrics can be used for EFSO estimates.
While many previous studies focus on energy norms, more
appropriate verification metrics may be useful for examin-
ing a convective-scale DA and forecast system. This study
demonstrated that surface variables (us, y s, Ts, qs) can be used
as verification metrics for which similar more skillful EFSO es-
timates are found comparing to the OSE impact. In doing so,
we found the best estimates related to moisture, due in part to
the enhanced sensitivity of the forecast in this case study to
near-surface moisture (as demonstrated in G18).

• All observations except for surface pressure resulted in bene-
ficial impacts on energy norms. The largest contributing plat-
form to energy norm impacts was from radar. This is the first
study to apply assimilated radar observations within the
EFSO estimate. On a per-observation basis, conventional sur-
face and upper-air data had the largest contributions, but the
volume of radar observations caused its sum to 2–3 times as
high as the next highest contributing source.

• Nonconventional surface observations had small but important
contributions to MTE and surface thermodynamic impacts. In

FIG. 12. (left) As in Fig. 10, but for EFSO estimates of surface verification metrics us, y s, Ts, and qs, with impacts further partitioned by
individual surface observing platform types. (center) Percentage contribution of each observing platform to the total EFSO sum of each
surface verification metric. (right) EFSO impact averaged by number of observations and area of influence (km2), defined as circular area
using localization scale for each observation type (Table 1).
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particular, the contributions on qs and Ts represented nearly
25% of the total EFSO sum, which is substantial considering
the smaller DA 40-km localization radius of influence for these
observations compared to 200 km for ASOS and 80 km for
conventional Oklahoma and Texas mesonets. This is in broad
agreement with data denial experiment results of G18, who
found withholding nonconventional observations led to degra-
dations in ensemble forecasts of storm intensity due to reduced
accuracy of small-scale features within the dryline. On the
other hand, less than 10% of total EFSO impact in us and y s
were from nonconventional sources, which reflects issues with
data and station siting quality of nonconventional sources
found in previous work. For example, G18 found that denying
wind observations from CWOP and ERNET led to small im-
provements on the ensemble forecast over the control.

Since EFSOadv1.5 had the best overall skill in predicting im-
pact for forecast lengths beyond 30 min in most verification met-
rics, it can be inferred that further improvement of EFSO can
be attained with different localizations. A coefficient greater
than 1 suggests that nonlinear processes play a role, and the

spatial variability of EFSO accuracy (e.g., Figs. 4, 9, and 14) fur-
ther suggests that the optimal localization may be dependent on
the underlying flow. An adaptive method may yield better re-
sults, but such a method would also need to account for the
shape and spatial extent of localization that was applied during
DA (Gasperoni andWang 2015).

One caveat is that, although EFSO was computed over
25 cycles for stable statistics, the statistical significance of re-
sults in this study is inherently limited by the use of one case
study and cannot be expected to generalize to all situations.
The focus of CI along the dryline in the 3 April 2014 case may
explain the enhanced sensitivity to moisture for the EFSO
method, as also shown in G18. It is also possible that the en-
hanced EFSO sums and accuracy in terms of moisture may be
an indication of biases within the observing system influenc-
ing EFSO, similar to Necker et al. (2018) who found largest
sums in surface pressure observations were an indication of
the presence of biased observations. More case studies are
needed to determine the possible influences of biases on the
results.

FIG. 13. As in Fig. 12, but for EFSO sums partitioned by observing variable.
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The biggest drawback to the application of EFSO to con-
vective scales is the significant increase in nonlinear processes
within model integration, which limited ensemble size cova-
riances will not be able to adequately represent. The EFSO
can work to identify impactful areas in developing storms, but
the highly nonlinear nature of storm evolution limits the accu-
racy of EFSO in such cases. It may be the case, however, that
more predictable scenarios such as linear storm systems ahead
of cold fronts and mesoscale convective systems are better
suited for EFSO, especially when verifying against other met-
rics such as precipitation or composite reflectivity. More study
is needed in the application of the EFSO method to more di-
verse cases at convective scales and in identifying how EFSO
may be used for more advanced verification metrics. In partic-
ular, an idealized study may be necessary to gain a complete
understanding of the influences of nonlinearity of EFSO accu-
racy at convective scales, especially for radar and surface
pressure observations. Upscaling prior to the computation
of EFSO may further improve the estimates for these more
nonlinear observations.
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FIG. 14. (a),(d) Forecast gridscale 2.4-km actual impact (blue-to-red color fill); (b),(e) EFSOadv1.5 estimate (blue-to-red color fill); and
(c),(f) error magnitude of EFSOadv1.5 estimate (rainbow color fill). (top) 60- and (bottom) 120-min forecast impact of 1800 UTC analysis
in surface zonal wind. Black solid and dashed contours in (c) and (f) display actual impact at21.0 and 1.0 m2 s22, respectively.
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Skamarock and Klemp 2008). The EFSO code is the same as used in
Ota et al. (2013), but modified to interface with WRF Model output.
The source code and system configurations used in this work can also
bemade available upon request to the corresponding author.
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