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Abstract 12 

Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of 13 

uncertainty in carbon cycle models and climate change projections. In this study, we present an updated 14 

land model (LM3PPA-TV) to improve the representation of tropical forest structure and dynamics in Earth 15 

system models (ESMs). The development and parameterization of LM3PPA-TV drew on extensive datasets 16 

on tropical tree traits and long-term field censuses from Barro Colorado Island (BCI), Panama. The model 17 

defines a new plant functional type (PFT) based on the characteristics of shade-tolerant, tropical tree species, 18 

implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic 19 

constraints on biomass accumulation, and features a new compartment for tree branches and branch fall 20 

dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand-level carbon 21 

and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and 22 

stand-level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and 23 

size structure across the tropical forest biome, including observed responses to precipitation and 24 

temperature. Model experiments suggested a major role of water limitation in controlling geographical 25 

variation forest biomass and structure. However, the failure to simulate tropical forests under extreme 26 

conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the 27 

need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic 28 

composition across tropical domains. The continued pressure on tropical forests from global change 29 
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demands models which are able to simulate alternative successional pathways and their pace to recovery. 1 

LM3PPA-TV provides a tool to investigate geographic variation in tropical forests and a benchmark to 2 

continue improving the representation of tropical forests dynamics and their carbon storage potential in 3 

ESMs. 4 

 5 

Keywords: Barro Colorado Island; Carbon cycle; Earth system models; Forest production; LM3PPA-TV; Tropical 6 

forest 7 
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1. Introduction 1 

Tropical forests are a key determinant of the functioning of the Earth system. Tropical forests account for 2 

half of the carbon stored by plants and more than a third of the annual carbon uptake by the terrestrial 3 

biosphere (Chapin et al. 2011; Pan et al. 2013). This high productivity pumps water vapor through 4 

transpiration that cools the global atmosphere (~0.5 K over land, Snyder 2010), and represents a major 5 

sink for anthropogenic CO2 emissions that buffers climate change (~0.15 Pg C yr-1, Le Quéré et al. 2018). 6 

However, the sustained provision of these ecosystem services depends on the resilience of tropical forests 7 

to global change. During this century, tropical forests will face warmer and drier conditions in a CO2 8 

enriched atmosphere, and the continued pressure of deforestation (Lawrence and Vandecar 2015). These 9 

threats pose a critical challenge to anticipate changes in the structure and functioning of tropical forests 10 

and to elucidate potential feedbacks on the Earth system (Bonan 2016). 11 

The assessment of tolerable stress levels and alternative mitigation strategies to limit the impacts of 12 

global change increasingly depends on Earth system models (ESMs). In the terrestrial domain, these 13 

models feature complex feedback loops between the climate system and changes in land cover through 14 

the explicit representation of vegetation processes on a range of temporal and spatial scales (Bonan 15 

2008a,b). However, although ESMs capture large-scale gradients in plant production and emergent 16 

patterns like the distribution of biomes, the characterization of tropical forests remains a major source of 17 

uncertainty (Schimel et al. 2014). Predictions based on the current generation of ESMs diverge about 18 

whether tropical forests will become a net carbon source or remain as a sink in the near future 19 

(Friedlingstein et al. 2014 ; Cavaleri et al. 2015), and some ESMs even project the collapse of Amazon 20 

rainforests under dryer climate conditions at the end of the century (Drijfhout et al. 2015). These 21 

uncertainties highlight the need to improve the representation of tropical forests in ESMs through a more 22 

realistic implementation of ecological dynamics.  23 

The current generation of ESMs include modules of varying complexity to enable the simulation of energy 24 

and material fluxes between land plants and the overlying atmosphere, the absorption of water and 25 

nutrients from the soil, and the decomposition of plant materials (Shevliakova et al. 2009; Fisher et al. 26 

2018). These dynamic vegetation models (DVMs) can also feature different plant functional types (PFTs) to 27 

incorporate biogeographical changes in plant physiology and ecology associated with large-scale 28 

environmental gradients and historical contingency (Prentice et al. 1992). The same approach enables the 29 

simulation of human-altered landscapes and forest management actions like wood harvesting and 30 

reforestation (Hurtt et al. 2011). In the past, computational costs prevented an explicit representation of 31 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



4 
 

important ecological aspects like changes in canopy structure or gap dynamics (Fisher et al. 2018). 1 

However, theoretical advances now provide efficient schemes to scale local forest dynamics to the large 2 

extents required to simulate the earth system in long-term simulations of climate change (Moorcroft et al. 3 

2001). Together with increasing availability of long-term studies and global compilations of species traits 4 

and forest measurements (Anderson‐Teixeira et al. 2015, 2018; Falster et al. 2015; Schimel et al. 2015), 5 

these advances are boosting the development of improved DVMs.  6 

Within the hierarchy of DVMs, the inclusion of detailed demographic processes and vertical canopy 7 

structure results in a more realistic representation of forest patch dynamics and ecosystem fluxes. These 8 

models inherit many of their characteristics from earlier forest gap dynamic simulators (Botkin et al. 1972; 9 

Shugart and West 1977; Pacala et al. 1996) but require a series of modifications to enable the simulation 10 

of forest dynamics at large scales (tens to hundreds of kilometers). Two alternative approaches prevail in 11 

the literature; the first method involves the simulation of a large number of individual trees within each 12 

ESM grid cell to average forest composition and associated fluxes (e.g., HYBRID, LPJ-GUESS, SEIB). The 13 

second approach, used in the present study, pursues the analytical upscaling of forest gap dynamics using 14 

integro-partial differential equations (ED, CLM(ED), Moorcroft et al. 2001). These analytical models 15 

approximate the dynamics of expected forest size structure and species composition by considering 16 

cohorts of identical individuals. The subsequent gain in efficiency allows a more detailed representation of 17 

processes like competition and succession. The heart of one such approach is the perfect plasticity 18 

approximation (PPA, Strigul et al. 2008), which enables an efficient implementation of the sequential 19 

partitioning of the light available for photosynthesis through the canopy. This approach has successfully 20 

reproduced successional dynamics in temperate forests (Purves et al. 2008, Weng et al. 2015), and the 21 

canopy structure and size distribution of tropical forests (Bohlman and Pacala 2012, Farrior et al. 2016). 22 

Here, we present LM3PPA-TV, an updated version of the land model LM3-PPA (Weng et al. 2015) that 23 

features an improved representation of tropical vegetation in ESMs. Like its predecessor, LM3PPA-TV 24 

simulates vegetation dynamics by scaling plant physiological processes from cells and tissues up to the 25 

survival and reproduction of individual trees and the dynamics of plant populations at the landscape level. 26 

Height-structured competition for light and competition for water emerge from interactions among 27 

neighboring plants within a fully coupled model with dynamic soil hydrology and atmosphere. The new 28 

version of the model implements an updated growth allocation scheme based on realistic assumptions 29 

about tree size scaling, incorporates hydraulic constraints on stomatal control, and features a new 30 

compartment for tree branches and branch fall dynamics. The model also simulates disturbance and gap 31 
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recovery dynamics explicitly through the LM3 tiling scheme (Shevliakova et al. 2009; Milly et al. 2014), 1 

which allows the coexistence of tiles at different successional stages within the same grid cell.  2 

The development and testing of the new LM3PPA-TV modules were guided by extensive analyses of 3 

global databases (Falster et al. 2015; Anderson‐Teixeira et al. 2018) and of long-term monitoring and trait 4 

data available at Barro Colorado Island (BCI, Panamá, Hubbell et al. 2005; Wright et al. 2010).  We defined 5 

a new plant functional type of shade-tolerant tropical tree, and tested the ability of the model to 6 

reproduce multiple vegetation patterns at BCI, from individual performance to ecosystem-level fluxes. 7 

Then, we extended the analysis to the global scale and evaluated model predictions against large-scale 8 

variation in forest biomass and size structure across the tropics.  9 

 10 

2. Model description 11 

LM3PPA-TV simulates vegetation dynamics by scaling photosynthetic reactions in leaves up to the survival 12 

and reproduction of individual trees within populations and the successional dynamics at the landscape 13 

level. Population dynamics and ecosystem patterns emerge from a mechanistic representation of the basic 14 

processes of tree growth, reproduction and mortality, and from differences in tree performance 15 

associated with competition for light and water resources. Importantly, vegetation modules are 16 

embedded in a much larger model, so the dynamic soil and atmosphere constrain physiological and tree-17 

level processes. Here we provide an overview of model vegetation dynamics, including an introduction to 18 

the novel elements. Additional details on model vegetation dynamics including equations for plant 19 

physiological processes are given in the supplement.   20 

 Forest dynamics in LM3PPA-TV 21 

As in LM3-PPA, the model represents forested areas within each grid cell by one or more tiles (§10.1). The 22 

number and relative area of tiles vary over time to represent heterogeneity in forest structure and 23 

implicitly capture the impact of disturbance and patch dynamics (see §2.3.2). The basic modelling units 24 

used to represent vegetation are cohorts each composed of identically sized individuals of a particular 25 

species or plant functional type (PFT) and are associated with a single tile. Each tile can contain multiple 26 

cohorts that compete for light and water, and thereby interact with one another. Cohorts from different 27 

tiles interact only indirectly through their impacts on atmospheric temperature and humidity at the grid 28 

cell scale.  29 
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The master equations of the model specify how the abundance ௜ܰ and the size ݏ௜ of trees in each cohort ݅ 1 

vary through time; 2 d ௜ܰdݐ = ௜ݏ]ߤ− , ݇௜ , ௜ܰ [ݐ  ሺͳሻ 3 

dݏ௜dݐ = ௜ݏ]݃ , ݇௜ ,  ሺʹሻ 4 [ݐ

where ݇௜ is the canopy layer occupied by the individuals of cohort ݅ at time ݐ (see §2.1.1). The rates of 5 

mortality ߤ and growth ݃ vary through time as a function of tree size and canopy position, and with the 6 

dynamic environment experienced by each cohort, reflecting both changes in neighbor abundance that 7 

affect local resource availability, and changes in landscape composition that modulate local weather and 8 

climatic conditions.  9 

Demographic dynamics are completed with the equation for recruitment of new cohorts in a tile which 10 

define the initial condition for eq. (1)  11 

௜ܰ,଴ = ∫ ܰሺݏ, ݇, �ሻ∞
௔೘ ௥݂ሺݏ, ݇, �ሻ d� ሺ͵ሻ 12 

where ௜ܰ,଴ is the initial density of seedlings of a predefined size ݏ଴ which populate a new cohort i. The 13 

integral is calculated locally for each tile and over all the trees with an age � above the age of maturity ܽ௠. 14 

Per capita tree fecundity ௥݂ varies with the size, canopy status, and cohort age, as detailed below (§2.3.1). 15 

The equations above simplify the simulation of age and size structured vegetation dynamics by following 16 

the evolution of a discrete number of cohorts. This approach reduces the system to a set of ordinary 17 

differential equations and avoids the more complex –and potentially unstable– numerical schemes 18 

required to directly simulate changes in the distribution of cohort sizes and age structure (Weng et al. 19 

2015). 20 

 21 

2.1.1. Vegetation structure: assigning cohorts to canopy layers 22 

Vegetation is represented as a set of cohorts composed of identical individuals that belong to a given 23 

species or plant functional type (PFT). Each cohort is characterized by the size and spatial density of its 24 

individual trees (number per unit ground area). Size is defined based on stem diameter and biomass. The 25 

model divides plant biomass into six tissues or dynamic carbon pools: labile nonstructural carbohydrates 26 
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 sapwood (ܹܵ) and 1 ,(ܨ) reproductive structures and propagules ,(ܴܨ) fine roots ,(ܮ) leaves ,(ܥܵܰ)

heartwood (ܹܪ).  2 

Cohorts are arranged in vertical canopy layers according to the Perfect Plasticity Approximation (PPA, 3 

Strigul et al. 2008), a model featuring the sequential partitioning of the light available for photosynthesis 4 

based on the relative position of trees within the canopy. LM3PPA-TV implements a simplified PPA that 5 

assumes flat-topped crowns (Purves et al. 2008, Weng et al. 2015). Each cohort occupies a single canopy 6 

layer, and multiple cohorts can occupy the same layer (Fig. 1). The layer occupied by each cohort 7 

determines the amount of light received by its trees, setting up a competitive advantage for trees in the 8 

upper canopy layers relative to those in the lower layers. Trees in a given layer shade only trees in lower 9 

layers – i.e., they decrease the amount of light available for trees in all the layers beneath them. There is 10 

also self-shading among the leaves in the canopy of each tree (§10.3.2). Trees in the same layer are all 11 

assumed to have the same light incident on the top of their canopies (i.e., they do not shade each other).   12 

In practice, the implementation of PPA starts with the ranking of individual cohorts based on the height of 13 

their trees, from tallest to smallest. Then, the canopy layer ݇௜ occupied by a cohort ݅ of trees with height 14 ܪ∗ [m] is determined using the following definition: 15 

݇௜ሺܪ∗ሻ =  ∫ ுܰ ܣ஼  dܪ∞
ு∗ ௉ܣ \   ሺͶሻ 16 

where ுܰ is tree density [individuals per meter of height], ܣ஼ is the crown area [mଶ] per tree of height 17 ,ܪ 

and ܣ௉ is the area of the focal tile [mଶ]. The integral sums crown areas for all cohorts with trees taller than 18 ܪ∗ within the same tile, and the integer division (indicated with the backslash symbol ‘\’) floors the 19 

fractional number of layers to a zero-based layer index from the top of the canopy ሺ݇௜ = Ͳሻ to the 20 

understory (݇௜ =  ݊௞ − ͳ, where ݊௞ is the total number of canopy layers).  21 

The layer to which a given cohort is assigned is recalculated annually based on the cumulative canopy 22 

cover of all the trees taller than those in the target cohort. When this sum exceeds the area of the tile, the 23 

layer is closed and layer number ݇ increases one unit. Thus, the model always includes a top canopy layer 24 

and, when cumulative cover exceeds the area of the tile, one or more understory layers that shade each 25 

other from the tallest to smallest. This process may require splitting individual cohorts between layers, 26 

since each cohort can belong only to a single layer. In this case, the resulting two new cohorts are 27 

assigned to different layers and start following independent trajectories.  28 

 29 
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 Tree level dynamics 1 

2.2.1. Tree allometry 2 

Allometric functions provide a basic template to model changes in tree morphology and thus growth 3 

allocation with size. Two key dimensions for light competition were defined based on allometric functions 4 

of trunk diameter (ܦ [m]): crown area and tree height. The form and parameterization of these allometric 5 

functions was based on an extensive analysis of species-specific tree morphological data from BCI 6 

(Martínez-Cano et al. 2019). The projected areal extent of the crown of each tree (ܣ஼  [mଶ]) was modelled 7 

as a power function of trunk diameter: 8 ܣ஼ሺܦሻ = ܽ஼ܦ௕�  ሺͷሻ 9 

where the intercept ܽ஼  determines the baseline level and the exponent ܾ஼  the overall shape of the curve. 10 

Tree height (ܪ [m]), defined as the height at the top of the crown, was modelled as a saturating function 11 

of trunk diameter using a generalized Michaelis-Menten function: 12 

ሻܦሺܪ = ܽு ௕�݇ுܦ  + �௕ܦ  ሺ͸ሻ 13 

where ܽு is the asymptotic tree height, and the exponent ܾு and the inflection parameter ݇ு determine 14 

how fast tree height increases with diameter. Note that equation (͸) features a deceleration in the rate of 15 

increase of tree height with trunk diameter. This relationship provides some advantages over alternative 16 

approaches featuring non-saturating allometric functions that can lead to the simulation of unrealistically 17 

tall trees (Weng et al. 2015).  18 

The allometric relationship for tree height is also used to describe changes in woody biomass 19 

�ܤ)  [kg of C]) using the allometric model parameterized by Chave et al. (2014) to describe size scaling of 20 

above-ground tree biomass in tropical forests: 21 ܤ�ሺܦሻ =  ሺ͹ሻ 22 ܪ ଶܦ ߩ ஻ெߙ

where ߩ [kg m−ଷ] is a species-specific estimate of wood density (dry mass per fresh volume, technically 23 

wood specific gravity), and ߙ஻ெ is a unitless parameter that accounts for tapering and for the fraction of 24 

woody biomass in branches. As detailed in §10.3.2, this equation can be inverted to translate the 25 

allocation of woody biomass into changes in aerial tree dimensions.  26 

 27 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



9 
 

2.2.2. Allocation of assimilated carbon 1 

Plant growth is modelled as a function of the biomass of assimilated, nonstructural carbon per tree 2 

 represents a labile component that acts as the currency for the 3 ܥܵܰ ,In the model .([kg C tree−ଵ] ܥܵܰ)

allocation of biomass to the growth and maintenance of different plant tissues. The biomass of ܰܵܥ is 4 

updated daily based on the balance between net carbon acquisition and investment: 5 dܰܵܥ dݐ⁄ = ܰܲ ௗܲ − ௗܩ  ሺͺሻ 6 

where both the daily net primary production, ܰܲ ௗܲ  [kg C tree−ଵday−ଵ], and the daily growth rate, ܩௗ 7  [kg C tree−ଵday−ଵ], of each individual tree are themselves functions of the available ܰܵܥ pool.  8 

The balance between instantaneous photosynthetic carbon uptake ( ௦ܲ [kg C tree−ଵs−ଵ]) and maintenance 9 

and growth respiratory losses (ܴ஺ [kg C tree−ଵs−ଵ]) is integrated to calculate daily net primary production: 10 

ܰܲ ௗܲ = ∫ ሺ ௦ܲ − ܴ஺ −  ா݂ · max{Ͳ.Ͳ, ௦ܲ − ܴ஺}ሻ dݐௗ�଴  ሺͻሻ  11 

where ா݂ is the fraction of instantaneous ܰܲܲ allocated to root exudates and ݀௦ is day length in seconds 12 

(the integrand was updated every half hour in the simulations reported here). Because nutrient uptake is 13 

not explicitly represented in the current model, root exudates act as a passive carbon sink (see Sulman et 14 

al. 2019 for LM3 extensions featuring interactive nutrient dynamics). The truncation in the last term of eq. 15 

(9) ensures that no structural carbon is mobilized to release root exudates when the balance between 16 

production and respiration is negative. See §10.3 for a detailed account of plant energy and material 17 

fluxes, including the new module implementing hydraulic constraints on stomatal control (Wolf et al. 18 

2016, §10.3.3). 19 

Individual daily growth (ܩௗ [kg C tree−ଵday−ଵ]) depends on available ܰܵܥ and consists of the production 20 

of new leaves (ܮ), fine roots (ܴܨ), branches (ܴܤ) and other structural wood (ܹ), and reproductive tissues 21 

and seeds (ܨ): ܩ 22ௗ = ௅ܩ + ிோܩ + ஻ோܩ + �ܩ + ிܩ . ሺͳͲሻ 23 

All the growth rate components are nonnegative for an actively growing tree. Allocation of resources to 24 

the growth of each major tissue depends on a series of targets that define allometric constraints on the 25 

morphology and anatomy of simulated trees (Weng et al. 2015). These dynamic targets vary depending 26 

on tree size, phenological status and position within the canopy. Trees adjust growth rates of different 27 

compartments to minimize deviations from targets (see §10.2 for a detailed description).   28 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



10 
 

The net accumulation of new biomass for each individual tree results from the balance between carbon 1 

allocated during growth and losses associated with tissue turnover. The model implements tissue turnover 2 

as a constant rate process affecting the biomass of leaves, fine roots and branches according to a set of 3 

turnover rates specific for each of these tissues ሺߙ௜, Table S1). Together with decomposing tissues from 4 

dead individuals and failed seeds, tissue turnover results in a net flux of carbon to the soil (Shevliakova et 5 

al., 2009). Importantly, LM3PPA-TV introduced a new sapwood compartment for branches (see §10.2) to 6 

implement carbon fluxes due to branchfall (Palace et al. 2008; Marvin and Asner 2016) and to slow tree 7 

biomass accumulation.  8 

 9 

 Demographic processes 10 

2.3.1. Tree fecundity and recruitment 11 

The model implements the recruitment of new seedlings to the population as a discrete annual event, 12 

synchronized across all reproductive trees, that is the culmination of sustained investment in the 13 

production and maintenance of reproductive tissues (ܨ). Trees allocate resources to reproduction (ܩி > Ͳ) 14 

only if they survive beyond the age of maturity (ܽ௠[ݏݎܽ݁ݕ]), and are in the top canopy layer; otherwise, 15 

they remain in a non-reproductive state (ܩி = Ͳ; see eq. ʹ͸ in §10.2). Reproductive allocation cumulates 16 

on a daily basis during the time span ݐோ (here 1 year) between two successive reproductive events.  17 

The overall fecundity per tree in a given cohort, ௥݂, is defined as the number of seedlings produced by 18 

each tree that reach establishment: 19 

௥݂ = ௘݌�݌ ௌܤ௧ೃܨ = ௘݌�݌ ͳܤௌ ∫ ிܩ  dݐ௧ೃ଴    ሺͳͳሻ 20 

where the cumulated reproductive biomass at the time of reproduction (ܨ௧ೃ) is partitioned into seedlings 21 

each having initial biomass ܤௌ . The value of ܤௌ is inverted from biomass allometry to ensure that seedlings 22 

recruit at an initial height of 10 cm. Recruitment success further depends on the probabilities of 23 

germination ݌� and initial establishment ݌௘ , although there are other sources of early mortality (e.g. 24 

carbon starvation; see below). Failed seedlings contribute a net carbon flux to the soil.  25 

 26 
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2.3.2. Mortality and disturbance 1 

LM3PPA-TV implements three mortality mechanisms that decrease the density of affected cohorts: carbon 2 

starvation, background mortality, and gap-associated mortality. Carbon starvation mortality operates at 3 

the daily scale: individuals die if plant reserves fall below a minimum threshold (ܰܵܥ pool less than 1% of 4 

the target leaf biomass, ܮ∗) or if their sapwood biomass drops to zero. In practice, this source of mortality 5 

most often affects seedlings and saplings in the lower canopy layers, and thus constitutes an emergent 6 

mechanism of density-dependent regulation.  7 

Background mortality accounts for most other sources of mortality that are not explicitly implemented in 8 

the model, including wind throw, lightning, and disease. This mechanism features density-independent 9 

mortality associated with unpredictable fatalities, although it was implemented as a deterministic constant 10 

decay process operating at the annual scale at a rate that varies between canopy and understory trees 11 

and among PFTs (Table S2). Background mortality rates, ߤ, are assumed to be size-independent for 12 

canopy trees, ߤ௖ሺܦሻ = ௖ߤ̅   [year−ଵ], and to decrease asymptotically with size for understory trees (Weng et 13 

al. 2015): 14 

ሻܦ௨ሺߤ = ௨ߤ̅  ͳ + ܽ௠௢௥௧  exp{−ܾ௠௢௥௧  ሺܦ − ଴ሻ} ͳܦ + exp{−ܾ௠௢௥௧  ሺܦ − {଴ሻܦ  ሺͳʹሻ 15 

where ̅ߤ௨ [year−ଵ] is a species-specific parameter corresponding to the background mortality rate of 16 

understory trees, ܽ௠௢௥௧  [−] and ܾ௠௢௥௧  [m−ଵ] are constants that determine the shape of the mortality curve 17 

and ܦ଴[݉] is stem diameter at germination. For ܽ௠௢௥௧ = Ͷ.Ͳ as here, this leads to a decrease in 18 

background understory mortality rates by a factor 
ଵଶ ሺͳ + ܽ௠௢௥௧ሻ ≈ ʹ.ͷ from establishment to 25 cm 19 

diameter. Mortality parameters ̅ߤ௖ and ̅ߤ௨ were estimated based on tree survival in the forest dynamic plot 20 

at BCI (see §10.4, Table S2). 21 

Annual background mortality of canopy trees is also associated with the generation of forest gaps 22 

following a disturbance. In tiles where vegetation is structured in more than one layer, the death of 23 

canopy trees triggers the formation of gaps with a reduced density of individuals and with marked 24 

differences in size structure. The model implements this mechanism taking advantage of the tiling scheme 25 

for land use and subgrid-scale heterogeneity as in previous versions of the Land Model (Shevliakova et al. 26 

2009; Milly et al. 2014).  27 

A tile affected by canopy tree death is split into two tiles; one is a new forest gap with an area equivalent 28 

to the total crown area of canopy trees that died, while the other covers the remaining area and preserves 29 
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forest structure before the disturbance, that is, an equal proportion of all the cohorts that inhabited the 1 

original tile (Fig. S2). The freshly formed forest gap tile only keeps trees in the understory that can 2 

additionally survive gap-associated, size-independent mortality (ߤ௨ � , here equal to 0.9 per gap formation 3 

event), intended to represent mortality due to damage from the fall of the canopy trees that died and 4 

from changed environmental conditions in the newly opened gap. The removal of trees in the newly 5 

formed gap tile provides the surviving trees with easier access to sunlight and water, potentially changing 6 

their fate and dynamics.  7 

 8 

3. Model parameterization 9 

Our strategy for model parameterization was hierarchical and structured in three stages. First, we 10 

reviewed the literature to identify parameters that are well constrained by direct experimental and field 11 

measurements and are relatively invariant across species. In most cases, these parameters describe the 12 

rates and thermal sensitivities of biochemical reactions and physiological processes associated with plant 13 

metabolic processes. Except when noted, these parameters were regarded as fundamental constants 14 

within the model.  15 

The second category of parameters involved quantities that show extensive variation among species and 16 

whose mean value can be estimated based on available data for tropical forests. The majority of these 17 

parameters relate to the morphology of simulated trees, including the allocation of assimilated carbon to 18 

different tissues. For instance, we assumed that the target for the investment in the growth of new 19 

branches was determined by the fraction of woody biomass in branches, ݌஻ோ , which was set as the 20 

average of all measurements available for tropical tree species in the Biomass And Allometry Database 21 

(BAAD, Falster et al. 2015). In other cases, the precise value of a parameter was inverted to match well-22 

established allometric relationships across species. For instance, the conversion from sapwood to 23 

heartwood depends on a quantity, �஺ௌ�, that varies depending on the scaling of tree height and crown 24 

area with trunk diameter (eq. ͵ͷ, §10.2). Thus, we constrained �஺ௌ� to match the observed relationship 25 

between sapwood area and trunk diameter across different tree species at BCI (Meinzer et al. 2001). These 26 

parameters enter the model as idealized values that guide changes in tree growth and allocation patterns 27 

for trees under different environmental conditions. Although setting these parameters as constants is 28 

seemingly at odds with observed variability in the field, combining data from multiple species enables 29 

confident estimates of overall mean values.   30 
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The third category of parameters involved quantities that have hardly been studied and thus remain 1 

highly uncertain. In this case, we took advantage of the model to determine suitable values depending on 2 

their ability to produce realistic NPP rates and stand-level biomass patterns. For instance, the ratio of total 3 

root surface area to the total leaf area, �ோ௅ , was tuned to match stand-level fine root biomass densities 4 

observed at BCI (Wurzburger and Wright 2015). Parameter tuning did not involve the set of emergent 5 

patterns used to assess model quality (i.e., individual tree growth rates, diurnal and seasonal cycles of 6 

photosynthesis and evapotranspiration, and tree size distributions), ensuring the independence among 7 

the data used to tune model parameters and the data used to assess model fit. Table S1 in the online 8 

supplement provides a complete list of model variables and parameters.   9 

 10 

4. Experimental design and simulations 11 

 Forest dynamics at BCI 12 

The first set of model experiments used as a test bed the tropical moist forest located at Barro Colorado 13 

Island (BCI, Panama). This benchmark location provides abundant information to parameterize and 14 

evaluate the model, including microclimatic, physiological, morphological and demographic data 15 

recorded since 1923 (Leigh 1999), and especially, following the establishment of the 50-ha forest 16 

monitoring plot in 1981 (Condit 1998; Hubbell et al. 1999; 2005). These data enabled the definition of the 17 

PFT and the assessment of vegetation patterns from individuals to the ecosystem scale. The model was 18 

run in a single cell, centered at 79.5 ºW, 9.5ºN, with flat topography and no water bodies. Simulations 19 

started by planting one monoculture cohort of seedlings in a single tile homogeneously covered by bare 20 

soil. Tile splitting remained active during the entire simulation to allow the coexistence of forest tiles with 21 

different characteristics within the model cell (see §2.3.2).  22 

The simulations featured alternative parameterizations of the single PFT based on the characteristics of 23 

four shade-tolerant canopy species. Specifically, the parameterizations were based on functional traits and 24 

performance measures recorded at BCI for Beilschmiedia pendula, Brosimum alicastrum, Prioria copaifera, 25 

and Quararibea asterolepis. These species are locally abundant (relative abundance in terms of % basal 26 

area > 1.9%) and they are representative of the variation in allometric scaling and in demographic rates 27 

observed for shade-tolerant tree species at BCI. Alternative PFT parameterizations assumed that species 28 

were identical except for canopy and understory background mortality rates, the allometric scaling of tree 29 

height and crown area, wood density and LMA (Table S2). Species-specific functional traits and 30 

performance measures were retrieved from BCI databases and from dedicated analyses based on BCI 31 
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census data (see §10.4 and Table S2 for further details). Model performance was evaluated in terms of the 1 

ability to reproduce patterns observed in remote sensing, eddy covariance, tree census, and litterfall data 2 

collected locally and in other tropical forests. 3 

 4 

 Large-scale patterns in biomass and size structure 5 

In a second set of experiments, the model was evaluated at multiple locations across the tropics to 6 

examine its ability to reproduce large-scale gradients in forest biomass and size structure. First, we used 7 

as a reference the set of stand level estimates of above ground biomass (AGB, Kg C m-2) available in the 8 

global Forest Carbon database, ForC (Anderson-Teixeira et al. 2018). We simulated forest dynamics for the 9 

subset of ForC plots covered by mature (age>100 years), intact tropical forests. Each plot was assigned to 10 

the nearest 1ºx1º cell of a regular grid with origin at 179.5ºW 89.5ºN (cell center) in order to extract the 11 

corresponding average meteorological conditions over the cell from Sheffield et al. (2006) forcing data set 12 

(see below). In cases in which multiple plots were located in the same grid cell, we used the average AGB 13 

as a reference. In a second set of model simulations, we examined changes in forest size structure across 14 

the tropics. We compared LM3PPA-TV predictions with observed size structure at the forest plots 15 

analyzed by Muller-Landau et al. (2006).  16 

 17 

 Boundary conditions and meteorological forcing 18 

Weather conditions varied during each simulation to account for diurnal, seasonal and multiannual 19 

impacts of meteorological forcing and climatic variability on vegetation dynamics. We relied on the 3-h 20 

atmospheric reanalysis fields from Sheffield et al. (2006) forcing dataset, which is available for the period 21 

1948-2010. The dataset uses a variety of observations to amend known biases in the NCEP/NCAR 22 

atmospheric reanalysis (Kalnay et al. 1996). Forcing data includes downward long- and short-wave 23 

radiation [W m-2], surface pressure [Pa] and wind speed [m s-1], precipitation [Kg m-2 s-1], 2 m air 24 

temperature [K], and specific humidity [kg kg-1]. We ran each simulation in a 20 year loop (1951-1971) 25 

using the Sheffield et al. (2006) forcing data at each target location. With this approach, we avoided long-26 

term trends associated with climate warming while retaining multiannual variation due to irregularly 27 

periodic climate phenomena such as El Niño Southern Oscillation (ENSO, McPhaden et al. 2006). All 28 

experiments assumed a constant CO2 concentration, [CO2] = 350 ppm.  29 

 30 
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5. Results 1 

 Forest dynamics at BCI 2 

The assessment of LM3PPA-TV at BCI relied on a series of monoculture experiments simulating the 3 

colonization of an empty gap following a perturbation. The model converged in approximately 200 years 4 

to an equilibrium above ground biomass density (AGB) of 16.48 [14.95, 17.65]90% kg C m-2 (mean and 90% 5 

central quantile interval for the last 100 years of a 500-year simulation). As the forest patch matured, the 6 

initial accumulation of biomass was accompanied by an overshoot in total abundance that settled through 7 

self-thinning towards an equilibrium density of 395 individuals per ha greater than 10 cm in diameter 8 

(compared with an observed average of 430, for 1982-2015, Rutishauser et al. 2020). The forest rapidly 9 

structured into three layers, with the top canopy layer accounting for 66.5% of total forest biomass. Mean 10 

leaf area index (LAI) in the model was 8.20 m2 of leaf per m2 of ground, which falls at the higher end of 11 

available field estimates (5.4-8.4; see Discussion for further details).  12 

Carbon fixation in the forest added up to an average gross primary production (GPP) of 2.99 [1.88, 13 

3.49]90% kg C m-2 yr-1 (Fig. 2), close to mean GPP estimates based on BCI eddy covariance data for July 14 

2012 to August 2017 (2.7 kg C m-2 yr-1), and within the range of tropical forest GPP estimates in the ForC 15 

database (mean 3.27 [2.87, 3.89]90% kg of C m-2 yr-1, n = 25; Anderson-Teixeira et al. 2018). Around 60% of 16 

GPP was devoted to autotrophic respiration to leave a net primary production (NPP) of 1.24 [0.33, 1.67]90% 17 

kg C m-2 yr-1 (Fig. 3). NPP predictions compared well with independent estimates for BCI based on 18 

satellite-derived radiation absorption by plants  (1.16 [0.85, 1.85]90% kg C m-2 yr-1, average of MODIS 19 

values for the period 2000-2014, Running et al. 2015) and with plot-based tropical NPP estimates from 20 

ForC (1.17 [0.85, 1.61]90% kg C m-2 yr-1, n = 18). The model predicted that approximately half of annual NPP 21 

is devoted to wood production (0.68 [0.52, 0.83]90% kg C m-2 yr-1, Fig. 3), of which one quarter corresponds 22 

to branch production to compensate branch turnover (26.5% [22.0, 32.0]90%). Thus, wood production less 23 

branchfall is estimated at 0.425 kg C m-2 yr-1, which compares with an average of 0.372 kg C m-2 yr-24 

1estimated by Meakem et al. (2018, their Table S2) from BCI forest plot data for 1990-2010. Modelled leaf 25 

litterfall averages 0.34 kg C m-2 yr-1, compared with the observed average of 0.32 kg C m-2 yr-1 for the BCI 26 

50 ha plot (S. J. Wright, unpublished data). 27 

Diurnal production and respiration cycles varied seasonally (Fig. 4). During the wet season, production 28 

tracked light availability with an average peak at noon at 24.2 [24.1, 25.5]50% µmol CO2 m-2 s-1 (slightly 29 

above the eddy covariance average of 22.9 µmol CO2 m-2 s-1). In the dry season, GPP diurnal cycles 30 

showed an early peak (~2h before noon) and a depressed maximum of 18.1 [12.9, 23.4]50% µmol CO2 m-2 31 
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s-1 (below the 20.4 µmol CO2 m-2 s-1 from eddy covariance data). Average daily gross production was 21% 1 

lower during the dry season (6.8 vs. 8.6 µmol CO2 m-2 s-1, Fig. 4), although stomatal water loss accounted 2 

for a higher proportion of evapotranspiration (77 vs. 58%). As a consequence, average ET rates remained 3 

comparable between the dry and the wet season (91.4 vs 98.3 W m-2), and resulted in an annual average 4 

ET of 96.2 [93.3, 99.9]50% W m-2. 5 

To assess the reliability of ecosystem level estimates based on LM3PPA-TV simulations, we further 6 

evaluated model predictions at the individual and population levels. Annual growth patterns in LM3PPA-7 

TV captured the marked contrast in production between canopy and understory trees (Fig. 5). Average 8 

annual trunk diameter increments for canopy trees growing at full light were similar to those observed 9 

(5.61 [4.00, 7.35]90% for the model vs. the observed 5.13 [0.34, 12. 48]90% mm yr-1), even if modeled 10 

distributions were less variable than observations. In the case of understory trees, the model captured the 11 

positive skewed distribution of annual growth rates, albeit mean growth rates were higher than field 12 

estimates (0.83 [0.22, 2.11]90% vs. the observed 0.69 [0.20, 2.02]90% mm yr-1).  13 

Background mortality and gap formation patterns in the model were prescribed. In contrast, carbon 14 

starvation represents an emergent mortality mechanism that was the main cause of early mortality in 15 

lower canopy layers and accounted for up to ~90% of the mortality of small-sized individuals (D < 10 cm; 16 

mainly recently recruited seedlings). Mortality by carbon starvation varied among years paralleling 17 

changes in water availability and lowered GPP rates during the dry season. Similarly, interannual 18 

fluctuations in recruitment success reflected variation in seed production (31 vs 24 g C m-2 in wet and dry 19 

years defined by the sign of annual precipitation anomalies, respectively); but note that Detto et al. (2018) 20 

found the opposite pattern using seed trap data. Observed reproductive litterfall averaged considerably 21 

higher, at 96 (SD 19) g C m-2 (S. J. Wright, unpublished data). 22 

Together, simulated growth, recruitment and mortality patterns in LM3PPA-TV resulted in a realistic size 23 

distribution that resembled the spectrum observed in the field (Fig. 6). The model predicted a size 24 

distribution consistent with a broken power law scaling (e.g., Farrior et al. 2016). Smaller size classes up to 25 

a diameter of ~75 cm consisted of understory individuals whose abundance declined by ~3/4 per 10% 26 

increase in diameter (power law exponent b = 2.75, very close to the estimate of 2.84 for trees above 20 27 

cm reported by Muller-Landau et al. 2006). Larger size classes were less crowded, and the decline in 28 

abundance became more pronounced due to enhanced growth rates in the canopy as the scaling of the 29 

size spectra transitioned to an exponential distribution (defined by the parameter 4.59 = ߣ). 30 
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The assessment revealed a moderate sensitivity of the model to alternative parameterizations of the 1 

tropical tree PFT. Ecosystem level fluxes were robust to the choice of the shade-tolerant BCI species used 2 

to parameterize the PFT, with small variations in GPP and NPP among monoculture runs (Fig. S4). Other 3 

patterns like the overall carbon accumulated in wood varied depending on canopy mortality rates and 4 

tree allometry. For instance, equilibrium AGB increased by a factor of ~1.5 in monoculture runs featuring 5 

the PFT parameterization based on Prioria copaifera; its low canopy mortality rate lead to the 6 

accumulation of a high density of large canopy trees (Fig. 6, Table S2).  7 

 8 

 Large-scale patterns in biomass and size structure 9 

LM3PPA-TV simulations forced under realistic weather conditions for 162 tropical sites resulted in one order 10 

of magnitude variation in AGB (Fig. 7). Model predictions of AGB were well-correlated with observed values 11 

(Pearson r = 0.4), with a mean absolute deviation of 5.5 kg C m-2. However, LM3PPA-TV was unable to 12 

simulate the extreme AGB values observed at some paleotropical locations (median and range AGB of 17.2 13 

[1.0, 24.4]Rg vs 15.4 [2.1, 36.7]Rg kg C m-2 for simulated and observed, respectively). There was an overall 14 

trend towards underestimation of AGB in the Paleotropics (mean bias -5.4 [-8.5, -1.2]50% kg C m-2), and slight 15 

over estimation in the Neotropics (+1.0 [-3.0, 5.3]50% kg C m-2).  16 

To better understand the emergence of large-scale gradients in biomass, we explored the relationships of 17 

observed and simulated AGB with mean annual temperature and mean annual precipitation in the forcing 18 

datasets. In the model, among-site variation in forest biomass mainly reflects changes in water availability, 19 

with a neat saturating relationship between simulated AGB and annual precipitation (Fig. S5). The same 20 

relationship was much weaker in the forest plot data and suggested instead a unimodal relationship with a 21 

peak in AGB at ~2200 mm yr-1 (Fig. S5). The relationship with annual mean temperature was unimodal both 22 

in model predictions and in observations, with a suggestion of a peak at ~24 ºC (Fig. S5).  23 

We further explored whether the simulation of realistic gradients in forest biomass reflected the ability of 24 

the model to capture changes in size structure across the tropics. Overall, there was qualitatively good 25 

agreement between LM3PPA-TV simulations and observed size structure across a set of locations spanning 26 

a gradient from wet to dry conditions (Fig. 8). The model captured variability in the abundance of different 27 

size classes, from the consistent smooth decay of abundance with size in humid forests (e.g., Sinharaja), to 28 

the sharp truncation of size structure due to the lack of large trees in dry forests (Mudumalai). However, 29 

model predictions deviated from observed abundances at large size classes, especially in dry locations, 30 
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where the truncation of size structures at comparatively small diameters resulted in the underestimation of 1 

tree abundance (Ituri-Edoro and Ituri-Lenda) or even prevented the simulation of viable forest (HKK Wildlife 2 

Sanctuary, not shown in Fig. 8). 3 

 4 

6. Discussion 5 

 Evaluating model performance at BCI 6 

The core development of LM3PPA-TV built on more than three decades of field research at Barro 7 

Colorado Island (BCI, Hubbell et al. 2005; Wright et al. 2010). This empirical effort informed the 8 

development and parameterization of an updated dynamic growth allocation scheme that was 9 

fundamental for the emergence of realistic ecosystem properties. Model-based estimates were within 20% 10 

of either satellite or ground-based estimates of forest production and biomass, and they resulted in a 11 

realistic size structure that mirrored the size spectra retrieved from forest plot inventories, which 12 

represents a remarkable achievement for a model of these characteristics (Fisher et al. 2018). 13 

In the model, the tree size distribution emerges from a complex interplay among changes in growth and 14 

demographic rates that depend on tree size and canopy position (Bohlman and Pacala 2012; Farrior et al. 15 

2016). The model implements a competitive advantage for large trees growing in the sun that is 16 

countered by structural limits to height growth (Muller-Landau et al. 2006). The explicit simulation of gap 17 

dynamics through the land tiling scheme, which is another distinctive feature of the ED (Moorcroft et al. 18 

2001) and LM family of models (Shevliakova et al. 2009; Milly et al. 2014), enabled the model to implicitly 19 

capture the distribution of patch ages and thereby contributed to the production of realistic tree size 20 

distributions. Together with the inclusion of tree height saturation, the new growth scheme improved the 21 

balance between biomass accumulation and losses and thereby suppressed the accumulation of 22 

extremely large trees in simulated forests, which are known to bias both forest structure and production 23 

estimates in other models – the so called big tree problem (Weng et al. 2015; Koven et al. 2019).  24 

Modeled tree growth rates were comparable to those observed in the field, reflecting a consistent balance 25 

between net production (well constrained by physiological parameters) and allocation to other 26 

compartments, notably reproduction and compensation for branch turnover. LM3PPA-TV introduced a 27 

new sapwood compartment to enable the turnover of branches that, due to a lack of direct 28 

measurements, was assumed to be a constant value of 0.05 yr-1. This translated into a predicted branch 29 

fall that accounts for a quarter of the total woody debris flux on BCI, a figure within the range observed in 30 

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



19 
 

the tropics (16-47%, Palace et al. 2008; Malhi et al. 2014; Marvin and Asner 2016), but above available 1 

estimates for BCI (Gora et al. 2019). Model predictions may also be sensitive to other poorly constrained 2 

processes like stem respiration, reproduction, and the production of root exudates, highlighting the need 3 

for continued observations to further constrain carbon fluxes in tropical forests.  Importantly, real tree 4 

growth rates are also reduced by liana infestation (Ingwell et al. 2010), which is not currently represented 5 

in the model.  6 

The model overpredicted leaf area index (LAI) in comparison with most other available estimates, albeit 7 

we lack direct measurements of this quantity for this site. The model predicted average LAI of 8.2 is higher 8 

than indirect estimates available at BCI based on locally collected optical methods (5.4 [3.0-8.0] (mean and 9 

range) by Wirth et al. (2001) and 5.9 [5.0-6.6] estimated by Detto et al. (2015, 2018)) or remote sensing 10 

data (e.g., MODIS LAI is always below 7.0), but showed better agreement with the allometric estimate of 11 

7.25 by Leigh (1999) or the optical measurements of Mora et al. (2014) (8.4±1.2; mean±SD). To our 12 

knowledge, the only direct measurement of LAI available for a tropical landscape, obtained using 13 

destructive sampling methods, was conducted by Clark et al. (2008) in a wet tropical forest in Costa Rica. 14 

They observed an average LAI of 6.00 [1.2-13.0], in good agreement with MODIS estimates of 6.10 for that 15 

site. An obvious explanation for the relatively high LAI values simulated by LM3PPA-TV lies in the choice 16 

of a target LAI* of 6.0 for canopy trees. This value is based on direct LAI measurements on individual trees 17 

of shade-tolerant species taken at the Metropolitan Natural Park of Panama, close to BCI (Kitajima et al. 18 

2005). Setting a lower target (LAI* = 4) decreases modeled LAI to 6.49 [5.99-7.10] and increases the mean 19 

number of canopy layers from 2.9 to 3.8; in better agreement with the 4 layers estimated at BCI by 20 

Bohlman and Pacala (2012). However, this also increased AGB from 16.5 to 20.3 kg C m-2, well above 21 

available estimates for BCI (Martínez-Cano et al. 2019).  Given the divergence of different indirect LAI 22 

estimates, there is a clear need for more direct sampling of LAI to evaluate and calibrate indirect estimates 23 

(Fang et al. 2019). 24 

 25 

 Large scale patterns in tropical forest biomass and size structure 26 

The ability of LM3PPA-TV monoculture experiments to capture a substantial fraction of large-scale 27 

variation in tropical forest biomass and size structure highlighted the robustness of the parameterization 28 

developed for BCI. This set of results reinforces the transferability of the model and its consistency under a 29 

range of disparate environmental conditions, with reliable AGB and size structure predictions from dry to 30 

wet forests covering a variety of forest types (from tropical deciduous and semi-deciduous forest to 31 
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evergreen, tropical rainforests). These experiments demonstrated a leading role for external 1 

environmental forcing in driving large-scale variation in forest biomass and size structure across the 2 

tropics and, more specifically, the sensitivity of model predictions to changes in water availability.  This is 3 

consistent with empirical analyses (e.g., Becknell et al. 2012, Lewis et al. 2013, Vilanova et al. 2018) as well 4 

as results from other models (e.g., Levine et al. 2016; Longo et al. 2019a,b). However, model simulations 5 

deviated substantially from observations under dry conditions and even failed to produce viable forests in 6 

locations with very low precipitation (i.e., 1000 mm per year). This highlights the need to implement 7 

multiple PFTs varying in hydraulic traits, and enable the emergence of variation in functional composition 8 

across sites and over time (Levine et al. 2016; Xu et al. 2016; Powell et al. 2018; Longo et al. 2019 a,b).  9 

Although LM3PPA-TV captured overall gradients in forest biomass with precipitation and temperature, it 10 

presented a structural bias between the two major tropical ecozones. There was a trend towards the slight 11 

overestimation of forest biomass in the Neotropics (Central, South American, and Caribbean) and 12 

substantial underestimation of forest biomass in the Paleotropics (Africa, Asia and Australia). The relatively 13 

minor overestimation in Neotropical sites could easily be ascribed to local conditions unaccounted by the 14 

model (e.g., effects of soil fertility, Lloyd et al. 2015, Wright 2019; local topography, Muscarella et al. 2019). 15 

However, these explanations seem inadequate to explain the large underestimation of forest biomass in 16 

the Paleotropics and the inability to simulate the extreme AGB values that confer this ecozone a 17 

disproportionate importance for carbon storage at the global scale (Taylor et al. 2019). These biases likely 18 

reflect the need to consider multiple, geographically restricted PFTs to capture biogeographic differences 19 

in floristic composition across the tropics (Slik et al. 2018), like the prevalence of tall-statured, high-20 

biomass species in the Paleotropics (Feldpausch et al. 2011; Banin et al. 2012; Taylor et al. 2019).  21 

Taken together, these results reinforce the need for at least two distinct sets of functional groups to 22 

reflect biogeographic effects on the functioning of tropical forests and their response to large-scale 23 

gradients in climatic forcing. Future extension of LM3PPA-TV to simulate multiple tropical tree PFTs 24 

simultaneously provides a strong framework to test alternative hypotheses and advance towards a 25 

mechanistic understanding of the emergence of large-scale gradients in forest biomass and size structure 26 

with respect to changes in demographic, allometric and hydraulic traits. This aligns with similar efforts that 27 

strive to balance model complexity with a sufficient representation of functional diversity to achieve 28 

realistic forest successional pathways and ecosystem fluxes across sites (e.g., Levine et al. 2016, Fyllas et al. 29 

2017, Marechaux and Chave 2017, Powell et al. 2018, Longo et al. 2019a,b, Koven et al. 2019).  30 

 31 
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 Current limitations and directions for future research 1 

The ability of LM3PPA-TV monoculture experiments to capture basic characteristics of the BCI forest and 2 

considerable large-scale variation in tropical forest biomass and size structure provides a benchmark to 3 

continue improving the representation of tropical vegetation dynamics in ESMs. A next step is a full-scale 4 

assessment of the transferability and scalability of LM3PPA-TV to the regional and global scales targeted 5 

by ESMs. The ability of the model to reproduce large-scale variation in stand biomass and tree size 6 

distributions is encouraging, but many more patterns remain to be evaluated. We anticipate that adding 7 

additional PFTs capturing variation in plant allometry and hydraulic traits within and across tropical 8 

biomes would further improve overall model performance at these scales, but this remains to be tested.  9 

There is also considerable scope for further improving the structure of LM3PPA-TV. One area for model 10 

improvement is the representation of mortality. Although the model implements demographic processes 11 

at the individual level, it lacks a mechanistic representation for mortality except in the case of carbon 12 

starvation (Weng et al. 2015). Background mortality and gap formation are parameterized as constant 13 

processes that depend only on tree canopy position (e.g. Johnson et al. 2018). The implementation of 14 

additional mortality mechanisms requires detailed knowledge about different sources of mortality, from 15 

the impact of weather extremes and fires to losses due to lianas and biotic agents. Unfortunately, our 16 

understanding of tropical tree mortality processes remains limited, hampering our ability to implement 17 

these mechanistically in models (McDowell et al. 2018).  18 

Another aspect that requires further analysis and development involves the characterization of plastic 19 

responses to seasonal and interannual variation in environmental conditions (Abernethy et al. 2018; Sakai 20 

and Kitajima 2019). There is mounting evidence that tropical trees modify their photosynthetic apparatus 21 

and other leaf traits, and alter reproductive strategies in response to changes in light, water availability 22 

and temperature (Wright and Schaik 1994; Wu et al. 2016, 2017). These responses have been linked to 23 

changes in water fluxes between the dry and wet season at BCI and to interannual variation associated 24 

with ENSO (Detto et al. 2018). Although LM3PPA-TV simulates emergent responses to seasonal changes 25 

in temperature and water availability, leaf and canopy traits are prescribed and remain constant. The 26 

strategy adopted in LM3 to represent temperate tree phenology (degree days and minimum tolerance 27 

levels, Shevliakova et al. 2009) cannot describe the constant turnover of leaves in ever-growing, tropical 28 

trees that, instead, require the implementation of dynamic leaf traits (Restrepo-Coupe et al. 2017; Xu et al. 29 

2016). Another challenge involves the representation of the ample diversity of reproductive strategies and 30 
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the variety of factors modulating the timing of reproduction (e.g. water availability Detto et al. 2018; 1 

Wright et al. 2019).  2 

The LM3PPA-TV model constitutes a useful tool to analyze the interacting impacts of atmospheric CO2 3 

fertilization, changing climatic conditions, and land use patterns on the dynamics of tropical forests. In 4 

particular, future analyses could address whether the high sensitivity to water availability and drought 5 

stress revealed by our analyses results in predictions of a weakened tropical forest carbon sink in the near 6 

future. The increasing pressure on tropical forests associated with changes in land use is another facet of 7 

global change that can be analyzed using ESMs (Bonan and Doney 2018). As a result of the balance 8 

between habitat loss and restoration, more than half of tropical forests are now secondary (Chazdon 9 

2014). Such heterogeneity in forest structure demands models which are able to simulate alternative 10 

successional pathways and its pace to recovery in order to predict carbon storage potential. Land model 3 11 

already accommodates changes in land use, disturbance and gap recovery dynamics explicitly through its 12 

tiling scheme (Shevliakova et al. 2009) and its fire module (Rabin et al. 2018). Together, these advances 13 

enable assessment of the resilience of tropical ecosystems to changes in land use. Importantly, the LM3 14 

dynamic soil module (Milly et al. 2014) can be extended to enable the assessment of soil erosion and 15 

degradation on forest recovery, including the impact of nutrient leaching and atmospheric deposition on 16 

nitrogen and phosphorous colimitation. 17 

 18 

 Conclusions 19 

The Land Model 3 for Tropical Vegetation (LM3PPA-TV) contributes a step towards a long-term, 20 

community effort to improve the representation of land vegetation processes in ESMs. LM3PPA-TV drew 21 

on empirical knowledge gleaned from long history of extensive research on the forest of Barro Colorado 22 

Island, Panama. The model introduces realistic assumptions about tree allometric scaling to reduce biases 23 

in biomass estimates, an updated growth allocation scheme to enable a dynamic partitioning of 24 

assimilated carbon among distinct compartments, hydraulic constraints on stomatal control, and a new 25 

compartment for tree branches and branch fall dynamics to constrain tree growth and to represent fluxes 26 

associated with coarse woody debris. This strategy enabled the simulation of realistic patterns of temporal 27 

and spatial variability in tropical forests over a broad range of scales, and equipped us with a model-28 

based tool to test the response of tropical forests to environmental stressors across the tropics. 29 

Experiments with LM3PPA-TV showed a major role for water availability in explaining large-scale variation 30 

in ecosystem properties across the tropical forest biome. These simulations also highlighted the need to 31 
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improve the characterization of plant responses to water limitation, incorporate multiple functional types 1 

including geographically restricted types, and to incorporate unaccounted effects associated with small 2 

scale environmental variation. The response of tropical forests to sustained threats associated with the 3 

multiple facets of global change remains highly uncertain. ESMs are emerging as an essential tool to 4 

assess tolerable stress levels and quantify how alternative emissions scenarios will impact tropical forests. 5 

LM3PPA-TV constitutes an important advance in the representation of tropical forests dynamics in ESMs. 6 
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9. Figures 1 

Figure 1. Schematic of a LM3PPA-TV land tile covered by vegetation. The model structures vegetation into 2 
distinct canopy layers that receive different amounts of light. Within each canopy layer, trees that belong 3 
to the same plant functional type are grouped into cohorts defined by tree size and density. Trees in lower 4 
layers are shaded by trees in higher layers; trees in the same layer do not shade each other. Within the 5 
canopy of individual trees, there is self-shading from higher to lower layers of leaves.  6 

 7 

Figure 2. Time series of annual GPP and NPP generated by LM3PPA-TV monoculture experiments run in a 8 
single 1º x 1º cell, with climate conditions corresponding to Barro Colorado Island (BCI), Panama (79.5 ºW, 9 
9.5ºN) (lines), in comparison with independent estimates of GPP and NPP on BCI (dots) and in other 10 
mature, intact tropical forests in the ForC database of Anderson-Teixeira et al. (2018) (vertical brackets). 11 
The simulation featured a single tree functional type parameterized for a shade-tolerant tropical forest 12 
canopy tree, specifically the BCI species Beilschmiedia pendula (see §4.1 for further details). The BCI 13 
estimate of GPP is based on eddy covariance measurements for July 2012 – August 2017 (2.7 kg C m-2 yr-14 
1); the BCI estimate of NPP is based on the average of MODIS data for the period 2000-2014 (1.2 kg C m-2 15 
yr-1, Running et al. 2015).  16 

 17 

Figure 3. Flow diagram showing the carbon fluxes in LM3PPA-TV simulations of the BCI forest, with band 18 
widths proportional to the flux sizes. The values shown are averages over the last 100 years of a 500-yr 19 
monoculture run (Beilschmiedia pendula PFT).  20 

 21 

Figure 4. Simulated and observed diurnal cycles of gross photosynthesis [µmol CO2 m-2 s-1] and 22 
evapotranspiration [W m-2] during the dry and wet seasons at BCI. The thick lines and shading represent, 23 
respectively, the median and 90% quantile intervals of LM3PPA-TV simulations. Green lines show field 24 
estimates based on eddy covariance flux measurements at BCI (continuous and dashed lines for the dry 25 
and wet seasons, respectively). For this analysis, the dry season was defined as 16 weeks starting on 26 
December 23, and the wet season as the rest of the year. Evapotranspiration integrates plant transpiration, 27 
fluxes due to the evaporation of ground water, and the evaporation of water intercepted by the 28 
vegetation during precipitation. 29 

 30 

Figure 5. Distribution of simulated (grey bars) and observed (green bars) annual diameter growth rates 31 
[mm yr-1] for canopy and understory trees on BCI. Observed growth rates were calculated from trunk 32 
diameter increments in five-year census intervals (see section §10.4 for further details, including the 33 
classification of trees as canopy vs. understory). Simulated growth rates correspond to the distribution of 34 
the annual average rates for Beilschmiedia pendula canopy and understory trees during the last 100 years 35 
of a 500-yr monoculture run of LM3PPA-TV.  36 

 37 

Figure 6. Observed (green dots) and simulated (other colors) tree size distribution (i.e., community size 38 
spectra) for BCI. Observed distributions are for main stems of all trees of all species in the 50 ha BCI 39 
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census plot in 2015. Simulated distributions are the averages over the last 100 years of 500-year-long 1 
monoculture runs of LM3PPA-TV parameterized with data for one of four shade-tolerant canopy tree 2 
species on BCI:  Beilschmiedia pendula, Brosimum alicastrum, Prioria copaifera, and Quararibea asterolepis. 3 
Each point represents a logarithmic tree diameter bin, with tree densities expressed per area of ground 4 
and per m of tree diameter.   5 

 6 

Figure 7. Observed vs. simulated total tree above ground biomass (AGB, Kg C m-2) across 162 mature, 7 
intact tropical forest sites. Observed stand level AGB estimates are from the ForC database (Anderson-8 
Teixeira et al. 2018). AGB predictions are based on LM3PPA-TV monoculture runs featuring the plant 9 
functional type parameterized from BCI data for the species Beilschmiedia pendula. Meteorological 10 
conditions were from the nearest 1ºx1º cell in Sheffield et al. (2006) forcing data.  11 

 12 

Figure 8. Simulated (black) and observed (green) tree size distributions in nine tropical forests within the 13 
Smithsonian ForestGeo network. Simulated distributions are the averages over the last 100 years of 500-14 
year-long monoculture runs of LM3PPA-TV parameterized with BCI data for Beilschmiedia pendula. 15 
Observed distributions are for trees of all species combined, as reported in Muller-Landau et al. (2006). 16 
Sites are ordered from wettest to driest.  17 

 18 
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