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ABSTRACT

This study attempts to improve the prediction of western North Pacific (WNP) and East Asia (EA)

landfalling tropical cyclones (TCs) using modes of large-scale climate variability [e.g., the Pacific meridional

mode (PMM), the Atlantic meridional mode (AMM), and North Atlantic sea surface temperature anomalies

(NASST)] as predictors in a hybrid statistical–dynamical scheme, based on dynamical model forecasts with

the GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 with flux adjustments (FLOR-FA).

Overall, the predictive skill of the hybrid model for the WNP TC frequency increases from lead month 5

(initialized in January) to lead month 0 (initialized in June) in terms of correlation coefficient and root-mean-

square error (RMSE). The hybridmodel outperformsFLOR-FA in predictingWNPTC frequency for all lead

months. The predictive skill of the hybrid model improves as the forecast lead time decreases, with values of

the correlation coefficient increasing from 0.56 for forecasts initialized in January to 0.69 in June. The hybrid

models for landfalling TCs over the entire East Asian (EEA) coast and its three subregions [i.e., southern EA

(SEA), middle EA (MEA), and northern EA (NEA)] dramatically outperform FLOR-FA. The correlation

coefficient between predicted and observed TC landfall over SEA increases from 0.52 for forecasts initialized

in January to 0.64 in June. The hybridmodels substantially reduce theRMSEof landfallingTCs over SEAand

EEA compared with FLOR-FA. This study suggests that the PMM and NASST/AMM can be used to im-

prove statistical/hybrid forecast models for the frequencies of WNP or East Asia landfalling TCs.

1. Introduction

Tropical cyclones (TCs) represent one of the deadliest

and costliest natural hazards, responsible for large eco-

nomic losses and numerous fatalities (e.g., Pielke 1997;

Pielke et al. 2008; Zhang et al. 2009), withmost of the TC-

related impacts caused by landfalling TCs (e.g., Landsea

et al. 1998; Powell and Houston 1998). An accurate and

timely seasonal prediction of TC frequency and landfall is

thus of great significance to the scientific community,

governmental administration, and the private sector.

Scientists have attempted to improve the seasonal

prediction of TCs through statistical methods, dynami-

cal, and statistical–dynamical models for over three

decades (Nicholls 1979; Gray 1984a,b; Gray et al. 1993;

Lehmiller et al. 1997; Chan et al. 1998, 2001; Marks and

Shay 1998; Elsner and Jagger 2004, 2006; Klotzbach

2007; Fan andWang 2009; Vecchi et al. 2011, 2013, 2014;

Zhao et al. 2010; Villarini and Vecchi 2012, 2013a,b;

Villarini et al. 2017; Murakami et al. 2016a,b). As for the

western North Pacific (WNP), previous studies built

statistical seasonal prediction models for TC frequency

(e.g., Chan et al. 1998; Fan 2007, 2010; Fan and Wang
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2009; Lu et al. 2010;Wang et al. 2013; Zhang et al. 2013a,

2016b; Kim et al. 2017) and East Asian landfall (e.g., Liu

and Chan 2003; Goh and Chan 2010; Sun and Ahn 2011;

Au-Yeung andChan 2012;Wang et al. 2013; Zhang et al.

2013b, 2016b), achieving encouraging results.

While statistical prediction models have made major

progress in producing skillful seasonal predictions, dy-

namic models including atmospheric general circulation

models (AGCMs) and coupled GCMs (CGCMs) have

been playing an increasingly important role in the field of

TC seasonal prediction (Vitart and Stockdale 2001; Vitart

et al. 2003; Vitart 2006; Zhao et al. 2010; Chen and Lin

2011, 2013; Vecchi et al. 2014; Vecchi and Villarini 2014;

Camp et al. 2015; Xiang et al. 2015). For theWNP storms,

there are numerous studies documenting the results from

the use of dynamicmodels in seasonal predictions ofWNP

TC frequency (Vitart and Stockdale 2001; Sun and Chen

2011;Au-Yeung andChan 2012; Chen andLin 2011, 2013;

Vecchi et al. 2014; Camp et al. 2015; Kim et al. 2017;

Manganello et al. 2016) and landfall over East Asia (Sun

and Ahn 2011; Huang and Chan 2014; Tan et al. 2015).

Over the past several years, there has been a growing

interest in the application of statistical–dynamical hybrid

models toward predictions of TC activity, with predictions

that were quite skillful even for long lead times (e.g., Kim

andWebster 2010; Vecchi et al. 2011, 2013, 2014; Villarini

andVecchi 2013a; Li et al. 2013; Kim et al. 2015; Choi et al.

2016a,b; Kim et al. 2017; Villarini et al. 2017; Murakami

et al. 2016a; Zhan and Wang 2016; Zhang et al. 2016b).

Hybrid models are trained using linear regression or

Poisson regression between simulated predictors and ob-

served predictands (e.g., TC frequency or landfall); the

trained models are subsequently used to predict the pre-

dictands when the dynamical forecasts of the predictors

are available (e.g., Vecchi et al. 2011, 2014; Li et al. 2013;

Kim et al. 2015; Murakami et al. 2016a; Zhan and Wang

2016; Zhang et al. 2016b). Therefore, hybrid models take

advantage both of statistical linkage derived from the

observations and dynamic models and of dynamical-

model-simulated environmental variables relevant to TCs.

The success of the hybrid statistical–dynamicalmodels is

built upon the identification of the appropriate predictors

representing the genesis, development and tracking of

these storms. Over the years, the Pacific meridional mode

(PMM; Zhang et al. 2016a), North Atlantic sea surface

temperature (SST) anomalies (Huo et al. 2015; Yu et al.

2015; Zhang et al. 2017), and the SST gradient between the

southwestern Pacific and the western Pacific warm pool

(Zhan et al. 2013) have been found to strongly modulate

WNP TC frequency, potentially playing a critical role in

the prediction of WNP TC activity. The SST over the In-

dianOcean has also been found to influence TC activity in

theWNP (Du et al. 2011; Zhan et al. 2011; Tao et al. 2012).

Moreover, recent studies have identified significant links

between East Asia landfalling TCs (e.g., over Japan and

theKoreanPeninsula) andElNiñoModoki/central Pacific

El Niño (Zhang et al. 2012), the subtropical high index

measured by the 850-hPa geopotential height (GPH) av-

eraged over the western Pacific (Wang et al. 2013), the

Pacific decadal oscillation (PDO) (Chan 2000, 2005; Goh

and Chan 2010; Chan et al. 2012), and the Antarctic Os-

cillation (Wang and Fan 2007). Given the physical con-

nection of these newly identified indices and WNP TC

frequency andEastAsianTC landfall, we hypothesize that

their inclusion in hybrid seasonal prediction schemes will

lead to improved skill in predicting these TC quantities.

The predictors for current hybrid models are obtained

by averaging the values of variables over selected spatial

domains, which are mostly based on correlation analysis

between the time series of a predictand (e.g., TC fre-

quency) and simulated large-scale environmental vari-

ables (e.g., 500-hPa geopotential height and 850-hPa

zonal wind) (e.g., Chan et al. 1998; Li et al. 2013; Choi

et al. 2016a,b; Zhan andWang 2016; Zhang et al. 2016b).

Therefore, the spatial domains of a predictor for a dy-

namic model are difficult to be generalized to other

dynamic models (Li et al. 2013; Choi et al. 2016b; Zhan

and Wang 2016), significantly limiting the widespread

applicability of these hybrid models. Furthermore, most

of the current dynamic prediction systems/schemes/

models are generally initialized in all the months

(January–June) prior to the period of interest (e.g., June–

November for WNP TC activity), providing us with pre-

dictions of the covariates for each initialization month.

The general strategy is to train the models and verify the

forecasts for each initialization month, treating the pre-

dictions of the predictors for a given initialization month

in isolation from the others. However, by using this ap-

proach we are potentially discarding useful information;

this is especially true for the shorter lead times, for which

more information/dynamical forecasts are available to

build hybrid models (‘‘closer gets richer’’). Therefore, we

hypothesize that the dynamical forecasts prior to a given

initialization month (e.g., May) add some value to the

system, leading to improved forecasting skill.

In summary, so far hybrid models have been used to

make seasonal forecasts for WNP TC frequency and

landfall over theEastAsian coast.However, the predictors

and their spatial domains in a given prediction system are

difficult to be generalized, limiting their applicability to

other systems. Moreover, the dynamical forecasts ob-

tained prior to an initialized month may be potentially

useful but are consistently not taken into consideration to

build hybrid models for WNP TC frequency and East

Asian landfall. This study attempts to build hybrid sea-

sonal predictionmodels for basinwideWNPandEastAsia
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landfalling TCs by using well-known and easily processed

climate indices (e.g., PMMandNiño-3.4) and developing a
new strategy that incorporates the dynamical forecasts

prior to the initialization months.

2. Data and methodology

a. Data

TC data are obtained from the International Best

Track Archive for Climate Stewardship (IBTrACS;

Knapp et al. 2010) for the period of 1980–2014; TC in-

formation in 2015 is obtained from the Japanese Mete-

orologyAgency (JMA) best-track data.We usemonthly

estimates of SST from the Met Office Hadley Centre

HadSST3.1.1.0 (Kennedy et al. 2011). The observed

large-scale variables are derived from JRA-55 reanalysis

data (Kobayashi et al. 2015).

The entire East Asian (EEA) coast is divided into

three parts: southern East Asia (SEA), central or middle

East Asia (MEA), and northern East Asia (NEA)

(Fig. 1), following previous studies (Chan and Xu 2009;

Huang and Chan 2014). We build hybrid models for the

frequencies of TCs that make landfall over EEA and

each subregion (Fig. 1).

b. Climate indices

Hybridmodels are built by training Poisson regression

models between predictands (i.e., WNP TC frequency

and East Asia landfalling TCs) and predictors. We use

predictors that are commonly used and have significant

correlation with the frequencies ofWNP and East Asian

landfalling TCs. Because significant correlation alone

cannot justify good performance by the predictors, the

predictors should have physical linkage with TC fre-

quency or landfall. Our focus will be on the PMM, the

North Atlantic SST Index (NASST), the SST Gradient

Index (SSTG), theElNiño index, theAtlanticmeridional

mode (AMM), the PDO, the Subtropical High Index

(STH), and east Indian Ocean SST anomalies (EIO).

PMM is defined as the first maximum covariance

analysis (MCA)mode of SST and 10-mwind fields in the

eastern Pacific and describes meridional variations in

SST, winds, and convection in the tropical Pacific Ocean

(Chiang and Vimont 2004). The PMM has robust and

significant association with the frequency of WNP TCs

in observations and long control experiments (fully

coupled free runs) in a high-resolution Geophysical

Fluid Dynamics Laboratory (GFDL) coupled climate

model (Zhang et al. 2016a).

The North Atlantic SST anomalies are found to

strongly modulate WNP TC frequency (Li et al. 2013;

Huo et al. 2015; Yu et al. 2015; Zhang et al. 2017). This

study uses the NASST index defined as the SST anom-

alies averaged over the region 08–258N, 908W–08, and a

base period of 1970–2000. The NASST can mediate

vertical wind shear by altering the Walker circulation or

the Indian Ocean relaying effect (Yu et al. 2015; Zhang

FIG. 1. The southern (blue), middle (green), and northern (orange) part of the East Asian coast

used to define TC landfall over East Asia.
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et al. 2017). Stronger (weaker) vertical wind shear can

strongly suppress (enhance) TC genesis in theWNP (Yu

et al. 2015; Zhang et al. 2017).

The SST gradient between the southwestern Pacific

and the western Pacific warm pool in spring has strong

correlations with WNP TC frequency and has been used

in prior studies to build statistical models for the seasonal

prediction ofWNPTC frequency (Zhan et al. 2013; Zhan

andWang 2016). The SSTG anomaly is responsible for an

anomalous cross-equatorial pressure gradient and low-

level cross-equatorial easterly anomalies over the central-

western Pacific. The anomalous easterlies enhance local

equatorial upwelling and SST cooling in the central Pa-

cific, which suppress WNP TC genesis (Zhan et al. 2013;

Zhan andWang 2016). The SSTG index is defined as the

SST differences averaged over 08–168N, 1258–1658E mi-

nus those over 408–208S, 1608E–1708W.

The Niño-3 region is bounded by 58S–58N and 1508–
908W. The Niño-3.4 region is bounded by 58N–58S and

1708–1208W. The El Niño Modoki Index (EMI) is used

to measure the SST anomaly in the central Pacific.

ENSO indices during the early season have been used to

predict WNP TC frequency and landfalling TCs over

East Asia (Chan et al. 1998; 2001). The EMI is closely

FIG. 2. (a)–(f) Hindcasted TC track density (occurrences) from June to October with FLOR-FA initialized from

January to June and (g) observed TC track density in theWNP for the period 1980–2015. The hindcasted TC track

density is averaged over 12 members.

2212 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:10 PM UTC



associated with TC landfall over Japan and the Korean

Peninsula (NEA) (Zhang et al. 2012). The EMI is de-

fined as EMI 5 [SSTA]A 2 0.5[SSTA]B 2 0.5[SSTA]C,

where [SSTA]A, [SSTA]B, and [SSTA]C indicate the

SST anomalies averaged over the regions (108S–108N,

1658E–1408W), (158S–58N, 1108–708W), and (108S–208N,

1258–1458E), respectively (Ashok et al. 2007). The EMI

will be used as a predictor for TC landfall over NEA.

TheAtlantic meridional mode is known historically as

the Atlantic dipole or interhemispheric mode (Servain

1991; Xie and Philander 1994; Carton et al. 1996) or the

tropical Atlantic gradient mode (Chiang et al. 2002).

The AMM is closely linked to the Atlantic multidecadal

oscillation (AMO) (Kossin and Vimont 2007; Vimont

and Kossin 2007; Grossmann and Klotzbach 2009).

Recently, theAMMhas been linked toWNPTC activity

by mediating theWalker circulation (Zhang et al. 2017).

The PDO is a strong atmosphere–ocean oscillation in

the North Pacific (Mantua et al. 1997; Newman et al.

2016). Different physical processes including high-

frequency atmospheric forcing, teleconnections from

the tropical Pacific, and ocean Rossby waves lead to the

variability of the PDO on a variety of time scales (e.g.,

seasonal, interannual, and decadal) (Newman et al.

FIG. 3. As in Fig. 2, but for the hindcasted TC genesis density.
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2016). The PDO is strongly associated with TC landfalls

over East Asia (Chan 2000, 2005; Goh and Chan 2010;

Chan et al. 2012). We use the seasonal PDO index

as a predictor for the frequency of East Asian

landfalling TCs.

The subtropical high index is defined as the boreal

summer [June–August (JJA)] mean 850-hPa geo-

potential height (H850) anomaly averaged over the re-

gion 158–258N, 1158–1508E. The easterlies located in the

southern flank of the subtropical high can steer TCs to

propagate westward; the strength and location of the

subtropical high are thus closely associated with land-

falling TCs (Wang et al. 2013). The STH index has

proven highly skillful in predicting TC landfall over East

Asia (Wang et al. 2013; Zhang et al. 2013a,b).

The East Indian Ocean SST anomalies modulate TC

activity in the WNP and landfall over the Korean Pen-

insula by inducing Kelvin wave responses in the western

Pacific, which in turn modulate the subtropical high

(Du et al. 2010; Tao et al. 2012; Zhan et al. 2011, 2014;

Choi et al. 2015). The EIO index is defined as the SST

anomaly averaged over the region 108S–22.58N, 758–
1008E (Zhan et al. 2011, 2014).

c. Climate model

The experiments used in this study are run by the

GFDL Forecast-Oriented Low Ocean Resolution

(FLOR) configuration of the GFDL Coupled Model

version 2.5 (CM2.5; Delworth et al. 2012; Vecchi et al.

2014). FLOR’s atmosphere and land components

(50 km 3 50 km) are obtained from CM2.5 while its

ocean component (18 3 18) is taken from CM2.1

(Delworth et al. 2006). A slight change has beenmade to

the ocean component of FLOR by using a new advec-

tion scheme and a parameterization for eddies (Farneti

et al. 2010). This study employs a version of FLOR by

adjusting the model’s momentum, enthalpy, and fresh-

water fluxes from atmosphere to ocean to their observed

FIG. 4. Predicted PMM with FLOR-FA in initialization months January–June and observed PMM represented by

SST anomalies (shading; 8C) and 10-m surface wind fields (vector; m s21).
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climatology (FLOR-FA; Vecchi et al. 2014; Delworth

et al. 2015). The detailed description of FLOR is pro-

vided in Vecchi et al. (2014).

We used 12-member ensemble retrospective seasonal

forecasts initialized on the first day of every month from

1980 to the present (Vecchi et al. 2014). The GFDL’s

ensemble coupled data assimilation (ECDA) system is

used to initialize FLOR (Zhang et al. 2007; Zhang and

Rosati 2010; Yang et al. 2013, 2015; Vecchi et al. 2011,

2013, 2014; Jia et al. 2015; Msadek et al. 2014a,b;

Krishnamurthy et al. 2016). Chang et al. (2013) com-

prehensively assessed the 1960–2010 oceanic variability

in the newest version of the ECDA. The ECDA system

provides initial conditions for the ocean and ice

components of the FLORwhile the initial conditions for

the atmosphere and land components of FLOR are

obtained from FLOR’s simulations forced with the ob-

served estimates of SSTs (Vecchi et al. 2014).

d. Closer-gets-richer strategy

To make the best use of the dynamic forecasts pro-

duced by FLOR-FA, we use the ‘‘closer-gets-richer’’

strategy to build hybrid prediction models. In forecasts

produced by dynamic models, zero-lead-month pre-

dictions (i.e., initialized in June for WNP TC activity)

are not necessarily better than those obtained for longer

lead times (e.g., initialized in January or February),

partly due to initial shock (e.g., Schneider et al. 1999;

FIG. 5. Pointwise correlation coefficient between predicted (FLOR-FA) and observed SST anomalies averaged over the June–October

months for different initialized months (from January to June). Stippled regions are those for which the correlation coefficients are

statistically different from zero at the 0.05 significance level.
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Luo et al. 2005; Zhang 2011). FLOR-FAproduces better

predictions for WNP TC frequency when initialized in

January rather than in July (Zhang et al. 2016b). Here

we develop a new strategy that we refer to as closer-gets-

richer to overcome this limitation in dynamical seasonal

forecasting when building hybrid models. The closer-

gets-richer strategy is defined as follows. Conventionally,

we only use dynamical forecasts for one initialization

month to build the hybrid model for that specific initial-

ization month. In the closer-gets-richer strategy, how-

ever, we use all the dynamical forecasts available for and

prior to the initialization month to build hybrid models:

we include the predictors from the dynamical forecasts

prior to the initialization month of interest if they can

improve the hybrid model compared to the results we

would obtain using only the predictions for the initial-

ization month of interest. Under this strategy, if the

prediction using dynamic forecasts initialized in and

before June cannot outperform that using the pre-

diction initialized in or before May, we select the pre-

diction by using dynamic forecasts initialized in May as

that for June. By doing this, the hybrid model cannot

provide a worse performance as the lead time de-

creases, alleviating some of the issues associated with

the forecasting of WNP TC activity based on FLOR-

FA (Zhang et al. 2016b).

e. Poisson regression

We use Poisson regression to model the occurrence

probability of TCs in the forecast experiments with

FIG. 6. Values of the correlation coefficient between observed and FLOR-FA predicted

PMM, NASST index, Niño-3, and SSTG. The black dashed line represents the value for which

the correlation coefficients are significantly different from zero at the 0.05 significance level.

TABLE 1. The predictors from the dynamic forecasts of FLOR-FAused to build the hybridmodel forWNPTC frequency. ‘‘PMM (Feb–

Jun; initial Jan)’’ represents the predicted PMM index averaged from February to June and initialized in January. The others are defined

likewise.

Initial month Predictors

Jan PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Jan), SSTG (Jun–Oct; initial Jan), and Niño-3
(Mar–May; initial Jan)

Feb PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Feb), SSTG (Jun–Oct; initial Feb), and Niño-3
(Mar–May; initial Jan)

Mar PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Mar), SSTG (Jun–Oct; initial Mar), and Niño-3
(Mar–May; initial Jan)

Apr PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Mar), SSTG (Jun–Oct; initial Apr), and Niño-3
(Mar–May; initial Jan)

May PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Mar), SSTG (Jun–Oct; initial Apr), and Niño-3
(Mar–May; initial Jan)

June PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Mar), SSTG (Jun–Oct; initial Apr), and Niño-3
(Mar–May; initial Jan)
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FLOR. Many studies have used Poisson regression to

examine the occurrence probability of rare events (e.g.,

Elsner and Schmertmann 1993; Elsner and Jagger 2006;

Villarini et al. 2010; Wilks 2011). Poisson regression is

described as

P(Y
i
5 y)5

m
y
i e

2mi

y!
, y5 0, 1, 2, . . . ,‘ , (1)

where log(mi)5b0 1�bjxij.

The term Yi represents the true number of TC fre-

quency in the ith year, whilemi denotes the logarithm of

the average landfalling/WNP TC frequency and y de-

notes the observed landfalling/WNP TC frequency; mi

can be represented as a linear combination of the

predictors xij, with j being the specified predictor dur-

ing the year i; bj and b0 represent the corresponding

Poisson regression coefficient and the intercept, re-

spectively. A similar description can be found in Zhang

et al. (2016b).

3. Results

Figure 2 illustrates predicted and observed TC track

densities during the peak TC season [June–October

(JJASO)]. TCs in FLOR-FA are tracked from the

6-hourly model output by using the tracker developed at

GFDL as implemented in previous studies (e.g.,

Murakami et al. 2016a; Zhang et al. 2016a,b,c, 2017; see

the appendix for details). The basic structures of the

observed TC track density are well simulated by FLOR-

FA. However, there are positive biases in TC density in

the region 1208–1408E with FLOR-FA compared with

FIG. 7. Correlation and RMSE of observed and predicted WNP TC frequency produced by the hybrid model after LOOCV for 1980–

2015. The red and purple curves denote the predictions of WNP TC frequency in each year using the hybrid model and ‘‘perfect pre-

diction’’ using observed predictors, while the black solid lines represent the observations. The blue curves represent predicted TC

frequency with FLOR-FA. The pink areas represent the 10% and 90% percentiles of 1000 random samples of TC frequency given m (the

predicted mean TC frequency with the hybrid model) under the Poisson distribution.

TABLE 2. The predictive skill of the ‘‘perfect prediction’’ that

uses observed predictors for WNP TCF and landfall over SEA,

MEA, NEA, and EEA.

Perfect prediction WNP TCF SEA MEA NEA EEA

Correlation 0.59 0.57 0.53 0.45 0.69

RMSE 3.06 1.74 1.32 1.92 2.12
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the observations (Fig. 2). The predicted TC density cli-

matology with FLOR-FA is similar to one another

(Fig. 2a–f). The climatology of TC density in the South

China Sea is realistically simulated in FLOR-FA; this is

particularly true when initialized in June. The predicted

climatology of TC density in the WNP has biases along

the East Asian coast partly due to the eastward shift in

TC genesis and density, limiting the capability of FLOR-

FA in successfully forecasting TC landfalls over East

Asia. A detailed discussion of TC landfall is provided in

section 3b.

The forecasted WNP TC genesis density has a mag-

nitude close to observations while the spatial patterns

are different (Fig. 3). Similar to the simulatedWNP TCs

in control experiments with FLOR-FA (e.g., Vecchi

et al. 2014; Zhang et al. 2016a,b), the high center of TC

genesis density in seasonal-forecast experiments has an

eastward shift compared with observations (Fig. 3).

Specifically, there is a high center of TC genesis around

1358E in the observations whereas it is shifted to around

1458E in the FLOR-FA forecasts (Fig. 3). In addition,

the climatology of TC genesis density in the South China

Sea is much lower than that in observations. Similar to

the forecasts of the TC track density, the forecasts

initialized in June outperform those in the other

initialization months.

a. Hybrid model for WNP TC frequency

Here we use the predictors introduced in section 2b to

build the hybrid prediction model for WNP TC fre-

quency. To further justify their use, we provide the

predictive skill of FLOR-FA for these predictors.

Figure 4 shows the predicted PMM with FLOR-FA

initialized from January to June. The predicted PMM

successfully captures fundamental structures of the ob-

served PMM characterized by warm SST anomalies lo-

cated from the central Pacific to the subtropical eastern

Pacific, and by negative SST anomalies in the tropical

FIG. 8. (a) Correlation and (b) RMSE of predicted and observedWNP TC frequencies using

the hybridmodel (blue) and FLOR-FA (yellow) for initializationmonths from January to June

after LOOCV. The black dashed line in the top panel represents the value for which the

correlation coefficients are significantly different from zero at the 0.05 significance level.

TABLE 3. List of predictors in dynamic forecasts of FLOR-FA

used to build the hybrid model for TC landfall over SEA, MEA,

NEA, and EEA.

Landfall regions Predictors

SEA PDO, NASST, AMM, PMM, Niño-3
MEA PDO, NASST, AMM, Niño-3, EIO
NEA PDO, EMI, STH, Niño-3
EEA PDO, NASST, PMM, EIO
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eastern Pacific (Fig. 4). Note that the surface wind

anomalies of the predicted PMM in the subtropical

eastern Pacific are quite weak, especially initialized after

February (Fig. 4).

The predictors Niño-3, SSTG, and NASST are cal-

culated from predicted SST anomalies with FLOR-FA.

It is therefore useful to assess the skill of FLOR-FA in

predicting SST. The predictive skill of FLOR-FA for

SST is generally high for all initialization months, and it

is higher when the dynamic model is initialized closer to

the target months (Fig. 5). The high predictive skill of

FLOR-FA for SST strongly supports the use of Niño-3,
SSTG, and NASST for the hybrid prediction model.

Figure 6 illustrates the correlation between predicted

and observed predictors which are used to build the

hybrid model. All correlation coefficients between pre-

dicted and observed predictors are significant (Fig. 6).

The predictive skill for PMM is slightly lower than that

for Niño-3, NASST, and SSTG (Fig. 6). It is noted that

the PMM and Niño-3 indices in the hybrid model are

taken from the forecasts initialized in January for

February–June and those for March–May, respectively.

Therefore, the correlation coefficients between ob-

served and predicted PMM in February–June Niño-3 in

March–May are the same for different initialization

months (Fig. 6).

Using the ‘‘closer-gets-richer’’ strategy in which the

predictors in or before an initialization month are

FIG. 9. Values of the correlation coefficient between observed and predicted (FLOR-FA)

AMM, PDO, EMI, STH, and EIO. The black dashed line represents the value for which the

correlation coefficients are significantly different from zero at the 0.05 significance level.

TABLE 4. List of predictors for TC landfall over SEA for different initialization months. ‘‘PMM (Feb–Jun; initial Jan)’’ represents the

predicted PMM index averaged from February to June and initialized in January. The others are defined likewise.

Initial month Predictors

Jan PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Jan), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct;

initial Jan), and PDO (Jun–Oct; initial Jan)

Feb PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Feb), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct;

initial Feb), and PDO (Jun–Oct; initial Feb)

Mar PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Feb), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct;

initial Feb), and PDO (Jun–Oct; initial March)

Apr PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Apr), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct;

initial Feb), PDO, and (Jun–Oct; initial Apr)

May PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Apr), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct;

initial May), and PDO (Jun–Oct; initial Apr)

Jun PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Apr), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct;

initial Jun), and PDO (Jun–Oct; initial Apr)
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allowed to be used for the hybrid model, the predictors

in different initialization months are listed in Table 1.

The predictors are selected as follows. First, the pre-

dictors should be closely associated with WNP TC fre-

quency in the observations and in FLOR-FA. Second, a

predictor is used when it produces significant correla-

tion with the observations after leave-one-out cross-

validation (LOOCV) with the hybrid model. Third, the

predictors should be commonly used and easily pro-

cessed to make these results directly applicable in other

studies. When the forecasts are initialized closer to the

target months (e.g., JJASO), more information is avail-

able to build the hybrid model.

The hybrid model initialized in January produces

predictions with a correlation of 0.56 between pre-

dicted and observed WNP TC frequency and a RMSE

of 3.21 after LOOCV (Fig. 7a). The hybrid model

initialized in January predicts WNP TC frequency in

2015 close to the observations, while FLOR-FA

substantially overestimates the WNP TC frequency

for forecasts initialized in January (Fig. 7a). The

predictive skill of the hybrid model becomes better

when we get closer to the target TC season, with the

values of the correlation coefficient increasing from

0.56 to 0.71 as the initialization month decreases from

January to June (Fig. 7). At the shortest lead time

(June initialized), the correlation between the WNP

TC frequencies in observations and the hybrid model

reaches 0.69 and an RMSE of 2.77, which is quite

promising compared with the predictive skill of cur-

rent prediction models (Huang and Chan 2014; Li

et al. 2013; Kim et al. 2017). The ‘‘perfect prediction’’

using observed predictors produces a correlation co-

efficient of 0.59 and an RMSE of 3.06, which is slightly

lower than the skill achieved from the hybrid model

initialized in April to June (Table 2). This supports the

importance of the predictors in predicting WNP TC

frequency.

FIG. 10. As in Fig. 7, but for TC landfall over SEA.
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Figure 8 illustrates that the hybrid models outperform

FLOR-FA in predicting WNP TC frequency for all

initialization months in terms of correlation coefficient

andRMSE. FLOR-FA performs the best in January and

the worst in March in the prediction of WNP TC fre-

quency, which is partly related to the mean biases in

zonal vertical wind shear in FLOR-FA for different

initialization months as documented in Zhang et al.

(2016b). The hybrid models built in this study success-

fully overcome this limitation, and all the predictions

made by the hybrid models perform better in terms of

correlations and RMSE when closer to the TC season.

b. TC landfall

We build hybrid models for TC landfall over the EEA

and over three subregions (i.e., SEA, MEA, and NEA).

The predictors used for the hybrid models are listed in

Table 3. The predictors are selected based on the strat-

egy which is used to select predictors for WNP TC fre-

quency discussed in section 3a. The predictors for

landfalling TCs over SEA, MEA, NEA, and EEA are

not exactly the same, suggesting that landfalling TCs

over different subregions may be associated with dif-

ferent predictors (climate modes). For example, EMI is

only used as a predictor for landfall over NEA while

PMM is used for landfall over SEA and EEA (Table 3).

PMM,AMM, andNASST have not been used to predict

TC landfall over East Asia in the literature yet. Previous

studies have discussed the impacts of PMM and NASST

onTC genesis and large-scale circulation in observations

and model simulations (e.g., Huo et al. 2015; Yu et al.

2015; Zhang et al. 2016a, 2017), suggesting the potential

FIG. 11. Correlation coefficient and RMSE in the hybrid model (blue bar) and FLOR-FA (red bar) for TC landfall over SEA, MEA,

NEA, and EEA after LOOCV. The black dashed line in the left panels represents the value for which the correlation coefficients are

significantly different from zero at the 0.05 significance level.
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influences of PMM/AMM and NASST on East Asian

landfalling TCs. PDO is selected by all four hybrid

models for landfall over SEA, MEA, NEA, and EEA,

suggesting it plays a dominant role in controlling TC

landfall over East Asia. The predictive skill of the pre-

dictors is high and significant for all initial months

(Fig. 9). The STH index based on 850-hPa geopotential

height is well predicted with FLOR-FA (Fig. 9). The

predictive skill of PMM,Niño-3, andNASST is shown in

Fig. 6.

1) LANDFALL OVER SOUTHERN EAST ASIA

Landfalling TCs over SEA are strongly associated

with PMM, NASST, Niño-3, AMM, and PDO, which

are used as predictors for the hybrid model (Table 4).

The predictors related to TC landfalls over SEA can be

calculated from SST and 10-m surface winds. FLOR-FA

has high predictive skill for SST and PMM as discussed

in section 3a. Using the closer-gets-richer strategy, the

predictive skill of the hybrid model for SEA landfall is

high for the period 1980–2015 (Fig. 10). The correlation

coefficient between predicted and observed TC landfall

over SEA increases from 0.52 to 0.64 as we initialize the

forecasts from January to June after LOOCV (Fig. 10);

for the same lead times, the RMSE of the hybrid model

decreases from 1.87 to 1.64 (Fig. 10). A sharp decrease in

the frequency of SEA landfalling TCs is observed since

1998, probably associated with the decadal change of

WNP TC activity where there is less TC activity in SEA

andmore TC activity around Taiwan and the East China

Sea (Liu andChan 2013; Lin andChan 2015). FLOR-FA

fails to predict this decrease in SEA landfalling TCs

while the hybrid model successfully captures it (Fig. 10).

Furthermore, FLOR-FA predicts much less SEA TC

landfalls than the observations (Fig. 10). The ‘‘perfect

prediction’’ produces a correlation of 0.57 and an RMSE

of 1.74, which is close to the prediction made by the

hybrid model.

The year-to-year variation of SEA landfall is much

better predicted in the hybrid model than in FLOR-FA,

as indicated by the values of the correlation coefficient

and RMSE (Fig. 11). For the different initialization

months, the results from the hybrid models are very

impressive, with high values of correlation coefficient

and low RMSE. The performance increases as we re-

duce the lead time, and it is higher than what we obtain

with FLOR-FA. The relatively poor performance of

FLOR-FA in predicting SEA may be associated with

the eastward shift in TC genesis and density in theWNP.

The RMSE in the hybrid model is around half of that in

FLOR-FA, suggesting a major improvement in the

prediction by the hybrid model (Fig. 11).

2) LANDFALL OVER MIDDLE EAST ASIA

NASST, Niño-3, AMM, PDO, and EIO are used as

predictors to build hybrid models for MEA landfalling

TCs (Tables 3 and 5). All the predictors are related to

SST. Previous studies have discussed the modulation of

such climate modes or SST anomalies on East Asia

landfalling TCs or WNP TC activity, as summarized in

section 2b. EIO strongly modulates TC landfall over the

Korean Peninsula by mediating the subtropical high

(Choi et al. 2015). AMM is obtained from SST and 10-m

surface winds. Figure 12 illustrates the predicted AMM

in FLOR-FA, which satisfactorily captures the north

part of the AMM. The southern part of the AMM with

cooling, however, is not well simulated in FLOR-FA,

similar to the results in Zhang et al. (2017). Starting from

forecasts initialized in March, the predicted AMM has

its warming center in the tropical equatorial Atlantic

while the warming center in the observations is located

in the tropical North Atlantic (Fig. 12). The correlation

coefficients between the observed and predicted AMM

index are statistically significant at the 0.05 level at all

lead months (Fig. 9). The correlation coefficients be-

tween the predicted and observedMEATC landfalls are

TABLE 5. As in Table 4, but for MEA.

Initial month Predictors

Jan NASST (Jun–Oct; initial Jan), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Jan),

and EIO (Jun–Oct; initial Jan)

Feb NASST (Jun–Oct; initial Jan), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Feb),

and EIO (Jun–Oct; initial Feb)

Mar NASST (Jun–Oct; initial Mar), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Mar),

and EIO (Jun–Oct; initial Mar)

Apr NASST (Jun–Oct; initial Apr), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Apr),

and EIO (Jun–Oct; initial Apr)

May NASST (Jun–Oct; initial Feb), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Apr),

and EIO (Jun–Oct; initial May)

Jun NASST (Jun–Oct; initial Feb), Niño-3 (Jun–Oct; initial Jan), AMM (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Apr),

and EIO (Jun–Oct; initial Jun)
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statistically significant except for those initialized in

January and February after LOOCV (Fig. 13). The

‘‘perfect prediction’’ using observed predictors leads

to a correlation of 0.53 and an RMSE of 1.32, with skill

higher than that of the hybrid model (Table 2 and

Fig. 13). The hybrid model improves seasonal fore-

casting of landfalling TCs over MEA with respect to the

results with FLOR-FA in terms of correlation and

RMSE (Fig. 13). In general, the predictive skill of the

hybrid model for SEATC landfall is higher than that for

MEA TC landfall (Figs. 10 and 13).

3) LANDFALL OVER NORTHERN EAST ASIA

The predictors for TC landfall over NEA include

EMI, Niño-3.4, STH, and the PDO (Table 6). The

predictors have strong influences on TC landfall over

Japan and the Korean Peninsula (Fan 2007; Zhang et al.

2012; Wang et al. 2013). The STH index is calculated

based on 850-hPa GPH anomalies in the western Pacific

(Wang et al. 2013). The predictive skill of FLOR-FA for

850-hPa GPH is high for all initialization months using

correlation coefficient as a measurement of the skill

(Fig. 14). The correlation between predicted and ob-

served 850-hPa GPH is statistically significant in the

domain for STH index for all initialization months

(Fig. 14). The correlation coefficients between the pre-

dicted and observed NEA landfall increase from 0.18

(January initialized) to 0.49 (June initialized), while

RMSE decreases from 2.22 to 1.90 for the same initial-

ization months after LOOCV. The perfect prediction

FIG. 12. PredictedAMMwith FLOR-FA in initializationmonths January–June and observedAMMrepresented by

SST anomalies (shading; 8C) and 10-m surface wind fields (vector; m s21).
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produces a correlation of 0.45 and an RMSE of 1.92,

close to the prediction derived from the hybrid model.

The results from the hybridmodel represent a significant

improvement over what we obtained using FLOR-FA

(Fig. 15).

4) LANDFALL OVER THE ENTIRE EAST ASIAN

AREA

PMM, NASST, PDO, and EIO are used to build hy-

brid models for TC landfall over EEA (Table 7). The

four predictors are calculated from SST and 10-m

surface winds, and FLOR-FA exhibits high skill in re-

producing those predictors (Fig. 9).

The predictive skill of the hybrid model increased

from January-initialized (correlation coefficient equal to

0.37 and RMSE equal to 2.79) to June-initialized (cor-

relation coefficient equal to 0.55 and RMSE equal to

2.49) after LOOCV (Fig. 16). The RMSE of the hybrid

model for the prediction of EEA landfall is much lower

than that of FLOR-FA (Fig. 16), suggesting significant

improvements made by the hybrid model. The perfect

prediction produces a correlation of 0.68 and an RMSE

FIG. 13. As in Fig. 7, but for TC landfall over MEA.

TABLE 6. As in Table 4, but for NEA.

Initial month Predictors

Jan Niño-3 (Jun–Oct; initial Jan), EMI (Jun–Oct; initial Jan), STH (Jun–Oct; initial Jan), and PDO (Jun–Oct; initial Jan)

Feb Niño-3 (Jun–Oct; initial Jan), EMI (Jun–Oct; initial Feb), STH (Jun–Oct; initial Feb), and PDO (Jun–Oct; initial Feb)

Mar Niño-3 (Jun–Oct; initial Jan), EMI (Jun–Oct; initial Mar), STH (Jun–Oct; initial Mar), and PDO (Jun–Oct; initial Mar)

Apr Niño-3 (Jun–Oct; initial Jan), EMI (Jun–Oct; initial Mar), STH (Jun–Oct; initial Apr), and PDO (Jun–Oct; initial Apr)

May Niño-3 (Jun–Oct; initial Jan), EMI (Jun–Oct; initial Mar), STH (Jun–Aug; initial Apr), and PDO (Jun–Oct; initial May)

Jun Niño-3 (Jun–Oct; initial Jan), EMI (Jun–Oct; initial Mar), STH (Jun–Oct; initial Apr), and PDO (Jun–Oct; initial May)
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of 2.12, slightly higher than the prediction derived from

the hybrid model (Table 2). The hybrid model out-

performs FLOR-FA for almost all lead months (Figs. 8

and 16).

4. Discussion and conclusions

The prediction ofWNP TC frequency and TC landfall

over East Asia has been the topic of much research over

the decades. Both statistical and dynamic models have

been used to improve the seasonal prediction of

WNP TC frequency and TC landfall over East Asia,

with the statistical–dynamical (i.e., hybrid) models

representing a very promising path ahead. The skill

of dynamic models (AGCMs and CGCMs) in simu-

lating TCs has improved significantly over the last

decade or so. However, the skill of climate models is

still limited by uncertainty in climate modeling, low

spatial resolution to resolve TCs (especially intense

TCs), and lack of thorough understanding and

representation of physical processes related to TC

genesis, development, and tracking. Although the

simulation of TC frequency or landfall by climate

models still needs improvements, climate models can

simulate reasonably well the large-scale circulation

or climate modes that are essential in controlling TC

activity, providing a good opportunity to improve the

seasonal predictions of TCs using hybrid models.

Hybrid models, which are based on simulated large-

scale circulation or climate modes and statistical

links between the simulated climate modes/circulation

and observed TCs, have proven highly skillful in

producing a seasonal prediction of TCs. Successful

predictions of TC frequency and landfall using hy-

brid models, therefore, not only depend on the capa-

bility of the dynamic model to reproduce the observed

FIG. 14. Pointwise correlation coefficient between predicted (FLOR-FA) and observed 850-hPa GPH for different initialized months

(January–June). Stippled regions are those statistically significant at the 0.05 significance level. The red rectangle in each panel represents

the domain used for calculating the STH index as in Wang et al. (2013).
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climate conditions but also require a better un-

derstanding of statistical associations between TCs

and climate modes.

Recent studies have found new links between cli-

mate modes (e.g., PMM, NASST, SSTG, and STH)

and WNP TC activity or East Asian landfalling

TCs. By using the ‘‘closer-gets-richer’’ strategy, we

employ all available dynamical forecasts in and prior

to the initialization month of interest to build hybrid

models. The developed hybrid models make sub-

stantial improvements in predicting WNP TC fre-

quency and East Asian landfall TCs by using

predictors (e.g., PMM and NASST) and the closer

gets richer strategy.

FIG. 15. As in Fig. 7, but for TC landfall over NEA.

TABLE 7. As in Table 4, but for EEA.

Initial month Predictors

Jan PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Jan), PDO (Jun–Oct; initial Jan), and EIO

(Jun–Oct; initial Jan)

Feb PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Feb), PDO (Jun–Oct; initial Feb), and EIO

(Jun–Oct; initial Feb)

Mar PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Feb), PDO (Jun–Oct; initial Mar), and EIO

(Jun–Oct; initial Mar)

Apr PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Feb), PDO (Jun–Oct; initial Apr), and EIO

(Jun–Oct; initial Apr)

May PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Apr), PDO (Jun–Oct; initial Apr), and EIO

(Jun–Oct; initial May)

Jun PMM (Feb–Jun; initial Jan), NASST (Jun–Oct; initial Apr), PDO (Jun–Oct; initial Apr), and EIO

(Jun–Oct; initial May)
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Our main findings can be summarized as follows:

1) The hybrid model for basinwide WNP TC fre-

quency uses PMM, NASST, SSTG, and Niño-3 as

predictors. The predictive skill of this model for

WNP TC frequency increases from the longest

(January initialized) to the shortest (June initial-

ized) lead time in terms of correlation and RMSE.

The hybrid model outperforms FLOR-FA in pre-

dicting WNP TC frequency for all lead months.

The predictive skill in hybrid models gets better

when closer to the TC season, with values of the

correlation coefficient from 0.56 (January) to

0.69 (June).

2) The hybrid models for TC landfall over the three

subregions of the East Asian coast and its entirety

(i.e., SEA, MEA, NEA, and EEA) show substantial

improvement compared with FLOR-FA in terms of

correlation coefficient and RMSE. The hybrid model

performs the best for the prediction of TC landfall

over SEA. The correlation coefficient between pre-

dicted and observed TC landfall over SEA increases

from 0.52 (for January) to 0.64 (for June). The

correlation coefficient between predicted and ob-

served TC landfall over MEA increases from 0.29 in

January to 0.51 in June. The correlation coefficient

between predicted and observed TC landfall over

NEA increases from 0.18 in January to 0.49 in June.

The correlation coefficient between predicted and

observed TC landfall over EEA increases from 0.37

in January to 0.55 in June.

3) The hybridmodels substantially reduce theRMSE of

landfalling TCs over SEA and the entire East Asian

area compared with FLOR-FA, supporting the idea

that the hybrid models can be used for the seasonal

prediction of TC landfall over East Asia and its

subregions.

This study produces satisfactory prediction results

compared with existing studies. Huang and Chan (2014)

FIG. 16. As in Fig. 7, but for TC landfall over EEA.
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reported that the correlation between predicted and

observed WNP TC frequency is 0.55 with a LOOCV for

1980–2001 using a regional climate model (RegCM) to

dynamically downscale the National Centers for Envi-

ronmental PredictionClimate Forecast System version 2

(NCEP CFSV2) hindcasts. The period of our study is

1980–2015, which is longer thanHuang andChan (2014).

The values of the correlation coefficient and RMSE

between the observed and predicted WNP TC fre-

quency for 1982–2012 in a hybrid model (multiple linear

regression model) range from 0.73 to 0.79 and from 2.75

to 3.11, respectively, using NCEP CFSV2 (Li et al.

2013). Our approach produces values of the correlation

coefficient and RMSE ranging from 0.56 to 0.69 and

from 2.77 to 3.21. Li et al. (2013) used domains that are

obtained from the spatial domains based on correlation

analysis between observed predictand and large-scale

environmental variables which may be different from

those derived from the model simulations. The pre-

dictions of TC landfall in SEA, MEA, NEA and EEA

based on Huang and Chan (2014) have correlation co-

efficients of 0.70, 0.16, 0.58 and 0.27 for the period 2000–

10 while those in our study are 0.64, 0.51, 0.49 and 0.55 at

the shortest lead time for the period 1980–2015. Sun and

Ahn (2011) reported that a coupled climate model [the

Pusan National University (PNU) CGCM] exhibited

virtually no forecasting ability in predicting 6–9- and 3–

5-month leads for landfalling TCs over East Asia.

Therefore, this study produces results that compare very

favorably to (often better than) previously published

studies in terms of overall skill and persistence across

different lead times.

For the upcoming TC season of 2016, the hybrid

model predicts a below average number of WNP TCs

(Table 8). The hybridmodel forecasts that the upcoming

season has a lower expected TC count than the average

over 1980–2015, along with a lower probability of an

extreme high number (.25 TCs) of TCs. Moreover, the

hybrid model forecasts a higher probability of an in-

active TC season (#10 TCs) than climatology. Similar

predictions for the probability of TC landfalls are in-

cluded in the online supplemental material. It is noted

that the skill of the hybrid model depends heavily on

whether the predictors of the hybrid model can be well

predicted by FLOR-FA. The prediction of expected TC

count in the TC season of 2016 is 20.5 when using the

observed PMM index (1.9) averaged over February–

June 2016, which is higher than 15.6 when using the

predicted PMM index (21.4) over the same months.

Previous studies have reported that the sample size of

regression analysis should be over 10 times the number

of predictors (Draper and Smith 1998; Ryan 2008). Al-

though we have used LOOCV to validate the prediction

model, the prediction models are still at the risk of

overfitting. Our future study will focus on further im-

proving the prediction model by reducing the number of

predictors. This can be achieved by applying principal

component analysis to the selected variables and using

principal components as predictors.

The improvement in predictive skill of the hybrid

models is partly due to our better understanding of the

physical mechanisms underlying changes in WNP and

East Asia landfalling TCs over the years. This strongly

encourages us to further examine the climate variability

of WNP TC genesis and East Asian landfall, which are

highly useful to improve the predictive skill of the sta-

tistical and hybrid models. This study indicates that TC

landfalls over different parts of the East Asian coast are

associated with different climate drivers (Table 2). In

particular, we found that PMM and North Atlantic SST

anomalies (e.g., NASST and AMM) can improve the

predictive skill of the hybrid models for the frequencies

of WNP and East Asia landfalling TCs. The PMM and

North Atlantic SST anomalies (e.g., NASST andAMM)

should be considered when meteorological agencies/

institutions build statistical or hybrid forecast models

for WNP and East Asia landfalling TCs.
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APPENDIX

Tracking Algorithm

The tracker is developed to track TCs from 6-h climate

simulations. This tracker was also employed in Zhang

TABLE 8. Summary of the forecasts for the upcoming 2016 WNP TC season (TC frequency) initialized in June 2016; ‘‘P (count . 19)’’

indicates the probability of exceeding 19 TCs, and so on.

WNP TCF Mean count P (count . 19) P (count . 25) P (count # 10)

Climatology (1980–2015) 19.0 0.44 0.07 0.02

Hybrid model (2016) 15.6 0.16 0.01 0.09

2228 JOURNAL OF CL IMATE VOLUME 30

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 07:10 PM UTC



et al. (2016a,b,c, 2017) and Murakami et al. (2016a). The

tracking processes are based on key variables such as

temperature, sea level pressure (SLP), and 10-m wind.

The tracking procedures are described as follows:

1) Local minima of the smoothed SLP field are found.

The location of the center is properly adjusted by

fitting a biquadratic function to the SLP and locating

the center at the minimum.

2) Closed contours in an interval of 2 hPa (dp) around

every single SLP low center. The Nth contour is

marked as the contiguous region surrounding a low

central pressure P with pressures lower than dp 3
N 1 P, as detected by a ‘‘flood fill’’ algorithm. It is

noted that the contours are not required to be

circular, and a maximum radius of 3000km will be

searched from each candidate low center.

3) If the algorithm detects contours that are close

enough, the low is counted as a TC center. In this

way, the tracker attempts to find all closed contours

in the vicinity of the low center within a certain

distance from the low center and without entering

contours belonging to another low. The maximum

10-mwind inside the set of closed contours is taken as

the maximum wind speed at that time for the storm.

4) Warm cores are detected via similar processes:

closed 18C contours for FLOR are found surround-

ing the maximum temperature anomaly ta within a

TC’s identified contours, no more than 18 from the

low center. This contour must have a radius smaller

than 38 in distance. If there is not such a core, it

should not be marked as a warm-core low center,

although the center is not rejected.

5) TC centers are combined into a track by taking a low

center at time T 2 dt, extrapolating its motion

forward dt, and then seeking storms within 750 km.

It is noted that a deeper low center has higher

priority of tracking.

6) The following criteria are required to pick up the

final TCs:

(i) At least 72 h of total detection lifetime (not

necessarily consecutive).

(ii) At least 48 cumulative (not necessarily consec-

utive) hours with a warm core.

(iii) At least 36 consecutive hours of a warm core

with winds greater than 17.5m s21.

(iv) TC genesis should be confined equatorward

of 408N.
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