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ABSTRACT: The Gridpoint Statistical Interpolation (GSI)-based four- and three-dimensional ensemble–variational
(4DEnVar and 3DEnVar) methods are compared as a smoother and a filter, respectively, for rapidly changing storms using
the convective-scale direct radar reflectivity data assimilation (DA) framework. Two sets of experiments with varying DA
window lengths (WLs; 20, 40, 100, and 160 min) and radar observation intervals (RIs; 20 and 5 min) are conducted for the
5–6 May 2019 case. The RI determines the temporal resolution of ensemble perturbations for the smoother and the DA in-
terval for the filter spanning the WL. For experiments with a 20-min RI, evaluations suggest that the filter and the
smoother have comparable performance with a 20-min WL; however, extending the WL results in the outperformance of
the filter over the smoother. Diagnostics reveal that the degradation of the smoother is attributed to the increased degree
of nonlinearity and the issue of time-independent localization as the WL extends. Evaluations for experiments with differ-
ent RIs under the same WL indicate that the outperformance of the filter over the smoother diminishes for most forecast
hours at thresholds of 30 dBZ and above when shortening the RI. Diagnostics show that more frequent interruptions of
the model introduce model imbalance for the filter, and the increased temporal resolution of ensemble perturbations en-
hances the degree of nonlinearity for the smoother. The impact of model imbalance on the filter overwhelms the enhanced
nonlinearity on the smoother as the RI reduces.

SIGNIFICANCE STATEMENT: The background uncertainties of rapidly changing storms suffer from fast error
growth and high degrees of nonlinearities during the data assimilation (DA) period. Two variants of the ensemble-
based DA method can account for such temporal evolution. The smoother uses background ensemble from multiple
observation times over an assimilation period to estimate the propagation of statistics. The filter frequently calculates
the statistics at multiple observation times over the same period. Current comparisons of the smoother and the filter
were mostly performed using simple models; however, unknowns remain for convection-allowing forecasts with addi-
tional complexities. This study compares the filter and the smoother for the convective-scale analysis and prediction
using a real-data study and finds that the comparison varies with the assimilation period and the observation interval.
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1. Introduction

Initialization of convective-scale numerical weather predic-
tions (NWPs) for rapidly changing storms requires a data as-
similation (DA) method to properly portray the temporal
evolution of flow-dependent background-error covariances
(e.g., Lu et al. 2017; Davis et al. 2021). Such evolution can be
depicted by two variants of the ensemble DA method. The
four-dimensional (4D) ensemble DA method uses ensemble
perturbations from multiple times within a given DA window
length (WL) to estimate the propagation of background-error
covariances. Here, the temporal resolution of ensemble per-
turbations is identical to the observation interval within the
DA window. The 4D ensemble DA approach follows the
spirit of a smoother (e.g., van Leeuwen and Evensen 1996). In
contrast, the three-dimensional (3D) ensemble DA method
accounts for the temporal evolution of background-error co-
variances through frequent assimilation cycling, where the
same givenWL is divided into short intervals. The 3D ensemble
DA approach follows the spirit of a filter (e.g., van Leeuwen

and Evensen 1996). By design, the DA frequency in the filter is
inversely proportional to the observation interval. In studies
that compare the filter and the smoother, the analyses pro-
duced at the end of the WL are compared. For more details
on the comparison in the context of a smoother and a filter,
please refer to Bennett and Budgell (1989) and van Leeuwen
and Evensen (1996).

Previous studies, using simple dynamic models, examined
the theoretical differences between the filter and the smoother
in the linear and nonlinear regimes. It was found that the filter
and the smoother have identical solutions at the final analysis
time in linear models (Bennett and Budgell 1989; Evensen 2004).
In comparison, the filter and the smoother provide different
solutions in nonlinear models (van Leeuwen and Evensen 1996;
Evensen 1997; Evensen and van Leeuwen 2000). Such differ-
ences in final analyses were attributed to different degrees of
non-Gaussianity from prior ensembles (Evensen 1997; Evensen
and van Leeuwen 2000). Compared to the filter, the prior ensem-
ble in the smoother was obtained through a longer full nonlinear
model integration and thus had more non-Gaussian features.

While recent studies have compared the 3D ensemble DA
method and its 4D counterpart in real NWP models, such as for
global forecasts (e.g., Wang and Lei 2014; Kleist and Ide 2015a,b;Corresponding author: Yue Yang, yue.yang@ou.edu
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Lorenc et al. 2015; Lorenc and Jardak 2018), hurricanes (e.g., Lu
et al. 2017; Zhang and Pu 2019; Shen et al. 2020; Davis et al.
2021), and the convective storm (S. Wang et al. 2013), none of
these comparisons were made in the context of comparing a filter
and a smoother. Specifically, in these studies, either the 3D en-
semble DA only performs a single update at the center of the
WL rather than frequent updates within the WL or the analysis
from the 4D ensemble DA is output at the center of the WL
while its 3D counterpart is frequently cycled until the end of the
WL, making it impossible to compare both analyses at the end of
the WL. Therefore, this current study examines 3D ensemble–
variational (EnVar; X. Wang et al. 2013) and 4DEnVar (Wang
and Lei 2014) in the context of the filter and the smoother for
the real convective-scale analysis and prediction.

The comparison of the filter and the smoother in real
NWP models adds additional complexities compared to simple
models as follows. First, subgrid-scale physical processes in
convective-scale NWP models such as turbulence, radiation,
and microphysics are parameterized via a series of physics
schemes, introducing model errors and additional nonlinear-
ities. Both the source of the nonlinearity and the measure that
reflects the degree of nonlinearity can be more complex in real
NWP models than those in ideal models. Since small errors
grow linearly before subsequent large errors enter the nonlin-
ear phase with steadily decreasing growth rates (Lorenz 1965;
Krishnamurthy 1993; van Leeuwen and Evensen 1996), the
WL is treated as a proxy for the degree of nonlinearity in this
study. Moreover, for a smoother in a nonlinear regime, increas-
ing the temporal resolution of ensemble perturbations may
change the degree of nonlinearity resolved by the prior ensem-
ble. Therefore, in addition to extending the WL, this study also
varies the temporal resolution of ensemble perturbations (the
same as the observation interval) to change the degree of
nonlinearity.

Second, localization is required to cut off spurious correlations
at long distances when using a finite ensemble size (Anderson
2007). Performing localization in both space and time for a
smoother, however, is not straightforward. Most 4D ensemble
DA approaches still use a time-independent localization as in
a 3D ensemble DA approach. This implementation is likely to
lose useful correlations for a smoother with a long WL (e.g.,
Anderson 2007, 2012; Cosme et al. 2012; Bocquet 2016), espe-
cially for rapidly changing storms. Therefore, in addition to
nonlinearity, the impact of WL on the comparison between
the filter and the smoother may be affected by the use of time-
independent localization.

Finally, more frequent interruptions of the NWP model,
like in a filter, can introduce model imbalance (e.g., Lynch
and Huang 1992; S. Wang et al. 2013; Pan and Wang 2019;
Yang and Wang 2023). Therefore, this study also includes the
impact of observation interval on the comparison between the
filter and the smoother.

In this study, to compare 4DEnVar and 3DEnVar in the con-
text of the smoother and the filter for the real convective-scale
analysis and prediction, the Gridpoint Statistical Interpolation
(GSI) is adopted to directly assimilate radar reflectivity (Wang
and Wang 2017). As a first step, this study uses the Advanced
Research Weather Research and Forecasting (WRF-ARW)

model (Skamarock et al. 2008) for the case study of a rapidly
evolving storm that occurred on 5–6 May 2019.

The current paper proceeds as follows. Section 2 introduces
the experimental settings, including the GSI-based EnVar sys-
tem in the context of the filter and the smoother, model and
DA configurations for the 5–6 May 2019 case, and verification
methods. In section 3, the filter and the smoother are com-
pared by varying the WL and the radar observation interval
(RI) to consider the aforementioned three aspects. Section 4
provides the summary and conclusions.

2. Experiment setup

a. GSI-based EnVar system in the context of the filter
and the smoother

Given the effective combination of variational and ensem-
ble-based DA frameworks, the GSI-based EnVar system
(Wang 2010) shows benefits in NWP using operational global
models (e.g., Hamill et al. 2011; X. Wang et al. 2013; Wang
and Lei 2014) and regional models (e.g., Benjamin et al. 2016;
Lu et al. 2017; Wang and Wang 2021a, 2023). The capability
of directly assimilating radar reflectivity was incorporated into
this system by Johnson et al. (2015) for the ensemble Kalman
filter (EnKF) and Wang and Wang (2017) for the EnVar. This
convective-scale GSI-based EnVar system has been widely
adopted in convection-allowing prediction systems, such as
the High-Resolution Rapid Refresh (HRRR)- and Rapid Re-
fresh Forecast System (RRFS)-like contexts (e.g., Duda et al.
2019; Roberts et al. 2020; Wang and Wang 2021b; Gasperoni
et al. 2022, 2023; Yang and Wang 2023). As mentioned in
Wang and Lei (2014), 4DEnVar is an extension of 3DEnVar
in time. Different from 3DEnVar that incorporates ensemble
perturbations at a single time, 4DEnVar uses ensemble per-
turbations at multiple times in the variational minimization.

The flowchart of the filter in Fig. 1a mirrors the procedure
of the one-way coupled GSI-based 3DEnVar system from
X. Wang et al. (2013). Starting from the initial conditions (ICs)
valid at tn21, the ensemble members and the control member
are integrated forward to the analysis time at tn 2 m 3 dt to
produce the first-guess fields (m 1 1 denotes the total number
of DA cycles within the WL and dt represents the DA interval).
The control member forecast is updated via the EnVar using
the background-error covariances estimated by the short-term
forecast ensemble without static covariances, and the ensemble
members are updated via the EnKF. The resultant control anal-
ysis and analysis ensemble are then propagated to the next DA
cycle. Throughm 1 1 DA cycles with a DA interval of dt span-
ning the WL (i.e., m 3 dt), the final control analysis at tn is gen-
erated. Therefore, the temporal evolution of background-error
covariances within the WL is incorporated within the filter by
frequent DA cycling.

Initialized from the same ICs at tn21, the 4DEnVar
smoother procedure shown in Fig. 1b is obtained by expanding
the time dimension of the filter. As an alternative approach
to account for the temporal evolution of background-error
covariances within the WL, the ensemble perturbations with
a temporal resolution of dt spanning the WL are generated at
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tn 2 m3 dt, … , tn 2 dt, and tn. Then, the 4D background-error
covariances estimated by the ensemble perturbations are ap-
plied to update the final control forecast valid at tn. As a result,
the final analyses of the filter and the smoother can be com-
pared at tn.

b. Case overview

The filter and the smoother are compared for a rapidly
evolving storm from 5 to 6 May 2019 to account for the tempo-
ral evolution of background-error covariances. As shown in
Figs. 2a–d, widely scattered supercells developed and persisted
along the dryline across a broad north–south expanse of High
Plains from eastern Nebraska (NE) to western Texas (TX).
Moist advection east of the dryline, together with diurnal heat-
ing and steep midlevel lapse rates, promoted rapid upscale
growth of convection, with expected rapid error growth corre-
sponding to convective and microphysical processes. A cluster
of supercells in the southeast NE and northern Kansas (KS) ini-
tiated between 2100 and 2300 UTC 5 May (Fig. 2a) and drifted
southeastward along a slow-moving surface cold front, resulting
in an east–west-oriented line of storm around 0040 UTC 6 May
(Figs. 2c,d). Thunderstorms that developed along convergence
bands located at the southwest KS (Fig. 2a) moved southeast-
ward into the southeast KS and northern Oklahoma (OK)
(Fig. 2d). The isolated storms that formed along the dryline
over the TX Panhandle (Fig. 2a) grew upscale and matured as
they propagated toward the east (Figs. 2b–d).

c. Configuration of data assimilation and forecast

The WRF-ARW Model version 3.9 is coupled with the
GSI-based EnVar DA system for the forecasts. The model

domain over the continental United States (CONUS) consists
of 51 full-h levels and 1621 3 1121 grid points at a 3-km hori-
zontal grid spacing. The physics configuration from the HRRR
system (Alexander et al. 2020; Dowell et al. 2022) is adopted as
follows: the Rapid Update Cycle (RUC) land surface model
(Benjamin et al. 2004), the aerosol-aware Thompson micro-
physics scheme (Thompson and Eidhammer 2014), the Mellor–
Yamada–Nakanishi–Niino (MYNN) Level-2.5 planetary bound-
ary layer parameterization (Nakanishi and Niino 2006, 2009;
Olson et al. 2019), and the Rapid Radiative Transfer Model for
general circulation models (RRTMG) shortwave and longwave
radiation schemes (Iacono et al. 2008).

The DA cycling setup used to produce the common ICs for
the filter and the smoother (Fig. 1) is designed in Fig. 3. At
1800 UTC 5 May 2019, perturbations for a 40-member ensem-
ble are generated by recentering the 20-member Short-Range
Ensemble Forecast (SREF) ensemble (Du et al. 2015) and
the 20-member Global Ensemble Forecast System (GEFS)
ensemble (Zhou et al. 2017) around the Global Forecast Sys-
tem (GFS) control analysis. The mean of the 40-member en-
semble serves as the control member. Then, the 3DEnVar
and 3DEnKF are performed to update the control member
and ensemble members, respectively, via hourly assimilation
of conventional data (i.e., routine surface observations, meso-
net observations, and data from radiosondes, aircraft, ships,
and buoys) from 1900 to 2200 UTC, emulating the hourly DA
of conventional data for the HRRR system (Dowell et al. 2022).
Next, assimilation of Multi-Radar Multi-Sensor (MRMS; Smith
et al. 2016) radar reflectivity is performed every 20 min from
2200 to 2240 UTC. Note that only the 2-min reflectivity data
closest to the analysis time are incorporated for the variational

FIG. 1. Simplified schematics of (a) the filter and (b) the smoother within the GSI-based EnVar data assimilation system, where tn21 in-
dicates the time of the common initial conditions, tn denotes the final analysis time, dt is the time interval for observations, and m 1 1 is
the number of observation times during the data assimilation period (i.e., m 3 dt). For the filter in (a), the top row denotes the ensemble
members updated every dt by the EnKF and the bottom row denotes the control member updated every dt by the EnVar. For the
smoother in (b), the temporal resolution of ensemble perturbations is dt.
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minimization at each cycle of 3DEnVar. The 20-min interval for
the reflectivity assimilation is selected due to the most reliable
performance discussed in Yang andWang (2023).

Starting from 2240 UTC 5 May, the time series of root-
mean-square error (RMSE) is calculated for locations with re-
flectivity above 10 dBZ from the control member (Fig. 4).
The prior_run_RI20 describes the forecast error growth every
20 min from the common control analysis ICs at 2240 UTC
(20 min before the 2300 UTC analysis cycle) out to 160 min
after the 2300 UTC analysis cycle. The high-quality common
ICs at 2240 UTC guarantee remarkable and rapidly growing
errors during the subsequent forecasts. It is shown that the
RMSE increases fast during the early period of the model in-
tegration, followed by gentle growth after 60 min into the
2300 UTC analysis cycle. Therefore, we can infer that various
WLs from 2300 UTC can represent the different degrees of
nonlinearity. In this study, the WLs of 20, 40, 100, and 160 min
are chosen to design experiments in Table 1.

As listed in Table 1, we conducted six pairs of experiments
to compare the filter and the smoother for direct reflectivity
DA. The first four pairs are used to examine the impact of

WL on the comparison between the filter and the smoother
via fixing a 20-min RI and comparing different WLs from
20 to 160 min (i.e., WL20_RI20, WL40_RI20, WL100_RI20,
and WL160_RI20). The last two pairs further shorten the RI
from 20 to 5 min (i.e., WL20_RI5 and WL40_RI5) aiming to
explore the impact of RI on the comparison between the filter
and the smoother. The prefixes of 3D and 4D correspond
to the filter (e.g., 3D_WL40_RI20) and the smoother (e.g.,
4D_WL40_RI20), respectively.

As an example, Fig. 3 briefly demonstrates the procedures
of DA cycling and free forecasts for 3D_WL40_RI20 and
4D_WL40_RI20 following the flowcharts of the filter and
the smoother (Fig. 1). Initialized from the common ICs valid
at 2240 UTC, 3D_WL40_RI20 assimilates reflectivity every
20 min starting at 2300 UTC until 2340 UTC to generate the
final control analysis, whereas 4D_WL40_RI20 outputs
the control analysis only at 2340 UTC for the comparison.
Although the final analysis time is different among experi-
ments with various WLs, free deterministic forecasts are
launched from the final control analyses out to 0500 UTC
6 May.

FIG. 2. (a)–(d) Observed Multi-Radar Multi-Sensor (MRMS) composite reflectivity (color fill; dBZ) for the 5–6 May 2019 case valid at
the time indicated in each panel. Representative storms S1 and S2 are framed by black rectangles in (a). The associated state abbreviations
are added in (b). The zoomed-in (a1)–(d1) S1 and (a2)–(d2) S2 with markers P1 in (c2), P2–P4 in (c1), and P5 in (b2) will be discussed
later in section 3. The black dashed lines in (a1)–(d1) indicate the locations of cross sections in Fig. 6.

MONTHLY WEATHER REV I EW VOLUME 15262

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:35 PM UTC



d. Verification methods

Figures 2a–d show the verification domain that fully covers
the evolution of dominant storms. Following the common us-
age in severe weather forecasting (e.g., Roberts et al. 2012;
Degelia et al. 2020), several statistical metrics as a function of
threshold are chosen to assess forecast skills of the filter and
the smoother for the composite reflectivity.

Contingency table–based verification indices (Doswell et al.
1990) include the probability of detection (POD), false alarm
ratio (FAR) or its opposite, success ratio (SR 5 1 2 FAR),
bias, and critical success index (CSI; Schaefer 1990). The geo-
metric relationships among these measures are derived by
Roebber (2009) as follows:

CSI 5
1

1/SR 1 1/POD 2 1
; and (1)

bias 5
POD
SR

5 tanu, (2)

where u is the angle from the x axis. Hence, the relative differences
in POD, SR, bias, and CSI can be visualized in a performance dia-
gram, where a perfect forecast is located at the upper right.

As a neighborhood-based metric, the fractions skill score
(FSS; Roberts and Lean 2008) allows for spatial displace-
ments of meso- and storm-scale features. Based on the frac-
tions Brier score (FBS), FSS is calculated as

FSS 5 1 2
FBS

FBSworst
5 1 2

1
Ny

∑
Ny

i51
[NPF(i) 2 NPO(i)]2

1
Ny

∑
Ny

i51
NP2

F(i) 1 ∑
Ny

i51
NP2

O(i)

[ ] , (3)

where Ny denotes the total number of grid points at a given
threshold, NPF(i) is the neighborhood forecast probability at

the ith grid point for a given threshold, and NPO(i) is the corre-
sponding observed neighborhood probability. The FBS meas-
ures the squared difference between forecast and observed
fractions and the FBSworst represents the maximum possible
value of FBS when no collocation exists between nonzero frac-
tions. The value of FSS starts from 0 (no skill) and goes to 1
(perfect forecast). Given that overlarge neighborhood radii
mitigate the risk of double penalty at the expense of losing de-
tail (e.g., Roberts 2008; Roberts and Lean 2008), a 48-km
neighborhood radius (16 grid points) is applied based on previ-
ous work of convective-allowing forecasts (e.g., Johnson and
Wang 2012; Duda et al. 2014; Gasperoni et al. 2020; Yang and
Wang 2023). Without bias correction, the differences in FSS
account for both random and systematic errors.

e. Non-Gaussian measure

To measure the degree of non-Gaussianity for error distri-
butions, Kullback–Leibler divergence (DKL; Kullback and
Leibler 1951; Ruiz et al. 2021) is utilized, given by

DKL 5

�
p(x)logp(x)

q(x) dx, (4)

where p(x) is the probability density function (PDF) for the
state variable from the histogram of the ensemble and q(x) is
the PDF of the fitted Gaussian distribution with the mean and
the standard deviation from the ensemble. The term DKL

equals 0 when p(x) and q(x) are identical; otherwise, it is posi-
tive by the Gibbs inequality. Therefore, a larger DKL suggests
that p(x) has a greater departure from the Gaussian distribu-
tion. In the present study, x refers to the perturbation of a var-
iable, such as reflectivity and vertical velocity. As suggested
by Kondo and Miyoshi (2019), an ensemble size of 1000 is suf-
ficient to describe a non-Gaussian PDF that avoids sampling
error contaminations. To increase the sample size in this

FIG. 3. Flowchart to generate common initial conditions valid at 2240 UTC 5 May 2019. Schematics of the DA
setups and the free forecasts of the filter and the smoother experiments, where a 40-min DA window length and a
20-min radar observation interval (i.e., 3D_WL40_RI20 and 4D_WL40_RI20 in Table 1) are chosen as examples.
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study, the ensemble perturbations from a square around a
given grid point of the 40-member ensemble are selected to
calculate DKL. Tests for the sensitivity of DKL to the sample size
via increasing the size of the square suggest that using a square of
53 5 grid points (i.e., 1000 samples) can alleviate sampling errors.
Reducing subsamples from the 53 5 square suggests that the cor-
relations associated with the neighboring grid points do not change
the relative performance between the filter and the smoother.

3. Results

a. Impact of data assimilation window length on the
comparison between the filter and the smoother

1) COMPARISON OF FINAL CONTROL ANALYSES

The RMSE for reflectivity is used to compare the closeness
of final control analyses to the observations between the filter
and the smoother under various WLs (Fig. 4). Note that we
only compare the filter and the smoother that share the same
settings for the WL and RI, and the posterior RMSE statistics
are not used to measure the accuracy of analyses. For experi-
ments with 20- and 40-min WLs, the filter and the smoother
have a similar degree of closeness to the observations at the

final analysis time. As the WL extends to 100 and 160 min,
however, the posterior RMSE of the smoother gradually
drifts away from the observations. It turns out that the final
analysis of the filter fits closer to the observations than that of
the smoother. Thus, the comparison between the filter and
the smoother in the fitness of the final control analysis to the
observations varies with the WL.

The comparisons of final control analyses between the filter
and the smoother are consistent for most isolated storms
over the whole domain (Figs. 2a–d). As an example, Fig. 5 shows
the final control analyses of representative storms S1 and S2 from
the filter and the smoother with different WLs. For composite re-
flectivity, the substantial differences between the filter and the
smoother [denoted by black rectangles in Figs. 5f(2)–h(2)] begin
to appear when theWL exceeds 20 min. The pattern and intensity
of composite reflectivity in 3D_WL20_RI20 [Figs. 5a(1),a(2)]
are comparable to those in 4D_WL20_RI20 [Figs. 5e(1),e(2)],
both of which resemble the observations valid at 2320 UTC
5 May [Figs. 2a(1),a(2)]. As the WL extends to 40 min, some re-
flectivity cores located at KS in 4D_WL40_RI20 become slightly
weaker than 3D_WL40_RI20 [Figs. 5b(2),f(2)]. The observed
composite reflectivity valid at 2340 UTC [Figs. 2b(1),b(2)] is well
captured by 3D_WL40_RI20 [Figs. 5b(1),b(2)]. Compared to
4D_WL100_RI20 [Figs. 5g(1),g(2)], the analyzed composite re-
flectivity of 3D_WL100_RI20 [Figs. 5c(1),c(2)] agrees better with
the observations valid at 0040 UTC 6 May [Figs. 2c(1),c(2)]. In
4D_WL100_RI20, several reflectivity peaks in southern KS are
underestimated, such as location P1 in Fig. 5g(2). In addition,
4D_WL100_RI20 has spurious scattered composite reflectivity in
the northeast NE and northwest IA and overestimated radar echoes
in the vicinity of location P2 [Fig. 5g(1)]. Similar underestimation
and overestimation occur in 4D_WL160_RI20 [Figs. 5h(1),h(2)],
and the analysis of 3D_WL160_RI20 [Figs. 5d(1),d(2)] is
closer to the observations valid at 0140 UTC [Figs. 2d(1),d(2)].

In terms of the maximum vertical velocity (Wmax), the
smoother deviates from the filter when the WL exceeds
40 min [denoted by red rectangles in Figs. 5g(1),h(1)]. In all filter
experiments [Figs. 5a(1)–d(1),a(2)–d(2)] and smoother experi-
ments with 20- and 40-min WLs [Figs. 5e(1),f(1),e(2),f(2)],
the coverage outlined by Wmax of 4 m s21 mainly overlaps the
composite reflectivity above 35 dBZ at the final analysis time.
However, 4D_WL100_RI20 and 4D_WL160_RI20 have up-
draft zones that do not coincide with intense reflectivity echoes
for the storm S1 [Figs. 5g(1),h(1)], for instance, two locations
P3 and P4 in Fig. 5g(1).

TABLE 1. List of experiments for the comparison between the
filter and the smoother, where the settings for the data assimilation
window length (WL) and the radar observation interval (RI) are
changed.

Expt WL (min) RI (min)

WL20_RI20 20 20
WL40_RI20 40 20
WL100_RI20 100 20
WL160_RI20 160 20
WL20_RI5 20 5
WL40_RI5 40 5

FIG. 4. Evolution of root-mean-square error (RMSE) of reflec-
tivity above 10 dBZ for the control member of the experiments.
The “0” represents the 2300 UTC analysis cycle. The RMSE statis-
tics for the control first guess and the control analysis of the filter
with various data assimilation window lengths (WLs) are shown in
the upper and lower points of the sawtooth pattern, respectively
(blue curve; named with the 160-min WL). The black curve repre-
sents the RMSE for the control first guess of the smoother with a
160-min WL and a 20-min radar observation interval (RI), and the
brown dashed curve denotes the smoother with a 40-min WL and a
5-min RI. The markers show the RMSE for the control analysis of
the smoother with a 20-min RI under indicated WLs.
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To explore the relationship between the mid- to upper-level
radar echoes and vertical velocities for storm S1 at the final anal-
ysis time, observed and analyzed cross sections above 3 km along
the black dashed lines in Figs. 2a(1)–d(1) are plotted accordingly
(Figs. 6a–l). It is found that the filter and the smoother under the
sameWL have no substantial difference in the reflectivity pattern
(Figs. 6e–h vs Figs. 6i–l). For vertical velocity in the filter and
smoother experiments with 20- and 40-min WLs, the updraft
cores usually collocate with the high-reflectivity regions above
35 dBZ (Figs. 6e,f,i,j). However, when the WL is larger than
40 min, the smoother always has an extra updraft zone with a
maximum exceeding 4 m s21 ranging from 6 to 12 km compared
to the filter (red rectangles in Figs. 6k,l vs Figs. 6g,h). Scatterplots
of the mid- to upper-level reflectivity and vertical velocities within
red rectangles of Figs. 5g(1) and 5h(1) show that the smoother has
much more instances that strong vertical motions unrealistically
correspond to weak echoes compared to the filter (Figs. 6m–p).

Taking storm S1 as an example, Fig. 7 provides the distribu-
tions of the final analyzed cold pools represented by potential

temperature perturbations at the lowest model level from the
filter and the smoother with various WLs. The coverage and
strength of the cold pool in 3D_WL20_RI20 are comparable
to those in 4D_WL20_RI20 at 2320 UTC 5 May (Figs. 7a,e).
When the WL exceeds 20 min, the differences in the cold pool
between the filter and the smoother become distinct (denoted
by white rectangles in Fig. 7). In the region between two high-
reflectivity cores, the potential temperature perturbation in
3D_WL40_RI20 is up to 10 K higher than that in 4D_WL40_
RI20 at 2340 UTC (Figs. 7b,f). Moreover, 3D_WL40_RI20 has
a ;3 K weaker cold pool than 4D_WL40_RI20 underneath
the eastern reflectivity core. These differences are also seen
with growing spatial extent as the WL increases to 100 min
(Figs. 7c,g). For the final analysis valid at 0140 UTC 6 May,
broader and stronger cold pools exist in 4D_WL160_RI20
compared to 3D_WL160_RI20 (Figs. 7d,h). Relative to the cold
pool in 3D_WL160_RI20, the cold pool underneath the eastern
reflectivity core in 4D_WL160_RI20 is shifted to the northeast. It
should be noted that the large updraft zones in 4D_WL100_RI20

FIG. 5. Final control analyses of composite reflectivity (color fill; dBZ) and maximum vertical velocity (black contours; 4 m s21) for rep-
resentative storms S1 and S2 from (a1)–(d1),(a2)–(d2) filter and (e1)–(h1),(e2)–(h2) smoother experiments with various DA window
lengths (WLs) valid at the final analysis time indicated. Experiments in each column share the same settings for the WL and the radar ob-
servation interval (RI). The red rectangles in (g1) and (h1) denote the regions with remarkable differences in the updraft between the
filter and the smoother, and the black rectangles in (f2)–(h2) denote differences in the composite reflectivity.
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and 4D_WL160_RI20 are collocated with strong cold pools fea-
turing potential temperature perturbations from 23 to 25 K
(Figs. 7g,h).

2) COMPARISON OF CONTROL FORECASTS

As pointed out by Sun et al. (2016), the quality of the analy-
sis should be assessed using the subsequent forecasts rather

than the closeness of the analysis to the observations. There-
fore, the control forecasts from the filter and the smoother
are compared under various WLs, including the temperature
near the surface and the composite reflectivity.

The forecasts of temperature at the lowest model level (T)
and composite reflectivity at the first forecast hour (0000 UTC
for experiments with 20- and 40-min WLs, 0100 UTC for

FIG. 6. Cross sections of (a)–(d) observed reflectivity (color fill; dBZ), analyzed reflectivity (color fill; dBZ), and analyzed vertical
motions exceeding 4 m s21 (black contours) above 3 km for (e)–(h) filter and (i)–(l) smoother experiments with various DA window
lengths (WLs) valid at the final analysis time indicated. Experiments in each column share the same settings for the WL and the radar
observation interval (RI). The red rectangles in (k) and (l) denote the extra updrafts in the smoother compared to the filter. Scatterplots
of the reflectivity and vertical motions between 6 and 12 km for (m),(n) filter and (o),(p) smoother experiments with WLs of 100 and
160 min within red rectangles of Figs. 5g(1) and 5h(1), respectively.
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experiments with a 100-min WL, and 0200 UTC for experi-
ments with a 160-min WL) are shown in Fig. 8 overlaid with
observed 2-m temperature and MRMS composite reflectivity.
In terms of low-level temperature, remarkable differences be-
tween the filter and the smoother exist in cold pools near
storm cores. The smoother tends to produce lower T than the
filter counterpart (denoted by black arrows in Figs. 8e–h vs
Figs. 8a–d). Such differences in T become broader and more
remarkable as the WL increases. For instance, the cold pool

related to storm S1 in 4D_WL20_RI20 is stronger by about
7 K than its 3D counterpart (Figs. 8a,e). Equipped with a WL
of 40 min, such differences in T increase to 9 K (Figs. 8b,f).
When the storm moves southeast approaching the boundary
between NE and KS an hour later at 0100 UTC, the observa-
tion marked by the black arrow verifies that 3D_WL100_RI20
outperforms 4D_WL100_RI20 in forecasting T (Figs. 8c,g). The
better forecast T in 3D_WL160_RI20 against this observation is
further maintained at 0200 UTC, whereas T in 4D_WL160_RI20

FIG. 7. Cold pool identified by potential temperature perturbations at the lowest model level (color fill; K), compos-
ite reflectivity (green contours; thin contours for 20 dBZ and thick contours for 40 dBZ), and maximum vertical veloc-
ity (black contours; 4 m s21) for (a)–(d) filter and (e)–(h) smoother experiments with various DA window lengths
(WLs) valid at the final analysis time indicated. Experiments in each row share the same settings for the WL and the
radar observation interval (RI). The white rectangles denote the regions with remarkable differences in the cold pool
between the filter and the smoother.
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FIG. 8. Forecasts of temperature at the lowest model level (color fill; K) and com-
posite reflectivity (red contours; thin contours for 20 dBZ and thick contours for
40 dBZ) overlaid with the observed composite reflectivity from the MRMS
system (blue contours; thin contours for 20 dBZ and thick contours for 40 dBZ) for
(a)–(d) filter and (e)–(h) smoother experiments with various DA window lengths
(WLs) valid at the forecast hour indicated. Experiments in each row share the same
settings for the WL and the radar observation interval (RI). Observations of 2-m
temperature are overlaid using shaded circles. The black arrows denote the regions/
locations with remarkable differences in the temperature between the filter and the
smoother.
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has dropped to 289 K, about 4 K less than the observation
(Figs. 8d,h). The forecasts of the too-strong cold pools in
4D_WL100_RI20 and 4D_WL160_RI20 are likely attrib-
uted to the large-area analyzed updrafts, consistent with the
analyzed cold pools (Figs. 7g,h). Therefore, the analyzed up-
drafts within the red rectangles of Figs. 5 and 6 are spurious.
During the forecast period, the spurious updrafts are able to
lift extra moisture upward to the lifting condensation level,
and the increased falling precipitation results in the en-
hanced cold pool due to evaporative cooling.

For composite reflectivity forecasts, 3D_WL20_RI20 and
4D_WL20_RI20 generate similar storm patterns at 0000 UTC
6May, both of which match well with the observations (Figs. 8a,e).
However, as the WL extends beyond 20 min, the smoother
performs worse than the corresponding filter in storm cover-
age (Figs. 8f–h vs Figs. 8b–d). For example, 3D_WL40_RI20
has the capability of reproducing two isolated 40-dBZ composite
reflectivity cores within storm S1 in southeast NE similar to ob-
servations at 0000 UTC (Fig. 8b). In contrast, 4D_WL40_RI20
overpredicts the 40-dBZ composite reflectivity core in an east–
west-oriented line (Fig. 8f). Such overestimated core regions in
the smoother (Figs. 8f–h) can be explained by the intensive cold
pools that serve as continued initiation zones for additional con-
vection. Compared to the weaker cold pools in the filter, the
increased outflow surges from the stronger cold pools in the
smoother easily converge with the ambient southerly flow along
the leading edges of the cold pools. The newly developed up-
drafts along the convergence regions facilitate the formation of
convective lines. Moreover, the smoother experiments with WL
longer than 20 min still underestimate the coverage and intensity
of storm S2 in south-central KS following the trends of the final

analyses [Figs. 5f(2)–h(2)]. Likewise, the spurious scat-
tered composite reflectivity in northeast NE and north-
west IA from the final analyses of 4D_WL100_RI20 and
4D_WL160_RI20 [Figs. 5g(1),h(1)] remain during the
early forecast period (Figs. 8g,h). Therefore, the differ-
ences in the final control analyses between the filter and
the smoother under various WLs are transferred as simi-
lar differences in the control forecasts.

The performance diagrams for composite reflectivity over
the whole domain in Fig. 2 provide an objective evaluation of
forecast skill for the filter and the smoother under different
WLs (Fig. 9). At the threshold of 20 dBZ, the CSIs of
3D_WL20_RI20 and 4D_WL20_RI20 are close in the early
stage of forecasting until 0040 UTC 6 May (Fig. 9a). The devi-
ations of forecasts from observations between the filter and
the smoother gradually grow as the WL extends, especially
during the early forecast period (Figs. 9b–d). Taking the first
forecast hour as an example, the difference in CSI between
3D_WL40_RI20 and 4D_WL40_RI20 is less than 0.05 at
0000 UTC (Fig. 9b), the difference between 3D_WL100_RI20
and 4D_WL100_RI20 becomes larger than 0.05 at 0100 UTC
(Fig. 9c), and the difference between 3D_WL160_RI20 and
4D_WL160_RI20 approaches 0.1 at 0200 UTC (Fig. 9d). The
smoother with a WL above 20 min usually performs worse
than its filter counterpart for most valid times. Such compari-
sons of CSI at the 40-dBZ threshold (Figs. 9e–h) show a simi-
lar trend to that at the 20-dBZ threshold but with larger
deviations of forecasts from observations between the filter
and the smoother for the early forecast period. Compared to
the filter, the inferior performance of the smoother is mainly
attributed to the larger bias, the smaller SR, and the smaller

FIG. 9. Performance diagrams of composite reflectivity at (a)–(d) 20- and (e)–(h) 40-dBZ thresholds over the whole domain for the filter
(blue markers) and smoother (red markers) experiments with various DA window lengths (WLs). Experiments in each column share the
same settings for the WL and the radar observation interval (RI) as indicated. The colored numbers denote the valid leading time (UTC)
on 6 May 2019.
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POD, which are consistent with the subjective comparisons in
Fig. 8.

The neighborhood-based FSS for the composite reflectivity
over the whole domain in Fig. 10 draws a similar conclusion
to the CSI in evaluating the forecast skills of the filter and the
smoother with various WLs. At the threshold of 20 dBZ, the
FSSs of the filter and the smoother are approximately equal
when the WL is no more than 40 min (Figs. 10a,b). As the
WL further extends, the smoother has lower FSSs than the fil-
ter, especially in the early forecasting stage (Figs. 10c,d).
Compared to the 20-dBZ threshold, the gap between the
smoother and the filter further widens at the threshold of
40 dBZ throughout almost the entire forecast period under
each WL setting, showing worse performance of the smoother
than the filter (Figs. 10e–h).

3) POTENTIAL EXPLANATIONS FOR THE DIFFERENCES IN

THE FINAL CONTROL ANALYSES

The discrepancies in the control forecasts between the filter
and the smoother under various WLs show close relationships
with the discrepancies in the final control analyses. Compared
to the filter, the lower forecast skills of the smoother result
from poorer analyses. As discussed in section 1, the extension
of the WL may increase the degree of nonlinearity and trigger
issues of time-independent localization for the smoother.
Therefore, the explanations for the differences in final control
analyses between the smoother and the filter are investigated
from the DA algorithm perspective using points P1–P5 in
Fig. 5. We focus on the inferior reflectivity analyses of the
smoother than the filter for WLs above 20 min and the infe-
rior updrafts analyses when the WL exceeds 40 min.

For convective scales, Kondo and Miyoshi (2019) and
Ruiz et al. (2021) indicated that non-Gaussianity is largely
associated with highly nonlinear processes. Therefore, DKL

in this study is an indicator of the degree of nonlinearity. Fig-
ures 11a–d provide the distributions of DKL at 0040 UTC 6
May for the reflectivity at the 13th model level (;3 km) in
storms S1 and S2 of 3D_WL100_RI20 and 4D_WL100_RI20.
It can be seen that the areas with substantial differences
in final reflectivity analyses between 3D_WL100_RI20 and
4D_WL100_RI20 [Figs. 5c(1),c(2) vs Figs. 5g(1),g(2)] usually
correspond to the areas where 4D_WL100_RI20 has larger val-
ues of DKL than 3D_WL100_RI20. At P1, DKL over 4.5 from
4D_WL100_RI20 (Fig. 11h) is much larger than DKL of 0.48
from 3D_WL100_RI20 (Fig. 11g). Therefore, for P1 in 4D_
WL100_RI20, we can infer that the higher level of nonlinearity is
one reason for its worse reflectivity analysis because of the linear
assumption. On the other hand, the autocorrelations of reflectivity
at the 13th model level between the ensemble perturbation of P1
and the ensemble perturbation field at the final analysis time are
calculated at different observation times within the DA window
for 4D_WL100_RI20 (Figs. 12a–c). The positive correlations at P1
and its surroundings are reasonable because the reflectivity is miss-
ing in the first-guess field. However, due to the time-independent
localization, the positive correlation peak gradually moves south-
eastward until out of the localization range from 0400 UTC
6 May back to 2300 UTC 5 May. The moving direction is de-
termined by the location of P1 at different observation times
relative to the background storm at the final analysis time.
In Figs. 12a and 12b, the weak correlations within the localiza-
tion radius cause the underestimation of reflectivity at P1
[Fig. 5g(2)]. Therefore, the time-independent localization at
P1 of 4D_WL100_RI20 also leads to worse reflectivity analysis

FIG. 10. FSSs of composite reflectivity at (a)–(d) 20- and (e)–(h) 40-dBZ thresholds over the whole domain for the filter (blue curves)
and smoother (red curves) experiments with various DA window lengths (WLs) valid at times on 6 May 2019. Experiments in each col-
umn share the same settings for the WL and the radar observation interval (RI) as indicated.
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than 3D_WL100_RI20. Although 3D_WL100_RI20 has a
slightly larger DKL than 4D_WL100_RI20 at P2 [0.285 vs 0.157;
Figs. 11i,j], the time-independent localization (Figs. 12d–f) plays
a dominant role in degrading the final control analysis of
4D_WL100_RI20 at P2 [Fig. 5g(1)]. When the WL extends to

160 min, similar reasons discussed above lead to the worse reflec-
tivity analysis of 4D_WL160_RI20 than 3D_WL160_RI20 (not
shown). For P5 where 4D_WL40_RI20 has overestimated reflec-
tivity [Fig. 5f(2)], DKL from 4D_WL40_RI20 is 1.2 larger than
that from 3D_WL40_RI20 (not shown). The higher degree of

P1 P2 P3 P4
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(c) (d)

(e) (f)

DKL DKL DKL DKL
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DKL DKL DKL
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FIG. 11. (a)–(f) Spatial distributions of Kullback–Leibler divergence (DKL; color fill) for (a)–(d) reflectivity of S1 and S2 at the 13th
model level (;3 km) and for (e),(f) vertical velocity of S1 at the 19th model level (;6 km) valid at the final analysis time (i.e., 0040 UTC
6 May 2019) of 3D_WL100_RI20 in (a), (c), and (e) and 4D_WL100_RI20 in (b), (d), and (f). In (a)–(d), the corresponding control first-
guess reflectivity of 20 dBZ (thin green contours) and 40 dBZ (thick green contours) are overlaid. In (e) and (f), the corresponding control
first-guess fields of 2 m s21 vertical velocity (black contours) and 20-dBZ (thin green contours) and 40-dBZ (thick green contours) reflec-
tivity are overlaid. TheDKL is calculated when the control analysis of reflectivity exceeds 10 dBZ for reflectivity in (a)–(d) and 20 dBZ for
vertical velocity in (e) and (f). (g)–(n) Ensemble-based histograms at P1–P4 with values ofDKL.
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FIG. 12. (a)–(i) Autocorrelation of reflectivity at the 13th model level (;3 km) and (j)–(o) cross correlation of vertical velocity with re-
flectivity at the 19th model level (;6 km) between the single-point ensemble perturbation for reflectivity (markers; P1–P5) at the time in-
dicated and the ensemble perturbation field at the final analysis time (indicated in the right column) for smoother experiments. Green con-
tours in (a)–(i) denote the control first-guess reflectivity (thin contours for 20 dBZ and thick for 40 dBZ) at the 13th model level. Black
contours in (j)–(o) denote the control first-guess 2 m s21 vertical velocity at the 19th model level. Dashed navy circles represent the 15-km
horizontal localization radii.
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nonlinearity mainly explains the worse reflectivity analysis of P5
in 4D_WL40_RI20, since the location of the positive correlation
peak changes slightly during the DA period (Figs. 12g–i).

To explain the spurious updrafts in the final control analysis
of 4D_WL100_RI20 [Fig. 5g(1)], distributions of DKL at
0040 UTC 6 May for the vertical velocity of storm S1
(Figs. 11e,f) and cross correlations of vertical velocity field
with single-point reflectivity at P3 and P4 (Figs. 12j–o) are
plotted at the 19th model level (;6 km). 4D_WL100_RI20
generally has larger values of DKL than 3D_WL100_RI20
(Figs. 11e,f). The DKL at P3 of 4D_WL100_RI20 is ;0.6
greater than that in 3D_WL100_RI20 (Figs. 11k,l), and the
cross-correlation peak at P3 of 4D_WL100_RI20 moves east-
ward until out of the localization range from 0400 UTC 6 May
back to 2300 UTC 5 May (Figs. 12j–l). Therefore, the combined
effects of nonlinearity and time-independent localization hinder
the elimination of the spurious first-guess updraft at P3
of 4D_WL100_RI20 through the reflectivity DA. Due to a
nearly identical DKL at P4 of 3D_WL100_RI20 compared to
4D_WL100_RI20 (2.374 vs 2.365; Figs. 11m,n), the spurious an-
alyzed updraft at P4 of 4D_WL100_RI20 can be attributed to
the limitation of time-independent localization (Figs. 12m–o).
Similar reasoning of nonlinearity and time-independent lo-
calization also explains the spurious analyzed updrafts in
4D_WL160_RI20 compared to 3D_WL160_RI20 (not shown).

b. Impact of shortening observation interval on the
comparison between the filter and the smoother

The sensitivity of the comparison between the filter and the
smoother to the observation interval is examined using ex-
periments with 20- and 40-min WLs. The time series of Wmax
over the CONUS initialized from final control analyses is
used to compare the adjustment of model imbalance before
and after shortening the RI (Fig. 13). For filter experiments
with the same WL, the Wmax curves from experiments with a
5-min RI show striking differences relative to experiments
with a 20-min RI during the first 20 min (Figs. 13a,b). Given
that both 3D_WL20_RI20 and 3D_WL40_RI20 take about
20 min to obtain a stable Wmax value around 25 m s21, 20 min
is enough for them to reach a new model balance before the
next reflectivity DA cycle without introducing noises. However,
3D_WL20_RI5 and 3D_WL40_RI5 cannot attain a stable
Wmax within 5 min. Therefore, too frequent interruptions of
the model in 3D_WL20_RI5 and 3D_WL40_RI5 could accu-
mulate noise through successive cycles, affecting the subsequent
forecasts from the final control analyses.

For smoother experiments with the same WL, shortening
the RI from 20 to 5 min slightly changes the adjustment of
model imbalance (Figs. 13c,d). All the smoother experi-
ments can build a stable 26–27 m s21 Wmax around 20 min.
Nevertheless, applying a shorter RI may change the degree

FIG. 13. The 1-h evolution of the maximum vertical velocity (Wmax; m s21) per min over the CONUS in forecasts
starting at 2320 UTC 5 May 2019 from the (a) filter (magenta lines) and (c) smoother (blue lines) with a 20-min DA
window length (WL) and at 2340 UTC 5 May 2019 from the (b) filter (green lines) and (d) smoother (orange lines)
with a 40-min WL. The solid lines indicate the experiments using a 20-min radar observation interval (RI), and the
dashed lines are used for experiments with a 5-min RI.
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of nonlinearity for the smoother. For example, compared
to prior_run_RI20, prior_run_RI5 has slower error growth
rates near 20 min and between 30 and 40 min into the
analysis cycle (Fig. 4), which represent more prominent
nonlinear features. As a result, shortening the RI probably
affects the performance of the smoother due to the increased
degree of nonlinearity, which more seriously violates the
linear assumption for the evolution of background-error
covariances.

To explore the impact of RI on the comparison between the fil-
ter and the smoother, their differences in FSS are calculated be-
fore (i.e., diff_3D_4D_WL20_RI20 and diff_3D_4D_WL40_RI20)
and after shortening the RI (i.e., diff_3D_4D_WL20_RI5 and
diff_3D_4D_WL40_RI5). It is found that the FSS differences
before and after shortening the RI are similar at the thresholds
below 30 dBZ (not shown), but the differences are substantial
for thresholds of 30 dBZ and above. Thus, we use the results
at the 30-dBZ threshold in Fig. 14 to discuss the trade-off be-
tween the model imbalance for the filter and the enhanced

nonlinearity for the smoother. In Figs. 14a and 14b, positive
values indicate that the filter is superior to the smoother and
negative values denote inferior results of the filter than the
smoother. Given the smaller values of diff_3D_4D_WL20_RI5
than diff_3D_4D_WL20_RI20 (Fig. 14a) and the smaller
values of diff_3D_4D_WL40_RI5 than diff_3D_4D_WL40_RI20
(Fig. 14b) at most valid times, the advantages of the filter over
the smoother reduce as the RI decreases. In the early forecast,
such as 0200 UTC 6 May, the smoother with a 5-min RI per-
forms better than its filter counterpart. Figures 14c and 14d
show the detailed FSSs of the smoother and the filter before
and after shortening the RI. It can be seen that reducing the RI
makes the filter more degraded compared to the corresponding
smoother during the earlier stage of forecasts, e.g., differences
between 3D_WL20_RI20 and 3D_WL20_RI5 versus differ-
ences between 4D_WL20_RI20 and 4D_WL20_RI5 from
0000 to 0020 UTC (Fig. 14c). Using a shortened RI makes the
filter less improved compared to the corresponding smoother
during the later stage of forecasts, e.g., the difference between

FIG. 14. Differences in FSS (filter minus smoother) with (a) 20- and (b) 40-min DA window lengths (WLs) for com-
posite reflectivity at the 30-dBZ threshold valid at times on 6 May 2019 before and after shortening the radar observa-
tion interval (RI) from 20 to 5 min. (c),(d) The detailed FSS results of the filter and the smoother corresponding to
(a) and (b), respectively.
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3D_WL40_RI5 and 3D_WL40_R20 versus the difference
between 4D_WL40_RI5 and 4D_WL40_RI20 at 0040 UTC
(Fig. 14d). The changes in the comparison between the filter
and the smoother as the RI reduces likely reflect the negative
impact of model imbalance on the filter surpassing the nega-
tive impact of enhanced nonlinearity on the smoother.

4. Summary and conclusions

Both the four-dimensional (4D) and three-dimensional
(3D) ensemble data assimilation (DA) methods in the context
of a smoother and a filter have the capability of accounting
for the temporal evolution of flow-dependent background-
error covariances, which is necessary to initialize convective-scale
numerical weather predictions (NWPs) for rapidly changing
storms. Using the Weather Research and Forecasting model,
this study compares the 4D ensemble–variational (EnVar)
method and its 3D counterpart in the context of the smoother
and the filter for direct radar reflectivity DA. Consistent with
the radar observation interval (RI) spanning the DA window
length (WL), the temporal resolution of ensemble perturba-
tions for the smoother is identical to the DA interval for the
filter. As a first step, a case study is performed for the rapidly
evolving event that occurred on 5–6 May 2019. Given that
the comparison of the smoother and the filter in a real NWP
model introduces more complexities (i.e., nonlinearity, issues of
time-independent localization for the smoother, and model im-
balance for the filter) than a simple model, two sets of experi-
ments with the varied WL and RI are conducted to consider
the impacts from these complexities. Under a 20-min RI
when model imbalance has not kicked in, experiments with
WLs of 20, 40, 100, and 160 min (e.g., 3D_WL100_RI20 and
4D_WL100_RI20) are designed to explore the impact of
WL on the comparison between the filter and the smoother.
To investigate the impact of RI on the comparison, a 5-min
RI is adopted under the WLs of 20 and 40 min.

For the impact of WL, the filter and the smoother are com-
pared as the WL increases. Detailed comparisons for the final
control analysis show that the performance of the smoother
and the filter converges when both adopt a 20-min RI and a
20-min WL. As the WL exceeds 20 min, the final control anal-
ysis of the filter becomes closer to observations than the
smoother. For example, compared to 3D_WL100_RI20,
4D_WL100_RI20 has spurious and weaker analyzed reflectiv-
ity, larger upper-level analyzed updraft zones without match-
ing strong radar echoes, and stronger analyzed cold pools
collocated with updrafts. Such differences become larger and
more pronounced with the increasing WL. For the forecasts
of experiments with a WL over 20 min, the spurious reflectiv-
ity remains in the smoother. The warmer near-surface tem-
perature in the control forecast of the filter agrees better with
nearby surface observations than the smoother. The enhanced
cold pool resulted from spurious updrafts in the smoother
promotes storm maintenance and overpredicted reflectivity.
Objective evaluations including performance diagrams and
FSSs of composite reflectivity confirm the inferior forecast
skill of the smoother relative to the filter when the WL

exceeds 20 min. The gap of the forecast skill between the
smoother and the filter gradually widens as the WL increases.

Given the differences in control forecasts between the filter
and the smoother with various WLs are directly tied to differ-
ences in the final control analyses, diagnostics were performed
to investigate potential DA-related explanations for the worse
analyses of the smoother compared to the filter. Diagnostics
included Kullback–Leibler divergence as a statistical measure
of non-Gaussianity tied to areas of nonlinearity and correla-
tions evolving within the localization radius. These diagnostics
revealed that the extension of the WL not only increases the
degree of nonlinearity that violates the smoother’s linear as-
sumption for the evolution of background-error covariances but
also triggers degradations related to using a time-independent
localization. Such issues become increasingly severe with longer
WLs.

When shortening the RI from 20 to 5 min under 20- and
40-min WLs, the advantages of the filter over the smoother
reduce for most forecast hours at thresholds of 30 dBZ and
above, leading to the outperformance of the smoother in the
early stage of the forecast. Diagnostics of maximum updraft
velocity as an indicator of model imbalance suggest that a
shorter RI triggers model imbalance for the filter from fre-
quent model interruptions. The time series of RMSE show
that a shorter RI further enhances the nonlinearity of the
smoother via depicting the error growth in detail. By forecast
skill comparison, the negative impact of model imbalance on
the filter surpasses the enhanced nonlinearity on the smoother
when the RI reduces.

As a first step, this work was performed to understand the
impacts of WL and RI on the comparison of a filter and a
smoother for analyses and forecasts of rapidly evolving con-
vection using the EnVar method in a case study. Such a filter
versus smoother comparison can also be done within other
types of DA algorithms, such as an EnKF approach without
the variational component. This study found that a smoother
with a high temporal resolution of ensemble perturbations
shows advantages over a filter. Systematic experiments with
more cases should be warranted in the future to identify opti-
mal configurations of WL and RI for the filter and the
smoother. Results of this study further motivate the investiga-
tion of potential improvements to the smoother by incorpo-
rating time-dependent localization, especially for longer WLs.
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