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ABSTRACT: Boreal summer intraseasonal oscillation (BSISO) is a primary source of predictability for summertime
weather and climate on the subseasonal-to-seasonal (S2S) time scale. Using the GFDL SPEAR S2S prediction system, we
evaluate the BSISO prediction skills based on 20-yr (2000-19) hindcast experiments with initializations from May to October.
It is revealed that the overall BSISO prediction skill using all hindcasts reaches out to 22 days as measured by BSISO indices
before the bivariate anomalous correlation coefficient (ACC) drops below 0.5. Results also show that the northeastward-
propagating canonical BSISO (CB) event has a higher prediction skill than the northward dipole BSISO (DB) event
(28 vs 23 days). This is attributed to CB’s more periodic nature, resulting in its longer persistence, while DB events are more
episodic accompanied by a rapid demise after reaching maximum enhanced convection over the equatorial Indian Ocean. From
a forecaster’s perspective, a precursory strong Kelvin wave component in the equatorial western Pacific signifies the subsequent
development of a CB event, which is likely more predictable. Investigation of individual CB events shows a large interevent
spread in terms of their prediction skills. For CB, the events with weaker and fluctuating amplitude during their lifetime have rela-
tively lower prediction skills likely linked to their weaker convection—circulation coupling. Interestingly, the prediction skills of
individual CB events tend to be relatively higher and less scattered during late summer (August-October) than those in early
summer (May—July), suggestive of the seasonal modulation on the evolution and predictability of BSISO.

SIGNIFICANCE STATEMENT: The advance of subseasonal-to-seasonal (S2S) prediction largely depends on dynamical
models’ ability to predict some major intrinsic modes in the climate system, including the boreal summer intraseasonal
oscillation (BSISO). Using a newly developed S2S prediction system, we thoroughly evaluated its performance in
predicting BSISO, and revealed the skill dependence on the BSISO propagation diversity. Here we provide physical
explanations of what influences the BSISO predictions and identify different precursory signals for two types of BSISO,

which have important implications for operational forecasts.
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1. Introduction

With the rapid growth of societal demands, there has been
an increasing desire to improve the prediction skill of the
subseasonal-to-seasonal (S2S) prediction, with the time scale
ranging from 10 days to 1 season. Nowadays, S2S prediction
is emerging as a frontier and one of the top priorities of the
forecasting community. In the past decade, substantial progress
on S2S prediction has been achieved primarily due to advances
in model physics, improvement in initialization, and increased
model resolutions (e.g., Vitart 2014). Many modeling and opera-
tional centers have launched their real-time, or near-real-time,
subseasonal predictions (Pegion et al. 2019; Vitart et al. 2017).
Meanwhile, although a notable gap still exists between the
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current S2S predictions and the end-user needs, the community
has been making efforts to enhance the application and useful-
ness of the S2S prediction products for various stakeholders,
ranging from agriculture to water resource management to the
public health (e.g., White et al. 2022).

Despite the great importance of S2S predictions, it has been
recognized that the S2S predictions tend to be more challenging
than the weather and seasonal predictions because of the lack
of predictability sources and the rapid loss of initial memory in
the Earth system (Robertson et al. 2020). Factors determining a
dynamic model’s S2S prediction skills are complex. First, the
S2S prediction skill heavily relies on the fidelity of initial
conditions (e.g., Meehl et al. 2021), especially for relatively
short-term forecasts. Second, a major challenge for S2S predic-
tions is the model’s mean state drifting away from the initialized
state to its own mean state (Mariotti et al. 2018). Hence, a
model with more realistic mean states may minimize the initiali-
zation shock and model drift issues and have a better chance to
capture the teleconnections excited from the tropics, facilitating
a skillful S2S prediction. Third, one crucial element influencing
a model’s S2S prediction skill is its ability to simulate and pre-
dict some internally generated major modes of climate variability.
Those include some major modes in the extratropics, such
as the Pacific-North American (PNA) teleconnection, North
Pacific Oscillation (NPO), North Atlantic Oscillation (NAO),
Scandinavian pattern (SCA), east Atlantic-west Russia pattern
(EA-WR), and the extratropical intraseasonal oscillations (EISO)
(Zhu et al. 2023). Meanwhile, some modes over the tropics are
also key S2S predictability sources, such as El Nifio-Southern
Oscillation (ENSO), Madden—Julian oscillation (MJO) (Madden
and Julian 1972), and boreal summer intraseasonal oscillation
(BSISO) (Wang and Xie 1997). Some previous studies have
demonstrated the importance of those modes in predicting other
meteorological fields at the S2S time scale (Black et al. 2017,
Xiang et al. 2020, 2019; Yang et al. 2023).

The wintertime MJO is characterized by prominent east-
ward circumglobal propagation over the tropics. A suite of sta-
tistic diagnostics (Waliser et al. 2009) and dynamics-oriented
diagnostics (Wang et al. 2018) for MJO were designed to assess
the models’ intrinsic modes. The BSISO displays distinctive and
more complicated evolution characteristics with the coexistence
of eastward, northward, and northwestward propagations, mainly
anchored in the Asian monsoon region (Kikuchi et al. 2012;
Wang and Rui 1990; Wang and Xie 1997). In the literature,
the BSISO is also known as the summertime MJO, monsoon
intraseasonal oscillation (MISO) (Sharmila et al. 2013), and
boreal summer intraseasonal variability (BSISV) (Annamalai
and Sperber 2005). In this paper, we refer to it as BSISO by
the authors’ preference. Several theoretical and modeling
studies have sought to explain the physical processes govern-
ing the northward propagation of BSISO, including the inter-
action between tropical wave dynamics and the mean easterly
vertical wind shear (Drbohlav and Wang 2005; Jiang et al.
2004; Wang and Xie 1996, 1997), meridional moisture advection
(Jiang et al. 2004), air-sea interactions (Fu et al. 2003), and con-
vective momentum transport (Kang et al. 2010). The literature
illustrates that BSISO has pronounced impacts on synoptic-
scale low pressure systems (Kikuchi 2021), precipitation extremes
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(Muhammad and Lubis 2023), monsoon onset (Li et al. 2016),
tropical cyclones (Kikuchi and Wang 2010; Moon et al. 2018;
Nakano et al. 2021, 2015; Yoshida et al. 2014), and midlatitude
weather (Moon et al. 2013). Consequently, a skillful prediction
of BSISO could allow for better S2S predictions of Asian cli-
mate and extremes (Chang et al. 2021; Lee et al. 2017; Shibuya
etal. 2021).

A wealth of literature has been focused on predicting the
wintertime MJO, and some state-of-the-art dynamical models
have demonstrated their useful MJO prediction beyond four
weeks (Kim et al. 2018; Xiang et al. 2021). Unlike the extensive
studies on the wintertime MJO prediction, the BSISO predic-
tion in current dynamical models has received relatively less at-
tention (Jie et al. 2017; Lee et al. 2015). More importantly, what
impacts the prediction skills of BSISO in a model remains
largely unknown.

A new S2S prediction system has been developed recently
(Xiang et al. 2021), using the Geophysical Fluid Dynamics Labo-
ratory (GFDL) Seamless System for Prediction and Earth Sys-
tem Research (SPEAR) model (Delworth et al. 2020). Measured
by the Wheeler and Hendon (2004) indices (WHO04), the SPEAR
model shows an encouraging prediction skill of 30 days in predict-
ing the wintertime MJO (Xiang et al. 2021). The SPEAR model
also displays distinctly different prediction skills for four types of
MJO. For example, the fast-propagating MJO shows a consider-
ably higher prediction skill than other types of MJO, especially
the standing MJO. To obtain a complete picture of this model’s
ability to predict the intrinsic intraseasonal modes, here we evalu-
ate the predictions of the summertime counterpart of MJO (i.e.,
BSISO) in this system. Particularly, the focus is placed on assess-
ing the predictions of two distinctive clusters of BSISO and ex-
ploring the factors influencing the BSISO prediction skills.

The paper is organized as follows. Section 2 introduces the
model, hindcast experiments, as well as the analysis method-
ology. Section 3 describes the overall BSISO prediction skill
and its skill dependence on the BSISO diversity. Section 4
presents the potential factors influencing the BSISO predic-
tions. We end with a summary and discussion in section 5.

2. Model, experiments, and analysis methodology
a. Model and experiments

The model used in this study is the GFDL SPEAR model
(Delworth et al. 2020). The SPEAR is a fully coupled climate
model with atmospheric and land models identical to AM4.0/
LM4.0 (Zhao et al. 2018a,b) but with a dynamical vegetation
model, and an ocean model (MOM6) and sea ice model
(S1S2) (Adcroft et al. 2019). Three resolutions of atmospheric
and land model configurations were developed for SPEAR
and here we use the intermediate horizontal atmospheric and
land model resolution (0.5°) that coupled to a 1° ocean and sea
ice model. The atmospheric AM4.0 model contains 33 vertical
levels with the top of the atmosphere at 1 hPa and the MOM6
ocean model has 75 vertical levels. The reader is referred to
Delworth et al. (2020) for additional details about this model.

A nudging technique is used to achieve initialization to bring
the model states into close correspondence with observations.
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Major BSISO Modes and Prediction Skills

a) EOF1 (L13)
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FI1G. 1. (a),(b) The spatial patterns of the first and second leading multivariate EOF modes defined by L13. Shading
(contours) represents the OLR (850-hPa zonal winds) anomalies. (c) The bivariate anomaly correlation coefficient
(ACC) measured by the L13 indices from individual members (black) and 10-member ensemble mean (red). (d) As

in (c), but for the results using WHO04 indices.

The atmospheric nudging fields include winds, temperature, and
specific humidity using the Modern-Era Retrospective Analysis
for Research and Applications, version 2 (MERRA-2) analysis
data (6-hourly interval) (Gelaro et al. 2017). The sea surface
temperature (SST) is nudged to NOAA Optimum Interpolation
1/4 Degree Daily SST Analysis (OISST v2) (Reynolds et al.
2007). Hindcast experiments were performed every five days
from 2000 to 2019, and ten ensemble members were generated
by using perturbed nudging strengths for both the atmospheric
fields and the ocean SST. The nudging of circulation is applied
to the whole atmosphere. However, the nudging of the moisture
field is confined in the free atmosphere with the lowest several
model layers (roughly the boundary layer) unperturbed. The
studied period is from May to October 2000-19. There are a
total of 740 hindcast cases with initial conditions starting in
May-October, and each has 10 members. Each hindcast is inte-
grated for 45 days. More information regarding the initialization
can be found in Xiang et al. (2021).

b. Analysis and evaluation methodology

To achieve the observational anomalies, we remove the
time mean and the first three harmonics of the observational
climatological annual cycle. Further, the time-mean anomalies
over the previous 120 days were subtracted to largely remove
the interannual variations. The anomalies for model hindcasts
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were calculated by first removing the model hindcast climatology
and then removing the previous 120 days’ time-mean anomalies
from the combination of observations and hindcasts. For in-
stance, for the third day from the initial date, we removed the
120 days’ mean of anomalies including the first 2 days from
the hindcast and 118 days from observations right before the
forecast. The model hindcast climatology is obtained by aver-
aging all years of hindcasts for a particular start time and lead
time and thus the hindcast climatology is a function of calendar
day and lead time.

To assess the prediction of BSISO, we adopt two commonly
used indices: the Lee et al. (2013, hereafter L13) indices and
the Wheeler and Hendon (2004, hereafter WHO04) indices. The
observed and predicted L13 indices were obtained by projecting
the anomalies of two-dimensional outgoing longwave radiation
(OLR) and 850-hPa zonal winds onto the first two observed
leading multivariate empirical orthogonal function (EOF)
modes over the Asian monsoon domain (10°S—40°N, 40°-160°E)
(Figs. 1a,b) from May to October. The first EOF mode (EOF1)
yields a dipole convection pattern between the tropical Indian
Ocean and the western North Pacific. A dynamically coherent
lower-tropospheric circulation pattern is observed with cyclonic
and anticyclonic circulation in the Indian Ocean and western
North Pacific, respectively (Fig. 1a). The second mode (EOF2)
has a tripole convection pattern, and the enhanced convection
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has a tilted structure extending from the Indian continent south-
eastward to the equatorial western Pacific together with strong
lower-level wind convergence (Fig. 1b). Those two modes to-
gether show a propagation pattern as the time series of EOF1
mode (PC1) attains the highest positive correlation when lead-
ing the time series of EOF2 (PC2) by 13 days (Lee et al. 2013).
However, EOF1 has a larger explained variance than EOF2
(8.7% vs 53%) so a substantial portion of EOF1 itself repre-
sents a stationary component (Zhu and Wang 1993). The
BSISO magnitude is estimated by combining the projected PC1
and PC2 (VPC1? + PC2?%). Similarly, the WHO4 indices were
achieved by projecting the latitudinal mean (15°S-15°N) anoma-
lies of OLR, 850-hPa zonal winds, and 200-hPa zonal winds
onto the first two observed leading multivariate EOF modes.
Using the above .13 and WHO04 indices as predictands, the so-
called bivariate anomaly correlation coefficient (ACC) is used
here to measure its forecast skill following Lin et al. (2008).

To verity the hindcasts, we use the NOAA daily mean inter-
polated OLR data (Liebmann and Smith 1996) and European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis v5 (ERAS) data as observations (C3S 2017). All data
are interpolated to 1° X 1° resolution for analysis.

3. Prediction of BSISO and its dependence on the
BSISO diversity

a. Overall BSISO prediction

Using the L13 indices as a metric, Fig. 1c illustrates that the
useful skill from the 10-member ensemble mean with all hind-
casts reaches up to 22 days measured by the criterion before
the bivariate ACC drops below 0.5. The SPEAR model out-
performs most of the state-of-the-art S2S models and is also
comparable with ECMWF model (Jie et al. 2017). We also
examine the ACC using the WHO04 indices and the ensemble-
mean forecast skill reaches up to 30 days (Fig. 1d), the same as
the wintertime MJO prediction skill (Xiang et al. 2021). The
forecast within the weather time scale (around the first 10 days)
is largely deterministic and the advantage of multimember
ensemble mean becomes prominent beyond that (Figs. 1c,d).
Interestingly, the skills measured by the L13 indices are gener-
ally lower than those using WHO04 indices (He et al. 2019;
Jie et al. 2017). Note that WHO04 mainly represents the tro-
pical eastward-propagation variations, while L.13 explains more
northward-propagating variance and the corresponding sub-
tropical component is typically less predictable than that over
the tropics (e.g., Judt 2020).

Is the forecast skill dependent on the amplitude and phases of
BSISO? The ACC is systematically lower even from day 1 for
initially weak cases than the initially strong cases (supplemental
Fig. 1 in the online supplemental material). Here the initially
strong (weak) cases are defined as the BSISO amplitude greater
(less) than 1. The initially strong cases achieve a higher skill com-
pared to the initially weak cases (25 vs 21 days) (supplemental
Fig. 1a). We also evaluate the potential skill dependence on
the phases and reveal that the initially strong cases starting at
phases 2, 6, and 7 have relatively lower skills than the other
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TABLE 1. The observational date with peak convection in the
equatorial Indian Ocean (day 0) of the selected two clusters of the
observed BSISO events. Each BSISO event is defined when the
area-averaged OLR anomalies in the equatorial Indian Ocean
(5°S-10°N, 80°-100°E) are below one standard deviation. The total
number of events is shown in the header in the parentheses.

Canonical BSISO Northward dipole BSISO

(CB, 29) (DB, 11)
7 Aug 2000 17 Jul 2008 19 Sep 2000
28 Jul 2001 30 Aug 2008 13 Aug 2003
1 May 2002 17 May 2009 5 Jul 2004
4 May 2003 27 Sep 2010 27 Aug 2004
30 Jun 2003 31 May 2011 9 Oct 2005
29 Sep 2003 26 Oct 2011 4 Sep 2006
1 May 2004 10 Jul 2012 23 Aug 2012
26 Sep 2004 29 Oct 2012 10 Aug 2014
16 Jul 2005 6 Sep 2013 15 Jul 2015
26 Aug 2005 8 Jun 2015 25 Aug 2016
18 Jun 2006 22 May 2018 3 Oct 2018
12 Jun 2007 4 Jun 2019
18 Jul 2007 20 Aug 2019
24 Oct 2007 23 Oct 2019

4 Jun 2008

phases (supplemental Fig. 1b). For the definition of those
eight different BSISO phases, refer to L13.

b. Prediction of the canonical BSISO and northward
dipole BSISO

The above analysis considers all initializations, including
those in which BSISO is inactive. Individual BSISO events vary
in magnitude and propagation characteristics as documented
in the literature (e.g., Fu et al. 2018; Wang and Rui 1990). Similar
to the wintertime MJO diversity (Wang et al. 2019; Wei et al.
2023), Chen and Wang (2021, hereafter CW21) revealed three
clusters of BSISO with distinct propagation characteristic: the
canonical BSISO (CB), the northward dipole BSISO (DB),
and the eastward expansion BSISO. It is straightforward to
ask whether the BSISO predictions rely on the propagation
characteristics. Note that the occurrence of the eastward expan-
sion BSISO is less frequent than CB (11 vs 29), and 8 out 11 of
the eastward expansion events take place during the transition
seasons (May and October), which are less representative of the
classical BSISO events. Hence, the emphasis is placed on the first
two clusters of BSISO (CB and DB). During the studied period
(2000-19), there were a total of 29 observed CB and 11 DB
events following the classification of CW21 (Table 1). For each
event, it is selected when the anomalous OLR in the equatorial
Indian Ocean (5°S-10°N, 80°~100°E) is below its one standard
deviation, and day O refers to the date when the anomalous
OLR in the equatorial Indian Ocean reaches its minimum
(CW21). For convenience, we refer to the period before (after)
day O as the developing (decaying) phases, and the period
around day 0 as the peak phase.

We present, in Fig. 2, the composite pentad mean (from
pentad —4 to pentad +4) maps of the observational anomalous
OLR and lower-tropospheric circulations associated with the CB
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Observed Time Evolution of CB and DB
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FIG. 2. The observational time evolution of the canonical BSISO (left, CB) and northward-propagating dipole-type
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the western Pacific is dominated by northwestward-propagating
signals for both cases. Apart from the similarities, dramatic dif-

and DB events. During the developing phases (before day 0),
both CB and DB are preceded by northeastward-propagating

suppressed convection anomalies in the Indian Ocean despite

ferences are noted between DB and CB. First, for DB, a consid-

erable area of the western Pacific exhibits modestly enhanced

that the DB phase leads CB by roughly one pentad. Meanwhile,
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Contrasting phase space diagram and prediction skill between CB and DB

a) Phase space diagram
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F1G. 3. (a) The observational composite PCI-PC2 phase-space diagram for CB (red) and DB (blue) from
day —20 to day +25. Day —20 (day 0) is marked by a diamond (plus sign). The dots are the values with an interval of
5 days. (b) The bivariate ACC for CB and DB as a function of forecast lead days.

convection accompanied by prominent westerly anomalies at
pentad 24 (Fig. 2j), which become more concentrated and then
propagate northwestward during the ensuing pentads —3 to —1
(Figs. 2k-m). CB differs markedly with dominant suppressed
convection in the western Pacific (Figs. 2a-d). Second, CB
displays a more pronounced Kelvin wave component in the
Maritime Continent and equatorial western Pacific than DB
during the peak and decaying phases, indicated by the equato-
rially symmetric zonal wind component with its maximum
near the equator (Figs. 2d—i vs Figs. 2m-r). Third, CB has
largely balanced anomalies between the enhanced and sup-
pressed convection, but DB has predominantly suppressed
convection anomalies. Further, the suppressed convection
anomalies in the western Pacific last much longer in DB than
in CB. Fourth, CB tends to be more symmetric with the de-
caying phases almost a mirror image of the developing phases,
but DB shows a more asymmetric feature between those
two phases. Particularly, the decaying phases of CB gradually
evolve into another robust suppressed convective phase of
BSISO in the Indian Ocean (Figs. 2g-i), distinguished from
the rapid demise of DB (Figs. 2p-1).

The results above suggest that CB is more likely to trigger a
following suppressed convective phase starting from the equa-
torial Indian Ocean while DB does not. In other words, CB is
more like an oscillatory mode while DB is likely an episodic
mode. The contrasting features are also seen in the composite
PC1-PC2 phase-space diagram (Fig. 3a). CB has a relatively
weaker amplitude during the developing stage but retains a
stronger amplitude in the following phases, in contrast with a
rapid decay of DB. CB and DB generally have a comparable
PC1 during their life cycle, while PC2 is different: in the devel-
oping phases CB has a weaker PC2 than DB, and the opposite
is true during the decaying phases.

To assess the prediction skills for CB and DB, we choose the
hindcast cases with their initial dates from day —30 (30 days
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before day 0) to day +15 (15 days after day 0) so that each
event has about eight to nine hindcast cases. The purpose of
considering the cases with shifted initial dates to an earlier time
is to cover the whole lifetime of BSISO in prediction, including
the developing and decaying phases. Eventually, 252 and 102
hindcast cases are selected for CB and DB, respectively. Mea-
sured by the L13 indices, CB shows a useful skill of 28 days,
while the prediction of DB appears to be limited to 23 days
(Fig. 3b). A consistent skill dependence is also found using
WHO04 indices (33 days vs 24 days; see supplemental Fig. 2), con-
firming that the CB is intrinsically more predictable than DB.
Note that the overall skills from all hindcasts (Figs. 1c,d) are not
necessarily within the range between the prediction skill of DB
and CB because of the uncertainty in predicting the relatively
weak BSISO, as well as the events with suppressed convection
in the Indian Ocean.

The question then arises as to why the prediction of DB is
more challenging than CB. To address this, we evaluate the
model prediction skills at different initial phases (Fig. 4). For
the cases with initialization at day —25 and —20, CB has com-
parable but slightly lower prediction skills than DB (Fig. 4a).
It suggests that the model is equally skillful in predicting the
developing phases for both CB and DB. However, the con-
trast is prominent for the cases initialized at day —5 and
around day 0 (Fig. 4b). The skills for CB remain similar
and even slightly higher than those initialized at day —25 and
day —20, while the skill for DB drops suddenly after around
10 days, leading to a much lower skill than CB (17 days vs
29 days) (Fig. 4b). The contrast in predicting their decaying
phases between CB and DB is largely responsible for the dif-
ferent prediction skills as shown in Fig. 3b. The reason behind
this is related to the contrasting evolutions: CB and DB have
similar evolution with northeastward propagation during the
developing phases while they differ dramatically during the
decaying phases (Fig. 2).



1 APRIL 2024

Comparison of Skills at Different Lead Times
a) Pred of developing phase (Init on day -25 & -20)

—CB

0.6

ACC

0.2t

O 1 1 1 1
10 20 30 40

Forecast Lead Days

b) Pred of decaying phase (Init on day -5 & 0)

—CB

—DB
0.8 r 1

ACC

04 | -

o 1 1 1 1
10 20 30 40

Forecast Lead Days

FIG. 4. (a) the bivariate ACC for CB and DB as a function of
forecast lead days. The cases are selected with initialization condi-
tions at 25 and 20 days before day 0, so that a total of 58 and
22 cases are used for CB and DB, respectively. (b) As in (a), but
for the cases with initialization conditions at 5 days before day 0
and at around day 0.

Figure 5 shows the model’s ability to predict the peak phase
(around day 0) at different lead times. For both CB and DB,
the model reasonably well predicts the observed convection—
circulation anomalous patterns over the equatorial Indo-Pacific
sector for almost all forecasts 5-20 days in advance. Addi-
tionally, their time evolution is also well captured for both
CB and DB, as shown in the cases initialized at day —20
(supplemental Fig. 3). This affirms that the contrasting pre-
diction skills between CB and DB (Fig. 3b) are not related
to the prediction of their corresponding developing phases.
One noteworthy point is that for DB the enhanced convec-
tion anomalies in the Indian Ocean are substantially under-
predicted even with a lead time of 5 days for DB (Fig. 5g),
while the model is skillful in predicting the suppressed con-
vection anomalies and the associated anticyclonic circu-
lations in the western North Pacific for all leads time from
5 to 20 days (Figs. Sg-j).
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Then, why is the prediction skill of the decaying phases so
different between CB and DB (Fig. 4b)? Figure 6 displays the
composite time evolution of the observed and predicted convec-
tion—circulation patterns starting from around day 0. For the
cases initialized at around day 0, the model well predicts the
evolution pattern of CB (with a decaying amplitude). For DB,
the model is unable to predict the observed easterly and sup-
pressed convection anomalies in the equatorial Indian Ocean at
week 3 (Fig. 60 vs Fig. 6k), together with significantly but erro-
neously predicted suppressed convection anomalies over the
Arabian Sea at weeks 3 and 4 (Figs. 60,p). The relatively lower
prediction skill for DB is related to the weaker persistence of
the enhanced convection signal over the Indian Ocean. In con-
trast, CB has longer persistence by triggering a successive sup-
pressed convective phase of BSISO initiated from the equatorial
Indian Ocean.

4. Understanding factors influencing the CB predictions

The previous section examines the overall skill for all hind-
cast cases as well as two groups of BSISO. A study of predic-
tions of individual BSISO events may provide more insight
into the physical processes affecting BSISO predictions. Since
the observational DB events are too few to perform statistical
analysis, the following analysis is centered on the more fre-
quently occurring CB events. For each CB event, we evaluate
its skill by considering all forecast cases from day —30 to day
+15 so that each event has approximately eight to nine hind-
cast cases. Note that for some events with their day 0 occur-
ring in May and late October, we also include some hindcast
cases initialized during April and November for a fair com-
parison among events.

A salient interevent spread is found in terms of the bivariate
ACC (supplemental Fig. 4). For some events, the ACC drops to
below zero with a lead time of 30 days, while the ACC still re-
mains above 0.7 for some other events. Why do the skills differ
markedly among individual events? Addressing this issue has
profound implications for identifying the “time window of op-
portunity” during which better predictions are achieved than in
other periods.

Inspection of Fig. 7 reveals a strong skill dependence on the
seasonality and also the observed BSISO amplitude. Given
the considerable fluctuation for the ACC with the lead times
(supplemental Fig. 4), here we use the time-averaged ACC
during the first four weeks to represent the forecast skill for
individual events. It is shown that the multievent mean skills
tend to be lower, but not statistically significant, during May—
July than in August-October (Fig. 7a). Meanwhile, the ACC is
also more scattered (larger interevent spread) in May—July than
in August-October, with the standard deviation of ACC in
May—July about 1.7 times larger than that in August-October
(Fig. 7a). During August—October 11 out of 13 events have skills
higher than 0.72, while 10 out of 16 May-July events have skills
lower than 0.72. Further, 5 out of 6 with the lowest skills among
all the CB events occur in May—July. It suggests that the predic-
tion of CB tends to be more challenging in the early summer
season than in the late summer season.
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Observed and Predicted Peak Phase
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FIG. 5. The model’s skill in predicting the target phase with the strongest anomalous convection in the equatorial
Indian Ocean (at around day 0) with different lead times for two types of BSISO. (a),(f) The observed composite
anomalies of OLR (shading; W m~2) and 850-hPa winds (m s~ ; not shown when wind speed is less than 0.5 m s~ )
averaged over days 1-5 for the CB and DB. (b)-(e),(g)-(j) The composite results from model predictions with a lead
time of 5-20 days. The green stippling denotes the regions at the 5% significance level for composite OLR anomalies.

We further present the scatter diagram between the ACC
and the observed amplitude for individual CB events (Fig. 7b).
The amplitude is the observed time-averaged amplitude over
the period between day —11 and day +25. A significant corre-
lation is identified (r = 0.66). It sheds light on the importance of
the magnitude as another factor influencing the BSISO predic-
tions, with stronger magnitude having higher prediction skills.

To further understand the potential factors governing the
skills, it is enlightening to compare two groups of CB events
with the time-averaged ACC (in the first 4 weeks) greater or
less than 0.8 standard deviations of the multievent mean
ACC. Eventually, seven and six events are identified as the
good and poor CB prediction groups. Figure 8 depicts the
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observed and predicted time evolution of the PC1-PC2 dia-
gram for those two groups. Some observational differences
can be identified, providing hints for understanding the fac-
tors influencing the predictive ability of those two groups.
First, the events with good skills have a relatively larger am-
plitude than the poor group, in agreement with Fig. 7b. Sec-
ond, the good skill group retains its strong magnitude after
day 0, while the poor skill group displays considerable magni-
tude fluctuation with a rapid decay after day +5 and then a
reintensification after that. This is mainly related to the rapid
decay of PC2 (Fig. 8b). For the poor prediction group, the
suppressed convection anomalies in the Indian Ocean largely
decouple from circulation anomalies as well as the enhanced
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Observation and Prediction from Peak (around day 0)
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FIG. 6. The time evolution of observed and predicted composite anomalies of OLR (shading; W m™~?) and 850-hPa winds
(m s™'; not shown when wind speed is less than 0.5 m s ') from week 1 to week 4 starting from around day 0, for (left) CB
and (right) DB. The green stippling denotes the regions at the 5% significance level for composite OLR anomalies.

convection in the equatorial western Pacific. This is in accor-
dance with the weak PC2.

The model predictions for those two groups have very dis-
tinctive features. For the hindcasts initialized from day —20,
the good prediction group faithfully captures the amplitude
and propagation speed in spite of a fast evolution after day 15
(blue curve in Fig. 8a). Yet, for the poor prediction group the
predicted evolution tends to be slower than the observations
(Fig. 8b). For predictions initialized at around day 0, the good
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skill group displays a high coherence with observations re-
garding both the magnitude and propagation speed within
the first 15 days (light blue in Fig. 8a). In contrast, for the
poor prediction group, the model prediction can only prop-
erly capture the observed rapid decay at around day +10,
but fails to replicate the reintensification after that (light blue
in Fig. 8b). Again, the major difference seems to appear in the
decaying phases between the good and the poor prediction
groups.
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Factors Influencing Prediction Skills
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We further examine the spatial patterns of convection—
circulation anomalies from the peak to the decaying phases
(Fig. 9). The good prediction group has remarkably similar pat-
terns with observations even during weeks 3 and 4 (Figs. 9g,h vs
Figs. 9c,d). For the poor prediction group, the observed sup-
pressed convection in the central Indian Ocean and Maritime
Continent from weeks 2 to 4 is nearly completely absent in the
predictions, and the enhanced convection in the western Pacific
is largely underpredicted (Figs. 951 vs Figs. 9n—p). Note that the
convection anomalies are usually more difficult to predict than
the atmospheric circulations in an S2S forecast system (Xiang

et al. 2015). The model struggles to predict the anomalous con-
vection in the Indian Ocean and Maritime Continent with the ab-
sence of strong coupling between convection and circulations.
Hence, the relatively lower prediction skill for the poor prediction
group is arguably due to the decoupling between convection and
circulation.

5. Summary and discussion

Predicting summertime weather and climate is usually thornier
than that in the wintertime. A better understanding of the
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FIG. 9. As in Fig. 6, but for composite results of (left) the good prediction group and (right) the poor prediction group
started from around day 0.

predictability sources for various weather and climate pheno-
mena is vital for improving the summertime S2S predictions. As
the dominant intraseasonal signal in the summertime, skillful
predictions of BSISO contribute to the predictions of other
climate and extremes in both regional and remote areas.
Using a newly developed GFDL SPEAR S2S prediction
system, we evaluate the BSISO prediction based on 20-yr
hindcast experiments (2000-19) initialized from May to October.
It is revealed that the overall BSISO prediction skill is up to
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22 days measured before the bivariate ACC of L13 indices
drops to 0.5.

The propagation of BSISO displays large diversity among
individual events. We explore the predictions of two clusters
of BSISO, and results show that the canonical BSISO (CB)
tends to be more predictable than the northward dipole BSISO
(DB) (28 vs 23 days). This is due to the fact that DB tends
to decay rapidly after reaching its strongest convection in the
Indian Ocean, while CB has longer persistence by triggering
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a successive suppressed convection phase of BSISO. This is
linked to the fact that CB exhibits a stronger Rossby wave
component as well as the westerly wind anomalies prevailing
in the equatorial Indian Ocean than DB (Fig. 6b vs Fig. 6j),
raising the odds for a rapid phase transition to the suppressed
convection phase owing to the horizontal dry advection. From
a forecaster’s perspective, a BSISO event with a weak Kelvin
wave component is more likely to further develop into a DB
and, therefore, less predictable. By contrast, a strong Kelvin
wave component signifies the subsequent development of CB,
which is likely to be more predictable.

The potential predictability in a model represents its intrin-
sic upper limit of prediction skills. Here we evaluate the po-
tential predictability of CB and DB by treating one ensemble
as the truth with a perfect model assumption. It is revealed
that the potential predictability of BSISO is about 35 days, in-
dicating that there is room for 13 days to improve this model.
Meanwhile, CB achieves higher potential predictability than
DB (35 vs 32 days), implying the actual lower prediction skill
for DB is also ascribable, at least in part, to its relatively lower
intrinsic predictability.

The prediction of individual CB events displays a large in-
terevent spread, particularly during May—July. However, the
events in August—October have relatively higher prediction
skills accompanied by less interevent spread. For CB, the
events with weaker magnitude and larger magnitude fluctua-
tion during their lifetime (weaker persistence) are usually less
predictable. We argue that in late summer the BSISO propa-
gation domain expands into the western North Pacific, in-
creasing its periodicity and predictability. We also investigate
the potential impact of the background interannual variation,
while we do not find evident physical explanations for the
contrasting evolution among individual events.

We compare our composite results with Fig. 1 of CW21.
The evolution for CB remains very similar while some notice-
able differences are found for DB between this study and
CW21. For example, there is a clear tilted mode at pentad
0 in this study (Fig. 2m), which is nearly absent in Fig. 1h of
CW21. Also, CW21 shows that the magnitude of the sup-
pressed convection anomalies in the western Pacific is compa-
rable with that of theenhanced convection anomalies in the
Indian Ocean during the decaying phases (Figs. 1k,n,q of
CW?21), in contrast to the dominant suppressed convection in
the western Pacific revealed from this study. There are several
possible reasons accounting for this disparity. One is due to
the different studied periods so the samples for the composite
analysis are different. The other is that CW21 made the
composite analysis centered around day 0 exactly following
the observations. Here, the date of day O could be slightly
shifted given that the hindcast experiments were carried out
every 5 days, so a slight mismatch may also contribute to
the differences between those two studies.

There are several questions that remain to be addressed.
For instance, what causes the distinct evolution between CB
and DB? As mentioned in CW21, the Kelvin wave component,
indicated by the equatorially symmetric zonal winds with its
maximum near the equator, is weaker in DB than CB so it does
not show an evident eastward propagation feature. For DB, the
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physical processes responsible for the northward movement in
the Indian Ocean are due to the horizontal moisture advection,
while that in the western Pacific is primarily related to the SST
change. Nevertheless, the underlying root causes driving their
contrasting behaviors have not been established. In addition,
why does the prediction skill of individual CB events tend to be
lower with a larger interevent spread in May-July than August—
October? What controls the contrasting evolutions between the
well-predicted and poorly predicted CB events? Future thor-
ough investigations are necessary to understand the underlying
physics of the presented results here, and to establish the robust-
ness of the results by examining other S2S prediction systems. In
addition, since the convection—circulation anomalies are largely
distinguished in the western Pacific between CB and DB (Fig. 2),
how those two clusters of BSISO modulate tropical cyclone activ-
ities is another interesting topic worthy of investigation.
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