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Abstract 

The life history, distribution and diversity of fishes are largely influenced by 

environmental salinity. Changes in salinity affect a range of physiological processes, including 

metabolism, nutrition, reproduction, and growth. Therefore, fish can be conditioned to 

environmental parameters most suitable for production, where distinct traits are optimized 

through species-specific manipulation of salinities. The primary purpose of this review is to 

summarize the existing literature on the salinity tolerance of aquacultured fish. The various 

experimental approaches for determining salinity tolerance are compared, along with 

summarized information for key species employed in aquaculture, including their native 

distributions, life history stage, and optimal salinity for survival and growth. The implications for 

production were assessed by considering the effects of salinity on growth, reproduction, 

management, disease mitigation and marketability.  



1. Introduction 

Variations in salinity are among the physical parameters that drive the capacity of fish to 

survive and thrive in a range of environments; from freshwater (FW) habitats such as rivers, 

lakes, and marshes; to marine or seawater (SW) habitats such as coastal waters, bays, and the 

open ocean; to extreme environments, such as hypersaline ponds or estuaries that undergo tidal 

variations from FW to SW.1 The capacity of fish to tolerate a given environmental salinity 

largely depends on their ability to regulate salt and water balance, or osmoregulate, and is closely 

tied to their life histories. To maintain hydromineral balance, fish spend significant energy on the 

uptake and secretion of ions in hyposmotic and hyperosmotic environments, respectively, 

thereby maintaining a relatively stable osmotic concentration of body fluids.2,3 Fish inhabiting 

FW environments actively uptake ions and excrete copious amounts of dilute urine to counteract 

a passive loss of salt and gain of water, while those in SW actively secrete ions and retain water 

to compensate for osmotic water loss and diffusional ion gain (Figure 1). The physiological and 

molecular mechanisms underlying acclimation of fish to not only FW and SW steady-state 

environments, but also to environments characterized by frequent salinity changes, are distinct 

and diverse, and have been reviewed extensively elsewhere.3-15 Reflecting these adaptive 

strategies, fish are capable of tolerating changes in salinities to varying extents. Based on their 
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salinity tolerance and natural distribution, fish have been classified on a spectrum of stenohaline 

to euryhaline, describing narrower and broader salinity tolerance ranges, respectively.6 

Moreover, within euryhaline fishes, diadromous species spend periods of their life history in 

distinct salinity environments, with anadromy being characterized by spawning and larval 

development in FW and migration to SW in later stages, and catadromy by spawning and larval 

development in SW followed by subsequent migration to environments of lower salinity.16 A 

comprehensive account of euryhalinity in fishes has summarized such diversity in salinity 

tolerance across species.17 The evolution of salinity tolerance in fishes is believed to have 

occurred in a mosaic-like pattern across different taxonomic groups, with euryhalinity, for 

example, having evolved multiple times independently.8,17 Here, we have categorized fish that 

can tolerate salinities ranging from FW to SW or higher salinity as euryhaline. Generally, most 

studies on the salinity tolerance and physiological responses of fishes have employed one-way 

salinity transfers, either in direct or gradual fashions. Additional approaches that more closely 

reflect how fish tolerate environments of highly variable salinities11 or aim to investigate the 

genetic basis of salinity tolerance,18,19 imprinting,20 or inheritance of salinity tolerance traits,21,22 

have also emerged. 

Understanding salinity tolerance in fishes provides fundamental information required for 

optimization of management, husbandry, and aquaculture production practices. In production 

systems where salinity varies, such as near-shore farms, understanding salinity tolerance grows 

ever more important as weather patterns shift. Thus, euryhaline species, for example, may 

become more suitable for production in such changing environments inasmuch as they possess a 

wider range of salinity tolerances that can facilitate environmental adaptation in face of climate 

change. Fish commonly employed in aquaculture can range in salinity tolerance according to 

species, life history stages, age,23 and environmental temperature.24 Moreover, the rearing 

salinity can maximize performance metrics such as growth, feed efficiency, reproduction, disease 

response, nutritional status, and palatability, or taste of the final product. Ultimately, enhancing 

these parameters can optimize time to market, product quality, and management of water 

resources.  

This review summarizes the salinity tolerance of 22 commercially relevant and 

commonly aquacultured groups of finfish worldwide, including 52 species, as a resource that 

combines and synthesizes the experimental approaches (Figure 2) and practical applications over 
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the past 40 years of study. An initial literature search was conducted combining the keywords 

“fish,” “salinity tolerance,” and “aquaculture” using the Aquatic Sciences and Fisheries 

Abstracts database, yielding 4,429 references up to 2023. Searches employing each common fish 

group name with the last two terms above were conducted, and references were further filtered 

according to relevance. To narrow the scope of our analysis, we targeted the Food and 

Agriculture Organization’s list of the top 10 major finfish species globally produced each in 

inland aquaculture and in marine and coastal aquaculture,25 while also considering the available 

literature on salinity tolerance of other, less commonly aquacultured species. Fish species were 

grouped by prevailing environmental salinity and by life histories characterized by distinct 

salinities (diadromy) to facilitate the discussion of salinity tolerance trials by direction of 

transfer, with FW and marine species being typically investigated for their capacity to tolerate 

increases and decreases in salinity, respectively. The combined and synthesized data from these 

references are visually summarized in Figure 3 and organized according to species and life stage. 

 

2. Salinity tolerance  

Salinity tolerance largely constrains the range of habitats where fish can grow and 

reproduce. In turn, this natural range of suitable salinities is important when evaluating potential 

aquaculture candidates. For example, understanding the hypersaline tolerance of species may be 

particularly relevant in regions affected by the scarcity of FW resources. Fish maintain their 

blood osmolality within a relatively narrow range, roughly 1/3 that of SW (∼280-360 mOsm kg-

1) 26. This process relies on osmoreception, or the capacity to perceive osmotic changes resulting 

from the passive movement of solutes and water across cell membranes to activate 

osmoregulatory responses that allow fish to adjust to specific osmotic demands.27-29 The control 

of hydromineral balance is largely mediated by hormones, where specific endocrine systems are 

triggered by hypo- and hyperosmotic stimuli in species-specific manners.11,15,30,31 As a 

consequence of combined endocrine action and direct osmosensing, a wide range of epithelial 

responses to modulate water and ion transport, mainly in gill, kidney, and intestines, are 

activated in fish acclimated to FW, SW, and undergoing salinity challenges.5-8,10,12-14 These 

responses provide a comprehensive assessment of the adaptive strategies that different species of 

fish deploy when facing changes in environmental salinity, and enable salinity tolerance, 

typically expressed as percent survival. For the purposes of this review, the main environmental 
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salinities discussed will be defined by FW at 0 parts per thousand (‰), SW at 35‰ unless stated 

otherwise, and brackish water (BW), as specified by the salinity ranging between FW and SW. 

Importantly, the adaptive mechanisms underlying salinity tolerance vary temporally. Fast-acting, 

transient cellular stress responses operate within minutes (min) to hours (h) to enable survival, 

while slower endocrine-mediated systemic responses require up to days (d) to facilitate 

acclimation into more permanent environments. Hence, in discussing the salinity tolerances of 

fish, it is important to outline the experimental time course and methodology employed. This 

information will, in turn, define salinity tolerance, which can last a few hours or indefinitely, 

depending on the experimental approach employed. Because of the inherent variability in 

defining the salinity tolerance of different species, several authors have calculated extrapolations 

based on survival rates following a salinity challenge, with the salinity leading to 50% mortality 

termed the lethal concentration 50 (LC50).32-34 Here, studies reporting LC50 will be emphasized, 

as the method is useful for comparisons among species. Nonetheless, the experimental approach 

needs to be carefully considered when interpreting salinity tolerance data.  

 

2.1. Approaches to determine salinity tolerance 

Depending on the application, the focus of salinity tolerance studies may vary in both 

time and lethality of the salinity exposure. In addition to comparisons between steady-state 

salinities and the effects of one-way transfers to different salinities, several studies have 

investigated the effects of pre-exposure35-37 and dynamically changing salinities11 on salinity 

tolerance. Hybridization and, more recently, loci selection represent other approaches to studying 

and affecting salinity tolerance.38-40 Here, we will discuss some of the advantages and limitations 

of these various approaches.  

 

2.1.1. Steady-state comparisons 

Comparing fish acclimated to two or more salinities is a straight-forward way to assess a 

myriad of salinity-sensitive traits. To control for species-specific traits associated with salinity 

tolerance, comparisons are usually made between individuals of the same species acclimated to 

distinct salinities. The acclimation periods prior to comparisons may range from weeks to years, 

or across generations, depending on the species and goal of the study, but are usually 

characterized by stable survivorship in groups of individuals being compared; euryhaline species 
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typically allow for comparisons across a wider range in the salinity spectrum (i.e. FW vs SW).  

For example, steady-state comparisons can be useful for informing the optimal salinity for 

growth and resistance to disease.41-44 The relative ease of maintaining fish in a steady-state 

salinity also enables long-term transgenerational studies of salinity tolerance and evolutionary 

insights into salinity adaptation.45,46 Further, the consistent nature of steady-state salinity 

comparisons is ideal for studying the salinity-dependent effects of pollutants and other stressors 

on fish, especially euryhaline species. Comparing the toxicity of pollutants in fish kept at 

different salinities can indicate the salinity in which fish are most sensitive or resilient to the 

pollutant.47 While the static nature of steady-state comparisons is advantageous for studying 

salinity tolerance, such comparisons may not accurately reflect all culture conditions, such as 

those susceptible to salinity changes due to rainfall, evaporation, and SW intrusion; especially at 

lower elevations.48 Nonetheless, the insights into salinity tolerance gleaned from steady-state 

comparisons provide valuable information for aquaculture.  

 

2.1.2. One-way transfers 

One-way salinity transfers provide a direct way to assess the capacity of fish to tolerate a 

change in salinity and associated physiological responses. Rapid one-time transfers are useful in 

aquaculture tasks such as fish transport or disease treatment.49 In the case of disease treatment, 

marine fish are often exposed to FW, with studies focusing on the duration of fish survival and 

recovery from the FW dip.50 One-way transfers, between salinities suitable for long term 

survival, also inform the maximum rate of change that fish can tolerate between salinities. For 

example, the Mozambique tilapia (Oreochromis mossambicus) cannot survive a direct transfer 

from FW to SW despite having the ability to survive in hypersaline (up to 120‰) waters.23,51 

However, employing a series of one-way transfers to increase the salinity gradually, affords the 

study of hypersaline tolerance in fish that are often maintained in lower salinities.6 Hence, two 

main approaches for conducting one-way transfers are often employed, one in which salinity is 

gradually changed from high to low or vice-versa (Figure 2A), and another where multiple direct 

transfers are conducted to investigate tolerances to low or high salinities (Figure 2B). In both 

cases, survival over time is often used as an outcome of salinity tolerance to various challenges 

(Figure 2C). One-way transfers can be more resource-intensive relative to steady-state 

comparisons if terminal sampling is required to collect data. Since multiple fish are sampled at 
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multiple time points following transfer to capture the changes occurring during acclimation,36 

these experiments often require more fish and resources. Further, one-way transfer experiments 

also fail to capture the dynamic nature of natural salinity fluctuations, such as in estuarine 

environments or exposed ponds.  

 

2.1.3 Pre-exposure 

Early exposure to different salinities has been widely used to determine later effects on 

fish growth, development, and salinity tolerance of fish. The stages of development typically 

employed in early exposure experiments comprise eggs, sperm, embryos, and larval stages.52-56 

These early growth stages of fish could be exposed to different salinities to increase salinity 

tolerance and enhance other beneficial effects (Figure 2D). For example, exposure to different 

salinities alters fertilization, survival, and normal development of fish eggs.57 In FW species, 

such as the Nile tilapia (O. niloticus), an elevation in salinity has been associated with a delay in 

hatching time, even though the larvae had increased salinity tolerance.58 In contrast, both egg 

fertilization and sperm motility of the SW black bream (Acanthopagrus butcheri) were reduced 

at 5‰ while low egg hatchability, low larval survival, and high larval deformities were observed 

in salinities below 15‰.59 In addition to reproduction, early exposure to different salinities can 

affect fish growth and development. Juvenile Atlantic salmon (Salmo salar) acclimated to FW 

increased growth hormone (GH) levels following exposure to SW.60 Similarly, early exposure to 

high salinities increased growth performance in puffer fish (Takifugu rubripes) and Mozambique 

tilapia,61,62 while striped catfish (Pangasianodon hypophthalmus) larvae reared in 5–10‰ 

showed higher tolerance to thermal stress than the fish reared in FW.63 Early exposure to changes 

in salinity may, therefore, confer greater adaptive capacity.  

 

2.1.4. Dynamically changing salinities 

Coastal ecosystems such as estuaries can be characterized by frequently changing 

salinities in response to tides. Consequently, the fish species that live in those waters tend to be 

euryhaline, surviving and thriving in a wide range of salinities. In order to investigate the salinity 

tolerance of estuarine fish, researchers have simulated tidal environments, where the salinity 

periodically changes (Figure 2E). Mozambique tilapia reared in a tidal regimen (TR), 

characterized by dynamic changes between FW and SW every 6 h, were able to compensate for 
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the large changes in salinity while maintaining their osmoregulatory parameters within a narrow 

range.64 Interestingly, Mozambique tilapia reared in a TR grew faster than those in steady-state 

salinities, in part through the activation of the GH/IGF system, while maintaining a similar or 

lower feed conversion ratio (FCR) compared with fish reared in steady-state FW or SW.41,65 

Moreover, Mozambique tilapia reared in a tidal environment since larval stages were able to 

acclimate to direct and sustained transfer to SW as adults.36 Other studies have shown that to 

survive a FW to SW transfer, this species requires a gradual change in salinity, typically a direct 

exposure to BW (25‰) for 48 h prior to a transition to SW.23,36,66 Recently, it has also been 

found that Mozambique tilapia acclimated to steady-state FW or SW could successfully 

acclimate to a TR, showing similar adaptive responses as fish reared in TR from larval stages.67 

However, age also affects the salinity tolerance during these transitions, resulting in a decline of 

salinity tolerance in older fish.23 Collectively, these studies employing a TR show that 

experimental simulation of salinity regimes that most closely approximate those of the native 

ecological distribution of the species under study may provide the most accurate assessment of 

their physiological capacity. Nevertheless, despite the adaptive and growth advantages observed 

in Mozambique tilapia reared in a TR compared with fish reared in steady-state salinities, the 

continuous maintenance of a TR system is costlier and more complex compared with steady-

state salinity systems, and a TR is unsuitable for recirculating systems. Pre-exposing larval fish 

to dynamically changing salinities, however, may serve as a strategy to facilitate adaptive 

capacity to future environmental challenges. 

 

2.1.5.  Crossing and hybridization 

Hybrid crosses have been used to examine the role of parental sex and species on 

inherited salinity tolerance, which in some cases resulted in differences between parental strains 

and their hybrids (Figure 2F). In comparing the salinity tolerance of Nile, Mozambique, and 

hybrid tilapia, it was reported that while there was no difference in survival between hybrid and 

Mozambique tilapia (99% and 98%, respectively), only ~68% of Nile tilapia survived a 30‰ 

challenge.68 Offspring produced by crossing between different populations can exhibit enhanced 

salinity tolerance compared with parental strains as a result of heterosis. In guppies (Poecilia 

reticulata), F1 crosses between parental strains and their offspring resulted in offspring surviving 

longer following a transfer from FW to SW compared with both parental strains.69 Crossing 



 
 

 9 
 

between fish populations adapted to different environments can also affect salinity tolerance. F1 

offspring produced by crossing amphidromous ayu (Plecoglossus altivelis), which migrate 

between FW and SW during growth stages, and landlocked ayu, had an intermediate salinity 

tolerance compared with the purebred populations.70  

A comparison between sunshine bass (male striped bass, Morone saxatilis × female white 

bass, M. chrysops) and palmetto bass (male white bass × female striped bass) revealed similar 

salinity tolerances, with a 24 h LC50 of ~28‰.71 In flounder, however, it was shown that salinity 

tolerance was affected by parental sex. The FW tolerance of starry flounder (Platichthys 

stellatus), stone flounder (Kareius bicoloratus), and their reciprocal hybrids (female starry 

flounder × male stone flounder as hybrid Sb, and male starry flounder × female stone flounder as 

hybrid Bs) revealed that starry flounder exhibited relatively high survival (44% and 100%), 

followed by hybrid Bs (40% and 60%) and hybrid Sb (23.6% and 88%) at juvenile and immature 

stages, respectively. Stone flounder, in contrast, did not survive the challenge at both life 

stages.72 Therefore, the effects of hybridization on the salinity tolerance of offspring are variable 

and species-dependent.  

 

3. Freshwater species  

Most aquacultured fish are produced inland, in waters comprising FW and some BW 

salinities.25 In addressing salinity tolerances of species occurring in these waters, studies have 

typically investigated fish challenged with a rise in salinity, comparing fish reared in FW with 

those transferred to increasing salinities up to SW. Here, the salinity tolerances of some of the 

main fish groups cultured primarily in FW are discussed.   

3.1. Tilapia 

Tilapia (Cichlidae) represent the second most cultured fish group globally.25 Nile tilapia, 

the most commonly grown species of tilapia, have been extensively studied to understand and 

extend its upper salinity tolerance. When Nile tilapia (~26 g) were exposed to salinities ranging 

from 6–34‰ for 6 months, survival was >90% up to 12‰, optimal growth occurred at 16‰, and 

LC50 was 24‰.73 Spawning frequency was greater between 5–15‰ compared with other 

salinities between 0–32‰.74 Nonetheless, Nile tilapia are less tolerant to high salinity when 

compared with its congener, Mozambique tilapia, a euryhaline species that can grow well in 

ponds up to 40‰, spawn in 49‰,75 and survive salinities as high as 120‰.76 When the acute 
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salinity tolerance of Nile and Mozambique tilapia were compared, the former did not survive a 

24 h transfer from FW to 20‰, while 100% of the Mozambique tilapia survived the same 

challenge.77 While some authors have estimated the optimum salinity for growing Mozambique 

tilapia at 17.5‰ when directly transferred from FW,78 others have clearly shown that fish reared 

in a TR or SW grow faster than those reared in FW or BW.41,62,79-82  

Because of its high salinity tolerance, Mozambique tilapia is widely used in hybridization 

programs. Hybridization between Nile and Mozambique tilapia (O. niloticus × O. mossambicus) 

resulted in elevated salinity tolerance and growth of offspring. These hybrid tilapia showed better 

growth and survival in BW, with the optimum salinity range at 15–32‰.22,68 Similarly, the 

Mozambique tilapia is used to develop another commonly grown hybrid, Florida red tilapia (O. 

mossambicus × O. urolepis hornorum), which is reported to survive in 37‰ outdoor flow-

through pools for several months with a 97% survival rate.83 Although the optimal salinity for 

seed production of red tilapia is 5‰, their reproduction rates at 18‰ and >30‰ are considerably 

high when compared with FW tilapia strains.84 Last, the blue tilapia (O. aureus) is another 

species widely used in hybridization for its capacity to adapt to cold water, and reported to 

survive salinities up to 45‰.85 Blue tilapia were able to withstand a direct transfer from FW to 

27‰ for 2 d with 80% survival. When the transfer was gradual, from 0 to 18‰ (BW) and then 

acclimated to 36‰, no mortalities were reported for 6 d.86 A recent study concluded 12‰ as the 

optimal salinity for blue tilapia growth with no mortalities, while salinities over 20‰ resulted in 

>50% mortality of the population.87  

3.2. Cyprinids      

Carp (Cyprinidae) form both the oldest domesticated and most aquacultured fish group 

globally.25 Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are 

two of the most aquacultured species of carp for which salinity tolerance studies have been 

conducted. Juvenile silver carp were reported to survive a 3–4‰ for a short time.88 Bighead carp 

fry at 35 d post-hatch (dph) had higher salinity tolerance (7.6‰) than younger fish at 11 and 18 

dph (2.3 and 6‰, respectively); 18 dph fry grew faster when reared at 0–2‰ compared with 4–

6‰ over 4 weeks.89 Early trials with grass carp (Ctenopharyngodon idella) revealed a 24 h LC50 

of 16‰.90 More recently, acute (4 d) and chronic (8 weeks) salinity challenges ranging from 0 to 

20‰ indicated that over an 8-week period, grass carp reared at 6‰ grew slower  than fish at 

2‰.91 In the acute trial, mortality initiated by 24 h at 12‰; all grass carp kept in salinities 
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ranging from 0 to 8‰ survived over the course of 4 d.91 The fertilization rate of common carp 

(Cyprinus carpio) was reduced to 13.4% at 6‰, compared with 98% in FW controls.92 While the 

authors suggested that common carp could tolerate 3–4‰ without visible changes during early 

development, it is clear that this and other species of carp have limited tolerance to elevations in 

salinity.  

The three major species of carp (rohu, catla, and mrigal) indigenous to the rivers of the 

Indian subcontinent, also known as Indian major carps, are widely aquacultured in the region. In 

rohu (Labeo rohita), the 48 and 96 h LC50s were calculated at 9.6 and 7.7‰, respectively;93 sub-

lethal exposures to salinities up to 4.5‰ over 90 d demonstrated that growth decreased with a 

rise in salinity.93 Another study reported that the LC50 for salinity exposure was modulated by 

temperature; rohu were less tolerant of high salinity at the high temperature (28°C; 7 d LC50s of  

6‰), when compared with 14°C (7 d  LC50 of 10‰).94 In hybrids (male L. rohita x female 

Catla catla), the salinity tolerance decreased in higher temperatures when compared with rohu.94 

Mrigal (Cirrhinus mrigala) fingerlings survived up to 6‰ for 10 d with no mortalities or 

morphological changes.95 At 8‰ and 10‰, however, survival rates were 93.33% and 86.67%, 

respectively, suggesting that 6‰ could be regarded as the maximum salinity tolerance for that 

species.95 

Like carp, other cyprinids are also usually stenohaline exhibiting limited salinity 

tolerance.96 Increasing salinity to as little as 4‰ negatively affected egg production, fertilization 

rate, number of spawning days, and clutch size in the fathead minnow (Pimephales promelas), 

leading the authors to recommend that salinity should not exceed 1‰ for rearing this species.97 

Another commonly cultured group of cyprinids, especially in the ornamental industry, are 

goldfish (Carassius auratus). Goldfish can survive over 72 h in salinities under 10‰, but only 

for 8 h following acute transfer to 20–25‰.98 Another study reported 6‰ as the upper salinity 

before negative stress effects were noted; at 8–10‰, growth and food intake decreased, FCR 

increased, muscle was dehydrated, and plasma cortisol was elevated.99 These findings were 

corroborated by an additional report where growth rate and FCR were similar between goldfish 

grown at 6‰ and FW controls, regardless of water temperature (23°C and 27°C).100  

3.3. Sunfish 

Sunfish (Centrarchidae) are native to FW and BW habitats of North America, and have 

been cultured largely to provide fingerlings for stocking recreational ponds and lakes.101 Salinity 
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tolerance of sunfish, including basses and bluegills, varies with developmental stage, acclimation 

history, and species. For example, largemouth bass (Micropterus salmoides) larvae collected 

from a tidal river (<3‰) were transferred to salinities ranging from 0–16‰ for 48 h. While fish 

transferred to 4 and 12‰ showed 100% survival, those transferred to 0 and 8‰ had 80% 

survival, and only 20% of fish exposed to 16‰ survived.102 Juvenile largemouth bass collected 

from BW canals (3–4‰) and from a FW lake grew fastest at 0‰ while fish stopped feeding and 

died within a week of exposure to 12‰.103 The bluegill (Lepomis macrochirus) naturally inhabits 

saltmarsh systems where salinity fluctuates between 0 and 10‰.104,105 In a salinity preference 

trial, juvenile bluegills spent the same amount of time in tanks at 0 and 10‰.105 Another study 

found that growth was unaffected at 10‰ compared with FW controls.104 

3.4. Catfish 

 Catfish are highly diverse and widely used in aquaculture. The striped catfish or swai 

(Pangasiidae, Pangasianodon hypophthalmus), is native to tropical FW habitats of the Mekong 

River basin. A 10 d salinity tolerance trial of striped catfish larvae showed a relatively high 

survival rate (~86%) in salinities up to 10‰. Survival dropped to ~29%, however, following 

exposure to 20‰.63 Fingerlings exposed to different salinities for 96 h survived up to 13‰, with 

an LC50 of ~15‰ estimated by probit analysis, and 100% mortality at 17‰.106 The authors also 

reported the highest growth rate at 4‰ when compared with fish reared at 0, 8, and 12‰ over 56 

d. These results are consistent with another study that reported the highest growth rates of 

juvenile striped catfish between 2–10‰, with no differences in survival rates within that salinity 

range.107 This study reported the lowest survival rate (~39%) at 18‰.  

Hatch success and post-hatch survival of channel catfish (Ictaluridae, Ictalurus 

punctatus) is largely influenced by salinity. Embryos had the highest hatching rate (82%) at 4‰ 

but exhibited high post-hatching mortality (55%) by 4 d.108 By contrast, 2‰ was an optimal 

salinity for treating eggs and increasing profitability, where the hatching rate was slightly lower 

(75%), but survival post-hatch was 100%.108 Survival of channel catfish fry, was highest (99%) 

at 1‰ compared with those kept at 0 and 2‰; at 4‰, survival decreased to >20%.109 Catfish 

fingerlings reared at 1‰ also grew faster than fingerlings reared at 0‰ or other salinities.110 The 

salinity tolerance of channel catfish is also influenced by acclimation history. Yearlings 

acclimated to 10‰ had a better survival rate than those acclimated to 5‰ when exposed to 12‰, 

but neither group had high survival above 12‰ (>50% survival).111 Moreover, the transfer of 
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market-size fish from 0‰ to a low salinity environment (>5‰) did not affect production and 

FCR.110  

Similar to channel catfish, hatching rates of African catfish (Clariidae, Clarias 

gariepinus) ranged from ~57 to 69% in salinities from 0–5‰, with the highest hatching rate 

observed at 1‰, and sharp declines at 6, 7, and 8‰ with 21, 9, and 0% hatching rate, 

respectively.112 Another study reported hatching rates ranging from 45 to 60% between 0–6‰, 

with the highest at 4‰, though 52% had deformities.113 Survival rates of African catfish larvae 

in salinities ranging from 0–10‰ for 16 d, were lower at 7.5‰ (60%) compared with those 

exposed to 0–5‰ (77 to 80%), with an LC50 at 8.5‰; growth rates also decreased at higher 

salinities.114 Generally, juvenile African catfish are more tolerant to higher salinities than larvae, 

based on reported survival rates ranging from ~82 to 97% in salinities from 0-12‰.115 

3.5. Pacu 

Pacu (Serrasalmidae) is a commonly aquacultured group of FW fishes native to South 

American river systems.116 One study concluded that tambaqui (Colossoma macropomum) could 

tolerate 10‰, though it is unclear if survival could be sustained as the study was based on acute 

short-term salinity challenges. The investigators found that a 1 h exposure to 15‰ resulted in 

elevated plasma glucose levels, while at 25‰ both plasma glucose and osmolality rose above the 

FW controls.117 In juvenile tambaqui, specific growth rate, mean daily feed intake, and final 

weight decreased while FCR increased at 15‰ compared with 0-10‰ over 84 d.118  

 

4. Marine species  

Despite the disproportionate amount of water in oceans (~10,000-fold greater) compared 

with inland lakes and rivers, only ~60% of fish species inhabit marine environments,119 and only 

~8% of aquacultured fish are marine.25 Unlike the approaches employed in FW species, studies 

on salinity tolerance of marine fish have primarily focused on assessing their capacity to tolerate 

lower salinities than those in which they are reared in. Many aquaculture facilities for marine fish 

are often situated inland or in sea-cage farms, exposing them to weather events (e.g., storms, 

typhoons, FW run-off, etc.) which can significantly decrease salinity within enclosures.120 Thus, 

understanding the lower salinity tolerance of marine fishes is crucial for determining optimal 

siting, rearing conditions, and species selection to optimize production.  
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4.1. Grouper 

The three most commercially aquacultured species of grouper (Serranidae), especially in 

Southeast Asia, are the brown-marbled or tiger grouper (Epinephelus fuscoguttatus), orange-

spotted grouper (E. coioides), and the giant grouper (E. lanceolatus).121,122 Juvenile tiger grouper 

have a wide salinity tolerance (0–32‰) when acclimated to lower salinities at a gradual rate of 

2‰ h-1 in a 96 h trial,123 versus 20–31‰ after directly transferred for 14 d.124,125 Juvenile goliath 

groupers (E. itajara) tolerated salinities between 0 and 31‰ for 12 d (100% survival) in both 

gradual (from 29‰ to FW over 3-4 d) and direct transfer to low salinities.126 Another study on 

the same species demonstrated 100% survival for 28 d with gradual salinity decrease (from SW 

to FW over a 3 d period), but observed that only 60% survived the direct transfer to <1‰ in 96 

h.127 All juvenile white grouper (E. aeneus) survived salinities between 4 and 43‰ over a 10 d 

study.128 Another study on rearing E. aeneus found that juveniles reared for 92 d while 

consuming a 3% dietary salt supplement could tolerate salinities as low as 3‰ with 78% survival 

while improving growth and FCR compared with controls on a standard diet.129   

4.2. Snapper 

Snappers (Lutjanidae) are generally regarded as marine; however, some species exhibit 

euryhalinity.130 Mangrove red snapper (Lutjanus argentimaculatus) aquaculture relies on the 

collection of wild fingerlings.131 The optimal salinity for 21 dph larvae ranged between 16–32‰; 

by 28–50 dph, their salinity tolerance range increased to 16–50‰.131,132 One study on juvenile 

mangrove red snapper analyzed the interaction between habitat structures and salinity (10, 17, 

and 25‰) and reported 17‰ as optimal for survival while in 15–20‰, hard, complex structures 

(e.g., rock piles or mangrove roots) improved survival rate by 20% and growth by ~10%, without 

changing diet or stocking rates.131 Adult amarillo snapper (L. argentiventris) gradually 

acclimated at a rate of 1–2‰ d-1 between 23–44‰ had 100% survival with optimal salinity for 

growth at 23‰.133 The red snapper (L. campechanus), popular in the Gulf of Mexico region, 

spends its entire life in offshore waters (34‰).134 Larvae have been reared successfully in 

salinities ranging between 31–38‰.135 There were no significant differences in survival over 96 

h or FCR (6-week trial) in juveniles acclimated to 8 or 32‰ by the addition of FW or crystalline 

sea salt at a rate of 2‰ d-1.136 There were no survivors, however, within 24 and 72 h of exposure 

to 2 and 4‰, respectively; the LC50 was estimated at ~5.6‰. In the same study, fish grew faster 

at 32‰ compared with those in 8‰.  
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           Juvenile gray snapper (L. griseus) tolerated between 5–45‰ with >90% survival rate 

when acclimated to target salinities (5, 15, 25, 35, and 45‰) at 5‰ d-1 over a 15 d period.137 

These results are consistent with the natural conditions that juveniles experience in the wild, 

where they inhabit both nearshore and estuarine areas before migrating to reefs as adults.138,139 

Both sub-adult and adults were found to tolerate direct transfers to salinities ranging between 0–

60‰, with no mortalities observed during the 8 d experimental period, suggesting that gray 

snappers exhibit a higher range of salinity tolerance compared with other snappers.140      

4.3.  Halibut and Flounder 

Halibut is the common name of right-eyed flounders of the genus Hippoglossus 

(Pleuronectidae). Atlantic halibut (Hippoglossus hippoglossus), which are commercially 

aquacultured, undergo a 50 d yolk-sac larval stage, during which they are the most sensitive to 

the influence of environmental parameters, including salinity.141-143 Sac larvae reared between 

29‰ and 32‰ exhibit reduced deformities and mortality compared to other salinities.141,143 As 

juveniles and adults, halibut are surprisingly tolerant of intermediate salinities (15 and 25‰). 

Juvenile Atlantic halibut showed improvements in specific growth rate and feed conversion 

efficiency in reduced salinities (13–25‰) compared with 27 and 32‰.144,145 In a long-term 

study, adult Atlantic halibut also showed a 20% improvement in growth and feed efficiency with 

no indications of stress at 15‰ compared with 27‰.146  

Flounders (Paralichthyidae) are of great commercial importance and amenable to 

aquaculture in part due to the wide salinity tolerance of both juveniles and adults.147,148 Larval 

summer flounder (Paralichthys dentatus) can tolerate salinities from 0‰ to 38‰, but they 

exhibit best growth and development rates at 8‰ compared with other salinities tested.149,150 

Juveniles of this species have a remarkable salinity tolerance range of 5–50‰ with a 100% 

survival rate.149 Southern flounders (P. lethostigma), are found frequently in brackish bays, 

estuaries, and occasionally in FW, with a reported optimal salinity for survival between 15–35‰ 

for egg incubation, 20–34‰ for larvae, and 5–30‰ for juveniles.147,151,152 The LC50 for 

Southern flounder larvae was <10‰ in both direct transfer151 and gradual acclimation trials.152   

4.4. Cobia 

Cobia (Rachycentridae, Rachycentron canadum) are distributed in tropical and 

subtropical waters of salinities between 23–45‰.153 In aquaculture settings, however, juvenile 

cobia have been grown in salinities as low as 10‰154 and 5‰ (68.3% survival over an 8-week 
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trial).155 In addition, juvenile cobia were able to withstand 30 min treatments in FW for removal 

of marine parasites, including Amyloodinium sp.156 During the larval stages, their salinity 

tolerance is highly age-dependent (down to 20.1‰ at 3 dph and 7.5‰ at 7–9 dph).33 Moreover, 

the standard lengths of larval cobia (1, 4, 7, 13 dph) were unaffected by decreases in salinity (5‰ 

d-1 and down to 5‰ for 10 d),33 but juveniles grew slower at lower salinities.156 These findings 

indicate that the effects of salinity on growth, especially at early developmental stages, are age-

dependent.  

4.5. Sea bream 

Sea breams (Sparidae) inhabit multiple near-shore habitats, including estuaries and river 

mouths. They are thereby capable of tolerating a wide range of salinities in aquaculture 

operations, including FW, depending on the rate of salinity change. Juvenile yellowfin sea bream 

(Acanthopagrus latus) acclimated to 33‰ had an upper LC50 of 37.8‰ at 32°C; however, when 

transferred gradually at a rate of 2‰ h-1, the upper LC50 was 66‰. The upper LC50 was also 

temperature-dependent, with greater salinity tolerance (71‰ following gradual transfer) 

observed as the temperature lowered (10°C).157 In the same study, when fish were directly 

transferred from 33‰ to lower salinities, lower temperatures also increased hyposmotic 

tolerance on direct transfers (LC50 was 2.5‰, 7.2‰ and 11.6‰ at 10°C, 25°C and 32°C, 

respectively); all fish transferred gradually at a rate of 2‰ h-1 survived in FW despite thermal 

regime.  

The gilthead sea bream Sparus aurata inhabits brackish to hyper-saline estuaries, 

lagoons, and coastal waters of the Mediterranean and eastern Pacific.158 Juveniles survived a 

direct transfer from 39 to 3.9‰ and as low as 2‰ when salinity was gradually reduced.159 When 

gilthead sea bream were transferred from 39 to 7‰, plasma osmolality initially decreased and 

recovered by 30 d post-transfer; plasma cortisol, however, rose and remained elevated compared 

with pre-transfer levels, suggesting a role in hyposmotic conditions.158  

4.6. Jacks  

Jacks (Carangidae) are globally distributed and typically found in deep coastal waters. 

The rise in commercial aquaculture of jacks of the genus Seriola and pompano is relatively 

recent. Of the Seriolids, the most widely farmed species include Seriola quinqueradiata, S. 

rivoliana, S. dumerlii and S. lalandi, with studies on salinity tolerance primarily focusing on the 

last two. Young (6.38 ± 1.33 g) S. dumerlii can survive a direct transfer from 35 to either 20 or 
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40‰ for at least 30 d; in the same study, all fish transferred to 10‰ died after 10 d.160 Similarly 

sized S. dumerlii in a separate study survived a direct transfer to 10‰ for at least 3 d.161 Juvenile 

S. lalandi (11.6 ± 0.6 g) grew faster at 14, 18, and 22‰ than 26 and 30‰ after 29 d due to an 

increase in food intake.162 Responding to hypersaline challenges, S. lalandi juveniles decreased 

food intake, FCR, and survival at 41 and 45‰ compared with 37‰.163 The eggs of S. rivoliana 

hatched at the highest rate in 35, 40, and 50‰ compared with a range of salinities between 15 

and 30‰.164 In that same study, larval survival was highest at 35 and 40‰ compared with 

50‰.164  

Pompano (Trachinotus ovatus), is widely consumed throughout China, Japan, and 

Australia.165 Juvenile pompano (48 dph), tolerated 10–34‰ with >90% survival when 

acclimated at 1‰ d-1 for 24 d.166,167 The highest specific growth rate occurred at 34‰ with no 

differences observed between 18 and 26‰.166 Another gradual acclimation trial on juvenile T. 

ovatus increased or decreased salinity from 31‰ (4‰ d-1) to 5, 15, 25, and 35‰ with 100% 

survival observed after 56 d.168 The main difference between both gradual acclimation 

experiments was stocking density, with the first trial166 stocked at aproximately 4-fold  higher 

density than the second,168 suggesting that increasing stocking density may decrease salinity 

tolerance. Juveniles of this species reared for 8 weeks in sea cages, with salinities reported to 

range between 20–33‰ due to heavy rainfalls, had >97% survival.169-171 

4.7. Rabbitfish 

Rabbitfish (Siganidae) are reef herbivores widely distributed throughout the Indo-West 

Pacific that have been increasingly cultured due to some species possessing favorable traits for 

aquaculture production, including acceptance of formulated diets, schooling behavior, and mass 

spawning.172 The golden rabbitfish (Siganus guttatus) is typically cultured in salinities ranging 

from 10–35‰.173 While there are no differences in specific growth in salinities ranging from 5 to 

35‰, survival of golden rabbitfish began to decline 9 d following exposure to FW, with no 

survivors by 27 d.174 Moreover, breeding, fecundity, gonadal development, and egg quality of 

adult broodstock were similar in salinities ranging between 25 and 35‰.175 Once hatched, the 

optimal survival of golden rabbitfish yolk-sac larvae was between 14 and 37‰176. The rivulated 

rabbitfish (S. rivulatus), introduced into the eastern Mediterranean Sea following the opening of 

the Suez Canal, can survive up to 3 weeks in salinity as low as 10‰ or as high as 50‰,177 but 

the effect of salinity on growth is less clear, at least in juveniles. In one study, growth was 
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highest in 34‰ with decreased growth at salinities ranging from 5–25‰,178 while in another, 

growth only decreased in 10‰ when compared with fish reared in 15–40‰.177 Further, the 

standard metabolic rate of rivulated rabbitfish was lower in 30–40‰ compared with 25‰, 

suggesting that the higher salinity range minimizes metabolic expenditure while maximizing 

growth in this species.179  

4.8.  Drums  

Drums or croakers (Sciaenidae) inhabit marine and coastal areas and are characterized by 

the ability to produce a “croaking” sound through the beating of abdominal muscles against the 

swim bladder. The red drum (Sciaenops ocellatus) is native to the Gulf of Mexico and the 

Atlantic Ocean, forming an important commercial fishery, with aquaculture efforts targeting both 

food production and wild stock enhancement.180 The salinity tolerance of red drum varies with 

life stage. For example, lower hatching success was observed in fish exposed to salinities greater 

than 37‰ and the LC50 of larvae was 37.7‰ by 72 h.53 Juveniles were more tolerant than larvae 

to salinity changes, reflecting their natural environment, ranging from 0.8–45‰.181 While 95% 

of juvenile red drum survived a transfer to FW for 96 h, only 5% and 70% of larvae and post 

larvae, respectively, survived. Although juvenile red drum can survive FW, they grow faster and 

have lower FCR when reared in SW.181  

The culture of large yellow croaker (Larimichthys crocea) has developed rapidly, 

especially through  marine and coastal cage aquaculture, though high levels of disease, limited 

coastal area, and increasing pollution threaten healthy production.182 The main pathogen to this 

species, Cryptocaryon irritans, cannot survive in low-salinity environments, hence low salinity 

aquaculture is seen as a potential mitigation strategy.183 Juvenile yellow croaker directly 

transferred to 5, 10, 20, and 25‰ had survival rates >90% during a 6-week trial.184 Though in the 

same study, fish exposed to 15‰, had a survival rate of 69%. Gradual acclimation for juveniles 

of this species (4 ‰ d-1) produced a wider range in salinity tolerance, between 4–28‰ with 97–

100% survival.183 After 24 h in 2 and 0‰, survival rate decreased to 88.26 and 53.91%, 

respectively. Optimal growth in juveniles that were gradually acclimated for 40 d was found to 

be 4‰.185 Adult yellow croaker (1–2 years old), directly transferred to 5, 15, 25, and 35‰ in 

land-based recirculating aquaculture systems for 48 h had 100% survival.182 The maximal 

metabolism of adult yellow croaker was reported at 25‰ and 26°C.182 Likely due to their 
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environmental range spanning coastal and marine habitats, both the red drum and yellow croaker 

represent marine species that are highly tolerant to decreases in salinity.  

 

5. Euryhaline species 

Euryhaline fish represent a broad range of taxa that can thrive in a wide range of salinities 

from FW to SW and higher. This adaptability makes them particularly valuable in aquaculture, 

providing practitioners leeway for salinity range and fluctuations in culture.186 As observed in 

FW and marine species, there are various levels of euryhalinity among species of a given family, 

where the temperature, age, and life history influence optimal salinity conditions for survival and 

growth. Typically, euryhaline fish include species whose natural life histories require 

acclimation to FW and SW environments either continuously, such as in estuarine species, or at 

least once during their life cycle, such as observed in diadromous fishes. Estuarine environments 

form at the transition zone of FW rivers and the ocean. This intersection renders the salinity of 

estuaries highly variable and dependent on the tides. Therefore, estuarine species include some 

of those described above, under FW and marine species. For example,  the Mozambique tilapia 

as described in Section 3.1, also inhabit estuaries and are euryhaline as an adaptation to cope 

with the frequently changing salinities. Likewise, predominantly marine fish, such as the red 

drum and yellow croaker (described in Section 4.8) may spend part of their life cycle in estuarine 

environments. For the purpose of this review, the groups of euryhaline species discussed below 

are diadromous, and further subdivided according to the salinity in which they naturally spawn 

and hatch. 

 

5.1. Anadromous species 

Anadromy is a life history strategy in which eggs hatch in FW, juvenile fish migrate to 

SW where they mature, and adults return to FW to spawn. Euryhalinity can vary in anadromous 

fishes during their life stages. For example, hybrid striped bass, retain tolerance to a wide range 

of salinities throughout their life stages,187 while Atlantic salmon exhibit narrow salinity 

tolerance ranges during some stages.188 

5.1.1. Temperate basses  

 Temperate basses (Moronidae) comprise predominantly marine and anadromous species 

of commercial interest to aquaculture in Europe and North America. The European sea bass 
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(Dicentrarchus labrax) ranges from Norwegian and Scottish coasts to the Mediterranean and 

Black Sea,189 where they undertake seasonal migrations from SW to estuarine and sometimes 

FW environments. European seabass is a commercially valuable species with 94% of its total 

production in the Mediterranean.190 While European seabass are generally considered euryhaline, 

they have high intraspecific variation in salinity tolerance depending on age, location-based 

population genetics, and water temperature.191,192 Juveniles and adults have been reported in 

waters between 0 and 40‰. Juvenile European sea bass were shown to successfully acclimate 

following direct transfer from SW to FW, though a more gradual acclimation was suggested to 

minimize long-term stress effects.193 In some studies, optimal growth of European seabass 

occurred in FW compared with 20, 30, and 40‰,192,194 while another found that ~30% of fish 

had phenotypes incompatible with FW tolerance including erratic swimming, isolation from the 

shoal, low reflexes, and increased pigmentation.195 In larvae, it was shown that a gradual increase 

from low (15‰) to high salinity (37‰) at 93 d post-fertilization increased the percentage of 

males (87 to 93%), suggesting an effect of environmental salinity on sexual differentiation.191 

Striped bass (Morone saxatilis) is an anadromous species native to the northeastern 

shores of North America. The hybridization of striped bass with white bass (M. chrysops) led to 

heterosis of traits, including improved disease resistance, survival, and growth.196 One study 

found that striped bass hybrids, commonly called sunshine bass and palmetto bass, were able to 

withstand direct transfers from FW to SW and vice-versa.187 Another study reported that both 

hybrids had similar 24 h LC50 of 28‰, suggesting other factors, such as population age, 

genetics, preconditioning, diet, and temperature are considerable factors in the outcomes of these 

salinity tolerance experiments.71,197 The hybrid striped bass in FW are more sensitive to aqueous 

copper compared to those reared in BW (15‰).198 Salinity (0–30‰) had no effect on the growth 

rate of juvenile hybrid striped bass.199 This is also the case during the larval stage (0–10‰); 

however, survival was optimized at 10‰.200 

 

5.1.2. Salmonids 

Many salmonids (Salmonidae) undergo anadromous life cycles, where juveniles smoltify, 

a process that involves extensive physiological modifications to prepare for SW adaptation. The 

salinity tolerance of Atlantic salmon is dependent on their developmental stage and size.188,201 

For example, 65%, 94%, and >99% of parr survived a direct transfer from FW to full-strength 
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SW, 20‰, or 10‰, respectively. By contrast, all smolts survived the same regime.188 Similarly, 

5 dph chum salmon (Oncorhynchus keta) can survive the direct transfer from FW to 45‰ for 24 

h, but they lose that capacity by 10 dph.202 Adult Atlantic salmon acclimated to SW show signs 

of osmotic stress, including increased plasma osmolality and cortisol and high mortality when 

exposed to temperatures above 18°C; the stress is ameliorated when fish are transferred to 

28‰.203 Sockeye salmon (O. nerka) smolts did not survive the transfer from FW to SW at 

temperatures above 15.8°C, but nearly all survived the transfer below 14°C.204 These studies 

indicate that high temperatures may reduce the salinity tolerance of salmon.  

Rainbow trout (O. mykiss) are native to western North America and exhibit dynamic life 

history strategies, though most are produced in the European Union.205 Eggs are released and 

hatched in rivers, but adults can mature in FW (resident) or SW (anadromous; steelhead trout). 

The plasticity of rainbow trout life histories is influenced by interactions between environmental 

conditions, genotype, sex, and individual growth rates and lipid storage.206,207 The spatial and 

temporal separation of rainbow trout has resulted in several subspecies, including the coastal 

rainbow trout O. m. irideus, which displays both resident and anadromous life histories.208 

As observed with other species, the salinity tolerance of rainbow trout is affected by 

temperature and life stage. FW-acclimated fish did not survive by 7 d when directly transferred 

to 26‰ at 1°C, while all fish transferred to 26‰ at 8°C and the controls survived.209 High water 

temperatures also reduce salinity tolerances of O. m. irideus. Alevin and fry were acclimated to 

13, 16.4, and 19°C water and directly transferred to 18‰ for 24 h while 4 week-old fry were 

acclimated to the same 3 temperatures as the alevin but transferred to SW. Alevin and fry 

survival following the salinity challenge decreased significantly with an increase in temperature. 

Further, while none of the alevin exposed to 19°C survived, 50% of fry exposed to 19°C 

survived the salinity challenge.52 Combined, these studies suggest that salinity tolerance is 

maximized within an optimal thermal range. 

5.1.3. White Sturgeon 

The white sturgeon (Acipenseridae, Acipenser transmontanus) has been historically 

found in coastal marine environments along Northern Mexico to Alaska and into major river 

systems, where adults inhabit estuaries and only return to FW to spawn.210 Habitat segmentation 

from dams and overfishing have resulted in major population declines.211,212 Produced primarily 

for its meat and caviar, white sturgeon can be reared exclusively in FW under aquaculture 
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conditions.213 Adults can tolerate gradual transfers (5‰ h-1) from SW to FW and vice-versa.214 In 

that study, it was concluded that size, rather than age, influenced the salinity tolerance of juvenile 

white sturgeon. Those weighing less than 1 g could not tolerate salinities above 10‰, while 

those weighing 4.9–50 g could tolerate direct transfers to 15‰. This was confirmed by another 

study where the survival of white sturgeon weighing 10 g was lower than those weighing 30 g 

from the same cohort, following transfer from FW to higher salinities.215 These studies indicate 

that a larger size increases the salinity tolerance of white sturgeon.  

5.2. Catadromous species 

Catadromous fish typically spawn in SW, migrate to near-shore environments and mature 

in FW. Salinity tolerances of catadromous fish often vary with developmental stages, thereby 

complicating their aquaculture production.216 

5.2.1. Eels 

Eels (Anguillidae) of the genus Anguilla are catadromous, with larvae hatching in marine 

environments and developing into glass eels which migrate to estuarine environments where they 

metamorphose into pigmented elvers and finally move into FW. Adult eels return to marine 

environments as silver eels to reproduce. Overexploitation of American eels (Anguilla rostrata), 

European eels (A. anguilla), and Japanese eels (A. japonica), along with habitat degradation from 

dams, have led to dramatic declines in populations.216-218  

The aquaculture of Anguillids is complicated by their life histories, with early 

developmental stages requiring SW or BW and adult stages requiring FW. For example, while 

glass European eels grow faster in 33‰ compared with FW, some glass eels preferentially 

choose to be in FW.219 Spawning European eels in captivity can be achieved in SW and 

enhanced with injections of carp pituitary extracts.220 Glass eels and semi-pigmented elvers 

collected from estuaries (12‰) had 100% survival when transferred to 34‰ and FW.216 Japanese 

eel larvae (5 dph) survived for 13 d without food in 10‰ and 17‰, but only 6 d in FW and 3‰ 

and 9 d in 24‰ and SW.221 Conversely, only 30% of fully-pigmented eels collected from the 

mouth of a river (0‰) survived in 34‰ by 10 d.216  

5.2.2 Barramundi 

The barramundi (Latidae, Lates calcarifer), also known as Asian seabass, is a 

catadromous species native to tropical and subtropical coastal areas of the Indo-Pacific. Their 

suitability for aquaculture stems from their rapid growth, tolerance to a broad range of 
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environmental conditions, and sustained high market demand.222 Juvenile barramundi can be 

cultured in salinities ranging from 0–55‰, though at 45‰ and above, potassium 

supplementation may be needed.223,224 A salinity range of 5–20‰ has been recommended for 

optimal feed conversion efficiency and metabolic activity225 and 20–36‰ for commercial 

farming of barramundi, with juveniles growing optimally at 20‰.222 Barramundi are protandrous 

hermaphrodites that naturally spawn in BW near the mouths of rivers (28–36‰).226 Early studies 

showed a connection between increasing salinity and gonadal development,227 with one study 

showing landlocked FW populations in Papua New Guinea having abnormal gonadal 

development.228 In culture settings, either increasing salinity and temperature or hormonal 

injections can be used to induce spawning; salinities between 28 and 32‰ are optimal for 

hatching and larval stages.   

5.2.3. Mullet 

 The striped mullet (Mugilidae, Mugil cephalus) is globally distributed in coastal tropical 

and sub-tropical waters with salinities ranging from 0 to 122‰.229,230 Despite their remarkable 

euryhalinity, wild fish reproduce exclusively in SW (34‰).231 The optimal salinity for egg 

survival and hatching ranges between 30 and 40‰.232-234 The tolerance of larval and juvenile fish 

to direct FW transfer is dependent on life history stage; fish under 4 cm (at least 7.5 months old) 

cannot survive direct transfers from brackish to FW, but 6-week old fingerlings can survive a 7 d 

transition from BW to FW.235,236 In another study, juvenile mullet (~2.5 cm) were transferred 

from 20‰ to salinities ranging from 35–80‰ with a calculated LC50 of 50.4‰; when gradually 

acclimated, fish survived a transfer from 34 to 120‰ for at least several days.237 Consistent with 

their life history, growth rate, and FCR varies with developmental stage, with the optimal 

salinity, 5–20‰ for adults and juveniles, generally decreasing later in life.235,238-240   

5.2.4. Milkfish 

The milkfish (Chanidae, Chanos chanos) is the only species in the genus Chanos and is 

typically found in waters throughout the tropical and subtropical Indo-Pacific.241 Generally, their 

life history starts off as pelagic larvae in SW, followed by settlement as juveniles in shallow 

nearshore habitats such as estuaries, mangrove swamps, and lagoons. Juveniles will enter FW 

habitats if available, though these habitats appear unnecessary for proper survival and 

development, with sub-adults moving into deeper coastal waters to feed and reproduce when 

nearshore resources are insufficient to support the growing fish.241 Some populations, however, 
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spend their entire lives in FW lakes and rivers,242,243 and others are naturally landlocked in 

hypersaline lagoons in the Christmas Islands where they can remarkably survive and breed in 

waters up to 158‰.241,244 Originating in converted mangrove swamps in Southeast Asia, the 

culture of milkfish typically involves the collection of wild seed stock and the grow out of 

juveniles and adults in natural ponds of salinities that can range from 10–60‰ as a result of 

evaporation and precipitation.245 The optimal salinity for growth generally increases as fish grow 

older and larger. For example, milkfish fry grew the fastest at 0‰ followed by 16‰ then 

34‰,246 while fingerlings (8-week old) grew the fastest at 25‰ compared with 0, 10, 15 or 

20‰,247 and adults (25 cm, <2 years-old) grew the fastest in 55‰.248  

5.2.5. Pacific threadfin  

The Pacific threadfin (Polynemidae, Polydactylus sexfilis) is distributed throughout 

coastal waters of the tropical Indo-Pacific249 and is known as moi in Hawaiʻi, where efforts to 

optimize its culture began in the 1970’s.250 In the wild, breeding occurs in inshore BW habitats; 

eggs drift offshore where pelagic larvae develop until they metamorphose and eventually settle 

in nearshore habitats including estuaries.251 Pacific threadfin larvae survived best at 26–34‰; 

higher (42‰) or lower (10 or 18‰) salinities increased larval mortality.252 As juveniles, they 

could survive a decrease in salinity from 34 to 1‰ in 1 h for at least 30 min, but only 60% 

survived at 0‰, when simulating a FW dip to remove parasites.253 In the same study, the fish 

that survived the 1‰ dip also survived at 5–15‰ with no ill effects for up to 40 d.253 While the 

study highlighted the potential for BW culture of Pacific threadfin even after a FW dip at 1‰, to 

our knowledge, there are no studies on the relationship between salinity, growth, and 

reproduction in this species. 

5.2.6. Japanese sea bass  

Japanese sea bass (Lateolabracidae: Lateolabrax japonicus) is a catadromous species 

native to the Western Pacific, ranging from Japan to the South China Sea.254,255 Because of its 

euryhalinity, Japanese sea bass are widely cultured in both sea cages and inland FW ponds. One 

study found that juveniles increased specific growth rates at 13, 20, and 27‰ compared with 

34‰. 256 Moreover, rearing Japanese sea bass in SW increases omega-3 content, compared with 

fish reared in FW, leading to improved nutritional, flavor, and texture qualities and fetching 

higher market prices.257,258 As a catadromous species, Japanese sea bass typically reproduce in 

SW, but one study found that a reduced salinity (29.6 - 31‰) improved fecundity relative to SW 
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(34.5 - 35.1‰).259 While the rate of embryonic development is unaffected by salinity (22 - 

34.5‰), hatching success is optimal between 33.8 and 34.5‰.256,260 

 

5. Implications for production 

            Aquaculture operations may target commercial production, broodstock maintenance, and 

wild restocking. In commercial production, reducing operational costs and time to market are 

often targeted through the selection of conditions that accelerate growth, increase feed 

conversion efficiency and improve fillet quality. In contrast, broodstock and wildstock 

management often target the raising of robust fish that can produce quality offspring. In all 

instances, understanding and applying species- and age-specific salinity tolerances may inform 

best management practices while mitigating stress and disease susceptibility. In a practical sense, 

whether raised for production, broodstock, or release, salinity challenges during various early life 

stages may be employed to improve their salinity tolerance in later life stages, thereby increasing 

their chances of survival and resilience to environmental stressors. Multiple endpoints have been 

employed to assess performance in response to salinity, including aerobic scope/ metabolic rates 

and stress responses.24,179,207,248,261-263 Here, some of the physiological aspects that most directly 

impact the production of aquacultured species, including growth, reproduction, disease resistance 

and nutrition are further discussed. 

6.1. Growth and feed utilization 

Salinity imparts major effects on growth across all developmental stages in multiple 

species. Generally, salinity-dependent growth in controlled environments parallels the natural 

history of the species. For example, most FW fish grow fastest when reared in a FW environment 

or moderately elevated salinities. African catfish showed optimal FCR and growth rates when 

reared in FW and signs of increased energy allocation for maintaining normal function and 

metabolism, such as elevation of plasma cortisol and oxidative stress, were seen with increasing 

salinity.115 Grass carp and common carp grew fastest with the lowest FCR at 0 and 2‰, 

compared with slightly higher salinities.264,265 Tambaqui, another stenohaline FW species, grew 

fastest at 0‰ with no difference in FCR observed between 0 and 10‰,118 while the Nile tilapia, 

naturally occurring in FW and tolerant of BW, grew the fastest between 0 and 8‰, with optimal 

FCR at 8‰ at 32℃.266 Compared with FW fish, euryhaline species generally exhibit optimal 

growth rates at intermediate salinities. Goldlined seabream (Rhabdosargus sarba) showed the 
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highest growth rate and protein efficiency ratios at 15‰ relative to other salinities.267 Similarly, 

SW fish with tolerance for low salinity, such as Atlantic cod (Gadus morhua) and turbot 

(Scophthalmus maxiinus), exhibited optimal growth rates and FCR at 14‰ and 19‰, 

respectively.43,268,269 

Salinity has been shown to control growth rate through changes in metabolic rate, food 

intake and conversion, and hormonal regulation.270-272 Growth in fish is primarily regulated by 

the growth hormone/insulin-like growth factor (GH/IGF) system which also involves interactions 

with their respective receptors and binding proteins.273-275 The GH-IGF system in fish is highly 

responsive to changes in salinity. For example, elevated plasma GH was reported in channel 

catfish and rainbow trout following transfer from FW to BW.276,277 When transferred from FW to 

SW, Mozambique tilapia doubled growth rates while upregulating GH and IGF-1278 and grew 

even faster through further activation of the GH-IGF system when reared in tidally changing 

salinities compared with those reared in FW or SW.41  

6.2. Reproduction  

  As observed with growth, fish reproduction is also directly impacted by salinity. Broadly, 

for fish acclimated to FW, reproductive output may be reduced when exposed to increasing 

salinities, and vice-versa for fish acclimated to SW. Typically factors other than salinity are 

employed for modulating reproduction in aquacultured fish (i.e., hormone therapy, changing 

temperature, and photoperiod).279-281 Nonetheless, salinity has a significant role in modulating 

reproduction in aquaculture. In males, spermatozoa are quiescent until motility is triggered 

during release into hyposmotic environments for FW fish or hyperosmotic environments for 

marine species;282 thus, when fish are exposed to different salinities, spermatozoa quality may 

also be affected. For example, a low holding salinity of 5‰ significantly reduced the sperm 

motility of black bream compared with those held at 20‰ or 35‰.59 Osmotic stress also affects 

gonadosomatic index (GSI): FW and 7‰ BW resulted in the highest GSI in male Nile Tilapia 

compared with those acclimated to 14 and 21‰ BW.283 Further, a population of the European 

flounder (P. flesus) that spawns in BW (6–9‰) has larger testes than a population that spawns in 

10–18‰ and another that spawns at 30–35‰, potentially highlighting a trade-off between 

osmotic challenges and sperm production.284 

While the underlying mechanisms of how salinity affects egg development, fertilization, 

and hatch rate have not been fully elucidated, several studies show that salinity can affect these 
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parameters. In Nile tilapia, the fecundity of females is reduced at salinities 30‰ and above285 

while the hatch rate is suppressed at salinities above that of FW.58 The more salinity tolerant red 

tilapia did not change fecundity when acclimated to 1, 25, or 33‰. However, at 39‰ fry 

production was lower and at 42‰ there were no fry produced.286 By contrast, black bream 

acclimated to 5‰ reduced ovulations, egg volumes, and fertilization rates compared with those 

held at 20‰ or 35‰.59 In practice, salinity exposure during early developmental stages can be 

employed to enhance the salinity tolerance of offspring. For example, exposure to elevated 

salinities during time of fertilization and egg incubation increases the salinity tolerance of Nile 

tilapia larvae.287 Given the specificity of salinity tolerances and plasticity when fish are exposed 

to different salinities at early life stages, a species-specific understanding of salinity requirements 

and tolerances is key for maximizing reproductive output in aquaculture.  

 

6.3. Disease management  

With the increase in aquaculture production, mitigation of disease, while minimizing the 

use of antibiotics and other chemicals has become a major challenge in the industry. Sodium 

chloride (NaCl) is one of the most critical tools used for controlling parasitical, bacterial, and 

fungal infections in fish. Reflecting the plethora of studies showing that fish are typically most 

amenable to gradual salinity changes than to direct transfers (See Figure 2), most salt treatments 

are used in short-term increments. Salt treatments are usually employed with the notion that there 

are generally no detrimental health effects when both NaCl concentration and time of exposure 

are carefully applied. For example, many FW fungi, including Saprolegnia diclina, S. parasitica, 

and Aphanomyces sp. cause Saprolegniasis, leading to losses in aquaculture production.288 Those 

fungi have distinct tolerances to NaCl, (12 and 8‰, for S. diclina and Aphanomyces sp., 

respectively), thereby informing the minimum concentration of NaCl that could be effective for 

treatment.288 S. parasitica exhibit an even higher tolerance for NaCl. Exposure to 15‰ was 

unable to control infection in Chinook salmon; however, exposure to 30‰ controlled the fungal 

infection but led to egg mortality.289 Survival of channel catfish infected with bacterial pathogen, 

Edwardsiella ictaluri, increased as a result of raising salt concentration from 1 to 3‰.290 Another 

study, however, reported that treatment in higher salt concentration (4‰) after artificial exposure 

to E. ictalurivia abdominal injection did not improve survivability, nor prevented infection to 
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naive individuals,291 corroborating the need for further investigation on the use of NaCl as a 

bacterial disease treatment. 

The most effective uses of NaCl for disease treatment have been reported in the control 

of parasites. Capable of surviving in aquatic environments without a host, ectoparasites attach to 

the gills and skin of fish, thereby affecting the immune system and, in severe cases, causing 

lethal damage.49 The use of 6‰ NaCl reduced the number of the gill-specific Piscinoodinium sp. 

in red-tailed Brycon (Brycon cephalus) by 96 h of immersion following transport, compared with 

untreated controls.292 In juvenile arapaima (Arapaima gigas), researchers found that 9, 10, and 

11‰ NaCl solutions were effective at inducing 60–100% mortality of external D. 

cycloancistrium following 1 h of treatment.293 Combating the skin ectoparasite ich 

(Ichthyophthirius multifiliis) with salt has produced mixed results depending on the species. 

While 2–3‰ NaCl controlled ich infections in the silver perch (Bidyanus bidyanus), following 

exposure for 8 d,294 the treatment did not prevent mortality of channel catfish (Ictalurus 

punctatus) fingerlings.295 Overall, salt treatments have been effectively used to induce 

antiparasitic effects at low concentrations in FW fish. SW fish are also often treated with limited 

low salinity or FW exposures. For example, the use of hyposaline (as low as 4‰) treatment was 

effective in combating sea lice attached to Atlantic salmon,296 and FW exposure for at least 5 

min in S. dumerlii, while stressful, did not induce mortality, indicating that abrupt lowering of 

salinity may be a useful strategy for parasite treatment.297 Nonetheless, further studies are needed 

to elucidate species-specific responses and optimal protocols for hyposaline treatments for 

mitigating disease and parasitic infections.   

 

6.4. Nutrition and flesh quality 

Water salinity has been shown to affect fillet flavor and nutritional composition in several 

aquacultured species of fish. For example, largemouth bass reared at 9‰ had lower water 

content and flesh tenderness but higher density of muscle fibers compared with fish reared in 

FW, thereby affecting flesh texture. Moreover, compared with FW fish, bass reared in 9‰ had a 

higher content of sweet and umami amino acids but fewer bitter amino acids and greater amounts 

of inosine monophosphate (IMP), a flavor enhancer, and the essential fatty acids EPA and DHA. 
298 A short salinity treatment also influences the muscle quality and flavor of carps. Grass carp 

and black carp (Mylopharyngodon piceus) exposed to 7.5‰ for 24 h had higher levels of 
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polyunsaturated fatty acid (PUFA) and increased muscle hardness compared with those reared in 

FW.299  

Nile tilapia exposed to 12‰ had increased levels of the flavor-enhancing amino acids 

glutamic acid and proline along with EPA, DHA, and PUFA content compared with fish kept in 

FW.300 A rise in salinity also affected fatty acid composition in rainbow trout, where 1.7‰ 

increased n-3 PUFA, EPA, and DHA content while decreasing monounsaturated fatty acid 

(MUFA) and n-6 PUFA compared with FW controls301 and Japanese seabass (Lateolabrax 

japonicus), where rearing at 26.2‰ increased n-3 PUFA, EPA, and DHA in muscle compared 

with fish reared in a FW pond.257 
 

6. Conclusions 

In this review, we aggregated and summarized the literature on the salinity tolerance of 

several fish species commonly produced in aquaculture along with the various approaches for 

assessing salinity tolerance. The wide variety of approaches employed in different studies, 

however, necessitates caution when comparing results side by side (Figure 3). Consequently, the 

definition of salinity tolerance can also vary depending on the experimental approach taken, 

making it challenging to establish a standardized framework. Evaluating the trade-offs between 

each method of determining salinity tolerance is crucial for interpreting the results and 

implementing them effectively. As one of the primary environmental factors regulating the 

physiology of fish, salinity impacts multiple aspects of aquaculture production, from growth and 

reproduction to disease management and finished flesh quality. Generally, in the early stages of 

production, natural environmental distributions of fish inform the optimal salinities in which they 

can be reared. In contemporary aquaculture, understanding salinity tolerances can inform 

possible coping strategies in the face of ongoing and impending consequences of climate change, 

including added salinity stresses. Advancements in our capacity to detect and control 

environmental salinities has enabled a variety of experimental and applied salinity paradigms, 

including early exposure to salinity changes and crossing between strains and related species of 

distinct salinity tolerances leading to phenotypic improvements of offspring stocks. For example, 

hybridizing FW species with those more tolerant to salinity can allow for heterosis of growth 

traits and improved nutritional content and flavor when grown in saline conditions. Though most 

aquaculture currently occurs in FW, production in saline environments holds potential for future 
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growth considering dwindling land space, decreased FW resources, and high market demand for 

seafood. The use of various experimental approaches to investigate the salinity tolerance of 

fishes has improved our understanding of environmentally mediated mechanisms that affect 

efficiency and quality endpoints in aquaculture production, ultimately enhancing management 

practices towards greater sustainability and resiliency in the industry while bolstering the 

economic value of cultured species.  

 

Figure legends 

Figure 1: Summary of osmoregulatory challenges faced by fish in fresh water (FW; A) and 

seawater (SW; B). Orange and blue arrows represent fluxes of ions and water, respectively. Solid 

and dotted arrows depict active and passive modes of transport, respectively.  

 

Figure 2: Different experimental approaches to determine the salinity tolerance of fish 

acclimated to low salinity (light blue) and high salinity (dark blue). Intermediate tones of blue 

represent intermediate salinities. A) gradual transfer from high salinity to low salinity and low 

salinity to high salinity; B) direct transfer from high or low salinity to a range of salinities; C) 

effect of direct salinity transfer on fish survival, where the magnitude of salinity challenge is 

inversely proportional to survival ; D) early life stage exposure to different salinities to test their 

adult salinity tolerance such as, for example, the initial exposure to alternating salinities 

facilitates acclimation to either low or high steady-state salinities ; E) tidal regime paradigm 

designed to test the effects of alternating salinities and; F) effects of crossing and hybridization 

on salinity tolerance of F1 generation. 

 

Figure 3: Summary of salinity tolerance of species discussed in this review. Colored bars 

indicate the recorded salinity tolerance level (‰) of the species at different life stages. Two open 

diamonds (◊) within a bar indicates the optimal salinity range and a single open diamond 

indicates the reported optimum salinity for growth. The LC50 salinity following direct transfer is 

indicated by an open circle (○), while the LC50 following a gradual transfer is indicated by “˂” 

and “˃” corresponding to decreasing and increasing salinities, respectively.  Numbers next to 

bars indicate the references used to gather the information for each species reported. 
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