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1. Introduction

In the context of global warming, Arctic sea ice has
declined substantially during the satellite era (Kwok
2018). The retreating and thinning of Arctic sea
ice provide opportunities for human activities in
the Arctic, such as tourism, fisheries, shipping, nat-
ural resource exploitation, and wildlife management;
however, new risks emerge. To ensure the safety and
emergency management of human activities in the
Arctic, reliable Arctic sea ice prediction is essential.

As an essential variable, sea ice thickness (SIT) is
particularly important for characterizing Arctic sea-
ice properties and changes. For example, the thin-
ning of SIT significantly increases upward heat fluxes,
enhances near-surface temperature, and contributes
to Arctic Amplification (Lang et al 2017). Besides the
climatic significance, operational SIT prediction plays
an important role in determining Arctic shipping
routes and seasonal Arctic sea ice predictions (Bushuk
et al 2017). This means that better predictions of
Arctic SIT are urgently needed. However, knowledge
regarding synoptic and subseasonal SIT prediction
remains very limited. Xiu et al (2022) revealed amajor
challenge regarding dynamical subseasonal SIT pre-
diction, which suffers from large initial errors and
generally shows a limited skill for the future 46 days.
As a result, improved predictions of Arctic SIT are
urgently needed and additional research is required
to enhance the understanding of dynamical synoptic
SIT predictions.

In the past decade, significant efforts have been
made toward skillful sea ice predictions and a series

of milestones have been achieved. For example,
the Polar Prediction Project (PPP) was initiated
by the World Meteorological Organization’s World
Weather Research Programme in 2013, which aimed
to improve weather and environmental prediction
services in the Arctic regions on hourly to seasonal
time scales. As the flagship activity of the PPP, the Year
of Polar Prediction (YOPP) coordinated a series of
intensive observations, modeling, verification, user-
engagement, and education activities through its pre-
paration, core, and consolidation phases, enabling
significant improvement of predictive skills in the
polar regions (Goessling et al 2016, Jung et al
2016). To showcase the achievements of YOPP, the
YOPP final summit was held from 29 August to
1 September 2022 (https://yoppfinalsummit.com/;
Wilson et al 2023), on which SIT predictions received
great attention. Particularly, the YOPP dataset of
the European Centre for Medium-Range Weather
Forecasts provides SIT analysis and 15 day forecasts
(referred to as EC-YOPP SIT) from June 2019 to
December 2020, initialized from the Operational Sea
Surface Temperature and Sea Ice Analysis in its sea
ice component (Bauer et al 2020). The availability
of coincident in-situ and satellite SIT observations
provides a new opportunity for the evaluation of syn-
optic SIT predictions. On the one hand, an observa-
tional network consisting of 19 Snow and Ice Mass
Balance Array (SIMBA) buoys were deployed (Lei
et al 2021) during the largest Arctic expedition in his-
tory, i.e. the Multidisciplinary drifting Observatory
for the Study of Arctic Climate (MOSAiC; Shupe et al
2020). These buoys provided in-situ SIT observations
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Figure 1. (a) Spatial distribution of SIMBA-MOSAiC SIT. (b) Scatter plot of the EC-YOPP initial SIT and SIMBA-MOSAiC SIT.
Linear regression is indicated in the black solid line with the equation listed above. (c) The linear regression parameters (the slope
in orange line and the y-intercept in cyan line), and the normalized standard deviation (normalized_STD, light green line) as a
function of lead days for the EC-YOPP forecasts. The Normalized STD is defined as the EC-YOPP SIT divided by the STD of
SIMBA-MOSAiC SIT. (d) The mean spatial pattern of the first cluster of EC-YOPP SIT initial errors with respect to CS2 SIT.
(e) Same as (d) but for the second cluster. (f) Temporal evolution of the Euclidean distance between EC-YOPP SIT errors with P1
(green lines) and P2 (orange lines). The solid lines represent the distance between EC-YOPP initial errors with P1/P2 while the
dotted lines represent the mean distances averaged over different lead days.

(abbreviated as SIMBA-MOSAiC SIT) from October
2019 to August 2020 from the Central Arctic to the
Fram Strait (figure 1(a)). On the other hand, Landy
et al (2022) overcome the challenges for retrieval
algorithms posed by summermelt ponds and provide
a year-round pan-Arctic SIT biweekly record from the
CryoSat-2 radar altimeter with a resolution of 80 km
from 2011 to 2020 (denoted as CS2 SIT hereafter).

2. Comparison with SIMBA-MOSAiC and
CS2 SIT

Here we evaluate the EC-YOPP SIT predictions based
on SIMBA-MOSAiC SIT and CS2 SIT, with all the
SIT datasets remapped to the coarsest 80 km CS2
grid to allow them to be fairly intercompared. The
SIMBA-MOSAiC SIT shows ice thinner than 1.5 m
in the Central Arctic and ice thicker than 2 m north
of the Fram Strait (figure 1(a)). It appears that the
EC-YOPPSIT initial conditions overestimate ice thin-
ner than ∼1–1.5 m and underestimate ice thicker
than ∼2 m (figure 1(b)), indicating an underestim-
ation of the geographic SIT variability. The relation-
ship between the EC-YOPP SIT initial conditions and
the SIMBA-MOSAiC SIT is quantified using linear

regression. The regression parameters (the slope and
the y-intercept), and the normalized standard devi-
ation of EC-YOPP forecast SIT remain stable with
increasing lead days (figure 1(c)), which means the
relationship between the EC-YOPP SIT predictions
and SIMBA-MOSAiC SIT remains almost unchanged
as the forecast lead time increases.

The wide spatial-temporal coverage of CS2 SIT
enables us to distinguish the spatial characteristics of
EC-YOPP SIT prediction errors and document their
temporal evolutions. To achieve this, the fuzzy c-
means (Bezdek 2013) clustering method is applied
to group the EC-YOPP SIT initial errors at differ-
ent target dates into several clusters, with the EC-
YOPP initial errors at a certain date belonging to
every cluster to a certain degree. The results dis-
play two main spatial patterns (figures 1(d) and (e)).
The mean pattern of the first cluster (denoted as P1)
shows the EC-YOPP SIT analysis overestimates SIT
in the Beaufort Sea and the adjacent Central Arctic
and underestimates SIT elsewhere (figure 1(d)). The
mean pattern of the second cluster (denoted as P2)
underestimates SIT in seas northeast of Svalbard and
overestimates elsewhere (figure 1(e)). The Euclidean
distance quantifies the degree of similarity between
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Figure 2. (a) RMSE vs bias of SIT in EC-YOPP analysis, PIOMAS, TOPAZ4, and NAOSIM and (b) Taylor diagram for these four
SIT fields when compared to SIMBA-MOSAiC SIT observation. SIMBA-MOSAiC SIT observation is marked as a black
pentagram in (b). (c) Differences of MSEs between EC-YOPP analysis SIT and ensemble mean when compared to CS2
observations (shading), with the red (blue) color indicating EC-YOPP analysis SIT has a larger (smaller) MSE than the ensemble
mean. The areas covered by the dots indicate EC-YOPP SIT forecasts 15 d ahead have a smaller MSE than the ensemble mean.
(d)–(f) Same as (c) but for the MSE decomposition terms, i.e. bias2, variance, and negative two times the covariance.

EC-YOPP SIT initial errors on different dates with
P1/P2 (figure 1(f)), with a shorter distance indicat-
ing a higher degree of similarity. It is shown that
EC-YOPP SIT initial errors have shorter distances
to P1 from December 2019 to June 2020 and from
November 2020 toDecember 2020 (solid green line in
figure 1(f)), and have a shorter distance to P2 during
the other times (solid orange line in figure 1(f)). This
means that the overestimation in the Beaufort Sea and
the underestimation north of Svalbard in EC-YOPP
SIT initial condition can be seen year-roundwhile the
errors in other regions evolve with the seasons. The
situation remains unchanged with the increasing lead
days, because the distances averaged over different
lead days are very similar to the initial distance (com-
pare dotted lines and solid lines in figure 1(f)). This
means the EC-YOPP SIT initial errors remain stable
on synoptic time scales and emphasizes the leading
importance of the SIT initial conditions on the syn-
optic SIT forecast.

To further characterize the relative quality of
the EC-YOPP SIT analysis, three popular SIT data-
sets are included for intercomparison, namely the
Pan-Arctic Ice Ocean Modeling and Assimilation
System (PIOMAS; Zhang and Rothrock 2003), the
Towards an Operational Prediction system for the
NorthAtlantic European coastal Zones (TOPAZ4; Xie
et al 2018) and the North Atlantic/Arctic Ocean Sea
Ice Model (NAOSIM; Sumata et al 2019). Compared
to SIMBA-MOSAiC SIT, TOPAZ4 has the smallest

bias and root mean squared error (RMSE) among all
the SIT datasets. NAOSIM, EC-YOPP analysis, and
PIOMAS have a similar bias but their RMSEs are in
decreasing order (figure 2(a)), implying other factors
(such as variability or correlation) rather than mean
bias are responsible for the difference in RMSEs.
Thus, the Taylor diagram is presented to give detailed
comparisons between EC-YOPP SIT analysis and
three popular SIT datasets (figure 2(b)). Results reveal
the gap between EC-YOPP SIT analysis and other SIT
datasets, as EC-YOPP SIT analysis has the weakest
correlation with the reference among these four SIT
datasets. Compared to the CS2 SIT, EC-YOPP SIT
analysis is found to have a larger mean squared error
(MSE) than the ensemble mean MSE of these three
SIT datasets (denoted as ensemble mean hereafter) in
the Beaufort Sea and part of the Central Arctic, while
in certain regions (such as north of Greenland, part
of the Central Arctic, and part regions of the Pacific
Sector), EC-YOPP SIT analysis has a smaller MSE
(figure 2(c)). The MSEs of EC-YOPP SIT analysis
and the ensemble mean are decomposed respectively
using the method in Murphy (1988), which reveals
that larger MSE of EC-YOPP SIT analysis in the
Beaufort Sea results from a larger bias (figure 2(d))
and variance (figure 2(e)), while larger MSE of EC-
YOPP SIT analysis in the Central Arctic is dominated
by an inferior covariance (figure 2(f)). The further
analysis reveals the relationship between SIT climato-
logy and SIT variance estimation error, i.e. the thicker
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SIT climatology is, the more underestimation of SIT
variance EC-YOPP SIT has (not shown). To sum
up, evaluations based on SIMBA-MOSAiC SIT and
the CS2 SIT both identify the existing gaps between
the EC-YOPP analysis SIT and the three commonly
used SIT datasets, particularly for the Beaufort Sea
and the Central Arctic. It is suggested that besides
advancing the development of the sea icemodel phys-
ics (e.g. Massonnet et al 2011), improving the SIT
initialization of the European Centre for Medium-
Range Weather Forecasts system should bring large
first-order improvements of operational synoptic SIT
prediction.

3. Conclusion

EC-YOPP SIT prediction is compared with the latest
SIMBA-MOSAiC SIT observations and CS2 SIT,
highlighting that initial SIT tends to persist on syn-
optical time scales. The additional comparison with
three popular SIT datasets reveals the gap between
EC-YOPP SIT analysis and widely-used SIT datasets
and calls for better SIT initialization.

During the YOPP campaign, numerous atmo-
spheric observations have been collected through
three special observing periods and two targeted
observing periods, and several studies have been
conducted to improve the operational weather fore-
cast (Jung et al 2020). However, sea ice assimila-
tion, especially SIT assimilation is still in an early
stage. Due to the lack of SIT data assimilation, the
large SIT initial errors persist and thus deteriorate
the performance of the EC-YOPP synoptic SIT pre-
dictions. Consequently, there is an urgent need to
include SIT assimilation in the operational prediction
system.

Satellite-derived SIT has been successfully assim-
ilated into the forecast system in several experiments,
which leads to a significant improvement in sea ice
and atmospheric field prediction (Day et al 2022).
Conventionally, meltwater ponds accumulating at the
sea ice surface are difficult to separate from open
water by satellite altimeters, which limited satellite-
derived SIT to only the cold season (October–April).
In addition, inadequate knowledge of snow depth
accumulated above the sea ice results in large uncer-
tainty of satellite-derived SIT. As a result, the assim-
ilation of new summertime SIT (Landy et al 2022)
and snow depth products (Kwok et al 2020) offers the
potential for improving sea ice forecasting on differ-
ent timescales.

Despite substantial future work remaining, EC-
YOPP SIT forecasts have already shown some advant-
ages over the ensemble mean SIT in certain regions
(i.e. the areas with dots in figure 2(c)), indicating the
effectiveness of current operational synoptic SIT fore-
casts and their potential benefit. With the increasing

observations in theArctic and the associated advance-
ments in sea-ice data-assimilation, the community
and society will benefit more from improved SIT
forecasts.
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