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Abstract: This paper examines the performance of a semi-distributed hydrology model (i.e., Soil 

and Water Assessment Tool; SWAT) using Sequential Uncertainty FItting (SUFI-2), 

Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and 

Particle Swarm Optimization (PSO). We applied SWAT to the Waccamaw watershed, a shallow 

aquifer dominated Coastal Plain watershed in the southeastern United States. The model was 

calibrated (2003-2005) and validated (2006-2007) at two US Geological Survey (USGS) gaging 

stations using significant parameters related to surface hydrology, hydrogeology, hydraulics, and 

physical properties. SWAT performed best during intervals with wet and normal antecedent 

conditions with varying sensitivity to effluent channel shape and characteristics. In addition, the 

calibration of all algorithms depended mostly on Manning’s n-value for the tributary channels as 

the surface friction resistance factor to generate runoff. SUFI-2 and PSO simulated the same 
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relative probability distribution tails to those observed at an upstream outlet, while all methods 

(except ParaSol) exhibited longer tails at a downstream outlet. The ParaSol model exhibited 

large skewness suggesting a global search algorithm was less capable of characterizing 

parameter uncertainty. Our findings provide insights regarding parameter sensitivity and 

uncertainty as well as modeling diagnostic analysis that can improve hydrologic theory and 

prediction in complex watersheds. Editor’s note: This paper is part of the featured series on 

SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 

2017 issue for the introduction and background to the series. 

 

(Key Terms: SWAT; Parameter Uncertainty; Shallow Aquifer; Modeling Diagnostic Analysis.) 

INTRODUCTION 

Rivers in the US Atlantic Coastal Plain flow through broad, densely vegetated floodplains with 

low topographic gradient, and are strongly influenced by groundwater dynamics of a shallow 

water table. Hydrologic simulation models must capture these interactions and to estimate flow 

accurately that aid sustainable water resources management in this rapidly growing region. Thus, 

some researchers have applied the Soil & Water Assessment Tool (SWAT) model to the forested 

wetland watersheds of the southeastern US (SEUS) Coastal Plain ( Wu and Xu, 2006; Feyereisen 

et al., 2007; Lam et al., 2010; Amayta and Jha, 2011; Joseph and Guillaume, 2013; Samadi et al., 

2014; Samadi, 2016). 

 

However, watershed modeling in the Coastal Plain landscape has inherently high levels of 

uncertainty associated with stochasticity, model structure, input parameters, initial conditions 

and measurement errors. Structural uncertainty comes from over-simplification of hydrological 

processes in the conceptual structure of a hydrology model, including the effects of wetlands or 

reservoirs (e.g., Yang et al., 2008), surface/groundwater interaction (e.g., Tian et al., 2012), or 

infrastructure (e.g., Yang et al., 2008). Input parameter uncertainty derives from spatial 

interpolation of model inputs (e.g., Baffaut et al., 2015a) or parameter non-uniqueness. Initial 

conditions and measurement errors are caused by in situ observations that can be collectively 

considered as data errors. 
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In recent decades, various mathematical methods have been developed to treat uncertainty and 

calibrate hydrology models. Methods to represent model parameter, state, and prediction 

uncertainty include Bayesian approaches (Beven and Binley, 1992; Kuczera and Parent, 1998; 

Thiemann et al., 2001; Vrugt et al., 2003b, 2009a; Abbaspour et al., 2007; Tonkin and Doherty, 

2009; Moore et al., 2010; Schoups and Vrugt, 2010; Laloy and Vrugt, 2012; Pourreza-Bilondi  

and Samadi, 2016; Pourreza-Bilondi et al., 2016), set-theoretic (Klepper et al., 1991; Vrugt et al., 

2001), sequential data assimilation (Madsen et al., 2003; Vrugt et al., 2005; Moradkhani et al., 

2005), stochastic optimization techniques (Duan et al., 1992; Eberhart and Kennedy, 1995), and 

multi-model averaging methods (Georgekakos et al., 2004; Ajami et al., 2007; Vrugt and 

Robinson, 2007). These methods differ in mathematical rigor, underlying assumptions about the 

residual error distribution, and how explicitly those assumptions are expressed in the modeling 

procedure.  

 

Among these, optimization methods and Bayesian algorithms are well known techniques 

available to research communities. Optimization is an appropriate method for solving continuous 

and discrete problems. Bayesian methods enable calibration of complex multivariate 

distributions by casting them as the invariant distribution of a Markov chain (MC: McMillan and 

Clark, 2009). The Particle swarm optimization (PSO; Eberhart and Kennedy, 1995) and the 

Parameter Solutions (ParaSol; modified algorithm of Duan et al., 1992) procedures are two 

optimization and uncertainty analysis techniques used in this study. The generalized likelihood 

uncertainty estimation (GLUE; Beven and Binley, 1992) and the Sequential Uncertainty FItting 

algorithm (SUFI-2; Abbaspour et al., 2004) are two well-known (informal) Bayesian models that 

propose a pragmatic approach to uncertainty estimation (Schoups and Vrugt, 2010). Both 

Bayesian and optimization algorithms have found widespread applications in hydrology because 

of their flexibility and suitability for applying in a number of simple to complex research 

problems. 

 

Despite the importance of addressing uncertainty in complex hydrological systems, few studies 

have compared various uncertainty algorithms in the coastal plain watershed, and these are either 

limited to applications of simple uncertainty model (e.g., Amatya and Jha 2011) or one Bayesian 

algorithm (e.g., Joseph and Guillaume, 2013; Samadi, 2016). In particular, no relevant studies 
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have used a range of uncertainty and optimization experiments to simulate hydrological variables 

in the Coastal Plain watersheds with extensive alluvial and non-alluvial forested wetlands and 

riparian storage.  

 

This study is thus a first attempt to link the SWAT semi-distributed hydrology model with 

various optimization and uncertainty algorithms (i.e., PSO and ParaSol, GLUE and SUFI-2) in a 

coastal plain watershed of SEUS. The first objective of the study is to identify and quantify the 

uncertainty associated with daily streamflow simulation using various techniques during wet, 

moderate, and dry hydrological conditions. The second objective is to investigate: (i) how 

parameter uncertainty affects model performance? (ii) how the sensitivity of SWAT parameters 

varies in different uncertainty algorithms? and (iii) what is likely the role of shallow water table 

in runoff generation? Here, we aim to better understand the interaction between surface and 

subsurface flow and the way in which shallow aquifer shapes and controls Coastal Plain 

simulation. This is a substantial challenge as this type of simulation is tempered by the 

heterogeneity in physical characteristics of watershed (soil moisture, evapotranspiration, etc.), 

complexities in storage capacity due to extensive alluvial and non-alluvial forested wetlands and 

riparian storage, and difficulties in computing subsurface contribution to the river system (see 

Shirmohammadi et al., 1986; Amatya and Jha, 2011). In the pursuit of model parameter 

uncertainty, we proposed several diagnostic analyses to test model identification and information 

content of simulation, and to ensure that models are ‘working for the right reasons’ (e.g., 

Kirchner, 2006). 

 

The SWAT Calibration and Uncertainty Programs (SWAT-CUP; version 2012) framework was 

used to infer these techniques and to assess parameter sensitivity. Using multiple uncertainty 

algorithms, we present an integrated picture of the state of the art of hydrological simulation for 

a complex landscape from a parameter uncertainty perspective. We evaluate the models in terms 

of parameter uncertainty and their ability to simulate daily observed streamflow. Accurate 

hydrogeological parameterization of a Coastal Plain watershed and consequent improvement in 

explaining model sensitivity and parameter uncertainty, and diagnostic analysis are also 

explored.  
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METHODS 

Study Area 

The Waccamaw River watershed (hydrologic unit code 03040206, area=311, 685 ha) is on the 

lower Coastal Plain of eastern North and South Carolina (Figure 1). The watershed has little 

topographic gradient (99% is < 5% slope), wide floodplains, and complex groundwater 

characteristics due to poorly drained soils, a shallow water table, and extensive wetlands. 

Elevation ranges from 6 – 46 m above mean sea level. The watershed is in a humid subtropical 

climate with hot summers and mild winters. Precipitation in the basin falls almost exclusively as 

rainfall, with an annual average of 1309 mm during the study period (2003-2007). 

 

The downstream reaches of the Waccamaw River are tidally influenced, so this modeling study 

focused on the non-tidal portion of the river. Streamflow data from two US Geological Survey 

(USGS) gaging stations, at Freeland (34°05'42N, 78°32'54W) and Longs (33°54'45N, 

78°42'55W), were used as subwatershed outlets (Figure 1). Daily precipitation, minimum and 

maximum temperature, wind speed, and solar radiation were obtained from climate stations at 

Loris, Whiteville7, and Longwood, all located in North Carolina (Figure 1). Data from these 

stations were interpolated using Thiessen polygon and Inverse Distance Weighting (IDW) 

methods to capture the spatial continuity of rainfall fields in the study area. 

 

Waccamaw land use information was obtained from USGS National Land Cover Data portal on 

13 Sep 2012 (http://viewer.nationalmap.gov/viewer/). Forested wetlands were the dominant land 

use, occupying approximately 28% of the watershed (Table 1). Agricultural uses were 26% and 

developed uses (residential, commercial, and industrial) were 5%. Much of the developed land is 

widely distributed in the watershed.  

Five soil series (i.e., Meggett, Croatan, Rains, Woodington and Norfolk) account for 78% of the 

watershed area and four land cover classes (i.e., WETF, FRSE, AGRR, and RNGB) cover 86% 

of the area (see Table 2). Meggett soils are found in the broad floodplains along lower Coastal 

Plain streams and rivers. Woodington, Rains, and Norfolk soils are found in interfluvial areas. 

All five series are hydric soils. Croatan soils are often found in non-alluvial wetlands. They are 

exclusively in the eastern section of the watershed, which is part of the Green Swamp (Riggs et 

al., 2000). 
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Approximately 90.5% of the soils are one of four series, all of which are either hydrologic group 

B, D, or B/D. Only 9.5% of the soils are hydrologic group A; there is no group C soils (Table 2). 

Hydrologic group D soils (poorly drained) are adjacent to the main channel and hydrologic group 

B and B/D soils (mostly of the Rains series in the downstream reaches) adjacent to those. 

 

SWAT Model 

SWAT is a watershed modeling program developed by the US Department of Agriculture 

(USDA)–Agricultural Research Service (Arnold et al., 1998) to simulate hydrology and water 

quality at various scales. It was developed to predict the impact of land management practices on 

water, sediment, and agricultural chemical yields in large complex watersheds with varying soils, 

land use, and management conditions (Neitsch et al., 2004). ARCSWAT 2009 (Aeronautical 

Reconnaissance Coverage SWAT; version2009.10.1) was used for this research. The SWAT 

system is embedded within a geographic information system (GIS) that integrates various spatial 

environmental data including soil, land cover, climate, and topographic features. Information on 

major soil types, soil hydrologic groups, and soil layer properties was obtained from USDA 

STATSGO database (http://websoilsurvey.sc.egov.usda.gov/App/HomePage.html). This 

simulation was initially performed within ARCSWAT; then the outputs were linked to different 

uncertainty models. We also ran SWAT manually when it was needed for instance, when we 

used different modules for evapotranspiration estimation methods, river routing model, model 

optimization, etc. User can change the SWAT output files (e.g., .rch) and rerun the SWAT 

executable file. 

 

ARCSWAT subdivided the Waccamaw River watershed into 28 sub watersheds (see Figure 1) 

and 2020 Hydrologic Response Units (HRUs) connected by a stream network. The HRUs vary in 

terms of land cover, forest-covered area, cultivation, and hydrologic behavior. HRU definition 

was established at a 0% threshold for slope, soil, and land use layers to avoid missing small land 

use units.  

 

The hydrological cycle simulated in SWAT is based on the water balance equation found in 

Arnold et al., (1998). This research used the Priestly-Taylor (P-T; Priestly and Taylor, 1972) 
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evapotranspiration method because this radiation-based method produced better results in a 

forested wetland ecosystem with wet and humid surfaces (Samadi, 2016). The Muskingum 

method (Schroeter and Epp, 1988) was used for channel flow routing module for this study. 

SWAT estimates the surface runoff volume from each HRU using either the Soil Conservation 

Service (SCS) curve number (CN) method (USDA-SCS, 1972) or a new CN method that 

includes a one-parameter soil moisture depletion curve (see Kannan et al., 2008) to account for 

antecedent soil moisture conditions (CN ranges 25 to 98 in the SWAT model). We used the 

improved one-parameter depletion coefficient for adjusting the CN based on plant ET. This new 

approach is more suitable for watersheds with low storage soils and dense vegetation (see 

Kannan et al., 2008).   

 

In this research, SWAT was calibrated using 18 parameters related to surface runoff, soil 

properties, river hydraulics and groundwater parameters (see sensitive parameter section for the 

list of parameters). In addition, global sensitivity analysis was implemented to perform the 

sensitivity analysis. This was conducted by allowing all parameters to be changed from their 

absolute values during the simulation period (see Samadi and Meadows, 2017 for further 

information). 

 

SWAT was calibrated using different starting points. Each simulation period was shifted by 1 

year, such that subsequent periods have 2 years of data in common. Overall, five different 

calibration periods were considered (i.e., 2003-2005, 2004-2006, 2005-2007, 2003-2006, and 

2004-2007) and parameter sensitivity was evaluated for each data set. Model sensitivity did not 

vary significantly during those subsequent periods, suggesting that 3 years of daily streamflow 

data contain enough information about parameter estimation for the watershed. Since no 

significant variations in parameter estimates between different calibration periods were 

anticipated, this study used 2003-2005 and 2006-2007 as calibration and validation periods, 

respectively. We used 2000-2002 as warm-up period as well.  

 

Figure 2 illustrates the SWAT modeling steps and the link between SWAT and the uncertainty 

algorithm at the watershed scale. Inputs for SWAT come from observed meteorological records 

(rainfall, temperature, etc.) and physical variables (land use, elevation) in the basin. These 
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variables drive empirically-derived estimates of baseflow and the more processed-based SWAT 

model. Simulated hydrological response (i.e., modeled streamflow) was calibrated using 

optimized parameters and compared to measured streamflow. The fit between the simulated and 

observed values was quantified with a variety of objective functions. Note that while 

uncertainties in rainfall-runoff prediction come from variety of sources (i.e., model structure, 

parameters, initial conditions, and measurement error, Vrugt et al., 2003; Liu and Gupta, 2007), 

this study focuses on parameter uncertainty associated with daily streamflow modeling.  

 

 

SWAT-CUP Program  

The SWAT Calibration and Uncertainty Procedures program is designed to aid model calibration 

by integrating several calibration/uncertainty analysis approaches using a single interface. Each 

SWAT-CUP calibration algorithm runs until an objective function is satisfied (in this study 

Nash-Sutcliffe Efficiency (NSE); Nash and Sutcliffe, 1970). Users select the candidate 

parameters considering dominant hydrological processes based on knowledge of a basin or in 

reference to those suggested in the literature. The four algorithms in this research are briefly 

described below. More descriptions can be found in Abbaspour (2013). 

 

SUFI-2: The SUFI-2 technique, as a Bayesian framework, starts by assuming a large parameter 

uncertainty within a physically meaningful range, so that the measured data initially fall within 

95PPU (95% prediction uncertainty band; 95PPU). The uncertainty band is narrowed during 

each iteration while monitoring the p- and r-factors (defined in Model Performance Evaluation 

section). In each iteration, SUFI-2 updates the previous parameter ranges by calculating the 

sensitivity matrix (equivalent to Jacobian) and the equivalent of a Hessian matrix (Magnus and 

Neudecker, 1988), followed by the covariance matrix. Parameters are then updated in such a way 

that new ranges are always smaller than previous ranges and are centered on the best simulation 

(Abbaspour et al., 2004 and 2007). In this algorithm, uncertainty of input parameters is depicted 

as uniform distributions, while model output uncertainty is quantified at the 2.5 % and 97.5 % 

levels of the cumulative distribution function (CDF) of the output variables obtained through the 

Latin Hypercube Sampling method (McKay et al., 1979). Thus, parameter uncertainty reflects all 

potential sources: the conceptual model, model inputs, and model parameters. SUFI-2 first 
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defines the goal function  with meaningful parameter ranges . Then, a Latin 

Hypercube sampling is carried out in the initial hypercube  to evaluate the 

corresponding goal function and to perform the sensitivity analysis (based on sensitivity matrix 

and the parameter covariance matrix). The 95PPU of a sensitive parameter is then computed to 

find the best solutions (i.e., parameters that produce the optimal goal function). The 95PPU and 

two indices (i.e., p-factor and r-factor; defined in Model Performance Evaluation section) are 

then calculated. If those two factors have satisfactory values, the parameter range travels from

 to as the posterior parameter distribution. Based on Bayes' theorem, the 

probability density of the posterior parameter distribution will be driven from the prior density 

function to calculate the likelihood function of the model (see Yang et al., 2008). SUFI-2 (or any 

other algorithms) uses the same parameter sets for sensitivity analysis, uncertainty assessment 

and calibration. Three iterations, with 500 runs in each iteration, were conducted for calibration 

using the SUFI-2 method (and for the rest of algorithms except GLUE). After each iteration, the 

parameter ranges were updated as the prior distribution for the next iteration. 

 

GLUE: The generalized likelihood uncertainty estimation methodology of Beven and Binley 

(1992), inspired by the Hornberger and Spear (1981) method of sensitivity analysis, was one of 

the first attempts to represent predictive uncertainty in hydrology. This method maps the 

uncertainty in the modeling onto the parameter space and operates within the context of Monte 

Carlo analysis coupled with Bayesian estimation and propagation of uncertainty (Blasone et al., 

2008). This approach, based on the concept of equifinality (Beven and Binley, 1992), argues that 

many parameter sets can typically provide acceptable (or ‘‘behavioral’’) simulations of an 

environmental system. GLUE randomly samples a large number of parameter sets from the prior 

distribution and each set is classified as either behavioral or non-behavioral through a 

comparison of the “likelihood measure” with the given threshold value. Finally, the prediction 

uncertainty is described as prediction quintile from the cumulative distribution realized from the 

weighted behavioral parameter sets (Abbaspour, 2013). Five GLUE simulation runs were 

performed with sample sizes of 2,000, 6,000, 8,000, 12,000 and 20,000. Different threshold 

values (i.e., 0.5, 0.60, 0.65, and 0.70) were also chosen. The result of 20,000 runs with the 

threshold value of 0.60 was used to summarize the 95 PPU in this study. 

)(θg [ ]maxmin, absabs θθ
[ ]maxmin, absabs θθ

[ ]maxmin, absabs θθ [ ]maxmin,θθ
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ParaSol: The ParaSol method aggregates objective functions (OF’s) into a global optimization 

criterion (GOC) and minimizes these OF’s or GOC using the Shuffle Complex (SCE-UA) 

algorithm (Abbaspour, 2013). The SCE algorithm is a global search algorithm that combines the 

direct search method of the simplex procedure with the concept of a controlled random search of 

Nelder and Mead (1965), a systematic evolution of points in the direction of global 

improvement, competitive evolution (Holland, 1975), and the concept of complex shuffling 

(Abbaspour, 2007). The SCE algorithm minimizes a single function for up to 16 parameters 

(Duan et al., 1992) and selects an initial “population” by random-sampling throughout parameter 

space to optimize each model parameter. After optimization of the modified SCE-UA, the 

simulations are divided into “good” and “not good” simulations using a threshold value (similar 

to the GLUE methodology). Next, the prediction uncertainty is constructed from “good” 

simulations based on an objective function (here NSE).  

 

PSO: Particle swarm optimization is a population-based stochastic optimization technique and 

shares many similarities with evolutionary computation techniques such as Genetic Algorithms 

(GA). Compared to GA, PSO is easier to implement and there are fewer parameters to adjust 

(Abbaspour, 2013). In each iteration, each particle is updated by following two "best" values 

(Abbaspour, 2013). The first one is the pbest solution, the best solution so far (fitness). Another 

"best" value that is tracked by the particle swarm optimizer is the best value, obtained so far by 

any particle in the population (Eberhart and Kennedy, 1995). Initially, the upper and lower 

bounds of sensitive parameters are specified in the PSO algorithm. The values for the parameters 

are generated randomly within the bounds for each particle. These parameters are then fed into 

the SWAT model. Next, the fitness function is evaluated based on a defined objective function. 

The fitness evaluation of the particle is compared with the pbest value. If the current value is 

better than pbest, pbest is set equal to the current value in dimensional space. The fitness 

evaluation is then compared with the overall prior best value. If the current value performs better 

than gbest (i.e., global best, the best values of each individual), gbest is reset to the current value 

of the particle’s array index. The velocity and position of the particle are then changed according 

to the current value. Next, the particle navigates a potential solution toward pbest and gbest 
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through stochastic mechanism. More information on PSO algorithm can be found in Eberhart 

and Kennedy, (1995). 

 

Model Evaluation and Diagnostics  

The basic criteria used to evaluate model performance are: NSE, Mean Square Error (MSE), p-

factor, and r-factor. The NSE (Equation 1) is used frequently to evaluate model performance 

(Nash and Sutcliffe, 1970).  

 

                                                                         (Equation 1) 

    

 

Where , Oi and Si

 

 are mean of observed data, daily observed and simulated values, 

respectively. NSE is sensitive to extreme values like peak flow. NSE values between 0.0 and 1.0 

are generally considered acceptable, with 1.0 being a perfect match between the model and 

measured data (NSE>0.65 considers good and very good), the values between 0.50 and 0.65 are 

considered satisfactory and NSE<0.50 is unsatisfactory (see Moriasi et al., 2007). Values less 

than 0.0 indicate the mean of the observed values are better predictors than the model (e.g., 

Krause et al., 2005; Moriasi et al., 2007, 2015). Limitations of the NSE are oversensitivity to 

extreme values because differences are squared (Harmel and Smith, 2007; Willmott et al., 2015) 

and sensitivity to hydrograph shape (Moussa, 2008).  

The MSE (Equation 2) is defined as: 

   

                                                   (Equation 2) 

 

Where n is the number of pairs of measured (x-measured) and simulated (x-simulated) variables 

and j represents the rank (Abbaspour, 2013). The MSE is highly influenced by the magnitude of 

the difference between observed and simulated values. It is useful for assessing the relative 

magnitude of the bias among models (Abbaspour, 2013).  
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The p-factor is the percentage of data bracketed by a 95PPU (maximum value is 100%), and an 

r-factor (or d-factor; Equations 3 and 4), is the average width of the uncertainty band divided by 

the standard deviation of the corresponding measured variable (minimum value is zero; 

Abbaspour et al., 2004, 2007). Theoretically, the value for p-factor ranges between 0 and 100%, 

while the r-factor ranges between 0 and infinity. A p-factor of 1 and r-factor of zero represents a 

simulation that corresponds exactly with measured data. 

 

                                                                                                      (Equation 3)  

                                                              (Equation 4)  

Where  is the average distance between the upper and the lower 95PPU, XU and XL

 

 represent 

the upper and the lower boundaries of the 95PPU, while σx is the standard deviation of the 

measured data.  

From these indices, we selected NSE as the likelihood function since it is widely used as an 

objective measure in hydrologic simulations (Beven and Freer, 2001; Yang et al., 2008). The 

cutoff threshold to separate “behavioral” from “non-behavioral” parameter sets is another 

subjective choice within an uncertainty algorithm. The selection of the threshold value is an 

entirely arbitrary choice that affects prediction uncertainty (e.g., Montanari, 2005; Mantovan and 

Todini, 2006). Small cutoff thresholds lead to larger “behavioral” simulations and larger 

uncertainty bands whereas greater threshold values decrease the numbers of “behavioral” models 

and reduce 95PPU (Blasone et al., 2008; Sellami et al., 2013). Based on our trial-error 

approaches, when we set SWAT’s objective function on NSE values, and considered cutoff 

thresholds in a range of 0.55 (SUFI-2, PSO) to 0.60 (GLUE and ParaSol), the model simulated 

low flow, peak flow, and hydrograph recession curves more accurately. 

 

We also compared the output from the four uncertainty algorithms in terms of parameter 

sensitivity by checking the p-value (values close to zero suggest high level of significance) and 

the t-stat (a measure of sensitivity, larger absolute values are more sensitive) of calibration 

results. In addition, model diagnostic analysis including violin plots, marginal posterior 
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distribution, and autocorrelation plots of residual errors, were used to explore error significance 

in simulation.  

 

A violin plot is a boxplot combined with kernel density plots, added on each side of the boxplot, 

to exhibit the probability distribution of the data set. A marginal posterior distribution specifies 

the posterior distribution for a subset of the model parameters independent from other 

parameters. In probability theory, posterior density aims to display how the probability of 

(optimized) sensitive parameter ranges can vary as a function of the integral of the parameter’s 

density over the area under the density function (the lower and upper values of the optimized 

parameter).  It is calculated by dividing the range of optimized parameters obtained by different 

uncertainty algorithms, into a number of discrete "bins" of equal width. The degree of bias in 

parameter estimation can be also checked by inspecting the densities of parameter distribution. 

This approach was applied to high sensitive parameters obtained by four uncertainty algorithms.  

 

In the context of model diagnostic analysis, checking for autocorrelation is typically a sufficient 

test of randomness since the residual errors from poor fitting models tend to display non-subtle 

randomness (i.e. deterministic randomness that lacks a pattern). Autocorrelation of residuals 

reveals information not accounted for in the (uncertainty) model; indicating heteroscedasticity 

and nonnormality in the modeling (see Sorooshian and Dracup, 1980). These diagnostic 

approaches provided reliable insights into the behavior and magnitude of simulation error over 

time.  

 

RESULTS  

Flow Calibration and Validation Using the SUFI-2 Algorithm 

SWAT performed well when parameters were fitted with the SUFI-2 algorithm, achieving NSE 

values greater than 0.71 during the calibration and validation periods (Table3; Figures 3 & 4). 

The p-factor and r-factor indicated that there was some uncertainty in simulating low flows at 

both Freeland and Longs outlets. When parameters were fitted with SUFI-2, SWAT consistently 

overestimated streamflow during the summer periods (low flow), which suggests that 

characteristics of base flow are not well represented by the model. It is also possible that ET was 
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underestimated during the growing season or that spatial and temporal variability of precipitation 

was not appropriately characterized in the model.  

 

The 95PPU computed by SUFI-2 bracketed most observations during 2004, 2005, and 2006, 

whereas it slightly overestimated the magnitude and shape of recession curves in 2003 and 2007 

(Figures 3 and 4). This indicates high rates of uncertainty in the recession calculation within 

SWAT as seen elsewhere (e.g., Yang et al., 2008). To further understand hydrologic processes in 

the basin, discharges during wet (2006), and dry (2007) years were validated individually. The 

wet year p-factor was over 90% of the observation while the dry year exhibited lower p-factor 

(51%; results not shown here). Our results demonstrated that precipitation in the wet period 

primarily contributes to surface flow and lateral flow while shallow aquifer is the primary 

contributor to river discharge during dry periods (e.g., Samadi and Meadows, 2017). Because the 

knowledge of SWAT parameters for simulating shallow subsurface flow is insufficient, the 

uncertainty of model parameters in simulated results was larger in dry years than in wet years.  

 

Calibration and Validation Using the GLUE Algorithm 

The Monte Carlo random sampler demonstrated that many parameter solutions with similarly 

good values of the NSE (>0.60) were within the posterior ranges. The NSE is 0.64 and 0.87 for 

calibration and 0.81 and 0.87 for validation at the Freeland and Longs outlets, respectively. 

These performances indicate that when the GLUE algorithm is used to calibrate SWAT 

parameters, there is good agreement between measured and simulated flows in both calibration 

and validation periods (Table 3; Figures 5 and 6) as most of the surface flow observations are 

bracketed by the 95PPU (>72%). The relatively larger r-factor value for the GLUE model 

compared to other methods indicates larger uncertainties may remain in simulation and GLUE 

overpredicted 95PPU as reported by Setegn et al. (2010) and Sellami et al. (2013). 

 

Calibration and Validation Using the ParaSol Algorithm 

ParaSol results indicated that most of the calibrated parameters influenced daily streamflow 

calibration. The sensitive parameters yielded by ParaSol were entirely different from other 

algorithms and thus showed significant variation in the ranking of sensitive parameters. While 

the method presented a good NSE, it did not bracket the observed flow satisfactorily, especially 
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during wet periods. For instance, only 15% of measurements at the Freeland gage and 25% at the 

Longs gage were bracketed by 95PPU during the calibration period (see Figures 7 and 8). 

Although, ParaSol approximated the global maximum of NSE values, it produced uncertainty 

band that was too narrow because of inaccurate assumptions about independently and normally 

distributed errors made by the model (see Yang et al., 2008). Thus, ParaSol estimated only a 

small portion (15%-25% percent) of the parameter uncertainty. ParaSol failed to summarize and 

derive the satisfactory prediction uncertainty; however, the best simulation matches observations 

well. This is related in part to error associated with the model structure, measurement and initial 

condition, which results in an underprediction of 95PPU.  

 

Calibration and Validation Using the PSO Algorithm 

PSO results indicated that most of the surface flow observations were bracketed by the 95PPU 

i.e., 87% and 79% of the observations during the calibration period in the upstream and 

downstream outlets. Periods of overestimation indicated that there were still mismatches, 

especially in the recession calculation (Figures 9 and 10). The NSE values were high for both 

calibration and validation periods at upstream and downstream portions (see Table 3). PSO 

produced large r-factor values (large uncertainty band) for both the calibration (>1.39) and 

validation (>1.23) periods. This might be attributed to the fact that PSO disregards parameter 

uncertainty associated with other sources such as the conceptual model and input data that are 

explicitly accounted by SUFI-2.   

 

Comparing the Results of Four Uncertainty Algorithms 

The model performance criteria used in this research were acceptable for all algorithms with 

SUFI-2 having the best overall fit and ParaSol the worst (Table 3). Some of the performance 

values were higher during validation than calibration. This may be because the validation 

interval was generally wetter than the calibration period so the relatively poor performance of the 

model during low flows would have less effect on model performance.  

 

SUFI-2, PSO, and GLUE produced the closest simulation of annual flows in most years. 

However, to some extent, some of peak flow values were not well simulated, which may be due 

to repeated precipitation events that leave the surficial aquifer close to saturated in the watershed. 
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Another important reason is that SWAT shows high sensitivity to both surface and subsurface 

runoff (see Sensitive Parameters section), although the timing of the peak is well reproduced at 

both outlets. In addition, the daily rainfall inputs and daily time step calculations are not 

sufficient during large storm events that occur at the end of a day since watershed response 

occurs a day later than simulated. Additionally, measured streamflow data have uncertainties, 

especially after major rainfall events when there is large or lengthy floodplain residency and 

standard rating curves do not apply (e.g., Herschy, 2008). Another reason may be attributed to 

the complex interactions among the water table, soils, floodplain, and stream channel that are 

highly variable and dependent upon antecedent conditions in the coastal plain watershed. 

 

At the Freeland outlet, the tendency was for all algorithms to underestimate total flow. 

Overestimation was more common at the Longs outlet. Simulations with all methods (except 

ParaSol) produced the closest fit at the Longs outlet compared to the Freeland outlet, indicating 

that uncertainty and errors associated with streamflow simulation have greater influence in the 

upstream portion of the watershed.  

 

Model performance was unsatisfactory in some intervals of low flow, but in most cases the 95% 

probability bands were not seriously affected and most simulated flows were positioned in the 

95% PPU band. Low flow estimates are mainly related to the deficiency of groundwater module 

in SWAT, which appears to underestimate Coastal Plain groundwater response. More 

importantly, shallow water tables may severely restrict the amount of water recharging to the 

river system. These shallow aquifers along with poor natural drainage created an excessive soil-

water condition that is difficult for most hydrology models to understand and capture their 

interaction. Computing this dynamics is much more difficult in riparian zone and wetlands areas, 

and reflects the fact that SWAT is less capable in computing saturated areas and soil storage 

capacity.  

 

 In addition, water-holding capacities of soils are low in the Coastal Plain watersheds. These 

collectively cause soil moisture deficiencies and create more difficulties in capturing subsurface 

processes and simulating low flow magnitude over time. Previous field based studies 

(Shirmohammadi et al., 1986) in the Coastal Plain also indicated that during dry periods the 
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water table in the riparian zone continued to be lowered by transpiration from the riparian forest. 

As the water table continues to drop, it may reach a level too low for the model to calculate its 

magnitude especially if rainfall does not occur. Eventually, this may lead to underestimation of 

low flow dynamics.  

 

Model performance during low flow intervals also may be influenced by the high spatial and 

temporal variability of precipitation during the wet season and by the sensitivity of the model 

results to initial conditions at the beginning of the dry season as advocated by Amatya and Jha, 

(2011). Other potential reasons include not considering the soil condition in the new curve 

number method and inadequate numerical implementation of Darcy’s equation in the 

model. SWAT keeps track of the amount of water recharging to the shallow aquifer system 

(delayed by GW_DELAY). Once it reaches the water table, SWAT releases that water to the 

river system at a rate determined by ALPHA_BF. Therefore, this insufficient knowledge may 

increase error and uncertainty in low flow simulation. In addition, SWAT showed more 

sensitivity to soil properties during high hydraulic periods when the interaction between surface 

and groundwater is high particularly in the forested wetland portion of the watershed. 

 

Modeling Performance Analysis 

A comparative analysis was conducted in two aspects: parameter sensitivities and model 

diagnostic analysis. 

 

Sensitive Parameters 

The sensitivity ranking of the parameters varied among the four algorithms (Table 4). Parameters 

related to channel hydraulics like Manning’s n-value for the tributary channels and curve number 

value showed more sensitivity to streamflow generation in all algorithms. Waccamaw 

streamflow depends mostly on Manning’s n-value; it is a major contributor to the uncertainty in 

streamflow prediction at both upstream and downstream outlets. Manning’s n-value depends on 

the surface friction resistance, form resistance, wave resistance, and resistance due to flow 

unsteadiness. There are some artificial channels and channelized streams in the upper basin that 

may complicate calculating a Manning’s n-value during flow simulation. Due to these 

complexities, the exact value of Manning’s n-value is often uncertain. Further, the shallow 
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aquifer system that is well connected to the river system makes definition of the Manning’s n-

value especially challenging for any hydrology model.  

 

Posterior density responses of the model parameters were visually investigated and the marginal 

posterior densities were constructed for sensitive parameters with high to moderate sensitivity 

(Figures 11 and 12). The x-axis in each graph is fixed to the prior range of each individual 

parameter to facilitate comparison of sensitive parameters. The y-axis is represented the relative 

likelihood for sensitive parameter to take on a given value.  

 

Comparing the parameter posterior distribution indicated that parameter values in the SUFI-2 

model tended to be uniformly distributed, and optimal parameter values were spread across the 

entire posterior range. In specific, parameter ranges from the GLUE method were wider than 

other models. This may be attributed to the fact that GLUE considers parameter correlations, 

whereas, for instance,  SUFI-2 does not. In the SUFI-2 method, all parameter sets from samples 

are set as behavioral parameters that contribute to the final uncertainties. In the GLUE method, 

parameter sets are viewed as behavioral parameter sets when their likelihood values are higher 

than the threshold value; the likelihood values below the threshold value is considered as 

nonbehavioral parameter sets and removed from further analysis. Only the behavioral parameter 

sets would contribute to the final uncertainty ranges. This may lead to more reasonable 

uncertainty ranges by the GLUE method, but in our research, uncertainty bands widened in the 

GLUE simulation.  

 

The posteriors distributions of some aggregate parameters in the GLUE model have obvious 

peak areas (e.g., CH_N2, CN2, OV_N, and SLSUBBSN; see Figure 11 and Table 4) that have 

significant influence on the results of model simulation. The correlations between most 

parameters in the GLUE model (the correlation matrix of the posterior distribution) are small 

except the correlations of CH_N2, CN2, OV_N, CH_K2, and SLSUBBSN (results not shown 

here). This indicates that the correlations between those sensitive parameters along with 

hydraulic conductivity in tributary channel (CH_K2) cannot be ignored in the GLUE simulation. 
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Saturated hydraulic conductivity (SOL_K), Manning's n-value for the main channel, and runoff 

curve number were three of the most sensitive parameters in the SUFI-2 analysis (see Table 4 

and Figure 12). All  are characteristics of upland and wetland sections of the watershed, so they 

can have several values depending on land use and soil type. Average slope length (SLSUBBSN) 

was one of the most sensitive parameters in all models except SUFI-2. This is the distance that 

sheet flow forms and dominates the surface runoff process then concentrates at the origin of the 

rill. I t appears that those methods showed more sensitivity to land use, topography and soil types 

because SLSUBBBSN largely depends on these physical characteristics.  

 

Manning's n-value for overland flow was one of the most sensitive parameters in PSO, GLUE 

and ParaSol models. This parameter controls water transmission in different land use categories 

(wetland, forest, pasture, etc.). Groundwater properties (GW_REVAP) and the soil evaporation 

compensation factor (ESCO) also showed sensitivity in ParaSol. This may be attributed to 

inadequate evapotranspiration and shallow aquifer parameterization in the SWAT model and the 

complexities in soil and groundwater system as discussed above. Table 4 presents the parameters 

chosen to calibrate streamflow and their ranks, and best parameter values estimated by SUFI-2.  

 

Based on SUFI-2 result, calibrated values of the CN ranged from 50 (Norfolk soil in evergreen 

forest) to 89 (Croatan soil in agricultural row crops; Table 5). As anticipated, higher CN values 

are associated with hydrologic group D and lower with group A (Table 2). For each soil series, 

the highest CN is associated with agricultural row crops, the cover class that is most likely to 

have the lowest infiltration rate of the four land cover classes. These results are aligned with 

expectations based on their landscape position and characteristics (see Tables 1 and 2 for soil and 

land use information). 

 

Calibrated values of the hydraulic conductivity range from moderately high (Meggett) to very 

high (Croatan and Norfolk; Table 5). For all soils the surface layer has higher conductivity than 

intermediate layers; Croatan and Norfolk have a lower layer with very high conductivity. The 

calibrated hydraulic conductivities are indicative of the dominance of sand and relatively small 

amount of clay in these soils. Loamy textures also are prevalent. 
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Based on these simulation results, it appears that additional refinement of our parameterization is 

required to represent surface flow generated from interfluvial uplands where most precipitation 

infiltrates prior to reaching the stream. Model performance also would benefit from additional 

work on the physical processes that occur in surficial aquifers within the alluvial floodplain 

storage along streams. 

 

Modeling Diagnostic Analysis 

The violin plots of the simulated streamflow are illustrated for all methods (Figures 13 and 14). 

These plots were created using both calibration and validation outputs generated by the models. 

The shape of the density mass function (or probability density function (PDF)) for SUFI-2 and 

PSO were very close to observations while ParaSol and GLUE, respectively, underestimated and 

overestimated the observed PDF. In addition, SUFI-2, PSO and GLUE exhibited approximately 

similar median values compared to observation. More dispersion and skewness were noted in the 

ParaSol estimated streamflow. The probability of streamflow values (longer density) is highest in 

the GLUE and the PSO models, correspondingly in upstream and downstream portions. The 25th 

and 75th percentile (thick black lines in Figures 13 and 14) range of PDF distribution is 

effectively narrowed by all models. SUFI-2 and PSO showed the same relative tails to observed 

values at the upstream outlet while all methods (except ParaSol) exhibited longer tails at 

downstream gage. Further, SUFI-2, PSO and ParaSol underestimated the 5th and 95th percentile 

ranges of streamflow values (thin black line in Figures 13 and 14) while GLUE provided better 

estimates at Freeland. SUFI-2 provided a close estimate of the 5th and 95th percentile ranges at 

Longs. 

 

Close inspections of the modeling residuals reveal that the errors are autocorrelated at the first 

lag in all methods (Figure 15). Autocorrelation is higher at Longs outlet than Freeland outlet. 

The residuals show that the model captures the patterns in the data during high lag at Freeland 

outlet and there is a large amount of autocorrelation left in the Longs residual. This suggests that 

the model can be slightly improved especially for Longs outlet. Note that the autocorrelation 

results are quite similar for SUFI-2, PSO and GLUE at both outlets. Since most of these errors 

are correlated, it seems that residuals have heteroscedasticity and nonnormality, especially at the 

downstream outlet. This indicates that error variance changes with the magnitude of streamflow 
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(heteroscedasticity) and skewness increases in modeling over time (nonnormality or 

inhomogeneity) as explained by Sorooshian and Dracup, (1980); Duan et al., (1992);  and 

Schoups and Vrugt, (2010). This reflects the fact that residual errors increases as linear and/or 

nonlinear function of mean/median streamflow, which may cause fluctuation in the simulation. 

 

Summary and Discussion  

This paper compares different uncertainty algorithms used with the SWAT semi-distributed 

hydrology model. SWAT was used to simulate daily streamflow during wet, moderate, and dry 

hydrological conditions at two streamflow gages in the southeastern US. Model analyses include 

assessment of model performance and diagnosis of model output during simulation period.  

 

Parameter uncertainty analysis revealed that all algorithms performed best during intervals with 

wet and normal antecedent conditions with varying sensitivity to channel shape and 

characteristics, soil and groundwater properties. Further, the calibration of all algorithms 

depended mostly on Manning’s n-value for the tributary channels as the surface friction 

resistance factor to generate runoff. This along with curve number parameter showed more 

sensitivity to daily streamflow simulation.  

 

SUFI-2 and PSO showed the same relative distribution tails compared to observation at the 

upstream outlet while all methods (except ParaSol) exhibited longer tails at the downstream 

outlet. In addition, large skewness and dispersion was defined by the ParaSol model (r-

factor<0.24 and p-factor<25%), suggesting that a global search algorithm is less capable of 

computing parameter uncertainty of a low gradient Coastal Plain watershed.  

 

The p-factor and r-factor computed using SUFI-2 bracketed more than 90% and 75% of the 

observed streamflow during the calibration and validation periods at upstream and downstream 

USGS gages in the watershed. Furthermore, the model predicted most peak flows with the least 

uncertainty and error. The model consistently overestimated low flows but performed relatively 

well during high flows, especially during periods with wet antecedent conditions. Specifically, 

SUFI-2 showed that the dry years had slightly larger prediction uncertainties than the wet years. 

This was because groundwater dominated the surface flow during dry periods, thus SWAT 
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inadequately simulated below ground processes. Good model performance during wet periods 

was related, in part, to higher daily discharge rates, and, thus, wider uncertainty bounds (e.g., 

Yang et al., 2008; Coxon et al., 2014). 

 

The differences in model performance for low flow events in upstream and downstream portions 

are related at least in part to the impact of wetland and saturated areas in modeling performance. 

The downstream gage that had lower performance (with larger portions of wetlands), used 

surface runoff parameterizations in which saturated areas are controlled by water storage in the 

shallow aquifer. Variability in saturated areas in this outlet has large control on model 

parameterization. This approach was not accounted for by SWAT due to its deficiency in 

generating saturated areas and saturation excess runoff (e.g., Lyon et al., 2004; Easton et al., 

2008; Schneiderman et al., 2007). However, Baffaut et al., (2015b) proposed adjustment of the 

percolation routine to better simulate saturation close to the surface, this approach was not 

explored in this research. These are reasonable interpretation of the model results; however, there 

are no measured data to assess if defined saturated areas by the model are realistic for the 

Waccamaw watershed. In this context, it is worth noting that no model has a mechanism for 

generating infiltration-excess runoff, and the saturated area parameterization may compensate for 

model weakness (e.g. Clark et al., 2008) particularly for the coastal plain with a typically wet 

surface. 

 

Diagnosis of model errors shows that the groundwater response to low flow events is quite 

consistent in that most algorithms either overestimate or underestimate low flow events. 

However, the consistency in model errors may also arise because errors in input data may affect 

different modules and processes of a watershed model in similar ways. Moreover, different 

uncertainty models may not bracket the measurement errors because the SWAT model, like other 

similar hydrology models, has similar weaknesses such as no mechanism for generating 

saturated areas and saturation excess runoff, and no vegetation submodel (the model domain 

extending from the top of the vegetation to the base of active groundwater i.e., the Earth’s 

Critical Zone’ see Anderson et al., 2008). In addition, errors in discharge data resulting from 

uncertainty in the stage-discharge rating curve might affect the simulation results especially 
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during repeated rainfall events when the measured values were extrapolated outside the range of 

the established rating curve.  

 

There has been a continued debate within the hydrological community regarding to the choice of 

the most suitable approach for uncertainty assessment to capture different sources of error and 

uncertainty (Schoups and Vrugt, 2010; Laloy and Vrugt, 2012; Beven et al., 2012; Pourreza-

Bilondi and Samadi, 2016; Pourreza-Bilondi et al., 2016). As with all methods of uncertainty 

analysis, our methods have their own limitations and other approaches could have been adopted, 

such as the use of multi-objective algorithm (Vrugt and Robinson, 2007; Sadeghi-Tabas et al., 

2016 a, b), and MCMC algorithm based on GL (generalized log-likelihood) function (Schoups 

and Vrugt, 2010; Laloy and Vrugt, 2012). However, the need for robust simulation given the 

complexities and difficulties in the coastal plain modeling meant that this study provided the 

basis for future model development and hypothesis testing. Here, the resulting simulation for 

each algorithm and the sensitivity and diagnostic analyses act as a guide to the dominant 

processes operating in the shallow aquifer dominated environmental system and additional 

analysis including field based research may be needed to conclude this definitively, alongside 

this type of analysis over many more coastal plain watersheds. 

 

Further work is also needed to evaluate model performance with respect to multiple criteria, 

including assessment of model performance based on flow duration curves (FDC), assessment of 

model performance in floodplain portion and water table processes, and assessment of model 

performance with respect to ‘‘diagnostic signatures’’ that are extracted from the data to explain 

different hydrological processes in the watershed (Gupta et al., 2008). More incisive diagnostic 

testing that does not depend solely on discharge data (e.g., McMillan et al., 2012) is needed, as is 

in-depth analysis of different parts of the hydrographs (low flow, peak flow, and recession 

curve). Future research will extend this methodology by using GL-based MCMC Bayesian 

method as well as data assimilation (DA) algorithm to many more coastal plain watersheds 

across the Southeast and advance our ability to simulate watershed response, benchmark 

watershed processes, and make skillful prediction in ungagged catchments.  
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Table 1. Distribution of land use defined with the SWAT model. 

Land use type Land use description    Area   

ha % 
WATR Open Water 4,890.5 1.6 
URLD Rural Residential 11,402.8 3.7 
URMD Medium Density Residential 2,902.8 0.9 
URHD High Density Residential 447.8 0.1 
SWRN South Western Range 421.4 0.1 
FRSD Forest and Woodland 248.8 0.1 
FRSE Evergreen Forest 84,253.9 27.0 
FRST Mixed Forest 4,362.3 1.4 
RNGB Range Shrubland 33,729.8 10.8 
RNGE Grasslands/Herbaceous 15,588.4 5.0 
HAY Pasture 249.6 0.1 
AGRR Agricultural Land-Row Crops 63,914.7 20.5 
WETF Forested Wetland 86,173.7 27.7 
WETN Non-forested Wetlands 2,990.9 1.0 
UIDU Industrial 107.4 <0.1 
Watershed Watershed area delineated by SWAT 311,684.9 100% 
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Table 2 Soil types in the Waccamaw River watershed. 

Series 

Name 

Hydrologic 

Group 

Drainage Class Area 

ha % 

Meggett D poorly drained 55,985.4 18.0 
Bohicket D very poorly 0.4 0.0 
Kenansville  A well drained 4,942.4 1.6 
Leaf D poorly drained 14,495.1 4.7 
Woodington B/D poorly drained 33,947.8 11.1 
Croatan D very poorly 47,311.4 15.2 
Rains B/D poorly drained 61,428.2 19.7 
Norfolk B well drained 44,762.2  14.4 
Autryville A well drained 8,903.4 2.9 
Leon B/D poorly drained 4,246.0           1.5 
Kureb A excessively well 1,561.4 0.5 
Trebloc D poorly drained 16,343.5           5.2 
Nansemond A moderately well 2,352.5 0.7 
Montevallo D well drained 3,507.3 1.1 

Osier D poorly drained 26.8              0.0 

Chisolm A well drained 11,871.3 3.8 
 

Table 3. Streamflow calibration and validation results for the Waccamaw watershed using SUFI-

2, PSO, ParaSol and GLUE. 

Objective Function Freeland Longs 
Calibration Validation Calibration Validation 

NSE SUFI-2 0.79 0.87 0.77 0.90 
PSO 0.79 0.85 0.76 0.91 
GLUE 0.66 0.87 0.81 0.87 
ParaSol 0.69 0.85 0.78 0.82 

p-factor SUFI-2 90% 61% 75% 52% 
PSO 97% 85% 92% 74% 
GLUE 100% 80% 97% 72% 
ParaSol 15% 18% 25% 21% 

 

r-factor 

SUFI-2 0.87 0.69 0.79 0.72 
PSO 1.47 1.39 1.23 1.40 
GLUE 1.85 1.20 1.53 1.27 
ParaSol 0.24 0.18 0.23 0.21 

MSE SUFI-2 57.89 94.74 325.70 140.02 
PSO 59.11 106.25 343.13 133.72 
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GLUE 99.69 95.04 269.07 306.17 
ParaSol 85.59 102.75 309.76 261.32 

 

Table 4. Selected parameters for uncertainty analysis and their prior distributions in SWATCUP 

and best parameter values estimated by SUFI-2 for the study watershed. 

Aggregate parameter Name of SWAT parameter 

Sensitive Parameter Rank 
SUFI-2 

best value 
SUFI-

2 
GLUE ParaSol PSO 

v__CH_N2.rte 
Manning's n-value for the main 

channel 
1 1 1 1 0.1 

r__CN2.mgt 
SCS runoff curve number for 

moisture condition II 
2 2 2 3 -0.11 

r__SOL_K().sol 
Saturated hydraulic 

conductivity (mm/hr) 
3 15 15 8 -0.27 

v__ESCO.hru 
Soil evaporation compensation 

factor 
4 16 3 17 0.88 

r__SOL_AWC().sol 
Available water capacity of the 

soil layer (mm H2O/mm soil) 
5 13 17 11 0.15 

r__CH_K2.rte 

Effective hydraulic 

conductivity in tributary 

channel alluvium (mm/hr) 

6 5 7 14 0.01 

r__ALPHA_BF.gw Base flow alpha factor (days) 7 8 9 5 0.36 

r__GW_REVAP.gw 
Groundwater "revap" 

coefficient 
8 17 6 6 -0.1 

v__OV_N.hru 
Manning's n-value for overland 

flow 
9 3 4 2 0.34 

r__GWHT.gw Initial groundwater height (m) 10 14 8 16 1.5 

r__SOL_BD().sol 
Moist bulk density (Mg/m3 or 

g/cm3) 
11 7 13 12 0.13 

v__GW_DELAY.gw Groundwater delay time (days) 12 12 18 13 300.93 

r__RCHRG_DP.gw 
Deep aquifer percolation 

fraction 
13 10 10 10 0.77 

r__GW_SPYLD.gw 
Specific yield of the shallow 

aquifer (m3/m3) 
14 6 14 7 0.43 

v__LAT_TTIME.hru Lateral flow travel time (days) 15 9 12 18 156.6 

r__SHALLST.gw Initial depth of water in the 16 11 15 9 -0.18 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

shallow aquifer (mm H2O) 

v__EPCO.hru 
Plant uptake compensation 

factor 
17 18 11 15 0.41 

r__SLSUBBSN.hru  Average slope length (m) 18 4 5 4 0.54 

Aggregate parameters are constructed based on (SWAT-CUP user manual, Abbaspour, 2013). ‘‘v__’’ and ‘‘r__’’ means a 

replacement, and a relative change to the initial parameter values, respectively. 
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Table 5. SUFI-2 calibrated curve numbers and soil hydraulic conductivity. 

   Land Cover (%)      

 

 

 

Soil Series (%) 

Runoff Curve Number  Saturated hydraulic conductivity  

Forest 

Evergreen 

(27%) 

Range/Shr

ub (11%) 

Agri-row 

crop 

(21%) 

Forested 

wetland 

(28%) 

Soil layer 

Layer 

1 

Layer 

2 

Layer 3 Layer 4 

Meggett (18%) 71 72 82 77 130 7.3 3.8 63 

Woodington 

(11%) 

50 56 72 62 97 63 69 * 

Croatan (15%) 77 80 89 83 250 110 20 450 

Rains (20%) 51 56 72 61 110 18 15 14 

Norfolk (14%) 50 55 72 60 450 13 6.2 500 

*SWAT computed three layers only for the Woodington soil series.  

 

LIST OF FIGURES 

Figure 1 The 311,685 ha Waccamaw River Watershed used in SWAT. Model calibration, 

validation, and parameter sensitivity and uncertainty analyses were performed using 

data from USGS gaging stations at Freeland and Longs. Research data were retrieved 

on daily basis from the National Climatic Data Center (NCDC) and USGS portals on 

06 and 13 September 2012, respectively. Selected climate stations (Loris, Whiteville 7 

and Longwood) are distributed evenly through the watershed. 

 

Figure 2. Rainfall-runoff processes in the SWAT model and its linkage to uncertainty 

optimization algorithm. Note that SWAT calculates baseflow by analyzing measured 

streamflow during periods of no recharge in the watershed (see Winchell et al., 2007). 

Baseflow varies as the exponential function of the number of low flow days in the 

SWAT model. 

 

Figure 3. Daily calibration and validation streamflow in SUFI-2 at the Freeland station. The 

solid black line corresponds to the observed surface flow at the basin outlet, whereas 

the solid red line represents the best simulation obtained by SUFI-2. The grey and blue 
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shaded areas are the 95PPU of streamflow calibration and rainfall values – each large 

peak flow corresponds to high rainfall event (>50 mm) while small peak flows 

correspond to lower magnitudes rainfall events (< 20 mm). 

 

Figure 4. Daily calibration and validation streamflow in SUFI-2 at the Longs station. 

 

Figure 5. Daily calibration and validation streamflow in GLUE at the Freeland station.  

 

Figure 6. Daily calibration streamflow in GLUE at Longs station. 

 

Figure 7. Daily calibration and validation streamflow in the ParaSol model at Freeland station.  

 

Figure 8. Daily calibration and validation streamflow in the ParaSol model at Longs station. 

 

Figure 9. Daily calibration streamflow in the PSO model at Freeland station.  

 

Figure 10. Daily calibration and validation streamflow in the PSO model at Longs station. 

 

Figure 11. Marginal posterior probability distributions of sensitive parameters in the SWAT 

model inferred using PSO (the first row) and GLUE (the second row).  

 

Figure 12. Marginal posterior probability distributions of sensitive parameters in the SWAT 

model inferred using SUFI-2 (the first row) and ParaSol (the second and the third 

rows). 

 

Figure 13. Violin plots of observed and simulated daily streamflow using all algorithms for 

Freeland outlet. Thick black line and white dot show the 25th and 75th percentile 

range and median, respectively, and thin black line shows the 5th and 95th percentile 

ranges of streamflow values. 
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Figure 14. Violin plots of observed and simulated daily streamflow using all algorithms for 

Longs outlet. Thick black line and white dot show the 25th and 75th percentile range 

and median, respectively, and thin black line shows the 5th and 95th percentile ranges 

of streamflow values. 

 

Figure15. Autocorrelation plots of residual errors using SUFI-2, PSO, GLUE and Parasol 

models for Freeland (left column) and Longs (right column)outlets. 
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