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s t r act  

 

Each year the U.S. government makes significant investments in improving weather forecasts from 

numerical weather prediction models that are run operationally within the National Weather Service. 

Although the primary purpose is saving lives and property, more accurate forecasts can create 

substantial efficiency gains when they elicit improved behavioral responses. One example involves 

commuters, who make daily decisions about when to leave for work based, in part, on expected road 

conditions. When workers account for potential weather delays, economic losses due to missed work 

time are reduced. Economists have often looked at such questions with cost-loss models, a partial 

equilibrium approach investigating gains to individual agents. We extend this idea to examine 

economy-wide effects, embedding a behavioral model of time allocation with improved information 

into eight regional computable general equilibrium models of the US economy. Our primary mechanism 

is that reductions in lost work time lead to gains in firm-level output. This study evaluates the economic 

impact of improvements to the High-Resolution Rapid Refresh weather forecast models over three 

different versions on commuting. Aggregating results from comparisons between old and new versions 

of the HRRR for 206 metropolitan statistical areas, we find that forecasting improvements lead to 

smaller losses in work time, creating notable gains to the U.S. economy. 
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The Economic Effects of Improved Precipitation Forecasts in the United States 

Due to Better Commuting Decisions 

 

1  Intr oduct ion  

 

Between 1990 and 2018 the average U.S. commute time increased 20 percent, with the typical American 

worker now spending nearly one hour every day driving to and from their workplace (Ingraham (2019)). 

Because it accounts for so much time, workers are likely paying increased attention to factors that may 

impact their daily commute, including weather-related changes in road conditions.1 Research has shown 

that adverse weather conditions such as rain, sleet and snow lead to significant increases in both travel 

time and driver risk, imposing significant costs on both individuals and the overall on the economy.2 Little 

is known, however, about economic gains that result from information improvements when commuters 

predicate their actions based on weather forecasts, rather than just what they observe. 

 

Each year the U.S. federal government makes significant investments in improving numerical 

weather forecast models. Although the primary purpose is saving lives and property, these forecasts 

inform myriad economic decisions, with studies suggesting more accurate forecasts can create 

substantial economic gains (e.g., Katz and Murphy (2005), Lazo and Chestnut (2002), Rosenzweig and 

Udry (2014)). In this paper we simulate the economic gains when commuters have access to 

improved weather forecasts to help decide when to leave for work based on expected road 

conditions. When commuters account for potential weather delays, economic losses due to missed 

work time are reduced.  

 

In 2014 the U.S. National Oceanic and Atmospheric Administration (NOAA) began using the High-

Resolution Rapid Refresh (HRRR) numerical weather prediction system to provide operational 

weather forecasts for the National Weather Service (NWS). HRRR is a real-time model with 3-km 

                                                 
1 In 2018, the smartphone route guidance app Waze had more than 30 million active users in the US 

(https://expandedramblings.com/index.php/waze-statistics-facts/). Waze was initially launched in 2006 as 

FreeMap Israel to aid GPS navigation. In addition, it provides real-time traffic analytics that suggest alternative 

routing when the normal path is impacted by congestion or an accident. In 2013, Google paid nearly $1 billion to 

acquire the company. 
2 According to the US DOT (2018), each year there are more than 1.2 million weather related motor vehicle crashes 

in the US, accounting for 21 percent of all motor vehicle accidents. https://ops.fhwa.dot.gov/weather/q1 

roadimpact.htm 
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resolution, updated hourly, and is the premier model used for high-resolution severe weather 

forecasting by the NWS.3 As a federal agency, the NWS publicly shares both the forecasts from its 

collection of models and the observations from its national network of weather stations. Users can 

access this information i) directly through NWS, or through private companies that use NWS forecasts as 

part of their own proprietary, ensemble forecasts that they subsequently ii) sell to local news stations 

and newspapers (e.g., AccuWeather), or iii) offer through subscription or advertiser supporter 

smartphone apps (e.g., Weather Underground) (Fritz (2016)).4  

 

Since its initial release in 2014, the HRRR model was revised in 2016 (version 2) and 2018 (version 3) and 

2020 (version 4). We simulate the economic value of the first two updates with respect to commuting 

times, using forecasts from the first three generations of the HRRR system. We compare forecasts 

fƌoŵ eaĐh ŵodel to oďseƌǀed pƌeĐipitatioŶ data foƌ the ŶatioŶ͛s ϮϬϲ laƌgest ŵetƌopolitaŶ statistiĐal 

areas (MSAs), exploiting the fact that when NOAA introduces an updated model both the current 

and new version run simultaneously for several months. For this work, we define model 

͞iŵpƌoǀeŵeŶts͟ to haǀe oĐĐuƌƌed ǁheŶ the ƌeǀised ŵodel pƌoǀides a ŵoƌe aĐĐuƌate foƌeĐast thaŶ 

the previous version for economically significant events; for example, predicting significant rainfall 

when the previous model did not.  

 

Section 2 presents a literature review relevant to modeling economic impacts of weather and 

weather forecasting. Section 3 offers a discussion of the HRRR system and Section 4 presents an 

abbreviated discussion of the theoretical economic model as it has been used extensively in 

previous publications. Our extension here is providing some theoretical detail on modeled 

household behavior, with commuters facing a tradeoff between consumption (driven  by wage 

income) and leisure when deciding how to respond to weather forecasts. Section 5 discusses the 

organization of the HRRR data, the economic regions divided into the eight Bureau of Economic 

Analysis (BEA) regions and the impacts on travel times as economic agents respond to weather 

forecasts. Section 6 provides the simulation results and Section 7 is the conclusion.  

 

     i ter atur e  ev i e  

 

                                                 
3 Details on the HRRR are provided in section 3. 
4 Because these companies are privately held, they do not publicly quantify the importance of any given NOAA 

model to their overall forecast. 
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2.1 Modeling the value of improved weather forecasts 

 

While the economic impact of weather is a hot topic, studies estimating the value of weather forecasts 

are much less prominent--though there is a fairly long history of such analyses. Much of this research 

finds its theoretical basis in the general field of information economics, premised on the idea that 

information is valuable when it leads to changes in economic behavior that improve economic 

outcomes, such as profit or welfare. Murphy (1969) is one of the first to apply this idea to weather 

foƌeĐasts, utiliziŶg a ͞Đost-loss͟ appƌoaĐh.5 In this framework, decisionmakers face probabilistic 

forecasts that influence whether or not they take a precautionary action that prevents or reduces the 

effects of an adverse outcome. For example, an agricultural producer may use forecasts to decide 

whether or not to protect her crop from a frost event with probability . Because protection is costly, 

the producer will only take mitigating action (A=1) when expected benefits (i.e., averted losses) exceed 

the costs of the action (C), or: 

 

A = 1 if *Loss>Cost, else A=0 

 

The cost-loss ƌatio is iŵpoƌtaŶt ďeĐause it ideŶtifies the thƌeshold pƌoďaďilitǇ foƌ ͞takiŶg aĐtioŶ.͟ BǇ 

providing better estimates of , iŵpƌoǀed ǁeatheƌ foƌeĐasts ĐaŶ hoŶe the deĐisioŶŵakeƌ͛s pƌoďleŵ.6 

Lee and Lee (2007) apply a variant of this idea to examine the value of both deterministic and 

probabilistic, site-specific forecasts for Beijing and Seoul. The authors find cases where greater 

subjective forecast reliability can enhance firm profitability and suggest estimates of such gains aƌe ͞a 

useful ǁaǇ to aŶalǇze the ǀalue of foƌeĐast foƌ ǀaƌious useƌs͟ ;p ϰϲϮͿ. BǇ ĐoŶstƌuĐtioŶ, Đost-loss 

estimates only look at impacts on individuals or firms, thus they should be seen as partial equilibrium 

studies. As we suggest later, individual decisions can have important general equilibrium impacts. Thus, 

our approach allows a more comprehensive accounting of the value of weather forecasts. 

 

Katz and Murphy (2005) provide important contributions to both the theoretical and empirical 

modeling of valuing improved weather forecasts from an information perspective. They describe a 

theoretical model where a decisionmaker uses available information in maximizing expected 

                                                 
5 For examples spanning time, see Thompson and Brier (1955), Thompson (1972), Stuart (1982), Mjelde, Sonka and 

Peel (1989) and Lee and Lee (2007). 

6 As formulated, this problem assumes the decisionmaker is risk-neutral. Other risk preferences can be incorporated 
by converting monetary values into utility. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

utility. Agents choose actions based on expectations of the weather and endure welfar e 

consequences based on their action and the realized weather.7 For a trite example, it may be 

whether to purchase an umbrella. More consequential actions might be a winter drive to the 

mountains. When there is no forecast, the decisionmaker has some prior  about the weather 

;peƌhaps the pƌioƌ daǇ͛s ǁeatheƌ oƌ a peek out the ǁiŶdoǁͿ aŶd Đhooses aŶ aĐtioŶ iŶ aĐĐoƌdaŶĐe 

with their risk-preferences. When new information is introduced (potentially at a cost), the 

decisionmaker decides whether to change their action, based on the expected changes to utility, 

given the costs and benefits associated with the alternative action. Katz and Murphy (2005) outline 

this connection, defining the demand value of information as ͞the highest aŵouŶt the deĐisioŶ 

maker should be ǁilliŶg to paǇ iŶ oƌdeƌ to ƌeĐeiǀe the foƌeĐasts͟ ;p ϵͿ. 

 

This theoretical construct underlies empirical studies that attempt to value information via 

willingness to pay (WTP). Lazo and Chestnut (2002) use this approach to value weather forecast 

improvements at the national level provided by the National Weather Service (NWS). They conduct a 

survey where respondents face a binary choice between continued use of current weather technology 

for no cost or improved technology for an increased cost. Most respondents selected one-day ahead 

forecasts over multi-day forecasts and there was also preference for highly detailed geographical 

forecasts (3km, 10km, 20km rather than 40km or greater). At subnational levels, Kenkel and Norris 

(2007) use WTP to value real time mesoscale forecasts for agricultural producers in Oklahoma, while 

Rollins and Shaykewich (2003) use the method for select commercial sectors in Toronto. 

 

Not all studies valuing weather forecasts are couched in an information-theoretic context. Instead, some 

researchers look solely at empirical evidence on observed behavior or market outcomes, eschewing 

specific assumptions about preferences. For example, Rosenzweig and Udry (2014) analyze the decision 

making of farmers in India based upon, among other factors, rainfall forecasts. They hypothesize that 

seasonal forecasts influence migration decisions, with farmworkers less likely to out-migrate when good 

weather is forecasted. Using a 0.5-degree by 0.5-degree gridded dataset of precipitation radar data and 

farming observations from 600 Indian districts, Rosenzweig and Udry constructed a general equilibrium 

model of the agricultural labor market. The authors find a negative effect on wages in cases where 

                                                 
7 We incorporate some of the bigger ideas in this line of research into the labor supply component of our CGE 

model, discussed in the next section. While our methodology is founded on the pres criptive approach laid 

out by Katz and Murphy (2005), the focus of our analysis necessitated the use of more descriptive 

techniques. 
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realized seasonal rainfall is lower than forecasted. The proffered mechanism is that when actual 

seasonal rainfall falls short of the forecast, lower crop yields reduce labor demand at harvest time, 

putting downward pressure on wages. The inverse relationship, where rainfall is greater than forecast, 

also holds, with farmers bidding up wages at harvest time when labor is scarce.  

 

2.2 Modeling the welfare impacts of increased commuting times and the effects of weather on 

commuting times 

 

A sprinkling of papers examines the comingled ideas in this sub-seĐtioŶ͛s title, iŶĐludiŶg hoǁ 

commuting choices and travel time are related to weather, productivity, and welfare. Both our 

theoretical and applied models use many of these ideas as ingredients. We consider two unique 

threads. In the first, we review research showing that weather and predictions about it can affect 

commuting and other travel decisions. In the second, we look at various channels by which increased 

commuting time affects welfare. We use this to set up the household problem in our CGE model,  

which we describe in section three. 

 

2.2.a Weather, commuting decisions, and travel time8 

 

Both the current weather conditions and the forecasts of the anticipated weather affect commuter 

departure times. With respect to current weather conditions, Khattak aŶd De Palŵa͛s ;ϭϵϵϳͿ suƌǀeǇ of 

Brussels commuters found that among the 50 percent of respondents that reported changing their 

travel decisions in adverse weather, 60 percent changed their departure time and 35 percent chose an 

alternate route. Cools, Moons and Wets (2010) report on a stated preference survey of 586 Belgians. In 

it they ask about behavior under a variety of weather conditions (e.g., rain, fog, snow) for various trip 

purposes (e.g., commuting, shopping). Overall, the authors find that behavior changes depend on both 

the type of weather and the purpose of the trip. For example, snow makes shoppers cancel or postpone 

trips more frequently than does rain, and shoppers are more likely to cancel or postpone trips than 

commuters. Still, preĐipitatioŶ eǀeŶts do haǀe Ŷotaďle iŵpaĐts oŶ Đoŵŵuteƌs iŶ teƌŵs of ͞tiŵe of daǇ 

ĐhaŶge,͟ ǁith ϱϮ peƌĐeŶt of ƌespoŶdeŶts ƌepoƌtiŶg at least oŶe iŶĐideŶt ǁheƌe depaƌtuƌe ďehaǀioƌ ǁas 

impacted by snow, while 30 percent reported similar effects of rain. 

 

                                                 
8 Böcker, Dijst and Prillwitz (2013) offer a fairly comprehensive review of this literature.  
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While there is a large body of work on traffic information related to commuting decisions (e.g., Arnott, 

de Palma and Lindsey (1991), Polak and Jones (1993), Dell'Orco and Marinelli (2017)), only a few studies 

look at how weather information impacts commuting. For example, Khattak and De Palma (1997)  show 

that close to 75 percent of commuters keep track of weather, primarily using radio and television.9 

Drawing on results of a survey of en route Finnish drivers, Kilpeläinen and Summala (2007) suggest 

that weather forecasts have mixed effects, with only 5.8 percent of more than 1,400 respondents 

reporting changes in travel plans prior to a trip; yet they do find significant differences in trip planning 

between drivers that reported actively acquiring weather information relative to those not (16.4 percent 

vs. 3.5 percent). The changes reported most frequently were allowing more time for the trip (5 percent 

of all drivers) and altering the time of departure (3 percent). One reason for such small effects may be 

since drivers were surveyed at service stations, meaning they were already on the road. It is quite 

reasonable to assume that their behavior is more impacted by the weather they are experiencing, rather 

than any information about it.  

 

There is an extensive literature on the effects of weather on driving, with much of it looking at how 

bad weather (e.g., snow and heavy rain) can lead to bad outcomes, such as accidents and fatalities 

(e.g., Eisenberg and Warner (2005), Black and Mote (2015), Leard and Roth (2015)). Some research, 

however, also looks at how adverse weather impacts commuting time.10 For example, Stern et al. 

(2003) present empirical results showing that precipitation during peak-period traffic can lead to at 

least an 11 percent increase in travel time, but the authors suggest it is likely much closer to 25 

percent. Maze, Agarwal, and Burchett (2006) find rain reduces driving speeds by 6 percent in 

Minneapolis. Tsapakis, Cheng and Bolbol (2013) report on car level traffic in London during hours of 

no rain, light rain, moderate rain, and heavy rain. Using correlation analysis, they estimate that light 

rain (0.01-0.25mm per hour) and moderate rain (0.25-6.35mm per hour) increase travel time 

between 2 and 4 percent, while heavy rain (> 6.35mm per hour) increases travel time by 4 to 6 

percent. In a study of the Washington, D.C. area Stern et al. (2003) find precipitation can increase 

peak-period travel time between 11 and 25 percent.  

 

2.2.b Travel time and welfare 

                                                 
9 A separate literature describes factors affecting the use/non-use of weather forecasts in decision-making. While 
this research provides important insights in increasing the value of improved forecasts, it is outside of the scope of 
our work. For a good overview, see Regnier (2008) or Morss, Lazo, and Demuth (2010). 
10 For a somewhat dated review, see Maze, Agarwal, and Burchett (2006). 
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Not many researchers link weather-to-commuting time-to-welfare, but Sabir et al. (2010) do. 

Although they find snow has the greatest impact on commuter welfare, they find rain can also have 

important effects, especially during congested, peak-hour travel times. According to the authors, 

these impacts range between 9 and 12 percent of total commuting costs during evening commute 

times. Other papers show that commuters understand time is money. Van Ommermen and Dargay 

(2006) find the income elasticity of commuting speed is 0.13; as wages increase, people are willing to 

switch into alternative transportation modes that save time, even if they are costlier. Small, Winston 

and Yan (2005) finds motorists value both travel time and its predictability. Specifically,  they find that 

the median value of time is about 93% of the average wage rate, while the median revealed preference 

value of reliability (i.e., the predictability of travel time) is about 85 percent of the average wage rate. 

 

2.3 General equilibrium effects of transport time 

 

As described in sections 2.1 and 2.2, economic valuations of weather forecasts are nearly exclusively 

partial equilibrium analyses. Our paper extends this work to consider general equilibrium (GE) effects, 

with the commuting aspects informed by transport related CGE modeling. Robson, Wijayaratna, and 

Dixit (2018) review such models as applied to a wide range of transportation issues focusing on urban, 

regional, and spatial structures. Although most of the reviewed models focus on issues related to 

congestion and mode choice, none address weather-related decisions. 

 

CoŶĐeptuallǇ, Isaƌd͛s ;ϭϵϱϭͿ ͚ideal͛ IO ŵodel is ouƌ staƌtiŶg poiŶt, ŵodeliŶg iŶteƌƌegioŶal tƌade floǁs that 

respond to relative regional price signals while considering freight transport costs.11 Many spatial CGE 

modelers adopted this idea, with early versions tending to look at the flow of goods and services, rather 

than people (e.g., Buckley (1992), Tatano and Tsuchiya (2008), Donaghy (2009)). Although not 

specifically focused on commuting, Heyndrickx, Koops and Ivanova (2011) model labor flows using the 

Transport and Infrastructure General Equilibrium (TIGER) model in evaluating the effects of an 

                                                 
11 There have been important theoretical treatments of commuting in a GE framework, with many analyzing 

congestion, land use, and urban form. For example, Anas and Kim (1996) examine a hypothetical linear city where 

household and firm activities generate commuting trips with travel times modeled endogenously using a 

congestion function. Anas and Liu (2007) extend this analysis to examine how households optimize subject to time 

constraints from commuting. 
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improved railway connection in northern Europe. They find the improved system reduces passenger 

transit costs and tƌaǀel tiŵe, affeĐtiŶg the household͛s ďudget aŶd laďoƌ supplǇ, ƌespeĐtiǀelǇ.  

 

While not analogous, Haddad et al. (2015) are slightly closer to our intent. The authors look at the 

regional economic impacts of subway system improvements in Sao Paulo, Brazil. Data are observed 

for regions pre- and post-infrastructure investment, for policy changes that affect worker commute 

time. Economic impacts are examined by performing a two-step procedure. First, the authors 

construct a wage equation where commuting time and an accessibility index are used to understand 

how increased commuting times decrease labor productivity. The estimated reductions in labor 

productivity are fed into a spatial CGE model to simulate the general equilibrium effects of 

increased commuting times. 

 

In summary, our paper merges several related research areas with little integration. The economics 

du jour looks at weather and climate impacts, but typically not in the short-term, where forecasts 

are most accurate. Studies valuing short-term weather forecasts are exclusively partial equilibrium 

analyses. CGE models allow understanding economy-wide effects, but the commuting studies found 

in the transportation economics literature have not examined the impacts of short-run weather 

forecasts. We bridge these approaches. 

 

3. The High-Resolution Rapid Refresh (HRRR) numerical weather prediction model system 

 

The numerical weather forecast models are run operationally by the NWS to provide short-term (hours 

to days) forecasting guidance for a range of users including general forecasting, severe weather, aviation 

applications, renewable energy, agriculture and more. These models aid situational awareness, 

combining observations and a representation of atmospheric physics to provide a best estimate of the 

weather conditions at some time in the future. We analyze data from the HRRR, which provides 

forecasts over the conterminous U.S. (Benjamin et al. 2016). The HRRR is reinitialized hourly with 

current observations, thereby incorporating the most up-to-date information on the atmospheric state, 

and then integrates this state forward in time using equations to describe the dynamical evolution and 

physical processes at work in the atmosphere to simulate the evolution of the weather.  
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HRRR development began in approximately 2008, using the Advanced Weather Research and Forecast 

(WRF-ARW) model as its baseline (Skamarock et al. 2008). The gridpoint statistical interpolation data 

assimilation system (Kleist et al. 2009) is used to initialize the atmospheric state of the model using 

observations from surface met stations, radiosondes, aircraft, and scanning precipitation radar stations. 

The high-spatial resolution of this model (3-km horizontal, with 50 vertical layers from the surface to the 

mid-stratosphere) allows this model to resolve most deep convective weather systems; this removes the 

need to parameterize this important contribution to the overall heating, and thus dynamics of the 

atmosphere.12 Additionally, the 3-km resolution helps to improve the representation of the interactions 

between the atmosphere and the land surface, especially in regions of complex terrain (e.g., valleys, 

mountains).13 

 

The Global Systems Laboratory (GSL) within NOAA is continuously developing the HRRR model, with new 

versions released to the NWS approximately every 2 years since 2014. Scientists at GSL work to improve 

both (1) how the model is initialized by improving data assimilation techniques within GSI and 

incorporating additional observations in the process, and (2) the parameterizations that represent the 

various atmospheric physical processes. Details on the development of the HRRR modeling system are 

provided in Dowell et al. (2020) and James et al. (2020). Here, we use HRRR output from versions 1, 2, 

and 3, wherein the significant changes are shown in Table 1 (full details are provided in Dowell et al. 

2020). 

 

[Insert Table 1] 

Due to the complex and highly non-linear interactions between myriad physical processes, model output 

is compared regularly to a range of different atmospheric observations to evaluate if the new changes 

improved the model. The Model Analysis Tool Suite (MATS), the philosophy and methodology to 

evaluate the HRRR against observations are described in Turner et al. (2020). This comparison is done in 

controlled experiments, wherein the code for the new model (vx+1) is frozen and run concurrently with 

                                                 
12 Many atmospheric processes occur at scales too small to be fully resolved by weather forecast models, yet their 
contribution to the mass or energy budgets need to be included to make a good forecast. These contributions are 
computed using parameterizations (or simplifications) of the various atmospheric processes. There are many dozens 
of parameterizations in any weather prediction model, representing processes associated with radiative transfer, 
turbulent motions, the formation and growth of rain drops, and many more. 
13 Doubling the model resolution makes the model approximately 24 = 16 times more computationally expensive 
and markedly increases the amount of memory and storage needed to run the model and save its output. The rapid 
increase in computational power with high-performance computing systems has allowed models like the HRRR to 
be run over such a large domain as the U.S. 
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the operational model (vx). These overlap periods are shown in Table 1. Improving the quantitative 

precipitation forecasts (QPF) is a critical goal for the HRRR development team, and thus comparisons are 

made regularly against the so-called Stage IV quantitative precipitation estimates (QPE) derived from 

the network of operational weather radars across the U.S. (Nelson et al. 2016). As precipitation is very 

heterogeneous over a region, various statistics are computed by MATS to gain different insights into the 

model performance. 

 

We compared the 12-hour forecasted QPF from different versions of the HRRR from the overlap periods 

against Stage IV QPE observations. Figure 1 shows the critical success index (CSI) for different 

precipitation thresholds, where the CSI is computed as the number of times the model correctly 

forecasted the rain (hits) divided by the sum of the hits and the number of false alarms and misses. The 

ideal CSI score is 1. Figure 1 clearly shows that v2 was markedly superior to v1 for all precipitation 

thresholds, and that v3 was better than v2 for precipitation above 0.5 inches in the 6-hour period.  

 

[Insert Figure 1] 

 

 

 

 

Figure 2 illustrates the frequency bias in these precipitation forecasts, wherein the y-axis is the number 

of times the QPF is above the precipitation threshold divided by the number of times the QPE is above 

the threshold; the ideal ratio is 1. Figure 2 demonstrates that v2 predicted significantly more events for 

precipitation above 0.1 inch than the observations (i.e., was actually over predicting these events 

relative to v1), but that the v3 has by far a better agreement in the frequency of the precipitation events 

across all thresholds relative to the other two versions. These results (e.g., Figures 1 and 2), which were 

computed over the eastern side of the U.S. to avoid the observational challenges of the Rocky 

Mountains, demonstrate that the precipitation performance of the HRRR improved with each 

subsequent version. 

 

[Insert Figure 2] 

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

 

 

4. A CGE Model Incorporating Weather Forecasts in Household Decision Making 

 

In the online Appendix we detail a CGE model that incorporates weather forecasts into the 

household utility maximization problem. Per standard, utility maximizing households choose how 

much labor to supply given consumption and leisure preferences, and the prevailing wage rate. We 

aŵeŶd this idea suĐh that the ƋuaŶtitǇ of a household͛s effeĐtiǀe laďoƌ supplǇ depeŶds, iŶ paƌt, oŶ 

weather forecasts. When forecasts are perfect, a household optimally allocates its time; when 

foƌeĐasts aƌe iŶĐoƌƌeĐt, households ŵaǇ ŵake ͞ŵistakes͟ iŶ appoƌtioŶiŶg theiƌ houƌs.  

 

Here our concern is when precipitation is under-forecast, meaning workers leave their residences 

too late to arrive at their jobs on time, resulting in less time spent in  production. For households, 

tardiness means lost income, and household utility suffers. Aggregating such mistakes across 

households adversely affects aggregate industry labor supply, which subsequently affects sectoral 

real GDP. General equilibrium impacts are simulated when production and labor income fall, and 

relative prices change. Most of our discussion describes such a labor market in the context of the 

CGE ŵodel, ǁith the ƌeŵaiŶiŶg disĐussioŶ ďƌieflǇ desĐƌiďiŶg the ŵodel͛s otheƌ aspeĐts.14 Additional 

CGE model construction details related to the simulations are provided in Section 6.  

 

5. Data and Methodology 

 

In this section we describe our weather and commuting datasets and how they are integrated. Building 

on the intuition of cost-loss ŵodels, ǁe defiŶe ͞ŵistakes͟ iŶ Đoŵŵuteƌ deĐisioŶs as Đases ǁheƌe ǁe 

assume commuters rely on what turn out to be inaccurate precipitation forecasts (i.e., underpredictions 

of meaningful rainfall amounts). We then describe our method for translating individual mistakes into 

aggregate reductions in labor supply, the effects of which are simulated via the CGE model in Section 6. 

 

                                                 
14 Cutler et al. (2016) and Attary et al. (2020) provide detailed discussions of the full CGE model. 
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5.1 Data 

 

HouƌlǇ pƌeĐipitatioŶ foƌeĐast data Đoŵes fƌoŵ NOAA͛s H‘‘‘ ŵodel, ǁhiĐh has seƌǀed as oŶe of the 

foundational components for local weather forecasts across the U.S. since 2014. HRRR forecasts are 

made at the 3km-by-3km scale over the contiguous United States. The HRRR is restarted hourly and 

produces forecasts out to at least 15 hours for each initialization (later versions of the model produce 

longer forecasts (e.g., out to 36 hours) at regular intervals). For our analysis, we utilize 12-hour ahead 

forecasts of 1-hour precipitation accumulations for each hour of the day. 

 

Between 2015 and 2018, NOAA released three new HRRR versions (i.e., HRRR1, HRRR2 and HRRR3). 

Each was tested extensively before its public release. Testing includes simultaneously running the new 

and previous HRRR versions and recording both forecasts. To evaluate improvements, we analyze the a 

15-month testing overlap between HRRR1 and HRRR2 (June 2015 to August 2016). During this period, 

the operational forecasts reported to the general public were from HRRR1, but experimental HRRR2 

forecasts were also stored on NOAA servers. Accordingly, the overlap presents a convenient experiment 

for evaluating the potential economic impacts of improved weather forecasting.15 Analogously, we 

examined the July 2017 to June 2018 for the overlap period between HRRR2 and HRRR3. 

 

Observed weather data for the concomitant time periods is from the Stage IV Precipitation 

AĐĐuŵulatioŶ dataset ;NelsoŶ et al. ϮϬϭϲͿ aŶd ƌepoƌted ďǇ NOAA͛s NatioŶal CeŶteƌs foƌ 

Environmental Prediction. This dataset contains recorded precipitation accumulations for the 

CONU.S. with a resolution at the 4km-by-4km scale and a time frequency of one hour. 

 

The vast size of the datasets presents significant management challenges. Even restricting the analysis 

to the CONUS, the dataset for forecasted and observed precipitation is approximately 20 terabytes. To 

parse the data to its most economically important areas, we focus on cities, restricting our analysis to 

the top 206 most populous MSAs in the country.16 To associate the weather data with a particular MSA 

                                                 
15 Unfortunately, forecast data was not available for every hour between 2015 and 2018. The servers running and 

storing the experimental HRRR model forecasts sometimes required maintenance; although forecasts were still 

made during maintenance periods, they were not stored. As a result, about 10 percent of the forecast data from 

the experimental HRRR versions for the overlap periods was lost. 
16 This count is reduced from the US total of 388 MSAs for two reasons. First, only MSAs that are located within 

the contiguous US are included. Second, many less populous MSAs are farther than 100 miles from the nearest 
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we use a GIS shapefile of 2017 city municipal boundaries made available by the Centers for Disease 

Control and Prevention. 

 

Most U.S. studies analyzing the impact of weather and weather forecasts use weather averages at the 

county or state scale (e.g., Lazo and Chestnut (2002), Leard and Roth (2015)). Utilizing city-level averages 

provides a few key advantages. First, because cities are the locus of most U.S. employment, focusing on 

them as our geographical unit of analysis allows us to capture most commuters.17 Second, taking 

averages over a city provides a more precise measurement of the precipitation experienced by that 

ĐitǇ͛s Đoŵŵuteƌs. This is ďeĐause ƌaiŶfall ǁeatheƌ patteƌŶs aƌe ŵoƌe ĐoŶsisteŶt oǀeƌ sŵalleƌ geogƌaphiĐ 

regions than larger ones. For example, the average daily rainfall over the entire U.S. is likely very small 

while the average precipitation in cities where storm fronts passed that day is likely much larger. In this 

way, using larger geographic regions diminishes the average precipitation measurement. The same logic 

in precision applies to state and county averages versus city averages.  

 

As evidenced by Lazo and Chestnut (2002), we assume that drivers respond to precipitation forecasts 

made at the city scale. It seems reasonable to suggest that a driver responds to the weather conditions 

reported generally for a city because media reports of weather forecasts are almost exclusively 

generalized over regions as well.18 Therefore, we calculate the mean of the forecast and actual 

precipitation accumulation observations contained within each city. To enhance the accuracy of 

calculating precipitation means at the city level, we impose an algorithm that computes the minimum 

bounding box containing the city municipal boundaries. Henceforth, we refer to the city polygons 

shapefile Đƌeated ďǇ this pƌoĐess as ͞ĐitǇďoǆes.͟ As a ƌesult, foƌ eaĐh houƌ, theƌe aƌe ϮϬϲ ĐitǇďoǆ 

observations of mean precipitation. 

 

The total number of automobile commuters and average commuting time are from the U.S. Census 

Metropolitan Statistical Area data repository for each year between 2016 and 2018. This data was 

overlaid with its respective citybox shapes (each contained within the geographic area of the MSA) such 

that the precipitation actuals and forecasts occurring over those cityboxes could be attributed via GIS. In 

                                                                                                                                                             
NCAR radar station and so to enhance the credibility of observed precipitation these MSAs were dropped from the 

analysis. 
17 The 206 MSAs used in this study capture approximately 68% of total US workers. 

18 Recently, several companies have made “hyperlocal” weather data and forecasts available to users for geographic 
units much smaller than counties (e.g., ClimaCell reports data for 500-meter blocks). We are unsure how extensively 
commuters use such forecasts. 
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Map 1 we depict the process by which precipitation forecasts and observations were assigned to each 

citybox. The black-to-blue-to-red raster image displays concentrations of precipitation accumulation. 

The orange cityboxes contain municipal city boundaries. The average precipitation accumulation 

forecasted by HRRR and observed by Stage IV is calculated for each hour for each citybox. 

 

[Insert Map 1] 

After assigning annualized average daily commuters to cityboxes and calculating precipitation 

accumulations, the data are merged and formatted as a panel dataset with date and citybox IDs 

for each hour for each city. For example, each dataset row includes the citybox name (e.g., 

Denver), the date and time (e.g., July 15th 2017 at 4pm MDT), the hourly precipitation observed 

(e.g., 0.1 mm), the 12-hour ahead, 1-hour forecast (e.g., 0.2 mm), the total automobile 

commuters in that MSA (e.g., 200,000), and the average commute time in that region (e.g., 20 

minutes).  

 

5.2 Estimating FTEs lost due to forecast misses 

 

For our purposes, forecast errors are important only when they have the potential for notable 

economic impacts.19 These are instances where economic decisions might differ according to the 

specific forecast. As aŶ eǆaŵple, if the foƌeĐast iŵplies ͞Ŷo adǀeƌse pƌeĐipitatioŶ,͟ Ǉet the oďseƌǀed 

pƌeĐipitatioŶ is ͞adǀeƌse,͟ theŶ the iŶfoƌŵed Đoŵŵuteƌ ŵakes a ŵistake ďǇ leaǀiŶg too late.  

                                                 
19 There is a literature on techniques to evaluate precipitation forecast error (e.g., Ebert el al (2003)). In this paper, 

our economic concerns about errors are different than those typically discussed in the meteorology and 

atmospheric science literature. 
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Building on the cost-loss model described in Section 2.1, Table 2 portrays an expense matrix of 

possible outcomes resulting from the action (A) to leave early for work or not and the consequent 

costs associated with the occurrence or absence of adverse precipitation (Y). Our main interest is 

estimating differences in losses across models, which occur when the informed commuter does not 

leave early (A=0) yet experiences adverse precipitation (Y=1) during their journey, delaying their 

arrival time to work. Accordingly, we only compare the HRRR versions in cases where one or both 

models substantially underestimate the actual precipitation event. One result of this focus is that 

we do not estimate the welfare losses arising from overestimation, which results from lost leisure 

when a commuter leaves too early for work (ie, Y=1, A=1).  

 

[Insert Table 2] 

 

Calculating MSA labor hours lost 

 

We Đategoƌize pƌeĐipitatioŶ ;ƌaiŶͿ aĐĐuŵulatioŶ as ͞tƌiǀial,͟ ͞ŵodeƌate͟ aŶd ͞heaǀǇ.͟20 Consistent with 

‘oseŶzǁeig aŶd UdƌǇ ;ϮϬϭϰͿ, pƌeĐipitatioŶ eǀeŶts less thaŶ Ϭ.ϭŵŵ peƌ houƌ aƌe ͞tƌiǀial͟ oƌ light. 

Per Tsapakis, Cheng and Bolbol (2013), moderate rain is 0.25 to 6.35mm accumulation per hour, 

while heavy rain is accumulation greater than 6.25mm per hour. We define notable under-forecast 

events when forecasted precipitation is either zero or trivial, while observed precipitation is either 

ŵodeƌate oƌ heaǀǇ ;i.e., ͞adǀeƌse͟Ϳ. BeĐause ǁe ǁaŶt to eŶsuƌe that the ŵagŶitude of the uŶdeƌ -

forecast is economically meaningful, we are not troubled by under-forecasting light rain (0.1mm-

0.25 mm per hour).21 For example, we do not want to include situations where 0.009mm was 

forecast but 0.01mm fell, as such a small difference is economically inconsequential. Although 

Tsapakis, Cheng and Bolbol (2013) suggest precipitation accumulations less than 0.25mm can still 

                                                 
20 The Stage IV precipitation data measures liquid precipitation. Some of this precipitation originally falls in its 
solid form (i.e., snow). Previous research shows snow has larger impacts on commuting times than does rain. 
However, our procedure does not allow us to capture differences between rain and snowfall. We did look at 
instances of precipitation forecast mistakes when the observed temperature is between 28- and 36-degrees 
Fahrenheit—conditions ripe for snow--but we found very few cases where one HRRR model was correct and the 
other was not. 
21 BǇ ĐoŵpaƌisoŶ, aŶ houƌlǇ aĐĐuŵulatioŶ of Ϭ.Ϯϱŵŵ is oŶe Ƌuaƌteƌ of the U“G“ defiŶitioŶ of a ͞heaǀǇ 
dƌizzle͟ (such definitions are available via a USGS online rainfall calculator at https://water.usgs.gov/edu/activity-
howmuchrain-metric.html). This ŵeaŶs that ďǇ usiŶg the ͞light ƌaiŶ͟ ĐategoƌǇ ǁe ǁould ďe iŶĐludiŶg uŶdeƌ -

forecasts where the difference in precipitation was as little as a few extra drops accumulating over the 

ǁiŶdshield oǀeƌ the Đouƌse of aŶ houƌ͛s dƌiǀe. 
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reduce travel time, we believe it is more important to ensure that our analysis captures under -

forecasts that reflect seriously upon the underlying performance of the HRRR models.  

 

While adverse weather impacts many trip purposes, we only examine commuting. Thus, we restrict 

our analysis to 12-hour ahead forecasts made for typical morning commuting hours (6:00-10:00 am 

local time, weekdays only) and assume that all commuters drive to work during this period. Next, 

the total number of daily commuters in each MSA is evenly allocated across this time window. 

Accordingly, for every 100 commuters, we assign 25 to each hourly interval. Although this interval 

does not capture all commuters, most U.S. jobs require that a worker arrive sometime during it. We 

do not analyze afternoon commuting hours because we assume that workers do not leave their jobs 

early to return home in the event of inclement weather, thus there are no potential losses. 22  

 

Translating precipitation into increased commuting time is a critical step. We develop lower and upper 

bounds for commuting time losses due to unexpected bad weather. For the lower bound we used 

estimates by Tsapakis, Cheng and Bolbol (2013), who specify that any actualized rainfall between 0.25 

to 6.35mm of accumulation increases travel time by three percent and any actualized rainfall greater 

than 6.35mm increases travel time by five percent. For example, if New York City commuters face an 

average commute time of 30 minutes, then during a moderate precipitation event that commute will 

now take 31 minutes. This condition is formulated by the piecewise function ݉ሺ�, �̂ሻ, where Y is actual 

precipitation accumulation for the hour, and �̂ is 12-hour ahead forecasted precipitation for that hour. 

 

݉ሺ�, �̂ሻ { ͷ%, � > .ʹͷ �݊݀ �̂ < Ͳ.ͳ͵%, Ͳ.͵ͷ < � < .ʹͷ �݊݀ �̂ < Ͳ.ͳͲ%, ݁ݏ��ݎℎ݁ݐ�        (7) 

 

For each date and hour (t), in each MSA (r), the total commuter count is Qt,r. The average 

commute time for each MSA, in hours, is denoted by at,r. 

 

For the upper bound, we turn to Stern et al. (2003), who collected an expansive data set for 

Washington, D.C. and estimated travel time delays due to precipitation during peak travel 

                                                 
22 We acknowledge that workers are sometimes sent home early when adverse weather is predicted and that there 
can be economically costly “mistakes” when workers are released early, but the adverse weather does not 
materialize. This is beyond the scope of this work. 
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periods. Their estimated range varied from 11 to 25 percent, but the authors believed that 

actual delays were close to 25 percent, so we use this value as the upper bound.  

 

HRRR is a prevalent U.S. weather model, and its forecasts are utilized in NWS reporting of 

weather alerts and by news agencies across the nation. Additionally, HRRR forecasts inform 

proprietary forecasting models, such as those of the Weather Channel and AccuWeather (Fritz 

(2016)). As such, we assume HRRR forecasts (or their derivatives) are the only forecasts that 

commuters use. Further, we assume all commuters trust HRRR forecasts, with  each agent 

responding positively to them.23 This means that in the event of forecasted moderate or heavy 

rain, every commuter will choose to leave early for work. Conversely, when zero or trivial 

precipitation is forecast, no commuter will depart early. As a result, during any commuting hour 

in any given MSA for which meaningful precipitation under-forecasting occurs, we can express the 

sectoral labor hours lost (LHL) as a result of this forecast inaccuracy from version v of the HRRR 

model: 

 ����,�,�� = ݉(�, �̂) ∗ ��,� ∗ ሺͲ.ʹͷ��,�ሻ  (8) 

 

As an example, consider Denver, CO. The average MSA morning commute time is 30 minutes  

(at,r=0.5), while the total annual average daily number of commuters (Qt,r) is 200,000, meaning we 

estimate 50,000 hourly commuters between 6am and 7am. Multiplying hourly commuters by at,r, 

we see that 25,000 hours are spent commuting under ideal weather conditions during this time. At 

6:00 pm on September 22nd, 2017, HRRR2 foreĐasted the M“A ǁould see ͞tƌiǀial͟ pƌeĐipitatioŶ ϭϮ 

houƌs lateƌ. This foƌeĐast, hoǁeǀeƌ, tuƌŶed out ǁƌoŶg, ǁith DeŶǀeƌ eǆpeƌieŶĐiŶg ͞heaǀǇ ƌaiŶ͟ 

between 6:00 am and 7:00 am on September 23rd. Applying equation (8) with a 5 percent (lower 

bound) commuting tiŵe ͞peŶaltǇ͟ foƌ the uŶdeƌ-prediction (i.e., ݉ሺ�, �̂ሻ=5 percent), the result is 

1,250 labor hours lost. For the upper bound, using 25 percent, there are 6,250 labor hours lost. In 

this way, LHL can be considered the sum of household mistakes that cause lateness to work. 

 

                                                 
23 These are strong assumptions, and (potentially) put an upper bound on our estimates. For example, 

Lazo (2005) shows that not everyone uses forecasts in their daily decision-making. On the other hand, the changes 

in driving time estimates due to precipitation we use from Tsapakis, Cheng and Bolbol (2013) are lower than 

some other published estimates (e.g., Maze, Agarwal and Burchett (2006)), meaning estimated time loss per 

affected commuter estimates may be conservative. In the simulations in section five, we show how results 

change when some of these assumptions are relaxed.  
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Aggregating MSA labor hours lost to full-time equivalent (FTE) losses at the regional level 

 

As noted above and described below, we create eight CGE models, one for each U.S. BEA Region 

(Map 1 in online Appendix). By looking at sub-national regions, we allow for regional heterogeneity 

in terms of economic structure, precipitation events and forecast accuracy. Online Appendix B 

provides a description of how the social accounting matrices (SAM) are constructed for each region.  

 

After determining total labor hours lost for each MSA due to forecast misses, we convert them into 

a labor metric consistent with the regional CGE models (i.e., annual FTEs, by industry, or LBi,r). To 

do so we sum the total MSA labor hours lost per meaningful under-forecast for each industry and 

divide it by the annual average hours worked by an FTE (this is the product of th e average number 

of hours a worker works per week and the average number of weeks a worker works each year). 

Using data on the divisor for 2015 from the BLS24 we write this as: 

 ∆���� = ∑ ����,�� /ሺ͵ͺ. ∗ Ͷ.ͺሻ = ∑ ����,��� /ͳ,ͺͳͳ      (9) 

 

These FTEs at the MSA level are then aggregated into the eight BEA regions used in the CGE model. 

A map of the eight BEA regions can be found in the online appendix.  

 

5.3 Data Characteristics25 

 

                                                 
24 This data can be found here: https://www.bls.gov/news.release/empsit.t18.htm 

25 Additional data descriptions and characteristics can be found in section C of the online appendix.  
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Tables 3 and 4 report estimates of full-time equivalent workers lost for each region under each 

forecasting regime using the lower bound. These estimates are based on the number of misses for each 

ƌegioŶ. Oǀeƌall, ǁe estiŵate that the total Ŷuŵďeƌ of ͞ŵodeƌate͟ ŵisses aĐƌoss the eight BEA ƌegioŶs 

fell fƌoŵ Ϯ,ϴϯϭ to ϱϴϳ, ǁhile the Ŷuŵďeƌ of ͞heaǀǇ͟ ŵisses deĐliŶed fƌoŵ ϵϭ to Ϯϵ ǁheŶ usiŶg H‘‘‘Ϯ 

iŶstead of H‘‘‘ϭ.WheŶ H‘‘‘ϯ ǁas iŶǀoked ƌatheƌ thaŶ H‘‘‘Ϯ, the total Ŷuŵďeƌ of ͞ŵodeƌate͟ ŵisses 

increased from 539 to 777 while the number of heavy misses fell from 34 to 33 (see online Appendix 

Tables C.2 and C.3 for regional detail). 

 

BǇ ĐoŶstƌuĐtioŶ, ouƌ laďoƌ houƌs lost ŵeasuƌe ;eƋuatioŶ ϴͿ is, iŶ paƌt, a fuŶĐtioŶ of eaĐh M“A͛s total 

number of commuters and their average commute time. Because of this it is possible for regions with 

lower counts of HRRR misses to lose more labor hours than regions with higher miss counts. As an 

example, although the Mideast has only 14 MSAs, it has the most commuters and the highest average 

commuting time. Therefore, a forecast miss in a Mideast MSA may have a substantially larger effect on 

labor hours lost than a similar miss in any other BEA region.  

 

The thiƌd data ĐoluŵŶ is keǇ, shoǁiŶg ϭ,ϰϵϭ.ϰ ŵoƌe FTE͛s lost ǁheŶ H‘‘‘ϭ ǁas used  instead of 

H‘‘‘Ϯ. Although the aďsolute ǀalue of diffeƌeŶĐes iŶ FTE͛s lost ďetǁeeŶ the tǁo ǀeƌsioŶs is oŶlǇ a 

small percentage of total national employment (about 160.7 million), the economic effects can still 

be notable. (The upper bound estimates of labor lost is represented by multiplying the values in in 

the first three data columns of Tables 3 and 4 by five.) The implications of Tables 3 and 4 are 

discussed in detail in section 6.2.  

 

6.  CGE Model  and Analysis  

 

This section has two parts. In the first we describe how the simulations are implemented and the 

second section presents the results.  

 

6.1 Setting up the Simulations 

 

Households are linked to production sectors through the labor market. Firms need workers to produce 

output, but only to the exteŶt to ǁhiĐh the ǀalue of a ǁoƌkeƌ͛s marginal product exceeds the wage the 

firm must offer to attract an additional worker. As noted in the online Appendix, each household is 
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endowed with time, which they can convert to labor supply if the market wage offer is attractive 

enough. In equilibrium, the labor demand and supply are equal at a specific wage: 

 

∑H HWH JOBCORH,L = ∑iFDLB,i         (10) 

 

HWH is the number of working households across the nine household groups indexed by H and it is 

multiplied by JOBCORH,L. JOBCOR is obtained from the PUMS dataset, and represents the average 

number of workers from each labor group that reside in the nine household groups. Accordingly, the 

left-hand-side is sectoral labor supply. The right-hand-side is sectoral labor demand (FDLB,i). For any loss 

in labor due to unexpected inclement weather, we would reduce the value of JOBCOR. As an example, 

consider the Southeast, which sees an estimated gain in 321 workers due to using HRRR2 forecasts 

instead of HRRR1 forecasts. To account for this increase, we scaled the Southeast JOBCOR by 1.000018 

(= 321/39,886,010 = job change/job base).   

********** 

 

[Insert Tables 3 and 4] 

 

 

6.2 Simulations and Results 

Table 5 presents the HRRR1/HRRR2 and HRRR2/HRRR3 comparisons under the lower and upper 

bounds with respect to the impact on real GDP. Recall from Table 3 that transitioning from HRRR1 

to HRRR2 would effectively increase employment by 1,491 workers in the lower bound case. This 

results in an increase in real GDP of $57.6 million across the eight BEA regions. The upper bound 

generates a $212.7 million increase in real GDP. 

 

Regarding the individual regional impacts, the Mideast has the largest economic gains when 

ŵoǀiŶg fƌoŵ H‘‘‘ϭ to H‘‘‘Ϯ, a ƌesult attƌiďutaďle to the ƌegioŶ͛s uŶiƋue ĐhaƌaĐteƌistiĐs 

(described in more detail in the online Appendix Table 2). In particular, because this region has 

considerably more commuters than any other BEA region, unexpected precipitation events impact 

more workers, leading to a larger adverse impact on real GDP. The Southeast has the second 

largest economic gain, an effect consistent with the fact that this region had the largest numbe r of 

HRRR1 misses (described in the Online Appendix Table C2).   
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The impact on federal government tax revenue tells the same story with respect the level and the 

regional impacts. The lower bound results in an increase in federal tax revenue of $1.68 and for 

the upper bound, the increase is $6.32 million.  

 

The total impacts for HRRR3 versus HRRR2, however, tell a different story. Our simulations show that 

real GDP decreases when HRRR3 forecasts are utilized instead of HRRR2--although this decrease is an 

order of magnitude less than the increase in real GDP from HRRR2 versus HRRR1. Referring to online 

Appendix Table 2, we see that HRRR2 did an overall better job of predicting economically meaningful 

MSA precipitation events than HRRR3, particularly moderate ones. The differences in the lower and 

upper bound ranges are consistent with the results from the HRRR1/HRRR2 comparisons.  

 

This does Ŷot ŶeĐessaƌilǇ suggest H‘‘‘ϯ is ͞ǁoƌse͟ thaŶ H‘‘‘Ϯ; ouƌ studǇ oŶlǇ Đoŵpaƌes pƌeĐipitatioŶ 

forecasts and daily commutes. We do not compare economic gains due to differences in forecast 

accuracy of each version across myriad other key forecasted weather variables, such as temperature, 

cloud cover, and wind.26 Further, our analysis suggests that while HRRR3 does tend to underestimate 

precipitation more than HRRR2, HRRR3 is more accurate in predicting massive precipitation events such 

as hurricanes. Additionally, HRRR3 has greater success at predicting zero precipitation events than 

HRRR2. These two factors likely have economic ramifications that are not measured here.  

 

[Insert Tables 5 and 6] 

 

7. Summary and Conclusions 

 

Improved weather forecasting information can improve economic outcomes. First introduced in 2014, 

NOAA͛s H‘‘‘ ŶuŵeƌiĐal ǁeatheƌ pƌediĐtioŶ system has undergone many enhancements, with the 

goal of providing increasingly accurate precipitation, temperature, wind, and cloud cover forecasts. 

In this paper we simulate how improvements in NOAA precipitation forecasts can impact economic 

activity in the CONUS through better commuting decisions. This has required aligning several disparate 

research endeavors.  

                                                 
26 In companion papers we look at wind forecasts as related to the energy sector and temperature forecasts as 
related to the agricultural sector. 
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We use H‘‘‘͛s ϭϮ-hour ahead precipitation forecasts as the information set that commuters use to 

decide when to leave for work the next morning. When we line up forecasts with measured, actual 

rainfall, we demonstrate that HRRR1 had many more misses of realized, economically meaningful 

rainfall events than did HRRR2 during the same time frame. We pair these misses with the work of 

Tsapakis, Chen, and Bolbol (2013) and Stern et al. (2003) to estimate a lower and upper bound for total 

labor hours lost due to incorrect forecasts in 206 MSAs in the U.S. These lost hours were aggregated to 

the level of eight, multi-state regions in the US, and we used CGE models for each region to estimate 

economic impacts via reductions in labor supply.  

 

While this problem is conceptually straightforward, computationally analyzing these results required 

making several important assumptions that certainly impact the results. Some potentially bias our 

results upward, while others may bias them downward. Therefore, it makes more sense to look at our 

ƌesults as the ͞poteŶtial͟ ƌatheƌ thaŶ aĐtual ǀalue of ĐhaŶges iŶ H‘‘‘.  

 

Our estimates are too high 

 

While we consider our loǁeƌ ďouŶd estiŵate ͞ĐoŶseƌǀatiǀe,͟ ǁe make three assumptions that still may 

bias our results upward. First, we assume that 100 percent of commuters use the 12-hour ahead 

precipitation forecasts in planning their departure time for work, and then commit to this decision, 

regardless of how weather patterns and information may deviate from the forecast between the time of 

the forecast and the time to leave for work. However, as Lazo, Morss and Demuth (2009) note, only 

about 90 percent of respondents to a national survey indicate that they use weather forecasts daily. 

Thus, improvements in one weather forecasting system over another are meaningless for non-users. 

This means that some of the potential benefits are not captured in practice. However, as forecasts 

become easier and cheaper to access, such as through a weather app on a smartphone, it is likely that a 

greater share of people are using weather forecasts today than at the time of the Lazo, Morss and 

Demuth study. 

 

Further, it is quite reasonable to expect that people do update their decisions closer to their departure 

time for work. For example, a commuter may check the weather before going to bed, and when they 

wake up, they may check it again, or simply look out their window to see if the current weather is 
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consistent with the forecast. If not, they may simply act on what they see, rather than the earlier 

forecast. If this is the case, then the information gleaned from any 12-hour ahead forecast is less useful. 

In future work, we will be comparing HRRR3 to HRRR4 and we will be looking at 1-hour, 3-hour, 6-hour 

and 12-hour ahead forecasts.27  

 

Our third assumption that could bias results upward is that workers leave work on time, even if they 

showed up late. This assumption is consistent with a recent study of the impacts of increasing 

congestion on from the Independent Budget Office of the City of New York (2017), which analyzed lost work 

time from delays in the New York City subway system. An alternative is that workers can stay late to make 

up some or possibly all their missed time. This may be possible for workers who enjoy flexible start and 

end times, but other employees may have after-work commitments--such as picking up children from 

school--that require timely workplace departures. Still other personnel may work on a specific shift and 

ŵust effeĐtiǀelǇ ͞ĐloĐk out͟ at a set tiŵe. 

We additionally assume that all workers commute to their jobs between 6 and 10 am, and only work 

Monday through Friday. This assumption surely does not hold, but there is no statistical reason to think 

that the average realized performance differences between two versions of HRRR differ for atypical 

commuters relative to those participating in the forecast window of interest.  

 

Our estimates are too low 

 

We do not examine losses due to diminished worker productivity (as opposed to output). However, 

Sweet (2014) suggests worker effectiveness can be reduced by congestion (an analog of weather-related 

traffic delays) because it can cause stress. Examining the impacts of subway investments in Brazil, 

Haddad et al. (2015) simulate the idea of a reduction in labor productivity due to commuting delays 

using the San Paolo subway system. They estimate labor productivity impacts of different distances 

traveled where, for over 40 km each way, the gains were between 3-5 percent and for trips around 20 

                                                 
27 However, HRRR researchers shows that 12-hour ahead forecast differences between versions of the model do 

not tend to converge as the actualization comes nigh. In other words, if one version of HRRR predicts rain 12-hours 

ahead and the other does not, these relative predictions are not likely to change much as the time draws nearer. 

Thus, a user who uses one version of HRRR or another is not likely to get a significantly different forecast when 

they are about to leave for work than they saw the night before. See Figures 1 and 2. 

 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



 

This article is protected by copyright. All rights reserved 

km each way the labor productivity gains ranged from 1-2 percent. We do not do that here but suspect 

that these impacts could be large given the Haddad at al. (2015) results. 
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Table 1. HRRR Version Descriptions 

Version Primary update from previous version Overlap period  

v2 

First inclusion of sub-gridscale clouds, aerosol 

particles included in cloud and precipitation 

processes, fully-cycling of the land surface model 

1 Jun 2015 to 1 Aug 2016 

v3 

Updated turbulence scheme to use non-local mixing, 

more realistic treatment of sub-gridscale clouds, 

improved vertical coordinate for simulation above 

complex terrain, improved data assimilation 

approach to help retain stratiform clouds 

1 July 2017 to 1 June 

2018 

 

Table 2. Expense Matrix for Decision Making Model 

Weather Event Do not leave early (A=0) Leave early (A=1) 

No adverse precipitation (Y=0) 0 Cost 

Adverse precipitation (Y=1) Loss Cost 

 

Table 3. Full-time Equivalent Workers Lost (HRRR1 and HRRR2): Lower Bound* 

BEA Region HRRR 1 HRRR 2 HRRR1 – HRRR2 

Percent Reduction in 

labor hours lost 

HRRR1 – HRRR2 

Southwest  202.4 58.7 143.7 71% 

Great Lakes 332.6 76.1 256.5 77 

Southeast 416.0 95.1 321.0 77 
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*Because this is a linear estimate, the upper bound can be derived by multiplying these effects by 

11 percent/3 percent. 

 

Table 4. Full-time Equivalent Workers Lost (HRRR2 and HRRR3): Lower Bound 

BEA Region HRRR 2 HRRR 3 HRRR2 – HRRR3 

Percent Reduction in 

labor hours lost 

HRRR2 – HRRR3 

Southwest  49.8 55.5 -5.7 -10.3% 

Great Lakes 90.8 98.0 -7.2 -7.3 

Southeast 70.2 94.5 -24.3 -25.7 

Mideast 93.4 151.5 -58.1 -38.4 

Far West   7.2 33.2 -26.1 -78.5 

Rocky Mountain 4.2 4.7 -0.6 -12.2 

New England  6.8 24.4 -17.6 -72.3 

Plains  33.7 29.1 4.6 15.8 

 Total 356.0 490.9 -134.9 -27.5 

 

 

Table 5. Economic Gains from Improved Commuting Decisions (Real GDP in millions of $) 

 Lower Bound Upper Bound Lower Bound Upper Bound 

BEA Regions HRRR2 vs HRRR1 HRRR2 vs HRRR1 HRRR3 vs HRRR2 HRRR3 vs HRRR2 

Southwest 5.07 15.82 -0.20 -2.43 

Great Lakes 9.25 32.18 -0.26 -2.31 

Mideast 553.2 49.1 504.1 91 

Far West   64.8 2.2 62.6 97 

Rocky Mountain 33.5 4.8 28.8 86 

New England  119.4 10.7 108.7 91 

Plains  97.4 31.4 66.0 68 

 Total 1,819.5 328.2 1,491.4 82 
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Southeast 11.12 34.82 -0.85 -2.90 

Middle East 21.70 75.93 -2.51 -9.10 

Far West 2.81 23.06 -1.15 -9.61 

Rocky Mountain 1.02 0.85 -0.02 0.00 

New England 4.39 18.88 0.16 -3.15 

Plains 2.22 11.17 0.54 1.04 

Total 57.58 212.70 -4.29 -28.47 

 

 

Table 6. Changes in Federal Tax Revenue from Improved Commuting Decisions (millions of $) 

 Lower Bound Upper Bound Lower Bound Upper Bound 

BEA Regions HRRR2 vs HRRR1 HRRR2 vs HRRR1 HRRR3 vs HRRR2 HRRR3 vs HRRR2 

Southwest 0.03 0.10 0.00 -0.02 

Great Lakes 0.29 0.95 -0.01 -0.07 

Southeast 0.22 0.69 -0.02 -0.06 

Middle East 0.89 3.11 -0.10 -0.37 

Far West 0.10 0.85 -0.04 -0.35 

Rocky Mountain 0.02 0.01 0.00 0.00 

New England 0.08 0.33 0.00 -0.05 

Plains 0.06 0.30 0.01 0.03 

Total 1.68 6.32 -0.16 -0.89 
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