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Abstract: This papeexamineghe performance of semidistributed hydrology model (i.eSoll

and WaterAssessment Tool; SWAT) using Sequential Uncertainty Fltting{QUFI

Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and
Particle Swarm Optimization (PSO). VappliedSWAT to the Waccamaw watershed, akbw
aquifer dominated Coastal Plain watershed in the southeastern United Statesdéhwas
calibrated (2002005) and validated (2006-2007) at two US Geological Survey (USGS) gaging
stations using significant parameteetated to surface hydrology, hydrogeology, hydraulics, and
physicalpropertiesSWAT performed best during intervals with wet and normal antecedent
conditions with varying sensitivity to effluent channel shape and characfistaddition, the
calibration of all algorithms depeedmostly on Manning's1-value for the tributary channeds

the surface friction resistance factor to generate rustffl-2 and PSO simulated the same
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relative probability distribution tails tihose obserdat an upstream outlet, while all methods
(except ParaSol) exhibited longer tails at a downstream outlet. The ParaSbkextadsed
large skewnessuggesting a global search algorithm was less capébleracterizing
parameter uncertaint@ur findingsprovide insightsegardingparametesensitivity and
uncertainty.as,well as modeling diagnostic analysis that can improve hydrblegrg aind
prediction‘incomplexwatersheds=ditor’'s note This paper is part of the featured series on
SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February

2017 issuefor-the introduction and background to the series.

(Key Terms: SWAT; ParametelUncertainty Shallow Aquifer;Modeling Diagnostic Analysiy
INTRODUET FON

Rivers inthe US Atlantic Coastal Plaiiftow throughbroad,densely vegetateffoodplainswith

low topographic gradientand are strongly influenced bygroundwaterdynamicsof a shallow

water table Hydrologic simulationmodelsmustcapture these interactions atwdestimate flow
accuratelythataid sustainablevater resourcemanagemenh this rapidly growing regianThus,

some researchers have applied the Soil & Water Assessment Tool (SWAT) model to the forested
wetland watersheds of the southeaster&EBJS)Coastal Plain ( Wu and Xu, 200Beyereisen

et al., 2007;'Lam et al., 2010; Amayta and Jha, 2011; Joseph and Guillaume, 2013; Samadi et al.,
2014; Samadi, 2036

However, aatershed modelg in the Coastal Plain landscapeas inherently high levels of
uncertaintyassociated wittstochadgtity, model structureinput parametes; initial conditions
and measurement erroiSructural uncertaintcomes from ovesimplification of hydrological
processesn the conceptual structure of a hydrology modwtluding the effects of wetlands or
reservoirs(e.g.,.Yanget al., 2009, surface/groundwater interactioe.q., Tian et al., 2013, or
infrastructure _€.9., Yanget al., 2008) Input parameter uncertainty derives frogpatial
interpolatonsof model inputs(e.g., Baffaut et al., 2018 or parameter nomniguenesslnitial
conditions“and_measurement errare causg by in situ observations that can be collectively

considered as data errors.
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In recentdecades, various mathematical methods have been developed to treat uneerthinty
calibrate hydrology modelsMethods to represent model parameter, statel prediction
uncertainty includeBayesian approaché€Beven and Binley, 1992; Kuczera and Parent, 1998;
Thiemann_ et al., 200Mrugt et al, 2003b, 2009a; Abbaspour et al., 2008nkin and Doherty,
2009; Moore.et al., 2010; Schoups and Vrugt, 2010; Laloy and Vrugt, 2012; PeBilceri

and Samadi, 2016; PourreBdondi et al., 201§ settheoretic (Klepper et al., 1991; Vrugt et al.,
2001), sequential data assimilation (Madsen et al., ;2008jt et al., 2006Moradkhani et al.,
2005) stochastic optimization techniqu@®uan et al. 1992;Eberhart and Kennedy, 199%nd
multi-model averaging methods (Georgekakos et al., 2004; Ajami et al., 2007; Vrugt and
Robinson,,2007). Thesmethods differ in mathematical rigonderlying assumptions about the
residual error distributigrand howexplicitly those assumptions are egpsedn the modeling

procedure.

Among these, optimization meth®dand Bayesian algorithmsare well known techniques
availabletorresearch communitie®ptimization is an appropriate method for solving continuous
and discreteiproblems. Bayesian methods enable calibration of complex multivariate
distributions by casting them as the invariant distribution of a Markov chain M®lillan and
Clark, 2009). The Particle swarm optimization (P3¥berhart and Kennedy, 1995) atite
Parameter Solutions (ParaSol; modified algorithm of Duan etl@92) procedureare two
optimization _and uncertainty analysechniquesused in this studyThe generalized likelihood
uncertaintysestimation (GLUBeven and Binley, 1992)nd the Sequential Uncertainty Fltting
algorithm (SUF12; Abbaspour et 3l2004)are twowell-known (informal)Bayesian modslthat
propose a f@agmatic approach to uncertainty estimation (Schoups and Vrugt, 2Bt0).
Bayesian and optimization algorithms have found widespread applications in hydrologyebecaus
of their flexibility and suitability for applying in a number of simple to complesearch

problems.

Despite thesimportance of addressing uncertainty in complex hydrological systenstuties
have compared variouscertainty algorithms the coastal plain watershexhd theeare either
limited to applications of simplencertainty modefe.g., Amatya and Jha 201dr) oneBayesian
algorithm (e.g.Joseph and Guillaume, 2013; Samadi, 2006 particular no relevantstudies
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haveused a range of uncertairand optimization experiments somulate hydrological variables
in the CoastalPlain watershed with extensivalluvial and noralluvial forested wetlandsind

riparian storage.

This studyis.thus a first attempt ¢ link the SWAT semtidistributed hydrology modelith
various optimizatiorand uncertainty algorithme., PSO and ParaS&LUE and SUF2) in a
coastal"plain“watershexf SEUS The first objective of the study is to identify and quantifg
uncertaintyassociated with daily streamflow simulatiosing variousechniques duringvet,
moderate,and dry hydrological conditions. The second objective is to investigatéow
parameteuncertainty affectsnodel performanc®(ii) how the sensitivity oSWAT parameters
variesin differentuncertainty algorithnis and(iii) what islikely the role of shallowvater table

in runoff generatiod Here, we aim to better understand the interaction between surface and
subsurfaceflow_ and the way inwhich shallow aquifershapes and control€oastal Plain
simulation. This is a substantial challenges this type of simulation is tempered by the
heterogeneity=in physical characteristics of waterqised moisture, evapotranspiration, etc.),
complexities in‘storage capacity due to extensive alluvial anehthovial forested wetlands and
riparian sterag, and difficulties in computing subsurface contribution to the river systeen (s
Shirmohammadi et al.,, 1986; Amatya and Jha, 2011). In the pursuit of model parameter
uncertainty, we proposeskveral diagnostic analyses to test model identificatiorirdagnation
content of, simulation, ando ensure that models are ‘working for the right reasons’ (e.g.,
Kirchner, 2006).

The SWAT Calibration and Uncertainty Programs (SWE&UP, version 2019 frameworkwas
usedto Infer these techniqueand to assess @ameter sensitivity Using multiple uncertainty
algorithms,we_presenan integrated picture of the state of the art of hydrological simulfdion
a complex landscageom a parameter uncertainfyerspectiveWe evaluate the adelsin terms
of parameteruncertainty and the ability to simulatedaily observedstreamflow Accurate
hydrogeologieal parameterization of a Coastal Plain watershed and consequexemgtt in
explaining modelsensitivity and parameter uncertaintgnd diagnostic analysisare also

explored.
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METHODS

Study Area

The Waccamaw River watershed (hydrologic unit code 03040206, area=311,)G8%hahe
lower Coastal Plairof eastern North and South Carolina (Figure 1). The watershstittle
topographic..gradien{99% is < 5% slope), wide floodplains, and complex growater
characteristicsdue to poorly drained soils, shallow water tableand extensive wetlands.
Elevation ranges from 6 46 m above mean sea lev€he watershed is a humid subtropical
climatewith"hot'summers anahild winters. Precipitation in the badialls almost exclusively as

rainfall, with an/annual average of 1309 mm during the study period (2003-2007).

The downstream reache$the Waccamaw Riveare tidally influencedso this modeling study
focused on theinetidal portionof the river Streamflow data from tw&JS Geological Survey
(USGS) gaging stations, atFreeland (34°05'42N 78°32'54V) and longs (33°54'45N
78°42'55W),were usedss subwatershedutlets (Figure 1). Daily precipitation, minimum and
maximumtemperature, wind speeuhd solar radiationvere obtained from climate statiorst

Loris, Whiteville7, and Longwood all locatedin North Carolina(Figure 1). Data from these
stations ‘were interpolated using Thiessen polygon and Inverse Distance Weighting (IDW)
methodge-capture the spatial continuity of rainfall fields in the study area.

Waccamaw land useformationwasobtained from USGS National Land Cover Data portal on

13 Sep 2022http://viewer.nationalmap.gov/viewgrforested wetlands were the dominant land

use, occupying approximately 28% of the watershed (Table 1). Agricultural uses were®6% an
developed uses (residential, commercial, and industrial) were 5%. Mtoh déveloped land is
widely distributed in the watershed.

Five soil series.(i.eMeggett, Croatan, Rains, Woodington and Norfolk) account for 78% of the
watershed area and four land cover classes \WETF, FRSE, AGRR, and RNGR)pver86%

of the aregsee Table 2)Meggett soils are found in the broad floodplains along lower Coastal
Plain streams,and rivers. Woodington, Rains, and Norfolk soils are found in interfiteasl a

All five series are hydric soils. Croatan soils are often found inafiamial wetlands. They are
exclusively in the eastern section of the watershed, which is part of the Gvaerp $Riggs et

al,, 2000).
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Approximately 90.56 of the soils are one of four series, all of which are either hydrologic group
B, D, or B/D. Only9.5%of the soils are hydrologic group A; thesso group C soils (Table 2).
Hydrologic group D soils (poorly drained) are adjacent to the main channel and hydrologic group

B and B/D seils (mostly of the Rains series in the downstream reaches) adjacent to those.

SWAT Model

SWAT is "a"watershed modeling program developed by U&e Departmentof Agriculture
(USDA)-Agricultural Research Servig@rnold et al., 1998) to simulate hydrology and water
quality at various scalelt was developed to predict the impact of land management practices on
water, sediment, and agricultural chemical yieldgige complex watersheds with varying soils,
land use, and 'management conditions (Neiestchl, 2004). ARCSWAT 2009 (Aeronautical
Reconnaissance Coverage SWA/ZETrsior2009.10.1)was used for this researchhe SWAT
system is embedded within a geographformation system (GIS) that integratearious spatial
environmentalidata including soil, land cover, climate, and topographic features. bidarora
major soil“types, soil hydrologic groups, and soil layer properties was obtainedJB@A

STATSGO... dtabase Iittp://websoilsurvey.sc.egov.usda.gov/App/HomePagelhtmiThis

simulationswas initially performedithin ARCSWAT; then the outputs were linked to different
uncertainty modelsWe alsoran SWAT manually when it was needed foistance when we
used different modules for evapotranspiration estimation methods, river routing model,
optimization;etc. User can change the SWAT output files (e.g., .rch) and rerurs\WaT

executdlefiles

ARCSWAT subdividedthe WaccamawRiver watershednto 28 sub watershedéee Figure 1)
and 2020 Hydrologic Response Unit#dRUs) connected by a stream netwofke HRUs vary in
terms of land_coverforestcovered areacultivation and hydrologichehavior.HRU definition

wasestablished at a 0% threshold for slope, soil, and land use layers to avoid missirdgrem

use units.

The hydrological cycle simulated in SWAIE based orthe water balance equatiomund in
Arnold et al., (1998). This research used the Priesilgylor (P-T; Priestly and Taylor, 1972
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evapotranspiratioomethod becausé¢his radiatiorbased method rpducedbetter results ina
forested wetland ecosystem with wastd humidsurfaces (Samadi2016). The Muskingum
method (Schroeter and Epp, 1988) was usecchannel flow routing module for this study.
SWAT estimates the surface runoff volume from each HRU using either the Soil Conservation
Service (SES) curve number (CN) method (USBAS, 1972) or a new CN method that
includes a,ong@arameter soil moisture depletion curve (see Kannan,&(48)to account for
antecedent soil' moisture conditions (CN ranges 25 to 98 in the SWAT m@delusedthe
improved 'onegparameter depletion coefficient for adjusting the CN based on plarftr&s new
approachiis more suitable fovatersheds with low storage sod#sid dense vegetatiofsee
Kannan et.al42008).

In this research, SWAT was calibrated using 18 parameters related to surface runoff, soil
propertiesyiver hydraulics and groundwater parame{seesensitive parameter sectifor the

list of parameters)in addition, global sensitivity analysis was implemented to perform the
sensitivityganalysis. This was conducted by allowing all parameters to bgeth&rom their
absolute values durinthe simulation period (see Samadi and Meadows, 2017 for further

information),

SWAT was calibrated using different starting points. Each simulation pemsdshifted by 1

year, such, that subsequent periods have 2 years of data in common. Overall, fiemtdiffer
calibrationgperiods were consideréice., 20032005, 20042006, 20052007, 20032006, and
2004-2007and parameter sensitivity was evaluated for each data set. Model sensitivity did not
vary significantly dumg those subsequent periods, suggesting that 3 years of daily streamflow
data containenough information about parameter estimation fa whatershed.Since no
significant_variations in parameter estimates between different calibration periods were
anticipated, this’ study used 2083005 and 2002007 as calibration and validation peripds
respectivelyWe used 200@002 as warrup period as well.

Figure 2 illustrateshe SWAT modeling stepand the link between SWAT and the uncertainty

algorithmat the watershed scaltnputs for SWAT come from observed meteorological records
(rainfall, temperature, etcand physical variables (land use, elevatiam)the basin. These
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variables driveempirically-derived estimates of baseflow and the mun@cessedhased SWAT
model. $mulated hydrological responsdi.e., modeled streamflow)vas calibrated using
optimized parametemndcompared to measutestreamflow The fit between the simulated and
observed _valuesvas quantified with a variety of objective functions. Note thahile
uncertainties.in rainfaltunoff prediction come from variety of sourcés., model structure,
parameters,_initial conditions, angeasurement erro¥/rugt etal., 2003; Liu and Gupta, 20)7

this studyfocuses gmarameteuncertaintyassociated with daily streamflow modeling

SWAT=CUP Program
The SWAT=Calibration and Uncertainty Procedures program is designed to aid model calibration
by integrating Several calibration/uncertainty analysis approaches using a single interface. Each
SWAT-CUP_calibration algorithm runs until an objective function is satisfied (in this study
NashSutcliffe _Efficiency (NSE); Nash and Sutcliffe, 1970). Users select the candidate
parameters=seonsidering dominant hydrological processes baskdowledge of a basin or in
reference 'to those suggested in the literature. The four algorithms in this research are briefly

describedsbelow. More descriptions can be found in Abbaspour (2013).

UFI-2: The SUF2 technique, as a Bayesian framewatiarts by assuming a large parameter
uncertainty, within a physically meaningful range, so that the measured data initially fall within
95PPU (95%“prediction uncertainty band; 95PPUhe uncertainty band isarrowed during
eachiterationswhile monitoringhe p- and rfactors (defined inModel Performance Evaluation
sectior). In each iterationSUFI-2 updates the previous parameter ranggscalculating the
sensitivity, matrix(equivalent to Jacobia@nd the equivalent of a Hessian matrix (Magnus and
Neudecker,,1988), followed by tleevariancanatrix. Parameters are then updated in such a way
that new ranges are always smaller than previous ranges and are centered on the best simulation
(Abbaspoutetal., 2004 and 2007 In this algorithm, uncertainty of input parameters is depicted
as uniform*distributions, while model output uncertainty is fiethatithe 2.5 % and 97.5 %

levels of the cumulative distribution function (CDF) of the output variabiaied through the
Latin Hypercube Sampling method (McKay et al., 1979). Thus, parameter uncertagtsrafl
potential sources: the conceptual model, model inputs, and model pararB&tEi first
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defines the goal functio(@) with meaningful paramet rangeLgabsm‘”ﬂabsmaXJ. Then, a Latin

Hypercube sampling is carried out in the initial hypercdg@smi“ﬂabsmaXJ to evaluate the
corresponding goal function and to perform the sensitivity analysis (based on sgmaiitrik

and the parameter covariance matrix). The 95PPU of a sensitive parameter is then computed to
find the best solutions (i.e., paramettrat produce the optimal goal function). The 95PPU and

two indices«(ize., gactor andr-factor, defined inModel Performance \E&luationsectior) are

then calculated: If thosevo factors have satisfactory values, the parameter range travels from

leabsmi”ﬂabsmaxj to lHf*“”ﬂ’“axjas the posterior parameter distribution. Based on Bayes' theorem, the

probability"density of the posterior parameter distribution will be driven from the prior density
function to calculate the likelihood function of the model (see Yang et al., Z2D08}-2 (or any

other algorithms) uses the same parameter sets for sensitivity analysis, uncertainty assessment
and calibrationhree iterations, with 500 runs in each iteration, weneductedor calibration

using the SUFR method(andfor the rest of algorithms except GLUBfter each iteration, the

parameter ranges were updated as the prior distribution for the next iteration.

GLUE: Thewgeneralized likelihood uncertainty estimation methodology of Beven and Binley
(1992),dnspired by the Hornberger and Spear (1981) method of sensitivity analysis, veis one
the first attempts to represent predictive uncertaintyhydrology This method maps the
uncertaintysin.the modeling onto the parameter space and operates within the contexteof Mont
Carlo analysis coupled with Bayesian estimation and propagation of uncertaedpri8let al.,
2008). This approaclmased on the concept of equifinality (Beven and Binley, 1298ues tht

many parameter sets can typically provide acceptable (or “behavioral”) simulations of an
environmental systenGLUE randomly samples a large number of parameter sets from the prior
distributionand ezh set is classified as either behavioral or -hehavioral through a
comparison=of‘the “likelihood measure” with the given threshold value. Finally, thectowadi
uncertainty“is described as prediction quintile from the cumulative distribution realized from the
weighted behavioral parameter sets (Abbasp@013). Five GLUE simulationruns were
performed with sample sizes of 2,000, 6,000, 8,000, 12,000 and 2@0Of#ent threshold
values (i.e. 0.5, 0.60, 0.65, and 0.70) weadso chosen. The result of 20,000 runs with the

threshold value of 0.6@asused tessummarize the 95 PPid this study.
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ParaSol: The ParaSol method aggregates objective functions (OF’s) into a global atibmiz
criterion (GOC)and minimizes these OF's or GOC using the Shuffle Complex (8B
algorithm (Abbaspour, 2013). The SCE algorithm is a global search algah#éhoombines the
direct search.method of the simplex procedure with the concept of a controlled razstoinas
Nelder and Mead (1965), a systematic evolution of points in the direction of global
improvementy=ecompetitive evolution (Holland, 1975), and the concept of complex shuffling
(Abbaspour=2007). The SCE algorithm minimizes a single function for up to 16 paamete
(Duan et al., 1992) and selects an initial “population” by ranrdampling throughout parameter
spaceto optimize each model parameter. After optimization of the modified -8@E the
simulations-are divided into “good” and “not good” simulations usitigyeshold value (similar

to the GLUE ‘methodology). Next, the prediction uncertainty is constructed from “good”

simulations based on an objective function (here NSE).

PSO: Partielesswarm optimization is a populatibased stochastic optimization techregand

shares manyusimilarities with evolutionary computation techniques such asc@dgetithms

(GA). Compared to GA, PSO is easier to implement and there are fewer parameters to adjust
(Abbaspoury2013). In each iteration, each particle is updated by following two "best" values
(Abbaspour, 2013). The first one is the pbest solution, the best solution so far (fitmegherA

"best” value that is tracked by the particle swarm optimizer is the best value, obtained so far by
any particle=in, the populatio(Eberhart and Kennedy, 1995). Initially, the upper and lower
bounds of'sensitive parameters are specified in the PSO algorithm. The values for the parameters
are genernated randomly within the bounds for each particle. These paranetéended into

the SWAT model. Next, the fithess function is evaluated based on a defined objectivenfuncti
The fitness_evaluation of the particle is compared with the pbest value. If the currentsvalue i
better than_pbest, pbest is set equal to the current value imglonal space. The fitness
evaluation issthen compared with the overall prior best value. If the currentpeafoems better

than gbestie., global best, the best values of each individugist is reset to the current value

of the particle’s arrayndex. The velocity and position of the particle are then changed according

to the current value. Next, the particle navigates a potential solution towardgpioegbest
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through stochastic mechanism. More information on PSO algorithm can be found inrEberha
and Kennedy, (1995).

Model Evaluation and Diagnostics

The basiccriteria usedto evaluaé model performance ar&lSE, Mean Square ErroMSE), p-
factor, and, rfactor. The NSE (Equation 1) is used frequently to evaluate model performance
(Nash andButcliffe, 1970).

N _c) Equation 1
) I ) (Eq )

ZtNl(oi ) T

Whereé, O; and S are mean of observed data, daily observed and simulated values,

respectivelyNSE is sensitive to extreme values like peak fIWSE \alues between 0.0 and 1.0

are generally considered acceptable, with 1.0 being a perfect match between theandodel
measured dattSE>0.65 considers good and very good), the values betwdeartdd.65 are
considered. satisfactory amdiSE<0.50is unsatisfactorysee Moriasi et al., 2007)alues less

than 0.0 indicate the mean of the observed values are better predictors than th¢erggdel
Krauseetal:;#2005; Moriasi et al., 2007, 2Q1kimitations of the NSE are oversensitivity to
extreme values because differences are squared (Harmel and Smith, 2007; Willmott et al., 2015)

and sensitivity to hydrograph shape (Moussa, 2008).

The MSE (Equation 2) is defined as:

2
MSE = zi=ln[xi,measured — X smulated ] (Equation 2)

Wheren is the number of pairs of measurednfjeasured) and simulatextgimulated) variables
andj represents the rank (Abbaspour, 2013). The MSE is highly influenced by the magnitude of
the difference between observed and simulated values. It is useful for assessing the relative

magnitude of the bias among models (Abbaspour, 2013).
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The p-factor is the percentage of data bracketed by a 95PPU (maximum value is 100%), and a
r-factor (or dfactor; Equations 3 and 4), is the average width of the uncertainty band divided by
the standard deviation of the corresponding measured variable (minimum value is zero;
Abbaspour et al., 2002007). Theoretically, the value forfactor ranges between 0 and 100%,
while the rfaetor ranges between 0 and infinity. Agetor of 1 and-factor of zeraepreserts a
simulationthatorrespondgxactlywith measuredlata.

d

R— factor =— (Equation 3)
O-X
— 1 &
dx :EZ(XU - XL)
i=1 (Equation 4)
Where d, Is the,average distance between the upper and the lower 98RRIDd X, represent

the upper and the lower boundaries of the 95PPU, whiless the standard deviation of the

measured.data.

From these indices, we selected NSEtws likelihood function since it is widely used as an
objectivesmeasure in hydrologic simulations (Beven and Freer, 2001; Yang et al., Z9©8).
cutoff threshiold to separate “behavioral” from “Aoehavioral” parameter sets is another
subjective choice uhin an uncertainty algorithmThe selection of the threshold value is an
entirely arbitrary choice that affects prediction uncertainty (e.g., &dami, 2005; Mantovan and
Todini, 2006), Small cutoff thresholds lead to larger “behavioral” simulations langer
uncertainty,bands wheregeeaterthreshold values decrease the numbers of “behavioral” models
and reduce 95PPU (Blasone et al.,, 2088jlami et al. 2013. Based on our triagrror
approaches, when we set SWAT’s objective function on NSE valres consideredutoff
threshold in a range of 0.5 (SUFI2, PSO)to 0.8 (GLUE and ParaSalthe modekimulatd
low flow, peak flow, and hydrograplecession curvesiore accurately

We also ‘eempark the outputfrom the four uncertainty algorithms interms of parameter
sensitivityby checking the qvalue (values close to zero suggest high level of significaaue)
the tstat (a measure of sensitivity, larger absolute values are more sensitivaljbration

results In addition, model diagnosticanalysis includingviolin plots, marginal posterior
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distribution, and autocorrelation platé residual errorswere usedo explore error significance

in simulation.

A violin plot is a boxplot combined with kernel density plots, added on each side lwfxpkot,

to exhibit the.probability distribution of the data s&tmarginal posterior distribution specifies

the posterior_distribution for a subset of the model matars independent from other
parametersin~probability theory, posterior density aims to display how the probability of
(optimized) 'sensitive parameter ranges can vary as a function of the integral of the parameter’s
density over the area under the density function (the lower and upper values of the optimized
parameter):ltqs, calculated by dividing the range of optimized parameters obtained by different
uncertainty=algorithms, into a number of discrete "bins" of equal width. Theedefigas in
paraméer estimation can be also checked by inspecting the densities of parameter distribution.

This approach was applied to high sensitive parameters obtained by four uncertairttynaggori

In the context=of model diagnostic analysis, checking for autoatioelis typically a sufficient
test of randomness since the residual errors from poor fitting models tersplmydionsubtle

randomness_(i.edeterministic randomnegbat kcks a patterr). Autocorrelation of residuals
reveals_ipformation not accounted for in the (uncertaimgyel; indicatingheteroscedasticity
and nonnormalityin the modeling (see Sorooshian and Dracup, 1980)ese diagnostic
approaches _provided reliable insights into the behavior and magnitude of simulatioaver

time.

RESULTS

Flow Calibration and Validation Using the SUFI-2 Algorithm

SWAT performed well when parameters were fitted with the SJ&lgorithm, achieving NSE
values greaterthan 0.71 during the calibration and validation periods (TalgeB$B & 4).

The pfactorand-factor indicated that there was some uncertaintginmulating low flows at
both Freeland,and Longsutlets When parameters were fitted wiBUFF2, SWAT consistently

overestimated stredlow during the summer periods (low flow)which suggeststhat

characteristics of base flow are not well representethdynodel It is alsopossible thaET was
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underestimateduring the growing seasanm thatspatial and temporaariability of precipitation
was not appropriatelgharacterized the model.

The 95PPU computed by SUElbracketedmost observations durin@004, 2005, and 2006,
whereas it_slightly overestimatélde magnitude and shape of recession curves in 2003 and 2007
(Figures 3,and 4)This indicateshigh rates ofuncertainty in the recession calculation within
SWAT as 'seen‘elsewhefe.g.,Yanget al., 2008)To furtherunderstandhydrologic processs in
the basin“dischargekiring wet (2009, and dry 2007 years werevalidatedindividually. The
wet year pfactor was over 90% of the observation while the dry year exhiloteer pfactor
(519% resultssnot shown hexeOur resuls demonstraté that precipitation in the wet period
primarily centributes to surface flow and lateral flawhile shallow aquiferis the pmary
contributor to river dischargguring dry period (e.g..Samadi and Meadows, 201Because the
knowledge of SWAT parameters for simulatinghallow subBurface flow is insufficient, the
uncertainty,of model parameters in simulated results was lardey years tham wetyeas.

Calibrationrand Validation Using the GLUE Algorithm

The Monte,Carlo random sampler demonstrated ety parameter solutions with similarly
good values of the NSE0.60 were within the posterior ranges. The NSE is 0.64 and 0.87 for
calibration and 0.8%nd 0.87 for validation at the Freeland and Longs outlets, respectively.
These performancesdicate that when the GLUE algorithm is used to calibrate SWAT
parametersthere is good agreement between measured and simulatedrflbeth calibration

and validatienperiod¢Table 3 Figures5 and 6)as most of the surface flow observations are
bracketed by the 95PPU (>72%). The relatively larg@actor value forthe GLUE model
comparedo othermethodsindicates larger uncertainties may remaim simulationand GLUE
overpredicted 95PPU as reportedSstegretal. (2010) andsellami et al(2013).

Calibrationand Validation Using the ParaSol Algorithm

ParaSol resuits indicated that mostté calibrated parametensfluenced daily streamflow
calibration. The sensitive parameters yielded by Para8ete entirely differentfrom other
algorithms and thushowed significant variation in the ranking of sensitive paramefténie
the method presented a good NSHlidtnot bracket the observed flosatisfactorily especially
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duringwet periods.For instanceonly 15% of measurements at the Freeland gage and 25% at the
Longs gagewere bracketed b@5PPU during the calibration periddeeFigures 7 and 8).
Although, ParaSol approximatethe global maximum of NSE valsgit produceduncertainty
bandthat wastoo narrow because of inaccuratesumptions abouhdependently and normally
distributed_errorsnade by the model (see Yang et al., 2008\us, Par&ol estimatd only a

small portien 15%-25%percen} of theparameter uncertaintParaSol failed to summarize and
derive the"satisfactory predictiamcertainty;howeverthe best simulation matchebservations

well. This’isrelatedin part to error associated with the model structure, measurement and initial

condition, which results in an underprediction oPg%J

Calibrationand Validation Using the PSO Algorithm

PSO results indicated that most of the surface flow observatieresbracketed by the 95PPU
i.e., 87% and 79% of the observations duritige calibration period in the upstream and
downstream_outlets. Periods of overestimation indicdtet there were still mismatches
especiallyginsthe recession calculatigrigures 9and10). The NSE valuewere high for both
calibration*and validation periods at upstream and downstream pofsieasTable 3)PSO
producedlarge rfactor values(large uncertainty bandjpr both the calibration (>1.39) and
validation«(>1.23) periodsThis might be attributed to the fact that PSO disregards parameter
uncertainty associated with other sources sucthasonceptual model and input dateat are
explicitly accounedby SUFI2.

Comparingthe’Results of Four Uncertainty Algorithms

The model performanceriteria used in this research were acceptable for all algorithms with
SUFLI2 having the best overall fit and ParaSol thersiv(Table 3). Some of the performance
values werehigher during validation than calibration. This may be because the validation
interval was. generally wetter than the calibrapeniodso the relatively poor performance of the
model duringlow flows would have less effect on model performance.

SUFI2, PSO, and GLUE produced the closest simulation of annuak fla most years.

However, to some exterdpme ofpeak flowvalues werenot well simulatedwhich may be due
to repeated precipitation events that leave the surficial aquifer close to saturated ietbleada
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Another important reason is that SWAT shaduwgh sensitivity to both surface and subsurface
runoff (see Sensitive Parameters secti@tthoughthe timing of the peak is well reproduced at
both outlets. In additionthe daily rainfall inputs and daily time step calculations are not
sufficient durirg large storm evestthat occur at the end of a dajnce watershed response
occurs a day.later than simulatektdditionally, measured streamflow dakeave uncertainties
especially after major rainfall events when there is large or lengthy floodplademegi and
standard rating"curves do not apply (e.g., Herschy, 2008). Another reason etaybloéed to

the complexinteractions among the water table, soils, floodplain, and stream dhanreek

highly variable and dependent upon antecedent conditidhe coastal plain watershed

At the Freeland outlet, the tendency was for all algorithms to underestimate total flow.
Overestimationhwas more common at the Longs outlet. Simulations with dbdse{except
ParaSol) produced the closest fit at the Longs outlet compatbd Freeland outlet, indicating
that uncertainty and errors associated with streamflow simulation have greater influémee

upstream portion of thwatershed.

Model perfermance was unsatisfactory in some intervals of low flowinbabst casethe 95%
probabilitysbands were not seriously affected and most simulated flows werengakiin the

95% PPU bandLow flow estimaesaremainly related tathe deficiency ofgroundvater module

in SWAT,. which appearsto underestimateCoastal Plain groundavater responseMore
importantly;*shallow water tablasay severely restridhe amount of water rechargirig the

river system=These shalloaquifersalong withpoor natural drainage created an excessive soil
water condition that is difficult for most hydrology models to understandcapturetheir
interaction.Computing this dynamics is much more difficult in riparian zone and wetlands areas
and reflectsthe fact thatSWAT is less capable in computirsgturated areas arswil storage

capacity.

In additionywateiholding capacities of soils are low in the Coastal Plain watersheds. These
collectively cause soil moisture deficiencies and create moreudiféis in capturing subsurface
processes and simulating low flow magnitude over time. Previous field based studies
(Shirmohammadi et al., 1986) in tli@astalPlain also indicated that during dry periods the
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water table in the riparian zone contidue be lowered by transpiration from the riparian forest.
As the water table continues to drop, it may reach a level too low for the tocmgtulateits
magnitude especially if rainfall does not occur. Eventually, this may lead to umnuetést of

low flow dynamics.

Model performance during low flow intervals also may be influenced by the high spatial and
temporal variability of precipitation during the wet season and by the sépsiti the model
results to finitial"conditiomat the beginning ofie dry seasoasadvocatedy Amatya and Jha,
(2011) Other potential reasons include not considering the soil conditidheimew curve
number methed and inadequate numerical implementation of Darcy’'s equatidhe in
model. SWAT keeps track of the amount of water rechargmghe shallow aquifer system
(delayed by GW_DELAY). Once it reaches the water taBWAT releases that watéo the

river systemat a rate determined by ALPHA BFherefore,this insufficient knowledgenay
increase error_and uncertainty in low flow simulatidn. addition, SWAT showed more
sensitivitydorsoll properties during high hydraulic periods when the interaction Imesueace

and groundwater is high particularly in the forested wetland paofitimee watershed.

Modeling.Performance Analysis
A comparative analysis was conducted two agects: parametesensitivitiesand model

diagnostic analysis.

Sensitive Parameter s

The sensitivity ranking of the parameters va@enong thdour algorithmgTable 4).Parameters

related to channel hydraulics like Manning=salue for the tributary channeésxdcurve rumber

value slowed._more sensitivity to streamflow generatiam all algorithms Waccamaw
streamflowdepends mostly on Manningrsvalue it is a major contribubr to the uncertainty in
streanflow_prediction at both upstream and downstream outM#sining’sn-valuedepends on

the surfacesfriction resistance, form resistance, wave resistance, and resistance due to flow
unsteadinesslhere aresomeatrtificial channels and channelized streams in the upper basin that
may complicate calculating a Manning’'s-value during flow simulation. Due tothese

complexities, the exact value of Manningisvalue is often uncertain. Further, the shallow

This article is protected by copyright. All rights reserved



aquifer sygem thatis well connected to the river system makes definition of the Mannimg'’s

value especially challenging for any hydrology model.

Posterior density responses of the model parameters were visually investigated and the marginal
posterior densities &e constructed for sensitive parameters with high to moderate sensitivity
(Figures 11 and 12). The-axis in each graph is fixed to the prior range of each individual
parameter-to facilitate comparison of sensitive parameters. -8lkes ys represented the relative

likelihood for'sensitive parameter to take on a given value.

Comparing: the, parameter posterior distribution indicated that parameter values in th2 SUFI
model tendedto be uniformly distributed, and optimal parameter values were spessihe

entire posteriorrange. In specific, parameter ranges from the GLUE method were wider than
other models. This may be attributed to the fact that GLUE considers paramegtations,
whereas, for instance, SUEIdoes not. In the SUFR methodall parameter sets from samples

are set assbehavioral parameters that contribute to the final uncertainties. In the GLUE method,
parameter'sets are viewed as behavioral parameter sets when their likelihood values are higher
than the“threshold value; the liketiod values below the threshold value is considered as
nonbehavioral parameter sets and removed from further analysis. Only the behavionetgrara

sets would contribute to the final uncertainty ranges. This may lead to monakelas
uncertainty. rangeby the GLUE method, but in our research, uncertainty bands widened in the
GLUE simulation.

The posteriors distributions of some aggregate parameters in the GLUE model hates obvi
peak areas (e.g., CH_N2, CN2, OV_N, and SLSUBBSN; see Figure 11 and4} dtée have
significant_influence on the results of model simulation. The correlationsebpt most
parameters.in.the GLUE modghe correlation matrix of the posterior distributicare small

except thescorrelations of CH_N2, CN2, OV_N, CH_K2, &®bSUBBSN (esultsnot shown

here). Thisvindicates that the correlations between those sensitive parameters along with

hydraulic conductivity in tributary channel (CH_K2) cannot be ignored in the ditdElation
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Saturated hydraulic conductivity (SOL_K)Janning'sn-valuefor the main channeglnd runoff

curve numbemverethree of the most sensitive parameters in the SU&halysis (see Table 4
andFigure ). All are characteristics of upland and wetland sections of the watershed, so they
can have several values depending on land use and soiktxgrage slope length (SLSUBBSN)
wasone ofthe,most sensitive parametén all models except SURL. This is the disince that

sheet flowforms anddominateshe surfaceunoff procesgshenconcentrates at the origin of the

rill. 1t appearghatthose methods showed more sensitivity to land use, topography and soil types

becaus&SIESUBBBSN largely depends dinesephysicalcharacteristics

Manning'sp-value for overland flow was one of the most sensitive pararm@ePSO, GLUE
and ParaSel model$his parameter contr®lvater transmission in different land ussegories
(wetland, forestpastureetc). Groundvater propertie§GW_REVAP)andthe soil evaporation
compensation _factor (ESCO) also showed sensitivity in Pard®a may be attributed to
inadequate evapotranspiration and shallow aquifer parameterization W#E ®odeland the
complexitiesrinisoil and groundwater system as discussed.alaie4 presents the parameters

chosen to calibratstreanflow and theirranks, and best parameter values estimated by-3UFI

Based onsSUF? result, calibrated values of the Chgad from 50 (Norfolk soil in evergreen
forest) to 89 (Croatan soil in agricultural row crppable5). As anticipated, highe€N values

are assoclated with hydrologic group D and lower with giaypable 2). For each soseries,

the highest"CN, is associated with agricultural row crops, the cover class that is most likely to
have the lowest infiltration rate of the foland cover classes. These results are aligned with
expectations based on their landscape position and chatacsegseeTables 1 and2 for soil and

land use information

Calibrated values of the hydraulic conductivity range from moderately high (Me¢wyetery
high (Croatan"and NorfojkTable5). For all soils the surface layer has higher conductivity than
intermediate layers; Croatan and Norfolk have a lower layer with very high conductivay. T
calibrated hydraulic conductivities are indicative of the dominance of sand latidetg small

amount of clay in these soils. Loamy textures also are prevalent.
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Based on these simulation results, it appears that additional refinement of our parameterization
required torepresent surfackow generated froninterfluvial upland where most precipitation
infiltrates prior to reaching the streaodel performancealso would benefit from additional
work on thephysical processethat occurin surficial aquifers within the alluviaflloodplain

storage along.streams.

M odeling Diagnostic Analysis

The violin"plots'of the simulated streamflow are illustrated for all ousth{Figures 3 and 4).
These plots were created using both calibration and validation outputs generated by the mode
The shapesofsthe density mass function grobability density dnction (PDF) for SUFI2 and
PSOwereveryrclose to observatisnvhile ParaSol and GLUE, respectively, underestimated and
overestimated thebservedPDF.In addition, SUF2, PSO and GLUE exhibited approximately
similar median values compak® observationMore dispersion and skewnegesrenoted in the
ParaSokstimated streamflow. The probability of streamflow values @odgnsity is highest in

the GLUEandthe PS®nodels, correspondingiy upstream and downstream portionke 25th

and 75th “pereentile (thick black lines in Figar&3 and M) range of PDF distribution is
effectively=narrowed byll models SUFF2 and PSO showed the same relative tails to obderv
values at.the upstream outlet while all methods (except ParaSol) exhibitedetalags at
downstream gagé&urther, SUF2, PSO and ParaSahderestimated the 5th and 95th percentile
ranges of'streamflow values (thin black line in Figurdsadd ¥) while GLUE provided better
estimates at"Freeland. SUFIprovided a close estimate of the 5th and 95th percentile ranges at

Longs.

Close inspections of the modeling residuals reveal that the erroasitacerrelated at the first
lag in all methods(Figure 15) Autocorrelation is higheat Longs outlethan Freeland outlet
The residuals . show that the model capuihe patterns in the data during high lag at Freeland
outlet andthere is a large amount of autocorrelation left in the Loagslual This suggests that
the model“ean_be slightly improved especially for Longs outlet. Note thautioeorrelation
resultsare quite similar for SUF2, PSO and GLUE at both outleincemost of these errors
are correlatedt seemghatresidualshaveheteroscedasticitgnd nonnormalityespecially athe
downstream outlefThis indicates that error variance changes withmagnitude of streamflow
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(heteroscedasticity) and skewness increases in modeling over time (nonnororality
inhomogeneity as explainedby Sorooshian and Dracup, (1980); Duan et al., (199and
Schoups and Vrugt, (2010)his reflects the fact that sielual errors increasess linear and/or

nonlinear functiorof mearmedianstreamflow, whichmay causductuation in the simulation.

Summary and Discussion

This paper-compas different uncertainty algorithms used with tB&WAT semidistributed
hydrology"model. SWAT was used $anulatedaily streanflow during wef moderateand dry
hydrological conditiongittwo streamflow gages in the southeastdf Model analyses include

assessment @fiymodel performance and diagnosis of model output during simulation period.

Parameter uncertainty analysis revealed that all algorierfermed best during intervals with
wet and normal antecedent conditions with varying sensitivitych@annel shape and
characteristics, soil and groundwater propertiesrther, the calibration of all algorithms
dependedsmostly on Mannings-value for the tributary channels as the surface friction
resistance *factor to generate runoff. This along with curve nupdremetershowed more

sensitivitysto daily streamflow simulation.

SUFI2 and PSO showed the same relative distribution taitaparedto observation athe
upstream “outlet while all methods (except ParaSol) exhibited longer tale atownsteam
outlet In addition, large skewness and dispersion was definedhdyParaSol model {r
factor<0.24wand {factor<25%), suggesting that a global search algorithm is less capfable
computing parameter uncertainty of a low gradiesasalPlain watershed

The pfactor,and +factor computed using SUR brackeed more than 90% and 75% of the
observedstreamflowduring thecalibrationand validationperiodsat upstream and downstream
USGS gages‘in the watershé&dirthermore, the modgrediced most peak flows witlithe least
uncertainty*and erroifhe model consistently overestimated low flows but perforre&tively
well during high flows, especially during periods withetvanteceent conditionsSpecifically,
SUFI2 showed that the dry yeanadslightly larger prediction uncertainties than the wet years.
This was lecause groundwater dominated the surface flow during dry periodsSWaS
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inadequatelysimulatel below groundprocesss. Good model performance during wet pesod
was related, in part, to higher daily discharge ra@sd,thus wider uncertainty boundée.g.,
Yang et al., 2008; Coxon et al., 2014).

The differenees in model performarfoe low flow events in upstream and downstream portions

are related, at least in part to the impact of wetland and saturated areas in modeling performance.
The dwnstreamgage thathad lower performance(with larger portions of wetlandsusal

surface runoffparameterizations in which saturated areas are controlled by water storage in the
shallow aquifer Variability in saturated aream this outlet has large control on model
parameterizationThis approach wasot accountedor by SWAT due toits deficiency in
generatingsaturated areas and saturation excess runoff (e.g., Lygn2604].Easton et al.

2008; Schneiderman et ,@2007). However, Baffaut et al., (2dd)5proposed adjustment of the
percolation_routine to better simulate satoratclose to the surface, thegpproach wasot
explored in.this researclhese are reasonable interpretation of the model results; howrerer

are nomeasureddata toassessf defined saturated arsaby the modehre realistic for the
Waccamawwatershed In this context, it is worth noting that no model lasechanism for
generatinguinfiltratiorexcess runoff, and the saturated area parameterization may compensate for
model weaknesge.g. Clark et al., 2008)articularly for the coastal plain ith a typically wet

surface.

Diagnosissof*model errors shows that the groundwater response to low flow eveuiteis
consistentuinsthat most algorithms either overestimate or underestimate low flow events.
However, the consistency in model errors may also arise because errors in input data may affect
different modules and processes afvatershed model in similar ways. Moreover, different
uncertainty.models may not bracket the measurement errors b&duag¥eéAT mode] like other

similar hydrology modal has similarweaknessesuch as no mechanismfor generating
saturated_areas and saturation excess ruaatfno vegetation submodéthe model domain
extending from_the top of the vegetationtt® base of active groundwatee., the Earth’'s

Critical Zoné see Anderson et al., 2008In addition, erroran discharge data resulting from

uncertainty in the stagdischarge rating curvenight affect the simulation results especially
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duringrepeatedainfall events whethe measured valuegereextrapolated outside the range of
the estabshed rating curve.

There has been a continued debate within the hydrological community regarding to teeo€hoic
the most suitableapproach for uncertainty assessment to capture different sources of error and
uncertainty(Schoups and Vrugt, 2010; Laloy and Vrugt, 2012; Beven et al., Zdyeza-
Bilondi 'and“Samadi, 2016; PourreBdondi et al., 201% As with all methods founcertainty
analysisourmethods have their owimitations and other approaches could have [@skpted,
such as the use of mutibjective algorithm (Vrugt and Robinson, 2007; Saddgibas et a).
20164, b,,andy,MCMC algorithm based on GL (generalizedll&glihood) function (Schoups
and Vrugt,»2010; Laloy and Vrugt, 2012owever, the need faiobust simulation given the
complexities and difficulties in the coastal plain modeling meant that this stogided the
basis for future model development and hypothesis testing. Here, the resultingienmiolat
each algorithm and the sensitivity addhgnostic analyses act as a guide to the dominant
processes#operating in the shallow aquifer dominated environmental system amwhaddit
analysis including field based research may be needed to conclude this defjnitivegside

this type ef.analysi over many more coastal plain watersheds.

Further work is also needed to evaluate model performance with respect to multiple criteria,
including assessment of model performabased on flow duration curves (FQD@ssessment of
model perfermance in floodplaiportion and water table processemdassessment of model
performance.with respect to “diagnostic signatures” that are extracted from the data to explain
different hydrological processes in tivatershedGupta etal., 2008) More incisive diagnostic
testing thatloes hotdependsolelyon discharge data (e.d4cMillan et al., 2012)s needed, as is
in-depth analysis of differerparts of the hydrographs (low flow, peak flovand recession
curve. Futureresearch will extend this methodology by using-lEised MCMC Bayesian
method as«well as data assimilation (DA) algorithm to many more coastal plain watersheds
acrossthe “Seutheastind advance our ability to simulate watershed response, benchmark

watershed processes, and make skipifeldictionin ungaggedatchments.
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Table 1. Distribution of land use defined with the SWAT model.

Landsuse type | Land use description Area
ha %

WAIR Open Water 4,890.5 1.6
URLD Rural Residential 11,402.8 3.7
URMD Medium Density Residential 2,902.8 0.9
URHD High Density Residential 447.8 0.1
SWRN South Western Range 421.4 0.1
FRSD Forest and Woodland 248.8 0.1
FRSE Evergreen Forest 84,253.9 27.0
ERST Mixed Forest 4,362.3 1.4
RNGB Range Shrubland 33,729.8 10.8
RNGE Grasslands/Herbaceous 15,588.4 5.0
HAY Pasture 249.6 0.1
AGRR Agricultural LandRow Crops 63,914.7 20.5
WETF Forested Wetland 86,173.7 27.7
WETN Non-forested Wetlands 2,990.9 1.0
UiDU Industrial 107.4 <0.1
Watershed Watershed area delineated by SWA 311,684.9 100%
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Table 2 Soil types in the Waccamaw River watershed.

Series Hydrologic | Drainage Class Area

Name Group ha %
Meggett D poorly drained 55,985.4 18.0
Behicket D very poorly 0.4 0.0
Kenansville | A well drained 4,942.4 1.6
Leaf D poorly drained 14,495.1 4.7
Woodington| B/D poorly drained 33,947.8 11.1
Croeatan D very poorly 47,311.4 15.2
Rains B/D poorly drained 61,428.2 19.7
Norfolk B well drained 44,762.2 14.4
Autryville A well drained 8,903.4 2.9
Leon B/D poorly drained 4,246.0 1.5
Kureb A excessively well 1,561.4 0.5
Trebloc D poorly drained 16,343.5 5.2
Nansemond| A moderately well 2,352.5 0.7
Montevallo | D well drained 3,507.3 1.1
Osier D poorly drained 26.8 0.0
Chisalm A well drained 11,871.3 3.8

2, PSO, ParaSol and GLUE.

Table 3. Streamflow calibration and validation results for the Waccamaw watershed using SUFI

ObjectiveFunction Freeland Longs
Calibration | Validation | Calibration | Validation
NSE SUFI-2 0.79 0.87 0.77 0.90
PSO 0.79 0.85 0.76 0.91
GLUE 0.66 0.87 0.81 0.87
ParaSol 0.69 0.85 0.78 0.82
p-factor | SUFI-2 90% 61% 75% 52%
PSO 97% 85% 92% 74%
GLUE 100% 80% 97% 72%
ParaSol 15% 18% 25% 21%
SUFI-2 0.87 0.69 0.79 0.72
rfactor | PSO 1.47 1.39 1.23 1.40
GLUE 1.85 1.20 1.53 1.27
ParaSol 0.24 0.18 0.23 0.21
MSE SUFI-2 57.89 94.74 325.70 140.02
PSO 59.11 106.25 343.13 133.72
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306.17
261.32

269.07
309.76

GLUE
ParaSol

99.69
85.59

95.04
102.75

Table 4. Selected parameters for uncertainty analysis and their prior distributions in SWATCUP

and best parameter values estimated by S3Jer the study watershed.

Sensitive Parameter Rank

SUFI2
Aggregate parameter | Name of SWAT parameter SUFH
) GLUE | ParaSol| PSO | bestvalue
Manning'sn-valuefor the main
v__CH N2.rte 1 1 1 1 0.1
channel
SCS runoff curve number for
r__CN2.mgt ) N 2 2 2 3 0.11
moisture condition I
Saturated hydraulic
r__SOL_K().sol o 3 15 15 8 0.27
conductivity (mm/hr)
Soil evaporation compensation
v__ESCO.hru 4 16 3 17 0.88
factor
Available water capacity of the
r__SOL_AWC().sol _ ) 5 13 17 11 0.15
soil layer (mm H20/mm soil)
Effective hydraulic
r_CH_K2.rte conductivity in tributary 6 5 7 14 0.01
channel alluvium (mm/hr)
r _ALPHA BF.gw Base flow alpha factor (days 7 8 9 5 0.36
Groundwater "revap"
r__ GW_REVAP.gw o 8 17 6 6 0.1
coefficient
Manning'sn-valuefor overland
v__ OV _N.hru 9 3 4 2 0.34
flow
r_ GWHT.gw Initial groundwater height (m)| 10 14 8 16 15
Moist bulk density (Mg/m3 or
r__SOL_BD().sol 11 7 13 12 0.13
g/cm3)
v__ GW_DELAY.gw | Groundwater delay time (dayg 12 12 18 13 300.93
Deep aquifer percolation
r__RCHRG DP.gw . 13 10 10 10 0.77
fraction
Specificyield of the shallow
r__ GW_SPYLD.gw ) 14 6 14 7 0.43
aquifer (m3/m3)
v__LAT _TTIME.hru Lateral flow travel time (days)| 15 9 12 18 156.6
r__ SHALLST.gw Initial depth of water in the 16 11 15 9 -0.18
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shallow aquifer (mm H20)

Plant uptake compensation
v__EPCO.hru 17 18 11 15 0.41
factor

r__SLSUBBSN.hru Average slope length (m) 18 4 5 4 0.54

Aggregate parameters are constructed based on (S®UAT user manual, Abbaspour, 2013). “v__" and “r__" means a

replacement, andsa relative change to the initial parameter viaapsctively.
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Table5. SUFI2 calibrated curve numbers and soil hydraulic conductivity.

Land Cover (%) Runoff Curve Number Saturated hydraulic conductivity
Forest Range/Shr Agri-row | Forested Soil layer
Evergreen| ub (11%) crop wetland | Layer | Layer | Layer 3 | Layer 4

Soil Series (%) (27%) (21%) (28%) | 1 2
Meggett (18%) 71 72 82 77 130 7.3 3.8 63
Woodington 50 56 72 62 97 63 69 *
(11%)
Croatan (15%) 77 80 89 83 250 110 20 450
Rains (20%) 51 56 72 61 110 18 15 14
Norfolk (14%) 50 55 72 60 450 13 6.2 500

*SWAT computed three layers only for the Woodington soil series.

LIST OF FIGURES
Figure 1l The'311,685 h&#vaccamaw River Watershed used in SWAT. Model calibration,

Figure 2.

Figure 3.

validation, and parameter sensitivity and uncertainty analysesp@dgoemed using

data from USGS gaging stations at Freeland and Longs. Research data weré retrieve
on daily basis from the National Climatic Data Center (NCDC) and USGS portals on
06 and 13 September 2012, respectively. Selected climate stations (LatesyiNgHv

and-ongwood) are distributed evenly through the watershed.

Rainfall-runoff processes in the SWAT model and its linkage to uncertainty
optimization algorithm. Note that SWAT calculates baseflow by analyzing measured
streamflow duringperiods of no recharge in the watershed (see Winchell et al., 2007).
Baseflow varies as the exponential function of the number of low flow days in the
SWAT model.

Daily calibration and validation streamflow in SUERt the Freeland station. The
solid black line corresponds to the observed surface flow at the basin outlet, whereas

the solid red line represents the best simulation obtained by&UHe grey and blue
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shaded areas are the 95PPU of streamflow calibration and rainfall vaaeklarge

peak flow corresponds to high rainfall event (>50 mm) while small peak flows

correspond to lower magnitudes rainfall events (< 20 mm).

Figure 4. Daily. calibration and validation streamflow in SUFht the Longs station.

Figure 5: Daily-ealibrationand validation streamflow in GLUE at the Freeland station.

Figure 6. Daily calibration streamflow in GLUE at Longs station.

Figure 7. Dallyscalibration and validation streamflow in the ParaSol model at Freeland station.

Figure 8. Daily calibration and validation streamflow in the ParaSol model at Longs station.

Figure 9. Dailyscalibration streamflow in the PSO model at Freeland station.

Figure 10=Daily calibration and validation streamflow in the PSO model at Longs station.

Figure 11. Marginal posterior probability distributions of sensitive parameters in the SWAT

model inferred using PSO (the first row) and GLUE (the second row).

Figure 12."Marginal posterior probability distributions of sensitive parameters in the SWAT
model inferred using SUFI-2 (the first row) and ParaSol (the second and the third

rows),

Figure 13. Violin plots of observed and simulated daily streamflow using all algostfor
Freeland outlet. Thick black line and white dot show the 25th and 75th percentile
range and median, respectively, and thin black line shows the 5th and 95th percentile

ranges of streamflow values.
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Figure 14. Violin plots of observed and simulatddily streamflow using all algorithms for
Longs outlet. Thick black line and white dot show the 25th and 75th percentile range
and median, respectively, and thin black line shows the 5th and 95th percentile ranges

of streamflow values.

Figurel5. Autocorrdation plots of residual errors using SUEIPSO, GLUE and Parasol

models for Freeland (left column) and Longs (right column)outlets.
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