FEBRUARY 2019 TAKBIRI ET AL. 251

-

Global Precipitation Measurement (GPM)

A Prognostic Nested k-Nearest Approach for Microwave Precipitation
Phase Detection over Snow Cover

ZEINAB TAKBIRI AND ARDESHIR EBTEHAJ

Department of Civil, Environmental and Geo-Engineering, and St. Anthony Falls Laboratory,
University of Minnesota, Twin Cities, Minneapolis, Minnesota

EF1 FOUFOULA-GEORGIOU

Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

PIERRE-EMMANUEL KIRSTETTER

Advanced Radar Research Center, University of Oklahoma, and National Severe Storms Laboratory,
Norman, Oklahoma

F. JOSEPH TURK

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

(Manuscript received 3 February 2018, in final form 8 November 2018)

ABSTRACT

Monitoring changes of precipitation phase from space is important for understanding the mass balance of
Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for
prognostic detection of precipitation and its phase using passive microwave observations from the Global
Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to
search through an a priori database populated with coincident GPM radiometer and radar observations as
well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official
precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and
Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial
precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The
algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular,
the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow
cover, when compared to other surface types. The main reason is found to be related to the ability of the
algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold
snow-covered surfaces.

1. Introduction the twenty-first century (Karl et al. 1993; Mote et al.
2005; Pederson et al. 2011). Thus, global monitoring of
snowfall from space is key for improved understanding
and prediction of ongoing changes in the cryosphere and
the implications for sustainable management of water
and food resources—especially in mountainous areas of
the world.

In the past three decades, significant progress has
been made in microwave precipitation retrieval as
part of the Tropical Rainfall Measuring Mission (TRMM)
satellite in 1997 (Kummerow et al. 1998). The launch
Corresponding author: Zeinab Takbiri, takbi001@umn.edu of the Global Precipitation Measurement (GPM) core

More than two billion people rely on glacier and
snowmelt for their water supply (Mankin et al. 2015).
Snowfall accounts for approximately 30%-90% of
the global precipitation over mid- to high latitudes
(Levizzani et al. 2011) and is the main input to the ac-
cumulation processes of snowpack and glaciers (Radi¢
et al. 2014). In recent decades, snowpack reservoirs
have declined and are projected to further decline in
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satellite (Kidd and Huffman 2011; Hou et al. 2014) has
provided a unique opportunity for improved understand-
ing of midlatitude precipitation and its phase change
beyond what the TRMM satellite could offer (Skofronick-
Jackson et al. 2017).

The snowfall microwave scattering signal can be
captured at frequencies above 80 GHz as these high
frequencies are more sensitive to ice scattering com-
pared to lower frequencies, which largely respond
to variations of surface emissivity (Kulie et al. 2010;
Skofronick-Jackson and Johnson 2011; Gong and Wu
2017; You et al. 2017). Among high-frequency chan-
nels, Bennartz and Bauer (2003) found that frequencies
around and above 150 GHz provide a strong polariza-
tion signal for snowfall detection (Gong and Wu 2017;
You et al. 2017; Panegrossi et al. 2017).

Remote sensing of snowfall is among the most
challenging tasks in precipitation retrieval algorithms
(Bennartz and Bauer 2003; Skofronick-Jackson et al.
2004; Noh et al. 2009; Kongoli et al. 2015). Detection
of snowfall is challenging because it involves complex
and dynamic interactions between the snowfall scatter-
ing signal and the surface. First, compared to rainfall, the
snowfall backscattering is much weaker (Grody 1991;
Kim et al. 2008; Kulie et al. 2010) and depends on more
complex microphysical characteristics snowfall such as
shape and density of snowflakes (Liu 2008; Petty et al.
2010; Skofronick-Jackson and Johnson 2011). These
characteristics are difficult to accurately parameterize
as of today. Second, the already weak snowfall scattering
signal tends to be masked by the increased atmospheric
emissivity and liquid water content in precipitating
conditions (Liu and Seo 2013; Wang et al. 2013; Panegrossi
et al. 2017). Third, changes in surface emissivity due to
snow accumulation on the ground can significantly alter
the snowfall microwave signal. Dry snow cover scatters
the upwelling surface radiation at frequencies above
20 GHz (Ulaby and Stiles 1980; Hallikainen et al. 1987)
similar to the snowfall (Grody 2008). As a result, the
snowfall microwave signature gradually weakens as
snow accumulates on the ground (Ebtehaj and Kummerow
2017). The snow-cover scattering evolves with time as a
function of snow-cover metamorphism. For example, a
small amount of liquid water content (e.g., 2%) signifi-
cantly reduces the snow-cover scattering and increases
its absorptivity (Stiles and Ulaby 1980; Hallikainen et al.
1986, 1987). Hence, snow cover has a time-varying effect
on snowfall upwelling signal.

Physical and empirical approaches have been developed
for microwave retrievals of snowfall. Skofronick-Jackson
et al. (2004) presented a physical method to retrieve
snowfall during a blizzard over the eastern United States
using high-frequency observations from the Advanced
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Microwave Sounding Unit B (AMSU-B) instrument.
Kim et al. (2008) simulated atmospheric profiles of a
blizzard storm with the mesoscale MM5 model and a
delta-Eddington-type radiative transfer (RT) model
to produce a storm-scale database for snowfall re-
trieval using AMSU-B observations. Noh et al. (2009)
used a large number of snowfall profiles from airborne,
surface, and satellite radars, as well as an atmospheric
RT model (Liu 1998) to generate a regional database for
snowfall retrievals using the AMSU-B data. The study
used the NESDIS Microwave Land Surface Emissivity
Model (Weng et al. 2001) to provide surface emissivity
as an input to the RT model. The largest retrieval errors
were found to be over snow-covered surfaces.

Empirical passive microwave snowfall retrieval al-
gorithms largely rely on ancillary data of precipitation
radar and air temperature profile. A family of these
algorithms relies on thresholding the brightness tempera-
ture at different channels (e.g., Staelin and Chen 2000;
Chen and Staelin 2003; Kongoli et al. 2003). For exam-
ple, Kongoli et al. (2015) developed a statistical approach
that partitions high-frequency brightness temperatures
(=89 GHz) into two distinct warm and cold weather
regimes by thresholding the brightness temperature at
53 GHz.

Another class of empirical approaches relies on Bayesian
techniques. These techniques use a database or a lookup
table that relates brightness temperatures of snowing
clouds to the radar snowfall observations along with
the atmospheric temperature profile. As an example,
Liu and Seo (2013) used matched observations from
the CloudSat Profiling Radar (CPR), the AMSU-B, and
NOAA'’s Microwave Humidity Sounder (MHS). More
recently, Sims and Liu (2015) used the CloudSat radar
and multiple ground-based reanalysis data, including
near-surface air temperature, atmospheric moisture,
low-level vertical temperature lapse rate, surface skin
temperature, surface pressure, and land cover types to
diagnose precipitation phase partitioning. This algorithm
is deployed in the GPM operational precipitation re-
trievals (Kummerow et al. 2015). It is worth noting that
most of these algorithms use reanalysis wet-bulb tem-
perature that exhibits the strongest correlation with the
precipitation phase (Matsuo et al. 1981; Motoyama 1990;
Lundquist et al. 2008; Kienzle 2008; Ye et al. 2013). How-
ever, the reanalysis data are often available at coarse
spatial scales with significant uncertainty, which hamper
the applicability for accurate detection of snowfall
(Harpold et al. 2017).

In this paper, we examine a prognostic Bayesian
k-nearest neighbor (KNN) algorithm that strictly relies
on observed passive microwave brightness temperatures
and does not use any online reanalysis data of temperature
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and moisture profiles. This approach is based on a
weighted distance metric applied on an a priori database
to detect overland precipitation phase. The a priori da-
tabase is populated with combined radar-radiometer
observations from the GPM satellite. This database is
then stratified using data from the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor to account
for effects of the background snow-cover emission. We
demonstrate that the algorithm shows improved skill in
detection of snowfall over snow cover and can predict
the likelihood of precipitation phase changes in the at-
mospheric boundary layer, which is not well observed by
the GPM radar.

In summary, the presented algorithm isolates a few
physically relevant candidate vectors of brightness
temperatures in the database via a weighted Euclidean
distance. Using these isolated candidates, the method
detects the precipitation and its phase, based on a
probabilistic decision rule. To test the performance of
the proposed approach, the database is populated by
merging the outputs of both passive (Sims and Liu 2015)
and active (Iguchi et al. 2017) GPM products using all
overland observations from June 2015 to May 2016. We
compare the results with the ground-based Multi-Radar
Multi-Sensor (MRMS) data over the conterminous
United States (CONUS; Zhang et al. 2011, 2016). The
outputs of a high-fidelity mesoscale simulation model
are also used for further evaluation of the results over
high altitudes, during the Olympic Mountains Experiment
(OLYMPEX) in 2015 (Houze et al. 2017).

The paper is structured as follows. Section 2 briefly
describes the database and the phase detection method
used on the operational GPM radar and radiometer
products. Section 3 elaborates on the effects of snow
cover on passive microwave signal of snowfall at dif-
ferent frequency channels by analyzing a large dataset
of GPM observations. Section 4 explains the proposed
KNN algorithm followed by the results presented in
section 5. Concluding remarks and future directions of
the research are discussed in section 6.

2. Database description

The Dual-Frequency Precipitation Radar (DPR) aboard
the GPM core satellite detects precipitation reflectivity
at Ka (35 GHz) and Ku band (13.6 GHz). The GPM
Microwave Imager (GMI) captures the upwelling emission/
scattering signals of the surface and the atmosphere
at 13 frequency channels ranging from 10 to 183 GHz.
On the one hand, observations by the DPR and the
GMI high-frequency channels (>80 GHz) provide in-
formation about the microwave signature of precipitation
and more specifically about snowfall ice scattering. On the
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other hand, observations by the low-frequency chan-
nels (>80 GHz) add information about the land surface
characteristics that leads to improved detection skill
by the presented algorithm. This study uses level-1I
near-surface precipitation phase retrieval from DPR
(active) product (2A-DPR-V04, normal scan), GMI
(passive) product (2A-GPROF-V04), and the level 1B
calibrated GMI brightness temperatures.

In DPR level 11, the precipitation phase is determined
by the dual-frequency retrieval approach that uses the
differential attenuation between the Ku- and the Ka-band
reflectivity values (Iguchi et al. 2012, 2017). The differ-
ential attenuation method ingests ancillary atmospheric
profile data such as air temperature, pressure, and the
microphysical parameterization of the snow and rain
particle size distribution. The DPR surface retrieval is
inferred from the near-surface reflectivity observations
in the clutter-free region. Above relatively flat surfaces,
the altitude of this region varies from 1 to 2 km from nadir
to the edge of the DPR swath. The depth of this region
is often increased over complex terrains. As a result, any
precipitation within the ground clutter region cannot be
detected by the radar. Moreover, DPR has limited ca-
pability to detect light precipitation with a rate below
~02mmh ™! (Hou et al. 2014; Kubota et al. 2014).

Unlike the DPR that provides range-resolved infor-
mation about the precipitation backscattering, the GMI
observes an integration of precipitation scattering in a
continuum that extends from the land surface to the top
of the atmosphere. As previously explained, the current
operational algorithm for passive detection of precipitation
phase relies on thresholding of the near-surface wet-
bulb temperature (Sims and Liu 2015). The wet-bulb
temperature is processed offline from reanalysis of
ancillary data, which often suffer from different sources
of uncertainty, especially due to its coarse resolution over
topographic features and structurally complex land
surfaces (Li et al. 2008).

For implementing and testing the proposed algorithm,
we create a reference product (REF) for precipitation
occurrence and phase change. This REF product is based
solely on the occurrence information from the DPR data.
For determining the precipitation phase, we use the
inner-swath phase information from both GPM active
and passive products. None of these products provides
direct phase estimation; however, each has unique in-
formation based on the atmospheric and surface condi-
tions. Specifically, the REF product determines the phase
by applying a logical operator to both active and passive
products. The radar phase retrieval is reported as solid,
liquid, and mixed, while the phase probability in GPROF
is from zero (solid) to one (liquid). We therefore first
discretize the GPROF phase probability into solid (phase
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probability less than 0.5) and liquid (phase probability
greater than 0.5) to match the radar phase. Second, we
assign the phase of REF precipitation as solid or liquid
when both active and passive phases are solid or liquid.
Otherwise, the phase is labeled as mixed. Therefore, the
mixed phase in the REF product refers to those cases
where the precipitation phases from the passive and ac-
tive products do not agree and thus should not be literally
interpreted. By combining the active and passive phase
information through this logical rule, we implicitly ad-
dress the limitations of DPR in identifying precipitation
phase change in the ground clutter region which overlaps
with the boundary layer.

Itisimportant to note that the so-called mixed category
depends on the threshold (0.5), used for discretization
of the passive phase. Understanding the impacts of this
threshold on the retrieval requires a thorough investiga-
tion outside the scope of this study. It is worth noting that
choosing this threshold results in 12% of mixed phase
data in the REF product, in which 10% corresponds to
liquid passive phase and solid active phase (scenario 1)
and 2% otherwise (scenario 2). The first scenario might
be related to those conditions where the melting layer is
in the clutter region. The second scenario may be related
to a temperature inversion near the surface that causes a
refreezing of precipitation.

The MODIS daily snow-cover fraction (MOD10A1;
Hall et al. 2002) and land surface skin temperature
(MOD11A1; Wan 2014) are added to the database. The
data are used from the MODIS sensor on board the
Terra satellite. The MODIS snow cover and surface tem-
perature data are available at a resolution of 500 and
1000 m, respectively. We assume that the total daytime
snow-cover fraction does not change significantly be-
tween consecutive overpasses of the GPM and Terra
satellites within one day. Note that this assumption could
give rise to some degree of uncertainty when the data are
matched with nighttime precipitation. We consider a 5-km
DPR pixel as a snow-covered surface when more than
50% of the enclosed high-resolution snow fraction data
indicates the presence of snow cover on the ground. It is
also assumed that the temperature does not vary sig-
nificantly within a 5-km DPR pixel and is considered to
be the average of the cloud-free MODIS temperature
data. As the liquid water content of global snowpack is
not available, we define dry (wet) snow when the skin
and air temperature are both below (above) 0°C (Baggi
and Schweizer 2009).

To account for atmospheric radiometric signals, we
also added the integrated liquid and ice water content of
the clouds, as well as the integrated water vapor content
of the atmospheric column from the second version of
the Modern-Era Retrospective Analysis for Research
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and Applications (MERRA-2-M2I1NXASM; Gelaro et al.
2017). The MERRA-2 data are hourly single-level di-
agnostic products at 0.625° X 0.5°, which are derived
from version 5 of the NASA Goddard Earth Observing
System (GEOS-5) and the Atmospheric Data Assimilation
System (ADAS).

To form the database with a uniform spatial sam-
pling density, the GMI brightness temperatures and
the MERRA-2 reanalysis data are mapped onto the
DPR grids and scanning time using the spatial nearest
neighbor interpolation and temporal linear interpola-
tion techniques. The high-resolution MODIS snow-
cover data are mapped onto and then averaged over
the nearest DPR grids. We collect and process two
consecutive years of data, from June 2014 to May
2016, which lead to a database with more than 5 X 10°
matched data pairs. The data from the first year (June
2014-May 2015) are applied to build the database and
the data from the second year (June 2015-May 2016)
are used to test the proposed algorithm.

3. The effect of snow cover on terrestrial
snowfall signal

Precipitation spectral signatures and their depen-
dence on snow-cover scattering are studied by ana-
lyzing the entire dataset (June 2014-May 2016) for
three surface types (ground without snow cover, wet
snow, and dry snow) and for both liquid and solid phases
of precipitation. Each land-atmospheric class is further
divided into five bins of precipitation intensity r with
equal logarithmic width, log,(r+1/r;) =1, centered at
0.5,1,2,4,and 8mmh™'. We first quantify the effects of
snow cover on the precipitation signal over each surface
type by calculating the mean values of the brightness
temperatures for different precipitation phases and in-
tensities at frequency bands 10-19, 36-89, 166, 183 * 3,
and 183 = 7GHz (Fig. 1). Then, we demonstrate that
the snowfall signal exhibits a weaker scattering signal
than rainfall and reveal that there exists a nonunique
relationship between the brightness temperatures and
snowfall rate over snow-covered surfaces. Last, we high-
light why precipitation phase detection could be less un-
certain over dry than wet snow cover using the presented
approach.

The first three columns in Figs. 1a—i focus on the sig-
natures of rainfall over land surfaces with no snow cover,
wet snow cover, and dry snow cover, where both active
and passive products indicate liquid phase. The signa-
tures over the ground with no snow cover are mainly
affected by the upwelling surface emission, the upwelling
emission by cloud liquid water path, as well as scattering
by the cloud ice particles and large raindrops. As it is well
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FIG. 1. Variation of mean brightness temperatures (June 2014-May 2016) in response to changes in precipitation intensity for different
land-atmosphere classes including the (a)-(i) liquid and (j)—(r) solid precipitation phase over the ground (no snow) and wet and dry snow
cover. The bins are five logarithmically (base 2) spaced intervals with the width of 1 mmh ™! in the log space.

understood, due to strong background emission at fre-
quencies 10-36 GHz, the overland precipitation micro-
wave signal is difficult to be separated from the surface
contributed signal in these channels. For example, due to
the rainfall emission, the mean brightness temperature at
10h GHz only increases by less than 5K as the intensity
increases from 0.5 to 8Smmh ™! (Fig. 1a).
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On average, we observe that over all three land sur-
face types, the brightness temperatures monotonically
decrease for frequencies above 80 GHz as the rainfall
intensity increases. However, the significance of scatter-
ing decreases over snow-covered surfaces (Figs. 1d-i).
For example, at 89 and 166 GHz, the average decrease of
brightness temperature per 1 mmh ™' increase in rainfall
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intensity is about 3.0 and 3.6 K (Figs. 1d,g), while these
rates are around 1.2 and 2.3K over the dry snow cover
(Figs. 1h,i). As expected, the 183 = 3 GHz is the least
sensitive channel to the changes of rainfall rate. This
channel becomes almost insensitive to the rainfall in-
tensity when the snow accumulates on the ground and
exhibits less than 0.2 K of cooling effect per unit rainfall
(Fig. 1i).

The last three columns in Figs. 1j—r present brightness
temperatures of snowfall over the three explained land
surface types, where both active and passive products
indicate solid phase. Similar to the overland rainfall, the
emission and the scattering signals become more sig-
nificant from low- to high-frequency channels. Over the
surfaces with no snow cover, when the snowfall intensity
increases from 0.5 to 8§mmh ™, the brightness temper-
atures at frequencies = 36 GHz increase ~6 K (Fig. 1j).
This warming could be due to increased cloud liquid
water path (from 75 to 101 gm™~2; Figs. 2a,d), water va-
por path (from 9.5 to 13.1 kgm ™% Figs. 2c.f), and surface
temperature (from 273 to 274.2 K; Figs. 2g.i).

As a result of the snowfall scattering, the average
brightness temperature at the 166-GHz frequency
channel (Figs. 11,0,r) decreases about 14-20 K, which
corresponds to a cooling rate of 1.75-2.50K per unit
snowfall rate. This observation reaffirms the impor-
tance of 166 GHz for snowfall retrieval compared to
the 89-GHz channel (see Bennartz and Bauer 2003; Shi
et al. 2010; Skofronick-Jackson et al. 2013; You et al.
2017). When the precipitation intensity increases from
0.5 to 8Smmh !, the average decrease in brightness tem-
peratures at 166 (89) GHz is about 18-30 (10-22) K for
rainfall and 10-20 (2-9) K for snowfall over all exam-
ined land surface types. Therefore, the scattering sig-
nal weakens when the precipitation falls in the solid
form; however, this weakening effect is less significant
at 166 GHz than 89 GHz. In particular, over the ground
with no snow cover, the signal becomes weaker approx-
imately by 30% and 57% at 166 and 89 GHz, respec-
tively, while these rates are 44% and 80% over the dry
SNOW COVer.

Observations demonstrate that the snowfall scatter-
ing signal decreases at frequencies = 89 GHz when snow
begins to accumulate on the ground. An interesting
observation is the nonmonotonic response of the ob-
served brightness temperatures to the snowfall rate over
snow-covered surfaces. For example, over the dry snow,
the brightness temperatures at =89 GHz increase when
the snowfall intensity varies from 2 to 4mmh ™, showing
an irregular transition from a scattering to an emis-
sion regime (Figs. 1q,r). Although less pronounced, a
similar pattern is observed over the wet snow cover
(Figs. 1n,0).
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The possible reasons for this anomaly could be related
to an emission signal from either the atmosphere or
the land surface. The atmospheric-related reasons can
be due to the enhanced emission from the cloud liquid
water and/or the water vapor path; both of them often
increase with increasing snowfall intensity (Liu and Seo
2013; You et al. 2017; Ebtehaj and Kummerow 2017).
The land-surface-related causes largely correspond to
the increased surface temperature and/or changes in
the snow-cover physical properties. To find the most
prominent contributing factor, we analyzed the varia-
tions of liquid, ice, and vapor water path derived from
MERRA-2 data, the surface temperature derived from
MODIS, and the mean snowfall intensity at different
latitudes (Figs. 2a-f).

Over the ground with no snow cover, as the average
precipitation intensity increases, the liquid and ice water
path increase during rainfall and even more significantly
during snowfall. Specifically, the liquid water path in-
creases from 14% to 26% (Figs. 2a,d) and the ice water
path increases about 23% and 37% (Figs. 2b,e) for rain-
ing and snowing events, respectively. Over dry snow
cover, there is no evidence of any additional changes
either in liquid or in ice water path that could cause the
observed irregularity. Figure 2f shows that the water
vapor path increases about 2.5 kgm ™2 between snowfall
intensities of 2 and Smmh ™! over the dry snow cover,
which cannot be the main reason for the observed anom-
aly. The reason is that the sensitivity of the 166-GHz
channel to variation of water vapor decreases significantly
for snowfall intensities > 0.8mmh ™' (You et al. 2017).
Therefore, we speculate that the anomaly could be largely
due to a surface effect.

The MODIS surface temperature data (Wan 2014)
do not show any significant dependency on the rate of
snowfall (Fig. 2i). Therefore, we hypothesize that the
detected emission could be due to either an unknown
retrieval uncertainty or, more likely, to the climatology
of the snowfall and snow cover dynamics. The database
shows that light but prolonged snowfall intensities
(<2mmh ") occur at latitudes above >55°N over dry
and thicker snow cover (Fig. 2j). However, high-intensity
but less-frequent snowfall is more likely to occur over
lower latitudes with a thinner snow-cover climatology. In
other words, the high snowfall rates mostly represent the
climatology of lower latitudes with thinner depth of snow
cover, less volume scattering, and thus stronger surface
emission than the thicker snow cover of higher latitudes.

The above observations from Figs. 1 and 2 lead
us to hypothesize that the distance between vectors
of brightness temperature encodes a similarity metric
that can be used to discriminate the precipitation from
the background signal. A larger distance indicates larger
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FIG. 2. Average variations of the (a),(d) cloud liquid water path (LWP); (b),(e) cloud ice water path (IWP); (c),(f) water vapor path
(WVP); (2),(i) skin temperature (Ts); and (h),(j) latitudes against the precipitation intensity. The ice and liquid water paths are extracted
from the MERRA-2 data (M2I1INXASM; Gelaro et al. 2017) and the surface temperature data are from MODIS (MOD11A1; Wan 2014)
from June 2014 until May 2016. The intensity bins are the same as Fig. 1.

radiometric dissimilarity that could be used for improved  clear sky (no precipitation) and precipitating atmosphere
detection of the precipitation from the background signal.  over the three land surface types (Fig. 3). In this figure,
Using the database, we calculate the average distance the shaded areas in light blue (orange) represent the de-
between the vectors of brightness temperatures for the tected emission (scattering) signal. The key observation
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FIG. 3. Average distance between vectors of mean brightness temperatures in the database from June 2014 to May 2016 for a clear sky
(r = 0) and a near-surface precipitating atmosphere (r > 0) with (a)—(c) liquid and (d)—(f) solid phase overland precipitation with no snow
cover, wet snow cover, and dry snow cover. The blue and orange shaded areas indicate the cooling (scattering) and warming (emission)
signals of precipitation. The mean root squared distance between the no precipitating (clear sky) and precipitating atmosphere is also

presented for each land-atmosphere class.

is that when the snow-cover scattering increases, the
precipitation signal transitions from a scattering to an
emission regime. The wet snow cover weakens the
precipitation scattering as it is less emissive than the
ground with no snow cover. However, the less emissive
dry snow reveals the precipitation emission signal.

For the liquid phase, we can see that the rainfall scat-
tering over the ground with no snow cover is manifested
by a large distance between the high-frequency channels =
89 GHz, while the distance over lower-frequency channels
is insignificant (Fig. 3a). This distance shrinks over the wet
snow cover (Fig. 3b), where the dominant precipitation
signal is still due to its scattering over high-frequency
channels. This shrinkage is largely explained because wet
snow is not a strong scatterer and thus reduces slightly the
surface emission and the high-frequency scattering of
rainfall. However, when the surface emission is signifi-
cantly reduced over the dry snow (Fig. 3c), the emission of
rainfall can be detected as a warming signal across almost
all frequency channels.

For the solid phase, the distance is relatively large be-
tween the background and precipitation signals when
there is no snow on the ground (Fig. 3d). This distance
captures a shift across all frequency channels and a reduced
polarization signal above 37 GHz. The shift is largely due to
the differences between the surface temperature of clear
sky versus a snowing atmosphere, while the reduced po-
larization is chiefly due to diffused scattering of the
snowflakes. Similar to the liquid precipitation, this
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distance shrinks when the ground is covered with wet
snow, where the shift between the background temper-
atures almost vanishes as the surface temperature in-
creases. We can see that when the snowfall is occurring
over dry snow, an emission signal is observed, chiefly in
response to the increased liquid and water vapor paths
(see Liuand Seo 2013; You et al. 2015, 2016; Ebtehaj and
Kummerow 2017). The MERRA-2 data indicate increases
of ~ 58gm ™2 and 4.8kgm 2 in liquid and vapor water
paths, respectively, when snowfall occurs. This emission
signal indirectly indicates the likelihood of precipitation
by increasing the brightness temperatures rather than a
direct physical signature of precipitation. Because of this
emission signal, the vector of snowfall brightness tem-
peratures becomes dissimilar to the surface emission,
which could lead to improved snowfall retrievals over
dry snow cover—if a proper distance metric is used to
quantify the dissimilarity.

4. A nested nearest neighbor algorithm for
precipitation phase detection

The nearest neighbor matching has been successfully
utilized for passive microwave retrieval of rainfall using
the TRMM data (Ebtehaj et al. 2015, 2016) and for
microwave mapping of flood inundation using the
Special Sensor Microwave Imager/Sounder observations
(Takbiri et al. 2017). In this section, we introduce a prog-
nostic algorithm that relies on a nested k-nearest neighbor
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matching that finds the best representation of a query
brightness temperature in the database to detect precip-
itation occurrence and phase. The criterion for matching
relies on the hypothesis that similar vectors of brightness
temperatures represent similar atmospheric profiles.
In other words, an observed pixel-level vector of bright-
ness temperature for a precipitating atmosphere is more
similar to a collection of precipitating brightness tem-
peratures in the database than those that refer to a non-
precipitating atmosphere. Here, we define the similarity
metric by a weighted Euclidean distance between the
query vector of observed brightness temperatures
and those stored in the a priori database, described in
section 2.

To set the notation, hereafter, the vector of brightness
temperatures is denoted by Th and the ancillary data
containing information on the precipitation occurrence,
phase, and snow cover are represented by the vector r.
The database is pruned to contain balanced information
over two different land surface types {£}§: | and four
independent atmospheric conditions {.A};_,. The land
surface types are defined only based on the presence
(s =1) and absence (s = 2) of snow cover, while the at-
mospheric conditions refer to the clear sky (a = 1), lig-
uid (a = 2), solid (a = 3), and mixed (a = 4) precipitating
atmosphere.

To reduce the algorithmic complexity, we do not differ-
entiate between the dry and wet snow cover in the data-
base. Each land class consists of pairs of {(Tb,,, rm)}ﬁle,
where M =2 X 107 are evenly distributed between clear
and precipitating sky. Those pairs in the precipitating
sky are also evenly distributed between a raining A,,
mixed A3, and snowing .44 atmosphere. It is important
to note that the pairs are randomly selected from their
parent class to avoid any bias toward a specific land or
atmospheric class.

In summary, for a given land surface type and a query
vector of brightness temperatures y, the algorithm relies
on a 3-tuple {(k,l,Wa,pa)}izl, where k, is the number
of nearest neighbors, W, is the atmospheric weight
matrix over each land surface type used in the weighted
Euclidean distance d,, = (y — Th,,)"W,(y — Th,,), and p,
denotes a detection probability measure. The weight
matrix accounts for the relative importance of the
channel combinations for detection of precipitation
and its phases (Ebtehaj and Kummerow 2017). Specifi-
cally, given the land surface types L,, after finding the
k-nearest neighbors {(Th;, l‘,—)}f:1 of each query vector
y, a nested decision-making process is made to detect
precipitation and its phase based on the probability
measure p,,.

In the first step, the algorithm uses (ky, Wy, p1) to
search for the k;-nearest neighbors of {Th;}}", and the
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corresponding ancillary information in the database.
Then, a binary decision is made to label the vector y as a
precipitating observation, when the number of precipitat-
ing neighbors n, is greater than p; X k;. For precipitating
y, the algorithm identifies the precipitation phase by
running a new k-nearest neighbor search using (k,, W», p,)
through those precipitating neighbors {(Tb;, ;) }7;’ | that
are found in the first step, where k, <p; X k;. Then, as
explained before, a binary decision is made to label y as
liquid precipitation, if the number of raining neighbors
n; = max(n;, ns, n,) is greater than p, X k,, where n,,
and n, are the number of mixed and solid precipitation
elements among the k,-nearest brightness tempera-
tures {Th;}*2 . If those conditions are not satisfied, the
algorithm continues similarly to find if the phase of y
is solid or mixed. An algorithmic flowchart is presented
in Fig. 4.

To determine the optimal values of the input parame-
ters k, and p,, we compute the receiver operating char-
acteristic (ROC) curves (Fig. 5), which characterize the
trade-off between the hit and false alarm rates. The prob-
ability of hit is defined as the fraction of occurred events
that were correctly detected, while the false alarm rate
is a fraction of events that did not occur but were in-
correctly detected by the algorithm. Let a represent the
number of correctly detected events, ¢ the number of
missed events, b the number of false detection, and d the
number of correct rejection. Then, the probabilities of
hit and false alarm are defined as a/(a + ¢) and b/(b + d),
respectively. The optimal value of k, is chosen based
on the maximum area under the ROC curves (Hanley
and McNeil 1982), while the best detection probabil-
ity p, is chosen where the curvature of the ROC is
maximum.

5. Results and validation

To test the performance of the proposed approach,
the terrestrial precipitation and its phase are retrieved
over the inner swath of the GMI overpasses from June
2015 to May 2016. As the phase outputs of the algorithm
are discrete values for solid (0), mixed (0.5), and liquid
(1), the temporal mean values associated with these
phases could reveal the overall sensitivity of the algo-
rithm to the seasonal variations of surface temperature
and emissivity. To that end, the phase indices are av-
eraged at orbital levels over the summer and winter
for the nested KNN algorithm and the standard active
and passive GPM products (Fig. 6). To quantify statis-
tical agreements between the results of the algorithm
and those of the REF maps, we calculate the annual
probability of detection, false alarm, and the Heidke
skill score (Doswell et al. 1990) for the presented results
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F1G. 4. Algorithm flowchart of the proposed weighted KNN algorithm for detection of precipitation
occurrence and phase.

Mixed & solid phase detection

in Figs. 7-9. We also compare the algorithm outputs with  events that are coincidentally captured by the DPR and
the precipitation phase products of the MRMS on a  high-resolution ground-based radars (Figs. 12, 13) and
seasonal basis (Figs. 10, 11). Finally, some results are simulated by the Weather Research and Forecasting
presented at a storm scale to demonstrate the detection (WRF) Model (Fig. 14) during OLYMPEX (Houze
capabilities of the algorithm for a few precipitation et al. 2017).
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FIG. 5. Trade-off curves between the probability of hit p; and false alarm p calculated with different numbers of k-nearest neighbors
for detection of the precipitation occurrence and phase over (a)—(c) non-snow-covered surfaces and (d)-(f) snow-covered surfaces. The
optimal values of k and the detection probabilities p are given in each subplot.

a. Global retrievals

The seasonal average of the quasi-global maps of
precipitation phase are presented in Fig. 6, for the inner-
swath data products by the DPR, GPROF, KNN, and
REF. The results are shown as a probability continuum
of phase transition from the liquid (0) to solid (1), at
the grid resolution 0.1°. These results are mapped where
the precipitation is detected only by the DPR for two
seasons. The seasons are defined as summer (June-
October 2015 and May 2016) and winter (November
2015-April 2016) of the Northern Hemisphere.

Overall, since the phase of the passive product is
dictated by the reanalysis data, the results mostly follow
the climatology patterns of near-surface wet-bulb
temperature and are smoother than those of the active
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product (Figs. 6a—d). The smoothness of the GPROF
retrievals could also be due to its ability in retrieving the
light precipitation with intensities below the minimum
detectable rate by the DPR (<0.2mmh™ '), as the
GPROF also uses precipitation data from MRMS
ground-based radar in its a priori database to increase
the retrieval sensitivity to snowfall. Comparison of the
official passive and active products remains outside the
scope of this research; however, there seem to be no-
table differences in the spatial patterns of precipita-
tion phases in these products. The difference in the
source of ancillary data could be a reason for the ob-
served discrepancies, which largely exist over moun-
tainous terrains such as the Andes, Tibetan highlands,
Rockies, Scandinavian Mountains, Alps, and Zagros
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FIG. 6. Seasonal probability of the precipitation phase change. The average phase of the (a),(b) DPR; (c),(d) GPROF; (g),(h) REF
(merged); and (i),(j) KNN algorithm, as well as the differences between (e),(f) the DPR and GPROF products and (k),(1) the REF and
KNN products. The differences are shown where both products detect the precipitation occurrence.
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FIG. 7. The mean annual map of the (a) probability of hit, (b) probability of false alarm, and (c) HSS obtained by comparing the pixel-
level results of the KNN algorithm with the REF product for the detection of precipitation occurrence. (d) The map of snow-cover fraction
is also obtained from the MODIS data (MOD10A1; Hall et al. 2002) coincident with GPM inner-swath overpasses from June 2015 to

May 2016.

Mountains (Figs. 6e,f)—where precipitation is mostly
triggered by topographic features.

The observed differences are not surprising because
of complications in both active and passive retrievals
due to reduced ice scattering in shallow orographic
lifting, heterogeneity of surface roughness, and radio-
metric complexity of high-elevation snow and ice cover
(Tian and Peters-Lidard 2010). The phase discrepancies
also seem to be larger when it comes to identifying pre-
cipitation phase in the summer. For example, over the
Tibetan highlands, the active products classify most of the
summer precipitation as snowfall while the passive product
results in more liquid precipitation, especially over the
Hengduan Mountains in southeast China.

Figures 6i and 6] show the results of the KNN algorithm
in summer and winter and compare them with the REF
map (Figs. 6k,1). Overall, we observe a good agree-
ment between the KNN outputs and the REF target
precipitation product. The differences are more pro-
nounced in the summer than the winter and mostly ac-
cumulated over the mountainous and dense vegetation
regions (Figs. 6k,1). For example, we observe that, in the
summer, the detection probability of solid and mixed
phases are negatively biased (~—12%) over the Rockies
and the Andes. However, in winter, this probability is
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positively biased over small parts of the Scandinavian
Mountains in northern Europe (~+15%). Some of
these mountainous biases are mainly attributed to the
false detection of precipitation occurrence rather than
its phase (Fig. 7b). Additionally, over the tropical forests,
the algorithm falsely detects some mixed precipitation
phases. Over dense vegetative surfaces the microwave
polarization signal becomes very weak (Prigent et al.
1997) due to incoherent vegetation scattering. The lack
of a pronounced polarization signal could be the main
reason for the reduced discriminatory power of the KNN
approach that relies on the Euclidean distance as a
similarity metric.

Visual inspection of the global maps shows a good
spatial and seasonal agreement between the KNN and
REF. The proximity of these two products at the global
scale is quantified by three measures including the
Spearman’s correlation p, the root-mean-square error
(RMSE), and the Kullback-Leibler (KL) divergence in
Table 1. The KL divergence KL”(P 10) = >, P(i)/Q(i)
is a nonsymmetric and nonnegative measure that captures
the proximity of two probability distributions P and Q
and is zero when they are identical. To compute the KL
divergence, between the probability histograms of the
REF (P) and KNN outputs (Q), we discretize P and Q
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FIG. 8. The mean annual map of the probability of hit and false alarm by the KNN algorithm for the detection of the (a),(b) liquid phase;
(c),(d) mixed phase; and (e),(f) solid phase. The results are obtained for all GPM inner-swath overpasses from June 2015 to May 2016.

with n = 20 probability intervals. The RMSE and KL
values are normalized between 0 and 1 for interpretation
convenience. As is evident, the correlation between the
KNN and REF products is around 0.89-0.91 in winter
and summer, indicating that the algorithm is not exces-
sively sensitive to the seasonal changes in land surface
radiometric properties. The normalized RMSE also re-
mains below 14% in both seasons. We see that the KL
values slightly increase from winter (0.06) to summer
(0.10), which indicates that, on average, the KNN method
may exhibit improved detection skills when the extent of
the global snow cover is larger in winter than summer.
To further reveal the error structure of the instantaneous
pixel-level retrievals, we used three statistical measures
including the probability of hit, probability of false
alarm, and the Heidke skill score HSS = 2(ad — bc)/
[(a+c)(c+d)+ (a+b)b+d)] (Doswell et al. 1990),
which ranges from a no skill (—») to a perfect skill (1).
Recall that a is the number of correctly detected
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events, ¢ is the number of missed events, b is the number
of false detection, and d is the number of correct rejection.
To have an adequate number of samples, these quality
measures are calculated using the entire validation period
from June 2015 to May 2016 (Table 2, Figs. 7, 8).

The annual maps of the probability of hit, false alarm,
and HSS score are used to evaluate the detection skill
of the KNN approach against the DPR as a reference
(Fig. 7). The probability of hit over the snow-covered
regions is relatively high. The reason is that the presence
of snow on the ground reduces the surface emission,
which could lead to better detection of the precipitation
emission signal (Fig. 3)—similar to radiometrically cold
ocean surfaces. The low detection rates are mostly over
the areas where the DPR has a low sampling rate. Thus,
lack of skills in these regions could be partly due to lack
of samples in the database. A high probability of false
alarm (~0.2) is seen over some mountainous regions
such as the Tibetan highlands and the western Rockies.
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FIG. 9. Zonal mean values of the probability of precipitation phase
change from liquid (p = 0) to solid (p = 1) by the KNN, DPR,
GPROF, and REF products in (a) winter (November-April) and
(b) summer (May—October). Zonal mean values of (c) probability of
hit and (d) false alarm for the detection of the precipitation occur-

rence and its phase change by comparing the KNN results with the
REF product.

The false detection, mostly in liquid phase, gives rise
to negative biases in detecting frozen and mixed pre-
cipitation (Fig. 61). High (~0.80), medium (~0.66), and
low values (~0.50) of HSS are observed over the snow
cover, tropical forests, and undersampled deserts such
as the Sahara, respectively (Fig. 7c).

The conditional probability of hit and false alarm are
calculated for liquid, mixed, and solid phases (Fig. 8),
with respect to the REF product. For separating the
errors of the precipitation and phase detection, the
probabilities are obtained assuming that the precipita-
tion is correctly detected by the KNN algorithm. Similar
to the precipitation detection, the algorithm displays
improved phase detection capabilities over snow-covered
surfaces (Fig. 8). The probability of hit for the liquid,
mixed, and the solid phase is mostly greater than 0.85
and reaches 0.95 over the high altitudes of North America.
However, we observe a relatively lower detection rate of
around 0.74 for liquid precipitation over the tropical and
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subtropical regions such as the rain forest of Amazonian
and central Africa. The results show that the low
probability of detection for the liquid phase is mostly
because the algorithm detects some false mixed phase
precipitation (Fig. 8d). We speculate that this error could
be partly attributed to the reduced skill of the algorithm
over vegetated surfaces. The reduced detection skill of
the algorithm could also be partly due to warm rain oc-
currences over the heterogeneous land surface of tropical
and subtropical regions where cloud ice scattering is not
significant.

To understand the reasons for improved retrievals over
snow-covered surfaces, the averaged values of the prob-
ability of hit and false alarm are stratified based on pre-
cipitation occurrence D; at liquid D,, mixed D3, and the
solid D4 phase over different land surface types {E}f: 1
where s = 1-3 denotes the ground, wet, and dry snow
cover (Table 2). The probability of precipitation detec-
tion increases by almost 11% from the ground to the dry
snow cover, and 3% from wet to dry snow. An increase
of 8%-11% is also observed in the probability of hit in
detection of solid and liquid phase over dry snow, where
the largest detection rate of 94% is obtained for the
snowfall. The results show that the probability of false
alarm also increases in detection of precipitation oc-
currence over snow cover, whereas it decreases when
it comes to the detection of its phase. Because, once pre-
cipitation is detected, due to significant differences
between the signatures of rain and snowfall, the
probability of false alarm is markedly reduced. Table 2
quantifies the dependency of the probability of hit
and false alarm on the annual percentage of the dry
snow cover. For precipitation detection, the proba-
bility of hit increases by about 10% as the annual
percentage of dry snow increases from zero to more
than 70%, while the probability of false alarm increases
between 2% and 4%. As is evident, for precipitation
phase detection, both probabilities show improvements
of around 4%.

b. Comparison with the ground-based radar

1) COMPARISON WITH MRMS SYSTEM

To further evaluate the performance of the KNN al-
gorithm, we compare its outputs against a precipitation
product derived from the MRMS system (Zhang et al.
2011, 2016). MRMS mosaics three-dimensional volume
scan observations from 146 S-band dual-polarization
Weather Surveillance Radar-1988 Doppler (WSR-88D)
and 31 C-band single polarization Canadian radars.
The product optimally integrates the radar observations
with simulations of atmospheric models as well as hourly
gauge data to produce seamless precipitation rate and
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FI1G. 10. Mean seasonal maps of the probability of precipitation phase change from liquid (p = 0) to solid (p = 1) for KNN in (a) winter and
(b) summer, and for the MRMS in (c) winter and (d) summer, from June 2015 to May 2016.

phase estimates over the CONUS, at spatial resolution
of 1 km at every 2 min. The MRMS products are further
quality controlled and gauge adjusted at finescale fol-
lowing the procedure described in Kirstetter et al.
(2012) to derive a consistent and high-quality surface
precipitation.

To determine the precipitation phase, MRMS uses
thresholds on the wet- and dry-bulb temperatures. Spe-
cifically, the precipitation is labeled as snowfall when
the radar reflectivity exceeds 5 dBZ, the surface temper-
ature is below 2°C, and the surface wet-bulb temperature
is below 0°C (Zhang et al. 2016). Thus, the MRMS rain—
snow delineation is subject to similar uncertainties as in
the passive GPM data (Chen et al. 2016). However, the
uncertainties in detecting precipitation are significantly
lower than the satellite data because of the higher sensi-
tivity and resolution of the ground-based radar obser-
vations, especially over landscapes with no significant
orographic features (Kirstetter et al. 2012). To compare
with the outputs of the KNN algorithm, a reference
surface precipitation is derived by mapping the high-
resolution MRMS data onto, and then averaging over,
the nearest DPR grids (see Kirstetter et al. 2012, 2014).

Figure 10 shows that the spatial variations of the
probability of phase change in the KNN and MRMS
are consistent in the winter and summer seasons. The
calculated values of KL divergence between KNN and
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MRMS are 0.27 and 0.15 in winter and summer, respec-
tively. The values of other calculated similarity metrics
(i.e., p and RMSE) are also deteriorated from summer
to winter (Table 3). These results indicate that even
though the KNN shows improved wintertime detection
of precipitation compared to those in summertime when
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FIG. 11. The zonal mean of the probability of precipitation phase
change from liquid (p = 0) to solid (p = 1) by the KNN and MRMS
products in (a) winter (November—April) and (b) summer (May-
October), from June 2015 to May 2016.
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FIG. 12. Orbital-level precipitation phase detection from the KNN, DPR, GPROF, and MRMS for a few GPM overpasses in-

cluding (top) 10412 on 28 Dec 2015, (top middle) 10796 on 22 Jan 2016, (bottom middle) 12149 on 18 Apr 2016, and (bottom) 12155
on 18 Apr 2016.
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Fi1G. 13. Inversion of the air temperature at (top) orbit 10412 on 28 Dec 2015 and (bottom) orbit 12149 on 18 Apr 2016. The data
(2A-DPRENV) are presented at four ranges from 0 (surface) to 1.5 km.

compared with the REF product (Table 3), the intrinsic
error between the satellite and ground-based data is still
much larger than the satellite retrieval error, especially
in the winter. The zonal mean of the phase transition
probabilities (Fig. 11) indicates more similarities at lower
latitudes (<40°N), where the uncertainty of precipitation
phase change is lower or remains close to zero. At higher
latitudes, KNN generates a higher (lower) probabil-
ity of snowfall occurrence relative to the MRMS in
winter (summer). In particular, larger departures occur
at latitudes higher than 37°N in winter and 43°N in
summer, where the ground is usually covered with snow.

Figure 12 shows four different satellite overpasses that
capture large storms with distinguishable spatial phase
change. Overall, the KNN approach is skillful in cap-
turing the occurrence and phase of the near-surface
precipitation. As is evident, in case of a single-phase
precipitation event (e.g., orbit 12155), the KNN can
accurately detect the extent of the storm, especially
when a large part of the storm is in liquid form. However,
when several phases coexist within the storm (e.g., orbits
10412, 10796, and 12149), discrepancies arise between
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the satellite active/passive products and the MRMS data.
The produced mixed phase by the KNN retrieval reflects
the uncertainty between the satellite active/passive re-
trievals where a freezing point is likely to occur in the
DPR ground clutter zone. For example, the storm on the
northern shores of Lake Huron (orbit 12149) is well
detected in terms of its spatial extent. The phase de-
tection in the GPM passive product (GPROF) and the
MRMS products is consistent since both products rely
significantly on the wet-bulb temperature data. How-
ever, the DPR product differs significantly from other
products and produces more liquid phase over the
southern edge of the storm. As is evident, the KNN re-
trievals capture this discrepancy through a mixed phase
detection.

It is surprising that in orbits 10412 and 12149
(Fig. 12), the DPR reports the phase as liquid where
the GPROF classifies the phase largely as solid since the
discrepancy is often in the other direction. Based on the
atmospheric temperature profile derived from environ-
mental ancillary data (2A-DPRENYV) used in the active
retrieval algorithm, we conclude that the there is a
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FIG. 14. (top) The digital elevation map (DEM) of the Olympic Mountains and (middle) the precipitation phase by the DPR, GPROF,

WREF, and KNN for orbits 9722 (14 Nov 2015, first row), 9773 (17 Nov 2015, second row), and 10019 (3 Dec 2015, third row). (bottom)

Average probability of phase for 117 GPM inner-swath overpasses from 1 Nov to 23 Dec 2015. The last column shows the 2-m air
temperature from the WRF simulations.
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TABLE 1. Quality metrics obtained by comparing the annual
probability of phase transition between the KNN results and the
reference product (REF). Shown statistics are the normalized root-
mean-square difference (RMSD), Spearman’s correlation p, and
the KL divergence.

Metrics p  RMSD KL (Ap = 0.05)
Winter (November-April)  0.91 0.12 0.06
Summer (May-October) 0.89 0.14 0.10

temperature inversion when the storm is happening
(see Fig. 13). In this case, liquid precipitation can
refreeze near the surface and may not be captured by
the DPR.

2) COMPARISON WITH THE WRF SIMULATIONS
DURING OLYMPEX

The MRMS data lack coverage over mountainous
regions, thus we need a venue with rich ground-based
observations for further evaluation of the presented
approach. There is a wealth of orographic precipitation
data during the GPM OLYMPEX (Houze et al. 2017)
from 1 November to 23 December 2015. The Olympic
Mountains are located in the northwestern corner of
Washington State, United States (Fig. 14), with a dom-
inant orographic precipitation regime. This regime is a
result of the abrupt uplift of moisture-laden southwest
airflow coming from the midlatitude baroclinic storm
systems. A few high-elevation snow and precipitation
gauges were used during the OLYMPEX field cam-
paign. However, the coarse temporal resolution of the
DPR (i.e., 117 partial overpasses), relative to the 56-day
duration of OLYMPEX, hamper their use for our purpose.
Therefore, we choose the outputs of a high-resolution
(1.33km) hourly WRF simulation by the Northwest
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Modeling Consortium over the Olympic Mountains
(Mass et al. 2003).

Currier et al. (2017) used the microphysical scheme of
WREF to estimate precipitation phase and showed that
the results are relatively unbiased when compared with
the OLYMPEX ground-based observations. The data
are available from November 2015 to May 2016 and con-
tain almost 117 full or partial overlaps with DPR over-
passes. First, the DPR retrievals are spatially resampled to
match the 1.33-km WREF outputs. Then, the hourly outputs
of the WREF are interpolated to match the scanning time
of the DPR. To convert the interpolated WRF outputs
to discrete precipitation phase, we follow a simple rule.
If the ratio of reported snowfall to rainfall intensity is
higher (lower) than 0.66 (0.33), then the precipitation is
considered as solid (liquid) phase; otherwise, it is labeled
as mixed.

Figure 14 illustrates the precipitation phase for the
DPR, GPROF, KNN, and the WREF for three GPM orbits
(9722, 9773, 10019). We observe that at high-elevation
regions, the KNN detects mixed phase over the areas
that exhibit phase discrepancies between the GPROF
and DPR. We see that these KNN results are in a
good agreement with the WRF simulations. However,
it is important to note that the precipitation phase
partitioning in the WRF outputs is based on cloud mi-
crophysical parameters in the atmospheric boundary
layer, and thus its mixed-phase precipitation is physi-
cally different than the defined mixed-phase category in
KNN retrievals.

We calculate and compare the average phase outputs
of the DPR, GPROF, KNN, and WRF data for all 117
coincident DPR overpasses. We found that compared
with the average phase probability of WRF, the KNN
precipitation phase is positively biased by about 28%

TABLE 2. The annual probability of hit and false alarm for the KNN results over different land surface types {L}f=1 and detection classes
{D}?zl. Here, s = 1-3 represent the ground and wet and dry snow-covered surfaces; i = 1 denotes the detection of precipitation occur-
rence; and i = 2-4 represent the detection of liquid, mixed, and solid phase, respectively. The results over the dry snow cover L3 are further

stratified based on the annual percentage of the snow.

Land surface

Annual percentage of dry snow cover L3

Ly ) L3 0-0.10 0.10-0.25 0.25-0.45 0.45-0.70 0.70-1.00
Probability of hit
Dy 0.75 0.78 0.86 0.77 0.84 0.86 0.84 0.87
D, 0.82 0.83 0.90 0.85 0.89 0.90 0.91 0.92
Ds 0.86 0.89 0.92 0.88 0.90 0.93 0.92 0.92
D, 0.86 0.86 0.94 0.88 0.93 0.94 0.96 0.95
Probability of false alarm
Dy 0.06 0.09 0.11 0.09 0.08 0.13 0.09 0.11
D 0.10 0.05 0.04 0.07 0.05 0.06 0.04 0.04
Ds 0.09 0.08 0.05 0.08 0.05 0.07 0.06 0.05
D, 0.08 0.05 0.04 0.08 0.05 0.05 0.04 0.04
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TABLE 3. Quality metrics obtained by comparing the annual
probability of phase transition between the KNN retrievals and
MRMS observations. Shown statistics are the normalized RMSD,
Spearman’s correlation p, and the KL divergence.

Metrics p RMSD  KL(Ap = 0.05)
Winter (November-April)  0.72 0.29 0.27
Summer (May-October) 0.78 0.21 0.15

(i.e., KNN captures more solid phase than WRF; Fig. 14).
However, this bias is about 31% at elevations above
800m, while reduced to about 24 % for lower elevations.
Additionally, the results show that over areas with ele-
vations higher than 800m, the KNN phase bias is sig-
nificantly smaller compared to both DPR (positive bias
~48%) and GPROF (negative bias ~56%). At eleva-
tions below 800 m, the KNN is less biased than the posi-
tively biased DPR (~41%), but about 9% more biased
than GPROF with a negative bias of ~19%. Overall,
these results indicate that even though the KNN phase
detection is consistent with the satellite products,
there are notable discrepancies with the WRF simu-
lations over the mountainous regions, which need
further investigation.

6. Summary and discussion

We proposed a Bayesian algorithm for detection
of precipitation occurrence and phase from satellite
observations, with particular emphasis on snowfall de-
tection over snow cover. The algorithm relies on a nes-
ted k-nearest neighbor (KNN) search and probabilistic
vote rules for detection of precipitation occurrence and
its phase. The a priori database in the algorithm contains
collocated GMI brightness temperatures (10.65-183 GHz)
and DPR precipitation data that were stratified based on
snow-cover retrievals from the MODIS sensor on board
the Terrasatellite. The precipitation phase data from the
GPM passive and active products were combined to
provide a reference database for testing the skill of the
algorithm.

The results demonstrated that the weighted Euclidean
distance can be used as a similarity metric for precipitation
phase detection in a Bayesian setting, with improved results
over snow-covered surfaces. We demonstrated that the
KNN is able to identify precipitation phase with minimal
dependency on ancillary data, such as the near-surface
air temperature and moisture. The results showed that
the global probability of hit for detection of solid pre-
cipitation over dry snow cover could reach up to ~94%.
However, the detection skill of the algorithm is de-
creased over regions with dense vegetation due to re-
duced polarization signal. A larger phase discrepancy
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was found when the KNN results were compared with
the ground-based precipitation phase, which remains
to be addressed in future research.

It is important to emphasize that we have used V04
GPM official products. We expect to see fewer discrep-
ancies between the GPM retrievals and the ground-based
phase products in the following versions, because the
latest version of the GPROF phase detection algorithm
benefits from the longer GPM radar/radiometer joint
records and the new DPR algorithm relies on an improved
parameterization of ice microphysics.

Linking the algorithm with physical or observa-
tional databases that contain additional information
on snow-cover physical properties (e.g., snow thick-
ness, density, and liquid water content) and veg-
etation density can be a promising line of research.
Furthermore, exploring the ways to constrain the
output of the algorithm to the snowfall retrievals by
the CloudSat radar may also help to improve the ac-
curacy of snowfall detection. A physically realistic
definition of mixed-phase precipitation based on
cloud microphysics may reduce the uncertainties in
phase retrievals. Finally, future research is also re-
quired to expand and evaluate the proposed algorithm
with direct comparison of its results with ground-based
gauge observations.
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