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ABSTRACT

Monitoring changes of precipitation phase from space is important for understanding the mass balance of

Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for

prognostic detection of precipitation and its phase using passive microwave observations from the Global

Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to

search through an a priori database populated with coincident GPM radiometer and radar observations as

well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official

precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and

Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial

precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The

algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular,

the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow

cover, when compared to other surface types. The main reason is found to be related to the ability of the

algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold

snow-covered surfaces.

1. Introduction

More than two billion people rely on glacier and

snowmelt for their water supply (Mankin et al. 2015).

Snowfall accounts for approximately 30%–90% of

the global precipitation over mid- to high latitudes

(Levizzani et al. 2011) and is the main input to the ac-

cumulation processes of snowpack and glaciers (Radić

et al. 2014). In recent decades, snowpack reservoirs

have declined and are projected to further decline in

the twenty-first century (Karl et al. 1993; Mote et al.

2005; Pederson et al. 2011). Thus, global monitoring of

snowfall from space is key for improved understanding

and prediction of ongoing changes in the cryosphere and

the implications for sustainable management of water

and food resources—especially in mountainous areas of

the world.

In the past three decades, significant progress has

been made in microwave precipitation retrieval as

part of the Tropical Rainfall MeasuringMission (TRMM)

satellite in 1997 (Kummerow et al. 1998). The launch

of the Global Precipitation Measurement (GPM) coreCorresponding author: Zeinab Takbiri, takbi001@umn.edu

FEBRUARY 2019 TAKB IR I ET AL . 251

DOI: 10.1175/JHM-D-18-0021.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:27 PM UTC

http://journals.ametsoc.org/topic/global_precipitation_measurement
mailto:takbi001@umn.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


satellite (Kidd and Huffman 2011; Hou et al. 2014) has

provided a unique opportunity for improved understand-

ing of midlatitude precipitation and its phase change

beyond what the TRMM satellite could offer (Skofronick-

Jackson et al. 2017).

The snowfall microwave scattering signal can be

captured at frequencies above 80GHz as these high

frequencies are more sensitive to ice scattering com-

pared to lower frequencies, which largely respond

to variations of surface emissivity (Kulie et al. 2010;

Skofronick-Jackson and Johnson 2011; Gong and Wu

2017; You et al. 2017). Among high-frequency chan-

nels, Bennartz and Bauer (2003) found that frequencies

around and above 150GHz provide a strong polariza-

tion signal for snowfall detection (Gong and Wu 2017;

You et al. 2017; Panegrossi et al. 2017).

Remote sensing of snowfall is among the most

challenging tasks in precipitation retrieval algorithms

(Bennartz and Bauer 2003; Skofronick-Jackson et al.

2004; Noh et al. 2009; Kongoli et al. 2015). Detection

of snowfall is challenging because it involves complex

and dynamic interactions between the snowfall scatter-

ing signal and the surface. First, compared to rainfall, the

snowfall backscattering is much weaker (Grody 1991;

Kim et al. 2008; Kulie et al. 2010) and depends on more

complex microphysical characteristics snowfall such as

shape and density of snowflakes (Liu 2008; Petty et al.

2010; Skofronick-Jackson and Johnson 2011). These

characteristics are difficult to accurately parameterize

as of today. Second, the alreadyweak snowfall scattering

signal tends to be masked by the increased atmospheric

emissivity and liquid water content in precipitating

conditions (Liu and Seo 2013;Wang et al. 2013; Panegrossi

et al. 2017). Third, changes in surface emissivity due to

snow accumulation on the ground can significantly alter

the snowfall microwave signal. Dry snow cover scatters

the upwelling surface radiation at frequencies above

20GHz (Ulaby and Stiles 1980; Hallikainen et al. 1987)

similar to the snowfall (Grody 2008). As a result, the

snowfall microwave signature gradually weakens as

snow accumulates on the ground (Ebtehaj andKummerow

2017). The snow-cover scattering evolves with time as a

function of snow-cover metamorphism. For example, a

small amount of liquid water content (e.g., 2%) signifi-

cantly reduces the snow-cover scattering and increases

its absorptivity (Stiles andUlaby 1980; Hallikainen et al.

1986, 1987). Hence, snow cover has a time-varying effect

on snowfall upwelling signal.

Physical and empirical approaches have been developed

for microwave retrievals of snowfall. Skofronick-Jackson

et al. (2004) presented a physical method to retrieve

snowfall during a blizzard over the easternUnited States

using high-frequency observations from the Advanced

Microwave Sounding Unit B (AMSU-B) instrument.

Kim et al. (2008) simulated atmospheric profiles of a

blizzard storm with the mesoscale MM5 model and a

delta-Eddington-type radiative transfer (RT) model

to produce a storm-scale database for snowfall re-

trieval using AMSU-B observations. Noh et al. (2009)

used a large number of snowfall profiles from airborne,

surface, and satellite radars, as well as an atmospheric

RTmodel (Liu 1998) to generate a regional database for

snowfall retrievals using the AMSU-B data. The study

used the NESDIS Microwave Land Surface Emissivity

Model (Weng et al. 2001) to provide surface emissivity

as an input to the RT model. The largest retrieval errors

were found to be over snow-covered surfaces.

Empirical passive microwave snowfall retrieval al-

gorithms largely rely on ancillary data of precipitation

radar and air temperature profile. A family of these

algorithms relies on thresholding the brightness tempera-

ture at different channels (e.g., Staelin and Chen 2000;

Chen and Staelin 2003; Kongoli et al. 2003). For exam-

ple, Kongoli et al. (2015) developed a statistical approach

that partitions high-frequency brightness temperatures

($89GHz) into two distinct warm and cold weather

regimes by thresholding the brightness temperature at

53GHz.

Another class of empirical approaches relies onBayesian

techniques. These techniques use a database or a lookup

table that relates brightness temperatures of snowing

clouds to the radar snowfall observations along with

the atmospheric temperature profile. As an example,

Liu and Seo (2013) used matched observations from

the CloudSat Profiling Radar (CPR), the AMSU-B, and

NOAA’s Microwave Humidity Sounder (MHS). More

recently, Sims and Liu (2015) used the CloudSat radar

and multiple ground-based reanalysis data, including

near-surface air temperature, atmospheric moisture,

low-level vertical temperature lapse rate, surface skin

temperature, surface pressure, and land cover types to

diagnose precipitation phase partitioning. This algorithm

is deployed in the GPM operational precipitation re-

trievals (Kummerow et al. 2015). It is worth noting that

most of these algorithms use reanalysis wet-bulb tem-

perature that exhibits the strongest correlation with the

precipitation phase (Matsuo et al. 1981; Motoyama 1990;

Lundquist et al. 2008; Kienzle 2008; Ye et al. 2013). How-

ever, the reanalysis data are often available at coarse

spatial scales with significant uncertainty, which hamper

the applicability for accurate detection of snowfall

(Harpold et al. 2017).

In this paper, we examine a prognostic Bayesian

k-nearest neighbor (KNN) algorithm that strictly relies

on observed passive microwave brightness temperatures

and does not use any online reanalysis data of temperature
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and moisture profiles. This approach is based on a

weighted distance metric applied on an a priori database

to detect overland precipitation phase. The a priori da-

tabase is populated with combined radar–radiometer

observations from the GPM satellite. This database is

then stratified using data from the Moderate Resolution

Imaging Spectroradiometer (MODIS) sensor to account

for effects of the background snow-cover emission. We

demonstrate that the algorithm shows improved skill in

detection of snowfall over snow cover and can predict

the likelihood of precipitation phase changes in the at-

mospheric boundary layer, which is not well observed by

the GPM radar.

In summary, the presented algorithm isolates a few

physically relevant candidate vectors of brightness

temperatures in the database via a weighted Euclidean

distance. Using these isolated candidates, the method

detects the precipitation and its phase, based on a

probabilistic decision rule. To test the performance of

the proposed approach, the database is populated by

merging the outputs of both passive (Sims and Liu 2015)

and active (Iguchi et al. 2017) GPM products using all

overland observations from June 2015 to May 2016. We

compare the results with the ground-based Multi-Radar

Multi-Sensor (MRMS) data over the conterminous

United States (CONUS; Zhang et al. 2011, 2016). The

outputs of a high-fidelity mesoscale simulation model

are also used for further evaluation of the results over

high altitudes, during the Olympic Mountains Experiment

(OLYMPEX) in 2015 (Houze et al. 2017).

The paper is structured as follows. Section 2 briefly

describes the database and the phase detection method

used on the operational GPM radar and radiometer

products. Section 3 elaborates on the effects of snow

cover on passive microwave signal of snowfall at dif-

ferent frequency channels by analyzing a large dataset

of GPM observations. Section 4 explains the proposed

KNN algorithm followed by the results presented in

section 5. Concluding remarks and future directions of

the research are discussed in section 6.

2. Database description

TheDual-Frequency PrecipitationRadar (DPR) aboard

the GPM core satellite detects precipitation reflectivity

at Ka (35GHz) and Ku band (13.6GHz). The GPM

Microwave Imager (GMI) captures the upwelling emission/

scattering signals of the surface and the atmosphere

at 13 frequency channels ranging from 10 to 183GHz.

On the one hand, observations by the DPR and the

GMI high-frequency channels (.80GHz) provide in-

formation about the microwave signature of precipitation

and more specifically about snowfall ice scattering. On the

other hand, observations by the low-frequency chan-

nels (.80GHz) add information about the land surface

characteristics that leads to improved detection skill

by the presented algorithm. This study uses level-II

near-surface precipitation phase retrieval from DPR

(active) product (2A-DPR-V04, normal scan), GMI

(passive) product (2A-GPROF-V04), and the level 1B

calibrated GMI brightness temperatures.

In DPR level II, the precipitation phase is determined

by the dual-frequency retrieval approach that uses the

differential attenuation between the Ku- and the Ka-band

reflectivity values (Iguchi et al. 2012, 2017). The differ-

ential attenuation method ingests ancillary atmospheric

profile data such as air temperature, pressure, and the

microphysical parameterization of the snow and rain

particle size distribution. The DPR surface retrieval is

inferred from the near-surface reflectivity observations

in the clutter-free region. Above relatively flat surfaces,

the altitude of this region varies from 1 to 2km fromnadir

to the edge of the DPR swath. The depth of this region

is often increased over complex terrains. As a result, any

precipitation within the ground clutter region cannot be

detected by the radar. Moreover, DPR has limited ca-

pability to detect light precipitation with a rate below

;0.2mmh21 (Hou et al. 2014; Kubota et al. 2014).

Unlike the DPR that provides range-resolved infor-

mation about the precipitation backscattering, the GMI

observes an integration of precipitation scattering in a

continuum that extends from the land surface to the top

of the atmosphere. As previously explained, the current

operational algorithm for passive detection of precipitation

phase relies on thresholding of the near-surface wet-

bulb temperature (Sims and Liu 2015). The wet-bulb

temperature is processed offline from reanalysis of

ancillary data, which often suffer from different sources

of uncertainty, especially due to its coarse resolution over

topographic features and structurally complex land

surfaces (Li et al. 2008).

For implementing and testing the proposed algorithm,

we create a reference product (REF) for precipitation

occurrence and phase change. This REF product is based

solely on the occurrence information from the DPR data.

For determining the precipitation phase, we use the

inner-swath phase information from both GPM active

and passive products. None of these products provides

direct phase estimation; however, each has unique in-

formation based on the atmospheric and surface condi-

tions. Specifically, the REF product determines the phase

by applying a logical operator to both active and passive

products. The radar phase retrieval is reported as solid,

liquid, and mixed, while the phase probability inGPROF

is from zero (solid) to one (liquid). We therefore first

discretize theGPROF phase probability into solid (phase
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probability less than 0.5) and liquid (phase probability

greater than 0.5) to match the radar phase. Second, we

assign the phase of REF precipitation as solid or liquid

when both active and passive phases are solid or liquid.

Otherwise, the phase is labeled as mixed. Therefore, the

mixed phase in the REF product refers to those cases

where the precipitation phases from the passive and ac-

tive products do not agree and thus should not be literally

interpreted. By combining the active and passive phase

information through this logical rule, we implicitly ad-

dress the limitations of DPR in identifying precipitation

phase change in the ground clutter region which overlaps

with the boundary layer.

It is important to note that the so-calledmixed category

depends on the threshold (0.5), used for discretization

of the passive phase. Understanding the impacts of this

threshold on the retrieval requires a thorough investiga-

tion outside the scope of this study. It is worth noting that

choosing this threshold results in 12% of mixed phase

data in the REF product, in which 10% corresponds to

liquid passive phase and solid active phase (scenario 1)

and 2% otherwise (scenario 2). The first scenario might

be related to those conditions where the melting layer is

in the clutter region. The second scenariomay be related

to a temperature inversion near the surface that causes a

refreezing of precipitation.

The MODIS daily snow-cover fraction (MOD10A1;

Hall et al. 2002) and land surface skin temperature

(MOD11A1; Wan 2014) are added to the database. The

data are used from the MODIS sensor on board the

Terra satellite. The MODIS snow cover and surface tem-

perature data are available at a resolution of 500 and

1000m, respectively. We assume that the total daytime

snow-cover fraction does not change significantly be-

tween consecutive overpasses of the GPM and Terra

satellites within one day. Note that this assumption could

give rise to some degree of uncertainty when the data are

matched with nighttime precipitation.We consider a 5-km

DPR pixel as a snow-covered surface when more than

50% of the enclosed high-resolution snow fraction data

indicates the presence of snow cover on the ground. It is

also assumed that the temperature does not vary sig-

nificantly within a 5-km DPR pixel and is considered to

be the average of the cloud-free MODIS temperature

data. As the liquid water content of global snowpack is

not available, we define dry (wet) snow when the skin

and air temperature are both below (above) 08C (Baggi

and Schweizer 2009).

To account for atmospheric radiometric signals, we

also added the integrated liquid and ice water content of

the clouds, as well as the integrated water vapor content

of the atmospheric column from the second version of

the Modern-Era Retrospective Analysis for Research

andApplications (MERRA-2-M2I1NXASM;Gelaro et al.

2017). The MERRA-2 data are hourly single-level di-

agnostic products at 0.6258 3 0.58, which are derived

from version 5 of the NASAGoddard Earth Observing

System (GEOS-5) and theAtmospheric DataAssimilation

System (ADAS).

To form the database with a uniform spatial sam-

pling density, the GMI brightness temperatures and

the MERRA-2 reanalysis data are mapped onto the

DPR grids and scanning time using the spatial nearest

neighbor interpolation and temporal linear interpola-

tion techniques. The high-resolution MODIS snow-

cover data are mapped onto and then averaged over

the nearest DPR grids. We collect and process two

consecutive years of data, from June 2014 to May

2016, which lead to a database with more than 53 109

matched data pairs. The data from the first year (June

2014–May 2015) are applied to build the database and

the data from the second year (June 2015–May 2016)

are used to test the proposed algorithm.

3. The effect of snow cover on terrestrial
snowfall signal

Precipitation spectral signatures and their depen-

dence on snow-cover scattering are studied by ana-

lyzing the entire dataset (June 2014–May 2016) for

three surface types (ground without snow cover, wet

snow, and dry snow) and for both liquid and solid phases

of precipitation. Each land–atmospheric class is further

divided into five bins of precipitation intensity r with

equal logarithmic width, log2(ri11/ri)5 1, centered at

0.5, 1, 2, 4, and 8mmh21. We first quantify the effects of

snow cover on the precipitation signal over each surface

type by calculating the mean values of the brightness

temperatures for different precipitation phases and in-

tensities at frequency bands 10–19, 36–89, 166, 183 6 3,

and 183 6 7GHz (Fig. 1). Then, we demonstrate that

the snowfall signal exhibits a weaker scattering signal

than rainfall and reveal that there exists a nonunique

relationship between the brightness temperatures and

snowfall rate over snow-covered surfaces. Last, we high-

light why precipitation phase detection could be less un-

certain over dry than wet snow cover using the presented

approach.

The first three columns in Figs. 1a–i focus on the sig-

natures of rainfall over land surfaces with no snow cover,

wet snow cover, and dry snow cover, where both active

and passive products indicate liquid phase. The signa-

tures over the ground with no snow cover are mainly

affected by the upwelling surface emission, the upwelling

emission by cloud liquid water path, as well as scattering

by the cloud ice particles and large raindrops. As it is well
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understood, due to strong background emission at fre-

quencies 10–36GHz, the overland precipitation micro-

wave signal is difficult to be separated from the surface

contributed signal in these channels. For example, due to

the rainfall emission, the mean brightness temperature at

10h GHz only increases by less than 5K as the intensity

increases from 0.5 to 8mmh21 (Fig. 1a).

On average, we observe that over all three land sur-

face types, the brightness temperatures monotonically

decrease for frequencies above 80GHz as the rainfall

intensity increases. However, the significance of scatter-

ing decreases over snow-covered surfaces (Figs. 1d–i).

For example, at 89 and 166GHz, the average decrease of

brightness temperature per 1mmh21 increase in rainfall

FIG. 1. Variation of mean brightness temperatures (June 2014–May 2016) in response to changes in precipitation intensity for different

land–atmosphere classes including the (a)–(i) liquid and (j)–(r) solid precipitation phase over the ground (no snow) and wet and dry snow

cover. The bins are five logarithmically (base 2) spaced intervals with the width of 1mmh21 in the log space.
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intensity is about 3.0 and 3.6K (Figs. 1d,g), while these

rates are around 1.2 and 2.3K over the dry snow cover

(Figs. 1h,i). As expected, the 183 6 3GHz is the least

sensitive channel to the changes of rainfall rate. This

channel becomes almost insensitive to the rainfall in-

tensity when the snow accumulates on the ground and

exhibits less than 0.2K of cooling effect per unit rainfall

(Fig. 1i).

The last three columns in Figs. 1j–r present brightness

temperatures of snowfall over the three explained land

surface types, where both active and passive products

indicate solid phase. Similar to the overland rainfall, the

emission and the scattering signals become more sig-

nificant from low- to high-frequency channels. Over the

surfaces with no snow cover, when the snowfall intensity

increases from 0.5 to 8mmh21, the brightness temper-

atures at frequencies# 36GHz increase;6K (Fig. 1 j).

This warming could be due to increased cloud liquid

water path (from 75 to 101 gm22; Figs. 2a,d), water va-

por path (from 9.5 to 13.1 kgm22; Figs. 2c,f), and surface

temperature (from 273 to 274.2K; Figs. 2g,i).

As a result of the snowfall scattering, the average

brightness temperature at the 166-GHz frequency

channel (Figs. 1l,o,r) decreases about 14–20K, which

corresponds to a cooling rate of 1.75–2.50K per unit

snowfall rate. This observation reaffirms the impor-

tance of 166GHz for snowfall retrieval compared to

the 89-GHz channel (see Bennartz and Bauer 2003; Shi

et al. 2010; Skofronick-Jackson et al. 2013; You et al.

2017). When the precipitation intensity increases from

0.5 to 8mmh21, the average decrease in brightness tem-

peratures at 166 (89) GHz is about 18–30 (10–22)K for

rainfall and 10–20 (2–9)K for snowfall over all exam-

ined land surface types. Therefore, the scattering sig-

nal weakens when the precipitation falls in the solid

form; however, this weakening effect is less significant

at 166GHz than 89GHz. In particular, over the ground

with no snow cover, the signal becomes weaker approx-

imately by 30% and 57% at 166 and 89GHz, respec-

tively, while these rates are 44% and 80% over the dry

snow cover.

Observations demonstrate that the snowfall scatter-

ing signal decreases at frequencies$ 89GHzwhen snow

begins to accumulate on the ground. An interesting

observation is the nonmonotonic response of the ob-

served brightness temperatures to the snowfall rate over

snow-covered surfaces. For example, over the dry snow,

the brightness temperatures at $89GHz increase when

the snowfall intensity varies from 2 to 4mmh21, showing

an irregular transition from a scattering to an emis-

sion regime (Figs. 1q,r). Although less pronounced, a

similar pattern is observed over the wet snow cover

(Figs. 1n,o).

The possible reasons for this anomaly could be related

to an emission signal from either the atmosphere or

the land surface. The atmospheric-related reasons can

be due to the enhanced emission from the cloud liquid

water and/or the water vapor path; both of them often

increase with increasing snowfall intensity (Liu and Seo

2013; You et al. 2017; Ebtehaj and Kummerow 2017).

The land-surface-related causes largely correspond to

the increased surface temperature and/or changes in

the snow-cover physical properties. To find the most

prominent contributing factor, we analyzed the varia-

tions of liquid, ice, and vapor water path derived from

MERRA-2 data, the surface temperature derived from

MODIS, and the mean snowfall intensity at different

latitudes (Figs. 2a–f).

Over the ground with no snow cover, as the average

precipitation intensity increases, the liquid and ice water

path increase during rainfall and even more significantly

during snowfall. Specifically, the liquid water path in-

creases from 14% to 26% (Figs. 2a,d) and the ice water

path increases about 23% and 37% (Figs. 2b,e) for rain-

ing and snowing events, respectively. Over dry snow

cover, there is no evidence of any additional changes

either in liquid or in ice water path that could cause the

observed irregularity. Figure 2f shows that the water

vapor path increases about 2.5 kgm22 between snowfall

intensities of 2 and 8mmh21 over the dry snow cover,

which cannot be the main reason for the observed anom-

aly. The reason is that the sensitivity of the 166-GHz

channel to variation of water vapor decreases significantly

for snowfall intensities . 0.8mmh21 (You et al. 2017).

Therefore, we speculate that the anomaly could be largely

due to a surface effect.

The MODIS surface temperature data (Wan 2014)

do not show any significant dependency on the rate of

snowfall (Fig. 2i). Therefore, we hypothesize that the

detected emission could be due to either an unknown

retrieval uncertainty or, more likely, to the climatology

of the snowfall and snow cover dynamics. The database

shows that light but prolonged snowfall intensities

(,2mmh21) occur at latitudes above.558N over dry

and thicker snow cover (Fig. 2j). However, high-intensity

but less-frequent snowfall is more likely to occur over

lower latitudes with a thinner snow-cover climatology. In

other words, the high snowfall rates mostly represent the

climatology of lower latitudes with thinner depth of snow

cover, less volume scattering, and thus stronger surface

emission than the thicker snow cover of higher latitudes.

The above observations from Figs. 1 and 2 lead

us to hypothesize that the distance between vectors

of brightness temperature encodes a similarity metric

that can be used to discriminate the precipitation from

the background signal. A larger distance indicates larger
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radiometric dissimilarity that could be used for improved

detection of the precipitation from the background signal.

Using the database, we calculate the average distance

between the vectors of brightness temperatures for the

clear sky (no precipitation) and precipitating atmosphere

over the three land surface types (Fig. 3). In this figure,

the shaded areas in light blue (orange) represent the de-

tected emission (scattering) signal. The key observation

FIG. 2. Average variations of the (a),(d) cloud liquid water path (LWP); (b),(e) cloud ice water path (IWP); (c),(f) water vapor path

(WVP); (g),(i) skin temperature (Ts); and (h),(j) latitudes against the precipitation intensity. The ice and liquid water paths are extracted

from theMERRA-2 data (M2I1NXASM;Gelaro et al. 2017) and the surface temperature data are fromMODIS (MOD11A1;Wan 2014)

from June 2014 until May 2016. The intensity bins are the same as Fig. 1.
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is that when the snow-cover scattering increases, the

precipitation signal transitions from a scattering to an

emission regime. The wet snow cover weakens the

precipitation scattering as it is less emissive than the

ground with no snow cover. However, the less emissive

dry snow reveals the precipitation emission signal.

For the liquid phase, we can see that the rainfall scat-

tering over the ground with no snow cover is manifested

by a large distance between the high-frequency channels$

89GHz, while the distance over lower-frequency channels

is insignificant (Fig. 3a). This distance shrinks over the wet

snow cover (Fig. 3b), where the dominant precipitation

signal is still due to its scattering over high-frequency

channels. This shrinkage is largely explained because wet

snow is not a strong scatterer and thus reduces slightly the

surface emission and the high-frequency scattering of

rainfall. However, when the surface emission is signifi-

cantly reduced over the dry snow (Fig. 3c), the emission of

rainfall can be detected as a warming signal across almost

all frequency channels.

For the solid phase, the distance is relatively large be-

tween the background and precipitation signals when

there is no snow on the ground (Fig. 3d). This distance

captures a shift across all frequency channels and a reduced

polarization signal above 37GHz. The shift is largely due to

the differences between the surface temperature of clear

sky versus a snowing atmosphere, while the reduced po-

larization is chiefly due to diffused scattering of the

snowflakes. Similar to the liquid precipitation, this

distance shrinks when the ground is covered with wet

snow, where the shift between the background temper-

atures almost vanishes as the surface temperature in-

creases.We can see that when the snowfall is occurring

over dry snow, an emission signal is observed, chiefly in

response to the increased liquid and water vapor paths

(see Liu and Seo 2013; You et al. 2015, 2016; Ebtehaj and

Kummerow 2017). TheMERRA-2data indicate increases

of ; 58gm22 and 4.8kgm22 in liquid and vapor water

paths, respectively, when snowfall occurs. This emission

signal indirectly indicates the likelihood of precipitation

by increasing the brightness temperatures rather than a

direct physical signature of precipitation. Because of this

emission signal, the vector of snowfall brightness tem-

peratures becomes dissimilar to the surface emission,

which could lead to improved snowfall retrievals over

dry snow cover—if a proper distance metric is used to

quantify the dissimilarity.

4. A nested nearest neighbor algorithm for
precipitation phase detection

The nearest neighbor matching has been successfully

utilized for passive microwave retrieval of rainfall using

the TRMM data (Ebtehaj et al. 2015, 2016) and for

microwave mapping of flood inundation using the

Special SensorMicrowave Imager/Sounder observations

(Takbiri et al. 2017). In this section, we introduce a prog-

nostic algorithm that relies on a nested k-nearest neighbor

FIG. 3. Average distance between vectors of mean brightness temperatures in the database from June 2014 to May 2016 for a clear sky

(r5 0) and a near-surface precipitating atmosphere (r. 0) with (a)–(c) liquid and (d)–(f) solid phase overland precipitation with no snow

cover, wet snow cover, and dry snow cover. The blue and orange shaded areas indicate the cooling (scattering) and warming (emission)

signals of precipitation. The mean root squared distance between the no precipitating (clear sky) and precipitating atmosphere is also

presented for each land–atmosphere class.
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matching that finds the best representation of a query

brightness temperature in the database to detect precip-

itation occurrence and phase. The criterion for matching

relies on the hypothesis that similar vectors of brightness

temperatures represent similar atmospheric profiles.

In other words, an observed pixel-level vector of bright-

ness temperature for a precipitating atmosphere is more

similar to a collection of precipitating brightness tem-

peratures in the database than those that refer to a non-

precipitating atmosphere. Here, we define the similarity

metric by a weighted Euclidean distance between the

query vector of observed brightness temperatures

and those stored in the a priori database, described in

section 2.

To set the notation, hereafter, the vector of brightness

temperatures is denoted by Tb and the ancillary data

containing information on the precipitation occurrence,

phase, and snow cover are represented by the vector r.

The database is pruned to contain balanced information

over two different land surface types fLg2s51 and four

independent atmospheric conditions fAg4a51. The land

surface types are defined only based on the presence

(s5 1) and absence (s5 2) of snow cover, while the at-

mospheric conditions refer to the clear sky (a5 1), liq-

uid (a5 2), solid (a5 3), and mixed (a5 4) precipitating

atmosphere.

To reduce the algorithmic complexity, we do not differ-

entiate between the dry and wet snow cover in the data-

base. Each land class consists of pairs of f(Tbm, rm)gMm51,

whereM5 23 107 are evenly distributed between clear

and precipitating sky. Those pairs in the precipitating

sky are also evenly distributed between a raining A2,

mixed A3, and snowing A4 atmosphere. It is important

to note that the pairs are randomly selected from their

parent class to avoid any bias toward a specific land or

atmospheric class.

In summary, for a given land surface type and a query

vector of brightness temperatures y, the algorithm relies

on a 3-tuple f(ka,Wa, pa)g3a51, where ka is the number

of nearest neighbors, Wa is the atmospheric weight

matrix over each land surface type used in the weighted

Euclidean distance dm 5 (y2Tbm)
TWa(y2Tbm), and pa

denotes a detection probability measure. The weight

matrix accounts for the relative importance of the

channel combinations for detection of precipitation

and its phases (Ebtehaj and Kummerow 2017). Specifi-

cally, given the land surface types Ls, after finding the

k-nearest neighbors f(Tbi, ri)gki51 of each query vector

y, a nested decision-making process is made to detect

precipitation and its phase based on the probability

measure pa.

In the first step, the algorithm uses (k1, W1, p1) to

search for the k1-nearest neighbors of fTbigk1i51 and the

corresponding ancillary information in the database.

Then, a binary decision is made to label the vector y as a

precipitating observation, when the number of precipitat-

ing neighbors np is greater than p1 3 k1. For precipitating

y, the algorithm identifies the precipitation phase by

running a newk-nearest neighbor search using (k2, W2, p2)

through those precipitating neighbors f(Tbj, rj)gnpj51 that

are found in the first step, where k2 , p1 3 k1. Then, as

explained before, a binary decision is made to label y as

liquid precipitation, if the number of raining neighbors

nl 5max(nl, ns, nm) is greater than p2 3 k2, where nm

and ns are the number of mixed and solid precipitation

elements among the k2-nearest brightness tempera-

tures fTbigk2i51. If those conditions are not satisfied, the

algorithm continues similarly to find if the phase of y

is solid or mixed. An algorithmic flowchart is presented

in Fig. 4.

To determine the optimal values of the input parame-

ters ka and pa, we compute the receiver operating char-

acteristic (ROC) curves (Fig. 5), which characterize the

trade-off between the hit and false alarm rates. The prob-

ability of hit is defined as the fraction of occurred events

that were correctly detected, while the false alarm rate

is a fraction of events that did not occur but were in-

correctly detected by the algorithm. Let a represent the

number of correctly detected events, c the number of

missed events, b the number of false detection, and d the

number of correct rejection. Then, the probabilities of

hit and false alarm are defined as a/(a1 c) and b/(b1 d),

respectively. The optimal value of ka is chosen based

on the maximum area under the ROC curves (Hanley

and McNeil 1982), while the best detection probabil-

ity pa is chosen where the curvature of the ROC is

maximum.

5. Results and validation

To test the performance of the proposed approach,

the terrestrial precipitation and its phase are retrieved

over the inner swath of the GMI overpasses from June

2015 toMay 2016. As the phase outputs of the algorithm

are discrete values for solid (0), mixed (0.5), and liquid

(1), the temporal mean values associated with these

phases could reveal the overall sensitivity of the algo-

rithm to the seasonal variations of surface temperature

and emissivity. To that end, the phase indices are av-

eraged at orbital levels over the summer and winter

for the nested KNN algorithm and the standard active

and passive GPM products (Fig. 6). To quantify statis-

tical agreements between the results of the algorithm

and those of the REF maps, we calculate the annual

probability of detection, false alarm, and the Heidke

skill score (Doswell et al. 1990) for the presented results
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in Figs. 7–9.We also compare the algorithm outputs with

the precipitation phase products of the MRMS on a

seasonal basis (Figs. 10, 11). Finally, some results are

presented at a storm scale to demonstrate the detection

capabilities of the algorithm for a few precipitation

events that are coincidentally captured by the DPR and

high-resolution ground-based radars (Figs. 12, 13) and

simulated by the Weather Research and Forecasting

(WRF) Model (Fig. 14) during OLYMPEX (Houze

et al. 2017).

FIG. 4. Algorithm flowchart of the proposed weighted KNN algorithm for detection of precipitation

occurrence and phase.
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a. Global retrievals

The seasonal average of the quasi-global maps of

precipitation phase are presented in Fig. 6, for the inner-

swath data products by the DPR, GPROF, KNN, and

REF. The results are shown as a probability continuum

of phase transition from the liquid (0) to solid (1), at

the grid resolution 0.18. These results are mapped where

the precipitation is detected only by the DPR for two

seasons. The seasons are defined as summer (June–

October 2015 and May 2016) and winter (November

2015–April 2016) of the Northern Hemisphere.

Overall, since the phase of the passive product is

dictated by the reanalysis data, the results mostly follow

the climatology patterns of near-surface wet-bulb

temperature and are smoother than those of the active

product (Figs. 6a–d). The smoothness of the GPROF

retrievals could also be due to its ability in retrieving the

light precipitation with intensities below the minimum

detectable rate by the DPR (,0.2mmh21), as the

GPROF also uses precipitation data from MRMS

ground-based radar in its a priori database to increase

the retrieval sensitivity to snowfall. Comparison of the

official passive and active products remains outside the

scope of this research; however, there seem to be no-

table differences in the spatial patterns of precipita-

tion phases in these products. The difference in the

source of ancillary data could be a reason for the ob-

served discrepancies, which largely exist over moun-

tainous terrains such as the Andes, Tibetan highlands,

Rockies, Scandinavian Mountains, Alps, and Zagros

FIG. 5. Trade-off curves between the probability of hit pH and false alarm pF calculated with different numbers of k-nearest neighbors

for detection of the precipitation occurrence and phase over (a)–(c) non-snow-covered surfaces and (d)–(f) snow-covered surfaces. The

optimal values of k and the detection probabilities p are given in each subplot.
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FIG. 6. Seasonal probability of the precipitation phase change. The average phase of the (a),(b) DPR; (c),(d) GPROF; (g),(h) REF

(merged); and (i),(j) KNN algorithm, as well as the differences between (e),(f) the DPR and GPROF products and (k),(l) the REF and

KNN products. The differences are shown where both products detect the precipitation occurrence.
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Mountains (Figs. 6e,f)—where precipitation is mostly

triggered by topographic features.

The observed differences are not surprising because

of complications in both active and passive retrievals

due to reduced ice scattering in shallow orographic

lifting, heterogeneity of surface roughness, and radio-

metric complexity of high-elevation snow and ice cover

(Tian and Peters-Lidard 2010). The phase discrepancies

also seem to be larger when it comes to identifying pre-

cipitation phase in the summer. For example, over the

Tibetan highlands, the active products classify most of the

summer precipitation as snowfall while the passive product

results in more liquid precipitation, especially over the

Hengduan Mountains in southeast China.

Figures 6i and 6j show the results of the KNN algorithm

in summer and winter and compare them with the REF

map (Figs. 6k,l). Overall, we observe a good agree-

ment between the KNN outputs and the REF target

precipitation product. The differences are more pro-

nounced in the summer than the winter and mostly ac-

cumulated over the mountainous and dense vegetation

regions (Figs. 6k,l). For example, we observe that, in the

summer, the detection probability of solid and mixed

phases are negatively biased (;212%) over theRockies

and the Andes. However, in winter, this probability is

positively biased over small parts of the Scandinavian

Mountains in northern Europe (;115%). Some of

these mountainous biases are mainly attributed to the

false detection of precipitation occurrence rather than

its phase (Fig. 7b). Additionally, over the tropical forests,

the algorithm falsely detects some mixed precipitation

phases. Over dense vegetative surfaces the microwave

polarization signal becomes very weak (Prigent et al.

1997) due to incoherent vegetation scattering. The lack

of a pronounced polarization signal could be the main

reason for the reduced discriminatory power of the KNN

approach that relies on the Euclidean distance as a

similarity metric.

Visual inspection of the global maps shows a good

spatial and seasonal agreement between the KNN and

REF. The proximity of these two products at the global

scale is quantified by three measures including the

Spearman’s correlation r, the root-mean-square error

(RMSE), and the Kullback–Leibler (KL) divergence in

Table 1. The KL divergence KL
�
�(PkQ)5�n

i51P(i)/Q(i)

is a nonsymmetric and nonnegative measure that captures

the proximity of two probability distributions P and Q

and is zero when they are identical. To compute the KL

divergence, between the probability histograms of the

REF (P) and KNN outputs (Q), we discretize P and Q

FIG. 7. The mean annual map of the (a) probability of hit, (b) probability of false alarm, and (c) HSS obtained by comparing the pixel-

level results of theKNNalgorithmwith theREFproduct for the detection of precipitation occurrence. (d) Themap of snow-cover fraction

is also obtained from the MODIS data (MOD10A1; Hall et al. 2002) coincident with GPM inner-swath overpasses from June 2015 to

May 2016.
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with n 5 20 probability intervals. The RMSE and KL

values are normalized between 0 and 1 for interpretation

convenience. As is evident, the correlation between the

KNN and REF products is around 0.89–0.91 in winter

and summer, indicating that the algorithm is not exces-

sively sensitive to the seasonal changes in land surface

radiometric properties. The normalized RMSE also re-

mains below 14% in both seasons. We see that the KL

values slightly increase from winter (0.06) to summer

(0.10), which indicates that, on average, theKNNmethod

may exhibit improved detection skills when the extent of

the global snow cover is larger in winter than summer.

To further reveal the error structure of the instantaneous

pixel-level retrievals, we used three statistical measures

including the probability of hit, probability of false

alarm, and the Heidke skill score HSS5 2(ad2 bc)/

[(a1 c)(c1 d)1 (a1 b)(b1 d)] (Doswell et al. 1990),

which ranges from a no skill (2‘) to a perfect skill (1).

Recall that a is the number of correctly detected

events, c is the number of missed events, b is the number

of false detection, and d is the number of correct rejection.

To have an adequate number of samples, these quality

measures are calculated using the entire validation period

from June 2015 to May 2016 (Table 2, Figs. 7, 8).

The annual maps of the probability of hit, false alarm,

and HSS score are used to evaluate the detection skill

of the KNN approach against the DPR as a reference

(Fig. 7). The probability of hit over the snow-covered

regions is relatively high. The reason is that the presence

of snow on the ground reduces the surface emission,

which could lead to better detection of the precipitation

emission signal (Fig. 3)—similar to radiometrically cold

ocean surfaces. The low detection rates are mostly over

the areas where the DPR has a low sampling rate. Thus,

lack of skills in these regions could be partly due to lack

of samples in the database. A high probability of false

alarm (;0.2) is seen over some mountainous regions

such as the Tibetan highlands and the western Rockies.

FIG. 8. The mean annual map of the probability of hit and false alarm by the KNN algorithm for the detection of the (a),(b) liquid phase;

(c),(d) mixed phase; and (e),(f) solid phase. The results are obtained for all GPM inner-swath overpasses from June 2015 to May 2016.
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The false detection, mostly in liquid phase, gives rise

to negative biases in detecting frozen and mixed pre-

cipitation (Fig. 6l). High (;0.80), medium (;0.66), and

low values (;0.50) of HSS are observed over the snow

cover, tropical forests, and undersampled deserts such

as the Sahara, respectively (Fig. 7c).

The conditional probability of hit and false alarm are

calculated for liquid, mixed, and solid phases (Fig. 8),

with respect to the REF product. For separating the

errors of the precipitation and phase detection, the

probabilities are obtained assuming that the precipita-

tion is correctly detected by the KNN algorithm. Similar

to the precipitation detection, the algorithm displays

improved phase detection capabilities over snow-covered

surfaces (Fig. 8). The probability of hit for the liquid,

mixed, and the solid phase is mostly greater than 0.85

and reaches 0.95 over the high altitudes of NorthAmerica.

However, we observe a relatively lower detection rate of

around 0.74 for liquid precipitation over the tropical and

subtropical regions such as the rain forest of Amazonian

and central Africa. The results show that the low

probability of detection for the liquid phase is mostly

because the algorithm detects some false mixed phase

precipitation (Fig. 8d). We speculate that this error could

be partly attributed to the reduced skill of the algorithm

over vegetated surfaces. The reduced detection skill of

the algorithm could also be partly due to warm rain oc-

currences over the heterogeneous land surface of tropical

and subtropical regions where cloud ice scattering is not

significant.

To understand the reasons for improved retrievals over

snow-covered surfaces, the averaged values of the prob-

ability of hit and false alarm are stratified based on pre-

cipitation occurrence D1 at liquid D2, mixed D3, and the

solid D4 phase over different land surface types fLg3s51,

where s 5 1–3 denotes the ground, wet, and dry snow

cover (Table 2). The probability of precipitation detec-

tion increases by almost 11% from the ground to the dry

snow cover, and 3% from wet to dry snow. An increase

of 8%–11% is also observed in the probability of hit in

detection of solid and liquid phase over dry snow, where

the largest detection rate of 94% is obtained for the

snowfall. The results show that the probability of false

alarm also increases in detection of precipitation oc-

currence over snow cover, whereas it decreases when

it comes to the detection of its phase. Because, once pre-

cipitation is detected, due to significant differences

between the signatures of rain and snowfall, the

probability of false alarm is markedly reduced. Table 2

quantifies the dependency of the probability of hit

and false alarm on the annual percentage of the dry

snow cover. For precipitation detection, the proba-

bility of hit increases by about 10% as the annual

percentage of dry snow increases from zero to more

than 70%, while the probability of false alarm increases

between 2% and 4%. As is evident, for precipitation

phase detection, both probabilities show improvements

of around 4%.

b. Comparison with the ground-based radar

1) COMPARISON WITH MRMS SYSTEM

To further evaluate the performance of the KNN al-

gorithm, we compare its outputs against a precipitation

product derived from the MRMS system (Zhang et al.

2011, 2016). MRMS mosaics three-dimensional volume

scan observations from 146 S-band dual-polarization

Weather Surveillance Radar-1988 Doppler (WSR-88D)

and 31 C-band single polarization Canadian radars.

The product optimally integrates the radar observations

with simulations of atmospheric models as well as hourly

gauge data to produce seamless precipitation rate and

FIG. 9. Zonalmean values of the probability of precipitation phase

change from liquid (p 5 0) to solid (p 5 1) by the KNN, DPR,

GPROF, and REF products in (a) winter (November–April) and

(b) summer (May–October). Zonal mean values of (c) probability of

hit and (d) false alarm for the detection of the precipitation occur-

rence and its phase change by comparing the KNN results with the

REF product.
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phase estimates over the CONUS, at spatial resolution

of 1 km at every 2min. TheMRMS products are further

quality controlled and gauge adjusted at finescale fol-

lowing the procedure described in Kirstetter et al.

(2012) to derive a consistent and high-quality surface

precipitation.

To determine the precipitation phase, MRMS uses

thresholds on the wet- and dry-bulb temperatures. Spe-

cifically, the precipitation is labeled as snowfall when

the radar reflectivity exceeds 5 dBZ, the surface temper-

ature is below 28C, and the surface wet-bulb temperature

is below 08C (Zhang et al. 2016). Thus, the MRMS rain–

snow delineation is subject to similar uncertainties as in

the passive GPM data (Chen et al. 2016). However, the

uncertainties in detecting precipitation are significantly

lower than the satellite data because of the higher sensi-

tivity and resolution of the ground-based radar obser-

vations, especially over landscapes with no significant

orographic features (Kirstetter et al. 2012). To compare

with the outputs of the KNN algorithm, a reference

surface precipitation is derived by mapping the high-

resolution MRMS data onto, and then averaging over,

the nearest DPR grids (see Kirstetter et al. 2012, 2014).

Figure 10 shows that the spatial variations of the

probability of phase change in the KNN and MRMS

are consistent in the winter and summer seasons. The

calculated values of KL divergence between KNN and

MRMS are 0.27 and 0.15 in winter and summer, respec-

tively. The values of other calculated similarity metrics

(i.e., r and RMSE) are also deteriorated from summer

to winter (Table 3). These results indicate that even

though the KNN shows improved wintertime detection

of precipitation compared to those in summertime when

FIG. 10.Mean seasonalmaps of the probability of precipitation phase change from liquid (p5 0) to solid (p5 1) for KNN in (a) winter and

(b) summer, and for the MRMS in (c) winter and (d) summer, from June 2015 to May 2016.

FIG. 11. The zonal mean of the probability of precipitation phase

change from liquid (p5 0) to solid (p5 1) by the KNN andMRMS

products in (a) winter (November–April) and (b) summer (May–

October), from June 2015 to May 2016.
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FIG. 12. Orbital-level precipitation phase detection from the KNN, DPR, GPROF, and MRMS for a few GPM overpasses in-

cluding (top) 10412 on 28 Dec 2015, (top middle) 10796 on 22 Jan 2016, (bottom middle) 12149 on 18 Apr 2016, and (bottom) 12155

on 18 Apr 2016.
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compared with the REF product (Table 3), the intrinsic

error between the satellite and ground-based data is still

much larger than the satellite retrieval error, especially

in the winter. The zonal mean of the phase transition

probabilities (Fig. 11) indicates more similarities at lower

latitudes (,408N), where the uncertainty of precipitation

phase change is lower or remains close to zero. At higher

latitudes, KNN generates a higher (lower) probabil-

ity of snowfall occurrence relative to the MRMS in

winter (summer). In particular, larger departures occur

at latitudes higher than 378N in winter and 438N in

summer, where the ground is usually covered with snow.

Figure 12 shows four different satellite overpasses that

capture large storms with distinguishable spatial phase

change. Overall, the KNN approach is skillful in cap-

turing the occurrence and phase of the near-surface

precipitation. As is evident, in case of a single-phase

precipitation event (e.g., orbit 12155), the KNN can

accurately detect the extent of the storm, especially

when a large part of the storm is in liquid form. However,

when several phases coexist within the storm (e.g., orbits

10412, 10796, and 12149), discrepancies arise between

the satellite active/passive products and the MRMS data.

The producedmixed phase by the KNN retrieval reflects

the uncertainty between the satellite active/passive re-

trievals where a freezing point is likely to occur in the

DPR ground clutter zone. For example, the storm on the

northern shores of Lake Huron (orbit 12149) is well

detected in terms of its spatial extent. The phase de-

tection in the GPM passive product (GPROF) and the

MRMS products is consistent since both products rely

significantly on the wet-bulb temperature data. How-

ever, the DPR product differs significantly from other

products and produces more liquid phase over the

southern edge of the storm. As is evident, the KNN re-

trievals capture this discrepancy through a mixed phase

detection.

It is surprising that in orbits 10412 and 12149

(Fig. 12), the DPR reports the phase as liquid where

the GPROF classifies the phase largely as solid since the

discrepancy is often in the other direction. Based on the

atmospheric temperature profile derived from environ-

mental ancillary data (2A-DPRENV) used in the active

retrieval algorithm, we conclude that the there is a

FIG. 13. Inversion of the air temperature at (top) orbit 10412 on 28 Dec 2015 and (bottom) orbit 12149 on 18 Apr 2016. The data

(2A-DPRENV) are presented at four ranges from 0 (surface) to 1.5 km.
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FIG. 14. (top) The digital elevation map (DEM) of the Olympic Mountains and (middle) the precipitation phase by the DPR, GPROF,

WRF, and KNN for orbits 9722 (14 Nov 2015, first row), 9773 (17 Nov 2015, second row), and 10019 (3 Dec 2015, third row). (bottom)

Average probability of phase for 117 GPM inner-swath overpasses from 1 Nov to 23 Dec 2015. The last column shows the 2-m air

temperature from the WRF simulations.
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temperature inversion when the storm is happening

(see Fig. 13). In this case, liquid precipitation can

refreeze near the surface and may not be captured by

the DPR.

2) COMPARISON WITH THE WRF SIMULATIONS

DURING OLYMPEX

The MRMS data lack coverage over mountainous

regions, thus we need a venue with rich ground-based

observations for further evaluation of the presented

approach. There is a wealth of orographic precipitation

data during the GPM OLYMPEX (Houze et al. 2017)

from 1 November to 23 December 2015. The Olympic

Mountains are located in the northwestern corner of

Washington State, United States (Fig. 14), with a dom-

inant orographic precipitation regime. This regime is a

result of the abrupt uplift of moisture-laden southwest

airflow coming from the midlatitude baroclinic storm

systems. A few high-elevation snow and precipitation

gauges were used during the OLYMPEX field cam-

paign. However, the coarse temporal resolution of the

DPR (i.e., 117 partial overpasses), relative to the 56-day

duration ofOLYMPEX, hamper their use for our purpose.

Therefore, we choose the outputs of a high-resolution

(1.33 km) hourly WRF simulation by the Northwest

Modeling Consortium over the Olympic Mountains

(Mass et al. 2003).

Currier et al. (2017) used the microphysical scheme of

WRF to estimate precipitation phase and showed that

the results are relatively unbiased when compared with

the OLYMPEX ground-based observations. The data

are available from November 2015 to May 2016 and con-

tain almost 117 full or partial overlaps with DPR over-

passes. First, the DPR retrievals are spatially resampled to

match the 1.33-kmWRFoutputs. Then, the hourly outputs

of theWRF are interpolated to match the scanning time

of the DPR. To convert the interpolated WRF outputs

to discrete precipitation phase, we follow a simple rule.

If the ratio of reported snowfall to rainfall intensity is

higher (lower) than 0.66 (0.33), then the precipitation is

considered as solid (liquid) phase; otherwise, it is labeled

as mixed.

Figure 14 illustrates the precipitation phase for the

DPR, GPROF,KNN, and theWRF for threeGPMorbits

(9722, 9773, 10019). We observe that at high-elevation

regions, the KNN detects mixed phase over the areas

that exhibit phase discrepancies between the GPROF

and DPR. We see that these KNN results are in a

good agreement with the WRF simulations. However,

it is important to note that the precipitation phase

partitioning in the WRF outputs is based on cloud mi-

crophysical parameters in the atmospheric boundary

layer, and thus its mixed-phase precipitation is physi-

cally different than the defined mixed-phase category in

KNN retrievals.

We calculate and compare the average phase outputs

of the DPR, GPROF, KNN, and WRF data for all 117

coincident DPR overpasses. We found that compared

with the average phase probability of WRF, the KNN

precipitation phase is positively biased by about 28%

TABLE 1. Quality metrics obtained by comparing the annual

probability of phase transition between the KNN results and the

reference product (REF). Shown statistics are the normalized root-

mean-square difference (RMSD), Spearman’s correlation r, and

the KL divergence.

Metrics r RMSD KL (Dp 5 0.05)

Winter (November–April) 0.91 0.12 0.06

Summer (May–October) 0.89 0.14 0.10

TABLE 2. The annual probability of hit and false alarm for theKNN results over different land surface types fLg3s51 and detection classes

fDg4i51. Here, s 5 1–3 represent the ground and wet and dry snow-covered surfaces; i 5 1 denotes the detection of precipitation occur-

rence; and i5 2–4 represent the detection of liquid,mixed, and solid phase, respectively. The results over the dry snow coverL3 are further

stratified based on the annual percentage of the snow.

Land surface Annual percentage of dry snow cover L3

L1 L2 L3 0–0.10 0.10–0.25 0.25–0.45 0.45–0.70 0.70–1.00

Probability of hit

D1 0.75 0.78 0.86 0.77 0.84 0.86 0.84 0.87

D2 0.82 0.83 0.90 0.85 0.89 0.90 0.91 0.92

D3 0.86 0.89 0.92 0.88 0.90 0.93 0.92 0.92

D4 0.86 0.86 0.94 0.88 0.93 0.94 0.96 0.95

Probability of false alarm

D1 0.06 0.09 0.11 0.09 0.08 0.13 0.09 0.11

D2 0.10 0.05 0.04 0.07 0.05 0.06 0.04 0.04

D3 0.09 0.08 0.05 0.08 0.05 0.07 0.06 0.05

D4 0.08 0.05 0.04 0.08 0.05 0.05 0.04 0.04
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(i.e., KNN captures more solid phase thanWRF; Fig. 14).

However, this bias is about 31% at elevations above

800m, while reduced to about 24% for lower elevations.

Additionally, the results show that over areas with ele-

vations higher than 800m, the KNN phase bias is sig-

nificantly smaller compared to both DPR (positive bias

;48%) and GPROF (negative bias ;56%). At eleva-

tions below 800m, the KNN is less biased than the posi-

tively biased DPR (;41%), but about 9% more biased

than GPROF with a negative bias of ;19%. Overall,

these results indicate that even though the KNN phase

detection is consistent with the satellite products,

there are notable discrepancies with the WRF simu-

lations over the mountainous regions, which need

further investigation.

6. Summary and discussion

We proposed a Bayesian algorithm for detection

of precipitation occurrence and phase from satellite

observations, with particular emphasis on snowfall de-

tection over snow cover. The algorithm relies on a nes-

ted k-nearest neighbor (KNN) search and probabilistic

vote rules for detection of precipitation occurrence and

its phase. The a priori database in the algorithm contains

collocated GMI brightness temperatures (10.65–183GHz)

andDPRprecipitation data that were stratified based on

snow-cover retrievals from the MODIS sensor on board

theTerra satellite. The precipitation phase data from the

GPM passive and active products were combined to

provide a reference database for testing the skill of the

algorithm.

The results demonstrated that the weighted Euclidean

distance can be used as a similarity metric for precipitation

phase detection in aBayesian setting,with improved results

over snow-covered surfaces. We demonstrated that the

KNN is able to identify precipitation phase withminimal

dependency on ancillary data, such as the near-surface

air temperature and moisture. The results showed that

the global probability of hit for detection of solid pre-

cipitation over dry snow cover could reach up to;94%.

However, the detection skill of the algorithm is de-

creased over regions with dense vegetation due to re-

duced polarization signal. A larger phase discrepancy

was found when the KNN results were compared with

the ground-based precipitation phase, which remains

to be addressed in future research.

It is important to emphasize that we have used V04

GPM official products. We expect to see fewer discrep-

ancies between theGPM retrievals and the ground-based

phase products in the following versions, because the

latest version of the GPROF phase detection algorithm

benefits from the longer GPM radar/radiometer joint

records and the newDPR algorithm relies on an improved

parameterization of ice microphysics.

Linking the algorithm with physical or observa-

tional databases that contain additional information

on snow-cover physical properties (e.g., snow thick-

ness, density, and liquid water content) and veg-

etation density can be a promising line of research.

Furthermore, exploring the ways to constrain the

output of the algorithm to the snowfall retrievals by

the CloudSat radar may also help to improve the ac-

curacy of snowfall detection. A physically realistic

definition of mixed-phase precipitation based on

cloud microphysics may reduce the uncertainties in

phase retrievals. Finally, future research is also re-

quired to expand and evaluate the proposed algorithm

with direct comparison of its results with ground-based

gauge observations.
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