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ABSTRACT

This study attempts to improve the prediction of western North Pacific (WNP) and East Asia (EA)
landfalling tropical cyclones (TCs) using modes of large-scale climate variability [e.g., the Pacific meridional
mode (PMM)), the Atlantic meridional mode (AMM), and North Atlantic sea surface temperature anomalies
(NASST)] as predictors in a hybrid statistical-dynamical scheme, based on dynamical model forecasts with
the GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 with flux adjustments (FLOR-FA).
Overall, the predictive skill of the hybrid model for the WNP TC frequency increases from lead month 5
(initialized in January) to lead month O (initialized in June) in terms of correlation coefficient and root-mean-
square error (RMSE). The hybrid model outperforms FLOR-FA in predicting WNP TC frequency for all lead
months. The predictive skill of the hybrid model improves as the forecast lead time decreases, with values of
the correlation coefficient increasing from 0.56 for forecasts initialized in January to 0.69 in June. The hybrid
models for landfalling TCs over the entire East Asian (EEA) coast and its three subregions [i.e., southern EA
(SEA), middle EA (MEA), and northern EA (NEA)] dramatically outperform FLOR-FA. The correlation
coefficient between predicted and observed TC landfall over SEA increases from 0.52 for forecasts initialized
in January to 0.64 in June. The hybrid models substantially reduce the RMSE of landfalling TCs over SEA and
EEA compared with FLOR-FA. This study suggests that the PMM and NASST/AMM can be used to im-
prove statistical/hybrid forecast models for the frequencies of WNP or East Asia landfalling TCs.

1. Introduction timely seasonal prediction of TC frequency and landfall is
thus of great significance to the scientific community,

governmental administration, and the private sector.
Scientists have attempted to improve the seasonal
prediction of TCs through statistical methods, dynami-
cal, and statistical-dynamical models for over three
decades (Nicholls 1979; Gray 1984a,b; Gray et al. 1993;
Lehmiller et al. 1997; Chan et al. 1998, 2001; Marks and
Shay 1998; Elsner and Jagger 2004, 2006; Klotzbach
& Supplemental information related to this paper is avail- 2007; Fan and Wang 2009; Vecchi et al. 2011, 2013, 2014;
able at the Journals Online website: http://dx.doi.org/10.1175/ Zhao et al. 2010; Villarini and Vecchi 2012, 2013a,b;
JCLI-D-16-0487.s1. Villarini et al. 2017; Murakami et al. 2016a,b). As for the
western North Pacific (WNP), previous studies built
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Tropical cyclones (TCs) represent one of the deadliest
and costliest natural hazards, responsible for large eco-
nomic losses and numerous fatalities (e.g., Pielke 1997;
Pielke et al. 2008; Zhang et al. 2009), with most of the TC-
related impacts caused by landfalling TCs (e.g., Landsea
et al. 1998; Powell and Houston 1998). An accurate and
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2009; Lu et al. 2010; Wang et al. 2013; Zhang et al. 2013a,
2016b; Kim et al. 2017) and East Asian landfall (e.g., Liu
and Chan 2003; Goh and Chan 2010; Sun and Ahn 2011;
Au-Yeung and Chan 2012; Wang et al. 2013; Zhang et al.
2013b, 2016b), achieving encouraging results.

While statistical prediction models have made major
progress in producing skillful seasonal predictions, dy-
namic models including atmospheric general circulation
models (AGCMs) and coupled GCMs (CGCMs) have
been playing an increasingly important role in the field of
TC seasonal prediction (Vitart and Stockdale 2001; Vitart
et al. 2003; Vitart 2006; Zhao et al. 2010; Chen and Lin
2011, 2013; Vecchi et al. 2014; Vecchi and Villarini 2014;
Camp et al. 2015; Xiang et al. 2015). For the WNP storms,
there are numerous studies documenting the results from
the use of dynamic models in seasonal predictions of WNP
TC frequency (Vitart and Stockdale 2001; Sun and Chen
2011; Au-Yeung and Chan 2012; Chen and Lin 2011, 2013;
Vecchi et al. 2014; Camp et al. 2015; Kim et al. 2017;
Manganello et al. 2016) and landfall over East Asia (Sun
and Ahn 2011; Huang and Chan 2014; Tan et al. 2015).

Over the past several years, there has been a growing
interest in the application of statistical-dynamical hybrid
models toward predictions of TC activity, with predictions
that were quite skillful even for long lead times (e.g., Kim
and Webster 2010; Vecchi et al. 2011, 2013, 2014; Villarini
and Vecchi 2013a; Li et al. 2013; Kim et al. 2015; Choi et al.
2016a,b; Kim et al. 2017; Villarini et al. 2017; Murakami
et al. 2016a; Zhan and Wang 2016; Zhang et al. 2016b).
Hybrid models are trained using linear regression or
Poisson regression between simulated predictors and ob-
served predictands (e.g., TC frequency or landfall); the
trained models are subsequently used to predict the pre-
dictands when the dynamical forecasts of the predictors
are available (e.g., Vecchi et al. 2011, 2014; Li et al. 2013;
Kim et al. 2015; Murakami et al. 2016a; Zhan and Wang
2016; Zhang et al. 2016b). Therefore, hybrid models take
advantage both of statistical linkage derived from the
observations and dynamic models and of dynamical-
model-simulated environmental variables relevant to TCs.

The success of the hybrid statistical-dynamical models is
built upon the identification of the appropriate predictors
representing the genesis, development and tracking of
these storms. Over the years, the Pacific meridional mode
(PMM; Zhang et al. 2016a), North Atlantic sea surface
temperature (SST) anomalies (Huo et al. 2015; Yu et al.
2015; Zhang et al. 2017), and the SST gradient between the
southwestern Pacific and the western Pacific warm pool
(Zhan et al. 2013) have been found to strongly modulate
WNP TC frequency, potentially playing a critical role in
the prediction of WNP TC activity. The SST over the In-
dian Ocean has also been found to influence TC activity in
the WNP (Du et al. 2011; Zhan et al. 2011; Tao et al. 2012).
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Moreover, recent studies have identified significant links
between East Asia landfalling TCs (e.g., over Japan and
the Korean Peninsula) and El Nifio Modoki/central Pacific
El Nifio (Zhang et al. 2012), the subtropical high index
measured by the 850-hPa geopotential height (GPH) av-
eraged over the western Pacific (Wang et al. 2013), the
Pacific decadal oscillation (PDO) (Chan 2000, 2005; Goh
and Chan 2010; Chan et al. 2012), and the Antarctic Os-
cillation (Wang and Fan 2007). Given the physical con-
nection of these newly identified indices and WNP TC
frequency and East Asian TC landfall, we hypothesize that
their inclusion in hybrid seasonal prediction schemes will
lead to improved skill in predicting these TC quantities.

The predictors for current hybrid models are obtained
by averaging the values of variables over selected spatial
domains, which are mostly based on correlation analysis
between the time series of a predictand (e.g., TC fre-
quency) and simulated large-scale environmental vari-
ables (e.g., 500-hPa geopotential height and 850-hPa
zonal wind) (e.g., Chan et al. 1998; Li et al. 2013; Choi
etal. 2016a,b; Zhan and Wang 2016; Zhang et al. 2016b).
Therefore, the spatial domains of a predictor for a dy-
namic model are difficult to be generalized to other
dynamic models (Li et al. 2013; Choi et al. 2016b; Zhan
and Wang 2016), significantly limiting the widespread
applicability of these hybrid models. Furthermore, most
of the current dynamic prediction systems/schemes/
models are generally initialized in all the months
(January-June) prior to the period of interest (e.g., June—
November for WNP TC activity), providing us with pre-
dictions of the covariates for each initialization month.
The general strategy is to train the models and verify the
forecasts for each initialization month, treating the pre-
dictions of the predictors for a given initialization month
in isolation from the others. However, by using this ap-
proach we are potentially discarding useful information;
this is especially true for the shorter lead times, for which
more information/dynamical forecasts are available to
build hybrid models (“‘closer gets richer””). Therefore, we
hypothesize that the dynamical forecasts prior to a given
initialization month (e.g., May) add some value to the
system, leading to improved forecasting skill.

In summary, so far hybrid models have been used to
make seasonal forecasts for WNP TC frequency and
landfall over the East Asian coast. However, the predictors
and their spatial domains in a given prediction system are
difficult to be generalized, limiting their applicability to
other systems. Moreover, the dynamical forecasts ob-
tained prior to an initialized month may be potentially
useful but are consistently not taken into consideration to
build hybrid models for WNP TC frequency and East
Asian landfall. This study attempts to build hybrid sea-
sonal prediction models for basinwide WNP and East Asia
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FIG. 1. The southern (blue), middle (green), and northern (orange) part of the East Asian coast
used to define TC landfall over East Asia.

landfalling TCs by using well-known and easily processed
climate indices (e.g., PMM and Nifio-3.4) and developing a
new strategy that incorporates the dynamical forecasts
prior to the initialization months.

2. Data and methodology
a. Data

TC data are obtained from the International Best
Track Archive for Climate Stewardship (IBTrACS;
Knapp et al. 2010) for the period of 1980-2014; TC in-
formation in 2015 is obtained from the Japanese Mete-
orology Agency (JMA) best-track data. We use monthly
estimates of SST from the Met Office Hadley Centre
HadSST3.1.1.0 (Kennedy et al. 2011). The observed
large-scale variables are derived from JRA-55 reanalysis
data (Kobayashi et al. 2015).

The entire East Asian (EEA) coast is divided into
three parts: southern East Asia (SEA), central or middle
East Asia (MEA), and northern East Asia (NEA)
(Fig. 1), following previous studies (Chan and Xu 2009;
Huang and Chan 2014). We build hybrid models for the
frequencies of TCs that make landfall over EEA and
each subregion (Fig. 1).

b. Climate indices

Hybrid models are built by training Poisson regression
models between predictands (i.e., WNP TC frequency
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and East Asia landfalling TCs) and predictors. We use
predictors that are commonly used and have significant
correlation with the frequencies of WNP and East Asian
landfalling TCs. Because significant correlation alone
cannot justify good performance by the predictors, the
predictors should have physical linkage with TC fre-
quency or landfall. Our focus will be on the PMM, the
North Atlantic SST Index (NASST), the SST Gradient
Index (SSTG), the El Nifio index, the Atlantic meridional
mode (AMM), the PDO, the Subtropical High Index
(STH), and east Indian Ocean SST anomalies (EIO).

PMM is defined as the first maximum covariance
analysis (MCA) mode of SST and 10-m wind fields in the
eastern Pacific and describes meridional variations in
SST, winds, and convection in the tropical Pacific Ocean
(Chiang and Vimont 2004). The PMM has robust and
significant association with the frequency of WNP TCs
in observations and long control experiments (fully
coupled free runs) in a high-resolution Geophysical
Fluid Dynamics Laboratory (GFDL) coupled climate
model (Zhang et al. 2016a).

The North Atlantic SST anomalies are found to
strongly modulate WNP TC frequency (Li et al. 2013;
Huo et al. 2015; Yu et al. 2015; Zhang et al. 2017). This
study uses the NASST index defined as the SST anom-
alies averaged over the region 0°-25°N, 90°W-0°, and a
base period of 1970-2000. The NASST can mediate
vertical wind shear by altering the Walker circulation or
the Indian Ocean relaying effect (Yu et al. 2015; Zhang
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FI1G. 2. (a)-(f) Hindcasted TC track density (occurrences) from June to October with FLOR-FA initialized from
January to June and (g) observed TC track density in the WNP for the period 1980-2015. The hindcasted TC track

density is averaged over 12 members.

et al. 2017). Stronger (weaker) vertical wind shear can
strongly suppress (enhance) TC genesis in the WNP (Yu
et al. 2015; Zhang et al. 2017).

The SST gradient between the southwestern Pacific
and the western Pacific warm pool in spring has strong
correlations with WNP TC frequency and has been used
in prior studies to build statistical models for the seasonal
prediction of WNP TC frequency (Zhan et al. 2013; Zhan
and Wang 2016). The SSTG anomaly is responsible for an
anomalous cross-equatorial pressure gradient and low-
level cross-equatorial easterly anomalies over the central-
western Pacific. The anomalous easterlies enhance local
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equatorial upwelling and SST cooling in the central Pa-
cific, which suppress WNP TC genesis (Zhan et al. 2013;
Zhan and Wang 2016). The SSTG index is defined as the
SST differences averaged over 0°-16°N, 125°-165°E mi-
nus those over 40°-20°S, 160°E-170°W.

The Nifio-3 region is bounded by 5°S-5°N and 150°-
90°W. The Nifio-3.4 region is bounded by 5°N-5°S and
170°-120°W. The El Nifio Modoki Index (EMI) is used
to measure the SST anomaly in the central Pacific.
ENSO indices during the early season have been used to
predict WNP TC frequency and landfalling TCs over
East Asia (Chan et al. 1998; 2001). The EMI is closely
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FIG. 3. As in Fig. 2, but for the hindcasted TC genesis density.

associated with TC landfall over Japan and the Korean
Peninsula (NEA) (Zhang et al. 2012). The EMI is de-
fined as EMI = [SSTA]A — 0.5[SSTA]g — 0.5[SSTA],
where [SSTA]A, [SSTA]g, and [SSTA]c indicate the
SST anomalies averaged over the regions (10°S-10°N,
165°E-140°W), (15°S-5°N, 110°~70°W), and (10°S-20°N,
125°-145°E), respectively (Ashok et al. 2007). The EMI
will be used as a predictor for TC landfall over NEA.
The Atlantic meridional mode is known historically as
the Atlantic dipole or interhemispheric mode (Servain
1991; Xie and Philander 1994; Carton et al. 1996) or the
tropical Atlantic gradient mode (Chiang et al. 2002).
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The AMM is closely linked to the Atlantic multidecadal
oscillation (AMO) (Kossin and Vimont 2007; Vimont
and Kossin 2007; Grossmann and Klotzbach 2009).
Recently, the AMM has been linked to WNP TC activity
by mediating the Walker circulation (Zhang et al. 2017).

The PDO is a strong atmosphere—ocean oscillation in
the North Pacific (Mantua et al. 1997; Newman et al.
2016). Different physical processes including high-
frequency atmospheric forcing, teleconnections from
the tropical Pacific, and ocean Rossby waves lead to the
variability of the PDO on a variety of time scales (e.g.,
seasonal, interannual, and decadal) (Newman et al.
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FIG. 4. Predicted PMM with FLOR-FA in initialization months January—June and observed PMM represented by
SST anomalies (shading; °C) and 10-m surface wind fields (vector; ms™').

2016). The PDO is strongly associated with TC landfalls
over East Asia (Chan 2000, 2005; Goh and Chan 2010;
Chan et al. 2012). We use the seasonal PDO index
as a predictor for the frequency of East Asian
landfalling TCs.

The subtropical high index is defined as the boreal
summer [June-August (JJA)] mean 850-hPa geo-
potential height (H850) anomaly averaged over the re-
gion 15°-25°N, 115°-150°E. The easterlies located in the
southern flank of the subtropical high can steer TCs to
propagate westward; the strength and location of the
subtropical high are thus closely associated with land-
falling TCs (Wang et al. 2013). The STH index has
proven highly skillful in predicting TC landfall over East
Asia (Wang et al. 2013; Zhang et al. 2013a,b).

The East Indian Ocean SST anomalies modulate TC
activity in the WNP and landfall over the Korean Pen-
insula by inducing Kelvin wave responses in the western
Pacific, which in turn modulate the subtropical high
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(Du et al. 2010; Tao et al. 2012; Zhan et al. 2011, 2014;
Choi et al. 2015). The EIO index is defined as the SST
anomaly averaged over the region 10°S-22.5°N, 75°-
100°E (Zhan et al. 2011, 2014).

c. Climate model

The experiments used in this study are run by the
GFDL Forecast-Oriented Low Ocean Resolution
(FLOR) configuration of the GFDL Coupled Model
version 2.5 (CM2.5; Delworth et al. 2012; Vecchi et al.
2014). FLOR’s atmosphere and land components
(50km X 50km) are obtained from CM2.5 while its
ocean component (1° X 1°) is taken from CM2.1
(Delworth et al. 2006). A slight change has been made to
the ocean component of FLOR by using a new advec-
tion scheme and a parameterization for eddies (Farneti
et al. 2010). This study employs a version of FLOR by
adjusting the model’s momentum, enthalpy, and fresh-
water fluxes from atmosphere to ocean to their observed



15 MARCH 2017 ZHANG ET AL. 2215

(a) Correlation between Obs and Sim SST (JJASO) Init Jan FLOR-FA

60N SR 60N

30NF 30NF

EQf EQ

30s} - 30S| -

o - ' P s
20E 60E 100E 140E 180 140W 100W 60W 20W

60S

(d) Correlation between Obs and Sim SST (JJASQ) Init Apr FLOR-FA

60 N ez 7 G > 3

eaf Eaf

30St 30St

60 5L— B . ¥ Sl Ha oA =4 b 605 L— o = e ™ e - 78 i
20E 60E 100E 140E 180 140W 100W 60W 20W 20E 60E 100E 140E 180 140W 100W 60W 20W

(e) Correlation between Obs and Sim SST (JJASQ) Init May FLOR-FA (f) Correlation between Obs and Sim SST (JJASO) Init Jun FLOR-FA

60 N 60 Y, Y 5
! Jj\‘ 5|
30N 30N
EQf: EQf
sosPAL TR Y FERERSEEET S 308
R 3 3 ¥ s bl 0000 Eeta Y - 2
60S H N 7 4 60S N PEu i

20E 60E 100E 140E 180 140W 100W 60W 20W 20E 60E 100E 140E 180 140W 100W 6OW 20W
=1 1 1 1 | E

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIG. 5. Pointwise correlation coefficient between predicted (FLOR-FA) and observed SST anomalies averaged over the June-October
months for different initialized months (from January to June). Stippled regions are those for which the correlation coefficients are
statistically different from zero at the 0.05 significance level.

climatology (FLOR-FA; Vecchi et al. 2014; Delworth  components of the FLOR while the initial conditions for
et al. 2015). The detailed description of FLOR is pro- the atmosphere and land components of FLOR are
vided in Vecchi et al. (2014). obtained from FLOR’s simulations forced with the ob-
We used 12-member ensemble retrospective seasonal — served estimates of SSTs (Vecchi et al. 2014).
forecasts initialized on the first day of every month from
1980 to the present (Vecchi et al. 2014). The GFDL’s
ensemble coupled data assimilation (ECDA) system is To make the best use of the dynamic forecasts pro-
used to initialize FLOR (Zhang et al. 2007; Zhang and duced by FLOR-FA, we use the ‘“‘closer-gets-richer”
Rosati 2010; Yang et al. 2013, 2015; Vecchi et al. 2011, strategy to build hybrid prediction models. In forecasts
2013, 2014; Jia et al. 2015; Msadek et al. 2014a,b; produced by dynamic models, zero-lead-month pre-
Krishnamurthy et al. 2016). Chang et al. (2013) com- dictions (i.e., initialized in June for WNP TC activity)
prehensively assessed the 1960-2010 oceanic variability — are not necessarily better than those obtained for longer
in the newest version of the ECDA. The ECDA system lead times (e.g., initialized in January or February),
provides initial conditions for the ocean and ice partly due to initial shock (e.g., Schneider et al. 1999;

d. Closer-gets-richer strategy
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Luo et al. 2005; Zhang 2011). FLOR-FA produces better
predictions for WNP TC frequency when initialized in
January rather than in July (Zhang et al. 2016b). Here
we develop a new strategy that we refer to as closer-gets-
richer to overcome this limitation in dynamical seasonal
forecasting when building hybrid models. The closer-
gets-richer strategy is defined as follows. Conventionally,
we only use dynamical forecasts for one initialization
month to build the hybrid model for that specific initial-
ization month. In the closer-gets-richer strategy, how-
ever, we use all the dynamical forecasts available for and
prior to the initialization month to build hybrid models:
we include the predictors from the dynamical forecasts
prior to the initialization month of interest if they can
improve the hybrid model compared to the results we

would obtain using only the predictions for the initial-
ization month of interest. Under this strategy, if the
prediction using dynamic forecasts initialized in and
before June cannot outperform that using the pre-
diction initialized in or before May, we select the pre-
diction by using dynamic forecasts initialized in May as
that for June. By doing this, the hybrid model cannot
provide a worse performance as the lead time de-
creases, alleviating some of the issues associated with
the forecasting of WNP TC activity based on FLOR-
FA (Zhang et al. 2016b).

e. Poisson regression

We use Poisson regression to model the occurrence
probability of TCs in the forecast experiments with

TABLE 1. The predictors from the dynamic forecasts of FLOR-FA used to build the hybrid model for WNP TC frequency. “PMM (Feb-
Jun; initial Jan)” represents the predicted PMM index averaged from February to June and initialized in January. The others are defined

likewise.
Initial month Predictors
Jan PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Jan), SSTG (Jun—Oct; initial Jan), and Nifio-3

(Mar-May; initial Jan)

Feb

(Mar-May; initial Jan)
Mar

(Mar-May; initial Jan)
Apr

(Mar-May; initial Jan)
May

(Mar-May; initial Jan)
June

(Mar-May; initial Jan)

PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Feb), SSTG (Jun-Oct; initial Feb), and Nifio-3
PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Mar), SSTG (Jun—Oct; initial Mar), and Nifio-3
PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Mar), SSTG (Jun-Oct; initial Apr), and Nifio-3
PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Mar), SSTG (Jun-Oct; initial Apr), and Nifio-3

PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Mar), SSTG (Jun—Oct; initial Apr), and Nifio-3
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F1G. 7. Correlation and RMSE of observed and predicted WNP TC frequency produced by the hybrid model after LOOCYV for 1980—
2015. The red and purple curves denote the predictions of WNP TC frequency in each year using the hybrid model and “perfect pre-
diction” using observed predictors, while the black solid lines represent the observations. The blue curves represent predicted TC
frequency with FLOR-FA. The pink areas represent the 10% and 90% percentiles of 1000 random samples of TC frequency given u (the
predicted mean TC frequency with the hybrid model) under the Poisson distribution.

FLOR. Many studies have used Poisson regression to
examine the occurrence probability of rare events (e.g.,
Elsner and Schmertmann 1993; Elsner and Jagger 2006;
Villarini et al. 2010; Wilks 2011). Poisson regression is
described as

pie

P(Y,=y)= o

y=0,1,2,...,%, 1)

where log(s;) = By + X8%i.

The term Y; represents the true number of TC fre-
quency in the ith year, while u; denotes the logarithm of
the average landfalling/WNP TC frequency and y de-
notes the observed landfalling/WNP TC frequency; w;
can be represented as a linear combination of the
predictors x;;, with j being the specified predictor dur-
ing the year i; B; and B, represent the corresponding
Poisson regression coefficient and the intercept, re-
spectively. A similar description can be found in Zhang
et al. (2016b).
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3. Results

Figure 2 illustrates predicted and observed TC track
densities during the peak TC season [June-October
(JJASO)]. TCs in FLOR-FA are tracked from the
6-hourly model output by using the tracker developed at
GFDL as implemented in previous studies (e.g.,
Murakami et al. 2016a; Zhang et al. 2016a,b,c, 2017; see
the appendix for details). The basic structures of the
observed TC track density are well simulated by FLOR-
FA. However, there are positive biases in TC density in
the region 120°-140°E with FLOR-FA compared with

TABLE 2. The predictive skill of the “perfect prediction” that
uses observed predictors for WNP TCF and landfall over SEA,
MEA, NEA, and EEA.

MEA NEA EEA

0.53 0.45 0.69
1.32 1.92 212

WNP TCF SEA

0.59 0.57
3.06 1.74

Perfect prediction

Correlation
RMSE
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(a) Correlation between Observed and Predicted TC Frequencies with Hybrid Model and FLOR-FA (1980-2015 JASON)
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FIG. 8. (a) Correlation and (b) RMSE of predicted and observed WNP TC frequencies using
the hybrid model (blue) and FLOR-FA (yellow) for initialization months from January to June
after LOOCV. The black dashed line in the top panel represents the value for which the
correlation coefficients are significantly different from zero at the 0.05 significance level.

the observations (Fig. 2). The predicted TC density cli-
matology with FLOR-FA is similar to one another
(Fig. 2a-f). The climatology of TC density in the South
China Sea is realistically simulated in FLOR-FA; this is
particularly true when initialized in June. The predicted
climatology of TC density in the WNP has biases along
the East Asian coast partly due to the eastward shift in
TC genesis and density, limiting the capability of FLOR-
FA in successfully forecasting TC landfalls over East
Asia. A detailed discussion of TC landfall is provided in
section 3b.

The forecasted WNP TC genesis density has a mag-
nitude close to observations while the spatial patterns
are different (Fig. 3). Similar to the simulated WNP TCs
in control experiments with FLOR-FA (e.g., Vecchi
et al. 2014; Zhang et al. 2016a,b), the high center of TC
genesis density in seasonal-forecast experiments has an
eastward shift compared with observations (Fig. 3).
Specifically, there is a high center of TC genesis around
135°E in the observations whereas it is shifted to around
145°E in the FLOR-FA forecasts (Fig. 3). In addition,
the climatology of TC genesis density in the South China
Sea is much lower than that in observations. Similar to
the forecasts of the TC track density, the forecasts
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initialized in June outperform those in the other
initialization months.

a. Hybrid model for WNP TC frequency

Here we use the predictors introduced in section 2b to
build the hybrid prediction model for WNP TC fre-
quency. To further justify their use, we provide the
predictive skill of FLOR-FA for these predictors.
Figure 4 shows the predicted PMM with FLOR-FA
initialized from January to June. The predicted PMM
successfully captures fundamental structures of the ob-
served PMM characterized by warm SST anomalies lo-
cated from the central Pacific to the subtropical eastern
Pacific, and by negative SST anomalies in the tropical

TABLE 3. List of predictors in dynamic forecasts of FLOR-FA
used to build the hybrid model for TC landfall over SEA, MEA,
NEA, and EEA.

Landfall regions Predictors

SEA PDO, NASST, AMM, PMM, Nifio-3
MEA PDO, NASST, AMM, Nifio-3, EIO
NEA PDO, EMI, STH, Nifio-3

EEA PDO, NASST, PMM, EIO
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Correlation between Predicted and Observed Predictors in Initialization Months (January to June)
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FI1G. 9. Values of the correlation coefficient between observed and predicted (FLOR-FA)
AMM, PDO, EMI, STH, and EIO. The black dashed line represents the value for which the
correlation coefficients are significantly different from zero at the 0.05 significance level.

eastern Pacific (Fig. 4). Note that the surface wind
anomalies of the predicted PMM in the subtropical
eastern Pacific are quite weak, especially initialized after
February (Fig. 4).

The predictors Nifio-3, SSTG, and NASST are cal-
culated from predicted SST anomalies with FLOR-FA.
It is therefore useful to assess the skill of FLOR-FA in
predicting SST. The predictive skill of FLOR-FA for
SST is generally high for all initialization months, and it
is higher when the dynamic model is initialized closer to
the target months (Fig. 5). The high predictive skill of
FLOR-FA for SST strongly supports the use of Nifio-3,
SSTG, and NASST for the hybrid prediction model.
Figure 6 illustrates the correlation between predicted

and observed predictors which are used to build the
hybrid model. All correlation coefficients between pre-
dicted and observed predictors are significant (Fig. 6).
The predictive skill for PMM is slightly lower than that
for Nifio-3, NASST, and SSTG (Fig. 6). It is noted that
the PMM and Nifio-3 indices in the hybrid model are
taken from the forecasts initialized in January for
February—June and those for March—-May, respectively.
Therefore, the correlation coefficients between ob-
served and predicted PMM in February—June Nifio-3 in
March-May are the same for different initialization
months (Fig. 6).

Using the “‘closer-gets-richer’ strategy in which the
predictors in or before an initialization month are

TABLE 4. List of predictors for TC landfall over SEA for different initialization months. “PMM (Feb-Jun; initial Jan)”” represents the
predicted PMM index averaged from February to June and initialized in January. The others are defined likewise.

Initial month

Predictors

PMM (Feb-Jun; initial Jan), NASST (Jun-Oct; initial Jan), Nifio-3 (Jun—-Oct; initial Jan), AMM (Jun-Oct;

PMM (Feb-Jun; initial Jan), NASST (Jun-Oct; initial Feb), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun-Oct;
PMM (Feb—Jun; initial Jan), NASST (Jun—Oct; initial Feb), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun—Oct;
PMM (Feb-Jun; initial Jan), NASST (Jun-Oct; initial Apr), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun-Oct;

PMM (Feb-Jun; initial Jan), NASST (Jun-Oct; initial Apr), Nifio-3 (Jun-Oct; initial Jan), AMM (Jun-Oct;

Jan

initial Jan), and PDO (Jun-Oct; initial Jan)
Feb

initial Feb), and PDO (Jun-Oct; initial Feb)
Mar

initial Feb), and PDO (Jun-Oct; initial March)
Apr

initial Feb), PDO, and (Jun-Oct; initial Apr)
May

initial May), and PDO (Jun—Oct; initial Apr)
Jun

PMM (Feb-Jun; initial Jan), NASST (Jun-Oct; initial Apr), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun-Oct;

initial Jun), and PDO (Jun-Oct; initial Apr)
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FIG. 10. As in Fig. 7, but for TC landfall over SEA.

allowed to be used for the hybrid model, the predictors
in different initialization months are listed in Table 1.
The predictors are selected as follows. First, the pre-
dictors should be closely associated with WNP TC fre-
quency in the observations and in FLOR-FA. Second, a
predictor is used when it produces significant correla-
tion with the observations after leave-one-out cross-
validation (LOOCYV) with the hybrid model. Third, the
predictors should be commonly used and easily pro-
cessed to make these results directly applicable in other
studies. When the forecasts are initialized closer to the
target months (e.g., JJASO), more information is avail-
able to build the hybrid model.

The hybrid model initialized in January produces
predictions with a correlation of 0.56 between pre-
dicted and observed WNP TC frequency and a RMSE
of 3.21 after LOOCV (Fig. 7a). The hybrid model
initialized in January predicts WNP TC frequency in
2015 close to the observations, while FLOR-FA
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substantially overestimates the WNP TC frequency
for forecasts initialized in January (Fig. 7a). The
predictive skill of the hybrid model becomes better
when we get closer to the target TC season, with the
values of the correlation coefficient increasing from
0.56 to 0.71 as the initialization month decreases from
January to June (Fig. 7). At the shortest lead time
(June initialized), the correlation between the WNP
TC frequencies in observations and the hybrid model
reaches 0.69 and an RMSE of 2.77, which is quite
promising compared with the predictive skill of cur-
rent prediction models (Huang and Chan 2014; Li
et al. 2013; Kim et al. 2017). The “‘perfect prediction”
using observed predictors produces a correlation co-
efficient of 0.59 and an RMSE of 3.06, which is slightly
lower than the skill achieved from the hybrid model
initialized in April to June (Table 2). This supports the
importance of the predictors in predicting WNP TC
frequency.
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(b) RMSE of Landfall SEA with Hybrid Model and FLOR-FA
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FI1G. 11. Correlation coefficient and RMSE in the hybrid model (blue bar) and FLOR-FA (red bar) for TC landfall over SEA, MEA,
NEA, and EEA after LOOCV. The black dashed line in the left panels represents the value for which the correlation coefficients are

significantly different from zero at the 0.05 significance level.

Figure 8 illustrates that the hybrid models outperform
FLOR-FA in predicting WNP TC frequency for all
initialization months in terms of correlation coefficient
and RMSE. FLOR-FA performs the best in January and
the worst in March in the prediction of WNP TC fre-
quency, which is partly related to the mean biases in
zonal vertical wind shear in FLOR-FA for different
initialization months as documented in Zhang et al.
(2016b). The hybrid models built in this study success-
fully overcome this limitation, and all the predictions
made by the hybrid models perform better in terms of
correlations and RMSE when closer to the TC season.

b. TC landfall

We build hybrid models for TC landfall over the EEA
and over three subregions (i.e., SEA, MEA, and NEA).
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The predictors used for the hybrid models are listed in
Table 3. The predictors are selected based on the strat-
egy which is used to select predictors for WNP TC fre-
quency discussed in section 3a. The predictors for
landfalling TCs over SEA, MEA, NEA, and EEA are
not exactly the same, suggesting that landfalling TCs
over different subregions may be associated with dif-
ferent predictors (climate modes). For example, EMI is
only used as a predictor for landfall over NEA while
PMM is used for landfall over SEA and EEA (Table 3).
PMM, AMM, and NASST have not been used to predict
TC landfall over East Asia in the literature yet. Previous
studies have discussed the impacts of PMM and NASST
on TC genesis and large-scale circulation in observations
and model simulations (e.g., Huo et al. 2015; Yu et al.
2015; Zhang et al. 2016a, 2017), suggesting the potential
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TABLE 5. As in Table 4, but for MEA.

Initial month

Predictors

Jan

and EIO (Jun—Oct; initial Jan)
Feb

and EIO (Jun—Oct; initial Feb)
Mar

and EIO (Jun-Oct; initial Mar)
Apr

and EIO (Jun-Oct; initial Apr)
May

and EIO (Jun—Oct; initial May)
Jun

and EIO (Jun-Oct; initial Jun)

NASST (Jun—Oct; initial Jan), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun—Oct; initial Jan), PDO (Jun—Oct; initial Jan),
NASST (Jun—Oct; initial Jan), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun—Oct; initial Jan), PDO (Jun—Oct; initial Feb),
NASST (Jun—Oct; initial Mar), Nifio-3 (Jun-Oct; initial Jan), AMM (Jun-Oct; initial Jan), PDO (Jun-Oct; initial Mar),
NASST (Jun—Oct; initial Apr), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun—Oct; initial Jan), PDO (Jun-Oct; initial Apr),
NASST (Jun—Oct; initial Feb), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun—Oct; initial Jan), PDO (Jun—Oct; initial Apr),

NASST (Jun—Oct; initial Feb), Nifio-3 (Jun—Oct; initial Jan), AMM (Jun-Oct; initial Jan), PDO (Jun—Oct; initial Apr),

influences of PMM/AMM and NASST on East Asian
landfalling TCs. PDO is selected by all four hybrid
models for landfall over SEA, MEA, NEA, and EEA,
suggesting it plays a dominant role in controlling TC
landfall over East Asia. The predictive skill of the pre-
dictors is high and significant for all initial months
(Fig. 9). The STH index based on 850-hPa geopotential
height is well predicted with FLOR-FA (Fig. 9). The
predictive skill of PMM, Nifio-3, and NASST is shown in
Fig. 6.

1) LANDFALL OVER SOUTHERN EAST ASIA

Landfalling TCs over SEA are strongly associated
with PMM, NASST, Nifo-3, AMM, and PDO, which
are used as predictors for the hybrid model (Table 4).
The predictors related to TC landfalls over SEA can be
calculated from SST and 10-m surface winds. FLOR-FA
has high predictive skill for SST and PMM as discussed
in section 3a. Using the closer-gets-richer strategy, the
predictive skill of the hybrid model for SEA landfall is
high for the period 1980-2015 (Fig. 10). The correlation
coefficient between predicted and observed TC landfall
over SEA increases from 0.52 to 0.64 as we initialize the
forecasts from January to June after LOOCV (Fig. 10);
for the same lead times, the RMSE of the hybrid model
decreases from 1.87 to 1.64 (Fig. 10). A sharp decrease in
the frequency of SEA landfalling TCs is observed since
1998, probably associated with the decadal change of
WNP TC activity where there is less TC activity in SEA
and more TC activity around Taiwan and the East China
Sea (Liu and Chan 2013; Lin and Chan 2015). FLOR-FA
fails to predict this decrease in SEA landfalling TCs
while the hybrid model successfully captures it (Fig. 10).
Furthermore, FLOR-FA predicts much less SEA TC
landfalls than the observations (Fig. 10). The ‘“perfect
prediction” produces a correlation of 0.57 and an RMSE
of 1.74, which is close to the prediction made by the
hybrid model.
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The year-to-year variation of SEA landfall is much
better predicted in the hybrid model than in FLOR-FA,
as indicated by the values of the correlation coefficient
and RMSE (Fig. 11). For the different initialization
months, the results from the hybrid models are very
impressive, with high values of correlation coefficient
and low RMSE. The performance increases as we re-
duce the lead time, and it is higher than what we obtain
with FLOR-FA. The relatively poor performance of
FLOR-FA in predicting SEA may be associated with
the eastward shift in TC genesis and density in the WNP.
The RMSE in the hybrid model is around half of that in
FLOR-FA, suggesting a major improvement in the
prediction by the hybrid model (Fig. 11).

2) LANDFALL OVER MIDDLE EAST ASIA

NASST, Nifio-3, AMM, PDO, and EIO are used as
predictors to build hybrid models for MEA landfalling
TCs (Tables 3 and 5). All the predictors are related to
SST. Previous studies have discussed the modulation of
such climate modes or SST anomalies on East Asia
landfalling TCs or WNP TC activity, as summarized in
section 2b. EIO strongly modulates TC landfall over the
Korean Peninsula by mediating the subtropical high
(Choi et al. 2015). AMM is obtained from SST and 10-m
surface winds. Figure 12 illustrates the predicted AMM
in FLOR-FA, which satisfactorily captures the north
part of the AMM. The southern part of the AMM with
cooling, however, is not well simulated in FLOR-FA,
similar to the results in Zhang et al. (2017). Starting from
forecasts initialized in March, the predicted AMM has
its warming center in the tropical equatorial Atlantic
while the warming center in the observations is located
in the tropical North Atlantic (Fig. 12). The correlation
coefficients between the observed and predicted AMM
index are statistically significant at the 0.05 level at all
lead months (Fig. 9). The correlation coefficients be-
tween the predicted and observed MEA TC landfalls are
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FIG. 12. Predicted AMM with FLOR-FA in initialization months January—June and observed AMM represented by
SST anomalies (shading; °C) and 10-m surface wind fields (vector; ms™1).

statistically significant except for those initialized in
January and February after LOOCV (Fig. 13). The
“perfect prediction” using observed predictors leads
to a correlation of 0.53 and an RMSE of 1.32, with skill
higher than that of the hybrid model (Table 2 and
Fig. 13). The hybrid model improves seasonal fore-
casting of landfalling TCs over MEA with respect to the
results with FLOR-FA in terms of correlation and
RMSE (Fig. 13). In general, the predictive skill of the
hybrid model for SEA TC landfall is higher than that for
MEA TC landfall (Figs. 10 and 13).

3) LANDFALL OVER NORTHERN EAST ASIA

The predictors for TC landfall over NEA include
EMI, Nifio-3.4, STH, and the PDO (Table 6). The
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predictors have strong influences on TC landfall over
Japan and the Korean Peninsula (Fan 2007; Zhang et al.
2012; Wang et al. 2013). The STH index is calculated
based on 850-hPa GPH anomalies in the western Pacific
(Wang et al. 2013). The predictive skill of FLOR-FA for
850-hPa GPH is high for all initialization months using
correlation coefficient as a measurement of the skill
(Fig. 14). The correlation between predicted and ob-
served 850-hPa GPH is statistically significant in the
domain for STH index for all initialization months
(Fig. 14). The correlation coefficients between the pre-
dicted and observed NEA landfall increase from 0.18
(January initialized) to 0.49 (June initialized), while
RMSE decreases from 2.22 to 1.90 for the same initial-
ization months after LOOCV. The perfect prediction
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FIG. 13. As in Fig. 7, but for TC landfall over MEA.

produces a correlation of 0.45 and an RMSE of 1.92,
close to the prediction derived from the hybrid model.
The results from the hybrid model represent a significant
improvement over what we obtained using FLOR-FA
(Fig. 15).
4) LANDFALL OVER THE ENTIRE EAST ASIAN
AREA

PMM, NASST, PDO, and EIO are used to build hy-
brid models for TC landfall over EEA (Table 7). The
four predictors are calculated from SST and 10-m

surface winds, and FLOR-FA exhibits high skill in re-
producing those predictors (Fig. 9).

The predictive skill of the hybrid model increased
from January-initialized (correlation coefficient equal to
0.37 and RMSE equal to 2.79) to June-initialized (cor-
relation coefficient equal to 0.55 and RMSE equal to
2.49) after LOOCYV (Fig. 16). The RMSE of the hybrid
model for the prediction of EEA landfall is much lower
than that of FLOR-FA (Fig. 16), suggesting significant
improvements made by the hybrid model. The perfect
prediction produces a correlation of 0.68 and an RMSE

TABLE 6. As in Table 4, but for NEA.

Initial month Predictors
Jan Nifio-3 (Jun—Oct; initial Jan), EMI (Jun-Oct; initial Jan), STH (Jun—Oct; initial Jan), and PDO (Jun—Oct; initial Jan)
Feb Nifio-3 (Jun—Oct; initial Jan), EMI (Jun-Oct; initial Feb), STH (Jun-Oct; initial Feb), and PDO (Jun—Oct; initial Feb)
Mar Nifio-3 (Jun—Oct; initial Jan), EMI (Jun-Oct; initial Mar), STH (Jun-Oct; initial Mar), and PDO (Jun-Oct; initial Mar)
Apr Nifio-3 (Jun—Oct; initial Jan), EMI (Jun—Oct; initial Mar), STH (Jun-Oct; initial Apr), and PDO (Jun—Oct; initial Apr)
May Nifio-3 (Jun-Oct; initial Jan), EMI (Jun-Oct; initial Mar), STH (Jun—Aug; initial Apr), and PDO (Jun-Oct; initial May)
Jun

Nifio-3 (Jun-Oct; initial Jan), EMI (Jun-Oct; initial Mar), STH (Jun—Oct; initial Apr), and PDO (Jun-Oct; initial May)
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(b) Correlation between Obs and Sim GPH850 (JJASO) Init Feb FLOR-FA
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FIG. 14. Pointwise correlation coefficient between predicted (FLOR-FA) and observed 850-hPa GPH for different initialized months
(January—June). Stippled regions are those statistically significant at the 0.05 significance level. The red rectangle in each panel represents
the domain used for calculating the STH index as in Wang et al. (2013).

of 2.12, slightly higher than the prediction derived from
the hybrid model (Table 2). The hybrid model out-
performs FLOR-FA for almost all lead months (Figs. 8
and 16).

4. Discussion and conclusions

The prediction of WNP TC frequency and TC landfall
over East Asia has been the topic of much research over
the decades. Both statistical and dynamic models have
been used to improve the seasonal prediction of
WNP TC frequency and TC landfall over East Asia,
with the statistical-dynamical (i.e., hybrid) models
representing a very promising path ahead. The skill
of dynamic models (AGCMs and CGCMs) in simu-
lating TCs has improved significantly over the last
decade or so. However, the skill of climate models is
still limited by uncertainty in climate modeling, low
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spatial resolution to resolve TCs (especially intense
TCs), and lack of thorough understanding and
representation of physical processes related to TC
genesis, development, and tracking. Although the
simulation of TC frequency or landfall by climate
models still needs improvements, climate models can
simulate reasonably well the large-scale circulation
or climate modes that are essential in controlling TC
activity, providing a good opportunity to improve the
seasonal predictions of TCs using hybrid models.
Hybrid models, which are based on simulated large-
scale circulation or climate modes and statistical
links between the simulated climate modes/circulation
and observed TCs, have proven highly skillful in
producing a seasonal prediction of TCs. Successful
predictions of TC frequency and landfall using hy-
brid models, therefore, not only depend on the capa-
bility of the dynamic model to reproduce the observed
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FI1G. 15. As in Fig. 7, but for TC landfall over NEA.

climate conditions but also require a better un- employ all available dynamical forecasts in and prior
derstanding of statistical associations between TCs to the initialization month of interest to build hybrid
and climate modes. models. The developed hybrid models make sub-

Recent studies have found new links between cli- stantial improvements in predicting WNP TC fre-
mate modes (e.g., PMM, NASST, SSTG, and STH) quency and East Asian landfall TCs by using
and WNP TC activity or East Asian landfalling predictors (e.g., PMM and NASST) and the closer
TCs. By using the “‘closer-gets-richer’ strategy, we gets richer strategy.

TABLE 7. As in Table 4, but for EEA.

Initial month Predictors

Jan PMM (Feb-Jun; initial Jan), NASST (Jun-Oct; initial Jan), PDO (Jun—Oct; initial Jan), and EIO
(Jun—Oct; initial Jan)

Feb PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Feb), PDO (Jun-Oct; initial Feb), and EIO
(Jun—Oct; initial Feb)

Mar PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Feb), PDO (Jun-Oct; initial Mar), and EIO
(Jun—Oct; initial Mar)

Apr PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Feb), PDO (Jun-Oct; initial Apr), and EIO
(Jun—Oct; initial Apr)

May PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Apr), PDO (Jun-Oct; initial Apr), and EIO
(Jun—Oct; initial May)

Jun PMM (Feb-Jun; initial Jan), NASST (Jun—Oct; initial Apr), PDO (Jun-Oct; initial Apr), and EIO

(Jun—Oct; initial May)
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FIG. 16. As in Fig. 7, but for TC landfall over EEA.

Our main findings can be summarized as follows:

1) The hybrid model for basinwide WNP TC fre-

quency uses PMM, NASST, SSTG, and Niifio-3 as
predictors. The predictive skill of this model for
WNP TC frequency increases from the longest
(January initialized) to the shortest (June initial-
ized) lead time in terms of correlation and RMSE.
The hybrid model outperforms FLOR-FA in pre-
dicting WNP TC frequency for all lead months.
The predictive skill in hybrid models gets better
when closer to the TC season, with values of the
correlation coefficient from 0.56 (January) to
0.69 (June).

The hybrid models for TC landfall over the three
subregions of the East Asian coast and its entirety
(i.e., SEA, MEA, NEA, and EEA) show substantial
improvement compared with FLOR-FA in terms of
correlation coefficient and RMSE. The hybrid model
performs the best for the prediction of TC landfall
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3)

over SEA. The correlation coefficient between pre-
dicted and observed TC landfall over SEA increases
from 0.52 (for January) to 0.64 (for June). The
correlation coefficient between predicted and ob-
served TC landfall over MEA increases from 0.29 in
January to 0.51 in June. The correlation coefficient
between predicted and observed TC landfall over
NEA increases from 0.18 in January to 0.49 in June.
The correlation coefficient between predicted and
observed TC landfall over EEA increases from 0.37
in January to 0.55 in June.

The hybrid models substantially reduce the RMSE of
landfalling TCs over SEA and the entire East Asian
area compared with FLOR-FA, supporting the idea
that the hybrid models can be used for the seasonal
prediction of TC landfall over East Asia and its
subregions.

This study produces satisfactory prediction results

compared with existing studies. Huang and Chan (2014)
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TABLE 8. Summary of the forecasts for the upcoming 2016 WNP TC season (TC frequency) initialized in June 2016; “P (count > 19)”
indicates the probability of exceeding 19 TCs, and so on.

P (count > 19)

P (count > 25) P (count = 10)

WNP TCF Mean count
Climatology (1980-2015) 19.0
Hybrid model (2016) 15.6

0.44
0.16

0.07
0.01

0.02
0.09

reported that the correlation between predicted and
observed WNP TC frequency is 0.55 with a LOOCYV for
1980-2001 using a regional climate model (RegCM) to
dynamically downscale the National Centers for Envi-
ronmental Prediction Climate Forecast System version 2
(NCEP CFSV2) hindcasts. The period of our study is
1980-2015, which is longer than Huang and Chan (2014).
The values of the correlation coefficient and RMSE
between the observed and predicted WNP TC fre-
quency for 1982-2012 in a hybrid model (multiple linear
regression model) range from 0.73 to 0.79 and from 2.75
to 3.11, respectively, using NCEP CFSV2 (Li et al.
2013). Our approach produces values of the correlation
coefficient and RMSE ranging from 0.56 to 0.69 and
from 2.77 to 3.21. Li et al. (2013) used domains that are
obtained from the spatial domains based on correlation
analysis between observed predictand and large-scale
environmental variables which may be different from
those derived from the model simulations. The pre-
dictions of TC landfall in SEA, MEA, NEA and EEA
based on Huang and Chan (2014) have correlation co-
efficients of 0.70, 0.16, 0.58 and 0.27 for the period 2000-
10 while those in our study are 0.64, 0.51, 0.49 and 0.55 at
the shortest lead time for the period 1980-2015. Sun and
Ahn (2011) reported that a coupled climate model [the
Pusan National University (PNU) CGCM] exhibited
virtually no forecasting ability in predicting 6-9- and 3—
5-month leads for landfalling TCs over East Asia.
Therefore, this study produces results that compare very
favorably to (often better than) previously published
studies in terms of overall skill and persistence across
different lead times.

For the upcoming TC season of 2016, the hybrid
model predicts a below average number of WNP TCs
(Table 8). The hybrid model forecasts that the upcoming
season has a lower expected TC count than the average
over 1980-2015, along with a lower probability of an
extreme high number (>25 TCs) of TCs. Moreover, the
hybrid model forecasts a higher probability of an in-
active TC season (<10 TCs) than climatology. Similar
predictions for the probability of TC landfalls are in-
cluded in the online supplemental material. It is noted
that the skill of the hybrid model depends heavily on
whether the predictors of the hybrid model can be well
predicted by FLOR-FA. The prediction of expected TC
count in the TC season of 2016 is 20.5 when using the
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observed PMM index (1.9) averaged over February—
June 2016, which is higher than 15.6 when using the
predicted PMM index (—1.4) over the same months.

Previous studies have reported that the sample size of
regression analysis should be over 10 times the number
of predictors (Draper and Smith 1998; Ryan 2008). Al-
though we have used LOOCYV to validate the prediction
model, the prediction models are still at the risk of
overfitting. Our future study will focus on further im-
proving the prediction model by reducing the number of
predictors. This can be achieved by applying principal
component analysis to the selected variables and using
principal components as predictors.

The improvement in predictive skill of the hybrid
models is partly due to our better understanding of the
physical mechanisms underlying changes in WNP and
East Asia landfalling TCs over the years. This strongly
encourages us to further examine the climate variability
of WNP TC genesis and East Asian landfall, which are
highly useful to improve the predictive skill of the sta-
tistical and hybrid models. This study indicates that TC
landfalls over different parts of the East Asian coast are
associated with different climate drivers (Table 2). In
particular, we found that PMM and North Atlantic SST
anomalies (e.g., NASST and AMM) can improve the
predictive skill of the hybrid models for the frequencies
of WNP and East Asia landfalling TCs. The PMM and
North Atlantic SST anomalies (e.g., NASST and AMM)
should be considered when meteorological agencies/
institutions build statistical or hybrid forecast models
for WNP and East Asia landfalling TCs.

Acknowledgments. The authors are grateful to three
anonymous reviewers for insightful comments. The au-
thors are grateful to Baogiang Xiang and Carlos Gaitan
for their valuable comments on an earlier version of this
paper. This material is based in part upon work sup-
ported by the National Science Foundation under
Grants AGS-1262091 and AGS-1262099.

APPENDIX

Tracking Algorithm

The tracker is developed to track TCs from 6-h climate
simulations. This tracker was also employed in Zhang
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et al. (2016a,b,c, 2017) and Murakami et al. (2016a). The
tracking processes are based on key variables such as
temperature, sea level pressure (SLP), and 10-m wind.
The tracking procedures are described as follows:

1) Local minima of the smoothed SLP field are found.
The location of the center is properly adjusted by
fitting a biquadratic function to the SLP and locating
the center at the minimum.

2) Closed contours in an interval of 2hPa (dp) around
every single SLP low center. The Nth contour is
marked as the contiguous region surrounding a low
central pressure P with pressures lower than dp X
N + P, as detected by a “flood fill”” algorithm. It is
noted that the contours are not required to be
circular, and a maximum radius of 3000 km will be
searched from each candidate low center.

3) If the algorithm detects contours that are close
enough, the low is counted as a TC center. In this
way, the tracker attempts to find all closed contours
in the vicinity of the low center within a certain
distance from the low center and without entering
contours belonging to another low. The maximum
10-m wind inside the set of closed contours is taken as
the maximum wind speed at that time for the storm.

4) Warm cores are detected via similar processes:
closed 1°C contours for FLOR are found surround-
ing the maximum temperature anomaly ¢, within a
TC’s identified contours, no more than 1° from the
low center. This contour must have a radius smaller
than 3° in distance. If there is not such a core, it
should not be marked as a warm-core low center,
although the center is not rejected.

5) TC centers are combined into a track by taking a low
center at time 7 — dt, extrapolating its motion
forward dt, and then seeking storms within 750 km.
It is noted that a deeper low center has higher
priority of tracking.

6) The following criteria are required to pick up the
final TCs:

(i) At least 72h of total detection lifetime (not

necessarily consecutive).

(ii) At least 48 cumulative (not necessarily consec-
utive) hours with a warm core.

(iii) At least 36 consecutive hours of a warm core
with winds greater than 17.5ms .

(iv) TC genesis should be confined equatorward
of 40°N.
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