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We present improved estimates of air–sea CO2 exchange over three latitude bands 
of the Southern Ocean using atmospheric CO2 measurements from global airborne 
campaigns and an atmospheric 4-box inverse model based on a mass-indexed isen-
tropic coordinate (Mθe). These flux estimates show two features not clearly resolved in 
previous estimates based on inverting surface CO2 measurements: a weak winter-time 
outgassing in the polar region and a sharp phase transition of the seasonal flux cycles 
between polar/subpolar and subtropical regions. The estimates suggest much stronger 
summer-time uptake in the polar/subpolar regions than estimates derived through 
neural-network interpolation of pCO2 data obtained with profiling floats but some-
what weaker uptake than a recent study by Long et  al. [Science 374, 1275–1280 
(2021)], who used the same airborne data and multiple atmospheric transport models 
(ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE) 
budgets from reanalyses to show that most ATMs tend to have excessive diabatic mix-
ing (transport across moist isentrope, θe, or Mθe surfaces) at high southern latitudes 
in the austral summer, which leads to biases in estimates of air–sea CO2 exchange. 
Furthermore, we show that the MSE-based constraint is consistent with an inde-
pendent constraint on atmospheric mixing based on combining airborne and surface 
CO2 observations.

carbon sink | atmospheric diabatic mixing | inverse model | atmospheric transport model |  
airborne observation

Precise assessments of the air–sea CO2 flux of the Southern Ocean (SO), which includes 
both natural and anthropogenic components, are of critical importance to understanding 
the global carbon cycle and predicting future oceanic carbon uptake under climate change 
(1–4). The high-latitude SO (<58°S) was likely a significant natural source of CO2 to the 
atmosphere in the preindustrial era but has switched to being a net sink in the present-day 
(5). Available estimates suggest that uptake over the entire SO (<35°S) strengthened from 
1980 to 2015, with significant decadal variability (4, 6–12).

Observation-based flux estimates of the entire SO remain highly uncertain. The net 
SO CO2 flux has been quantified using pCO2 measurements from ship-based and Argo 
float observations (7, 13–20) and from atmospheric CO2 measurements at surface stations 
that are inverted by atmospheric transport models (ATMs) (21–27). These products, 
however, show a large spread of flux estimates and are limited by sparse observations, 
possible measurement biases, and uncertainties in near-surface wind speed, gas exchange 
coefficients, and modeled atmospheric transport.

Recently, Long et al. [(28), henceforth Long21] used atmospheric CO2 observations 
from a series of global airborne campaigns to estimate the seasonal cycle of SO CO2 flux 
of a single region (90°S to 45°S) and reported an annual oceanic uptake of 0.53 ±   0.23 
PgC y−1 averaged from 2009 to 2018. This annual sink estimate is consistent with the 
average of atmospheric inversion products (henceforth 3D inversions) and neural-network 
interpolation of ship-based pCO2 products (Surface Ocean CO2 Atlas, SOCAT) (15, 29) 
but larger than recent pCO2-based estimates using neural-network interpolation of pro-
filing float data from the SO Carbon and Climate Observations and Modeling project 
(SOCCOM) (16, 17, 30). Long21 also identified a larger summer-time CO2 uptake 
compared to the SOCCOM-based flux estimates and the average of multiple atmospheric 
inversion products. The method of Long21 uses the atmospheric CO2 gradient across 
potential temperature (θ) as an emergent constraint on the underlying air–sea flux, taking 
advantage of the tendency of CO2 to be well-mixed on θ surfaces (31).

Here, we provide improved estimates of seasonal SO CO2 flux using a 4-box tropo-
spheric inverse method (Fig. 1A, henceforth 4-box inversion) and the same airborne 
datasets as in Long21 (detailed in Materials and Methods and SI Appendix, Fig. S1). 
Whereas Long21 resolved fluxes over a single domain (south of 45°S), our method resolves 
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fluxes in three finer bands (“polar,” “subpolar,” and “subtropical”) 
between 90°S and ~37°S (Fig. 1B and SI Appendix, Fig. S2), which 
allows closer comparison with pCO2-based flux products (15–17) 
and provides insights into the latitudinal structure of processes 
driving seasonal pCO2 changes, such as the interactions between 
marine photosynthesis, ocean ventilation, and warming/cooling 
(32, 33).

At midlatitudes, CO2 and other long-lived tracers tend to be 
rapidly dispersed along surfaces of constant moist potential tem-
perature (θe), yielding gradients that are roughly parallel to the 
gradients in θe (34–37). Such mixing can be termed “adiabatic mix-
ing,” in contrast to “diabatic mixing” which is defined as transport 
across θe surfaces involving diabatic heating or cooling. Our box 
model builds on recent work (38, 39) by aligning the box bound-
aries with fixed values of a mass-indexed isentropic coordinate Mθe, 
which is parallel to θe at any instant time but is adjusted to conserve 
dry air mass in each box. This approach yields box boundaries that 
are nearly fixed with respect to latitude and season despite large 
seasonal displacements in θe and it highlights diabatic mixing as a 
critical process for quantifying large-scale tracer dispersion. 
Atmospheric transport is conventionally determined using ATMs, 
but these models show a large spread of simulated diabatic transport, 
which is related to uncertainty in advection, convection, and bound-
ary height parameterizations (23, 40, 41). Prior studies have iden-
tified errors in ATMs by pointing to vertical CO2 gradients being 
overestimated in simulations at midlatitude (42, 43). We provide 
estimates of diabatic mixing rates that are independent of ATMs by 
using the moist static energy (MSE) budget of reanalyses. As MSE 
surfaces are identical to θe and Mθe surfaces, which are all conserved 
during adiabatic processes, MSE-based mixing rates provide precise 
constraints on cross-Mθe diabatic transport.

In this paper, we start by describing and validating the 
Mθe-aligned box-model inversion method. We conduct a system-
atic analysis of uncertainty in ATMs-simulated diabatic mixing 

rates across three Mθe surfaces over the mid- to high latitude SO 
by developing two relevant constraints, one based on MSE budgets 
and the other based on atmospheric CO2 gradients across Mθe 
surfaces. We present our airborne-based seasonal flux estimates 
resolved from the box-model inversion method that is constrained 
by MSE-based diabatic mixing rates and discuss key features and 
mechanisms that cause the flux cycles to vary meridionally. 
Estimates obtained from airborne measurements are further com-
pared with other flux products to identify any limitations these 
products may have. We also discuss the broad implications of our 
method for resolving decadal variability and long-term trends in 
SO CO2 fluxes, resolving surface fluxes of other species and in 
other regions, and the potential to improve ATMs in general.

Results and Discussion

Box-Model Architecture and Evaluation. The 4-box inversion 
model, shown in Fig. 1A (detailed in Materials and Methods), divides 
the troposphere in the Southern Hemisphere into discrete boxes, 
with lateral boundaries aligned with fixed values of Mθe (38). The 
Mθe coordinate is aligned with θe, but a given Mθe surface constantly 
adjusts to keep the total dry airmass under it conserved. Each Mθe 
surface is indexed to the corresponding contained airmass. The 
three primary boxes of the model each contain 15 ×   1016 kg of dry 
air and intersect the surface of the Earth in zonal bands (Fig. 1B). 
The northernmost fourth box provides a boundary condition for 
the third box. The CO2 flux at the bottom of each primary box is 
calculated from mass balance, based on diagnosed CO2 transport 
between boxes and observed inventory changes within the boxes 
(Eq. 1). A key assumption of the 4-box model is that the adiabatic 
transport (along θe or Mθe transport) is sufficiently rapid that CO2 
meridional transport is mainly controlled by bidirectional diabatic 
transport (across θe or Mθe transport) between boxes, thus effectively 
reducing the troposphere to a discrete 1-dimensional mixing system. 

A B

Fig. 1. (A) Schematic of the box model. Boundaries of the box model are selected Mθe surfaces at 15, 30, 45, and 60 Mθe values (1016 kg), which are shown 
as zonal and 2009 to 2018 averages. (B) Selected near-surface Mθe contours as 2009 to 2018 averages. Mθe is computed from 3-h MERRA-2 reanalysis. These 
Mθe bands are nearly fixed with season (SI Appendix, Fig. S2). Red triangles show the location of surface stations that are used in the Carbon Tracker 2019b 3D 
(three-dimensional) CO2 inversion product.
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This assumption and the performance of the box model are validated 
below. In this model, diabatic transport is parameterized based on 
the cross-Mθe CO2 gradient and a seasonally dependent diabatic 
mixing rate, expressed in kg2 d−1 (Eq. 2). Because airmass (kg) has 
replaced latitude or length in our box model, these mixing rates are 
analogous to diffusion coefficients, with the advantage of representing 
fundamental properties of the atmosphere that are independent of 
model discretization. We provide two approaches (Materials and 
Methods) to calculate climatological monthly diabatic mixing rates, 
one based on CO2 inversion systems that are constrained by surface 
CO2 observations and transport model simulations (ATM-based 
mixing rates) and one based on MSE budgets derived from MERRA-2 
and JRA-55 reanalyses (MSE-based mixing rates).We validate the 
4-box inversion approach by applying the method to reconstruct 
surface CO2 fluxes from four CO2 inverse models, using the full 
3D gridded atmospheric CO2 fields of each product, averaged over 
each box, and using the corresponding parameterized climatological 
ATM-based mixing rates from the same model (Materials and 
Methods). This method provides an internally consistent system 
for each 3D inversion, and the reconstructed surface fluxes align 
well with original inverted fluxes over each zonal band (RMSE ≤ 
0.12 PgC y−1, Fig. 2A and SI Appendix, Figs. S4–S6 and Table S1), 
especially over the climatological seasonal cycle (Fig. 2B). The 4-
box inversion also reconstructs the interannual variability (IAV) of 
fluxes (e.g., Fig. 2A), even though the box-model uses interannually 
constant mixing rates, showing that flux IAV can be learned from 
variations in atmospheric CO2 gradients, while the impact of IAV 
on the atmospheric dynamics is relatively small. The method for 
resolving the zonal-averaged flux is not biased by the representation 
error (44, 45) that arises from the coarse resolution inverse model, 
which we verify by successfully reconstructing zonal-averaged air–sea 
CO2 flux from a product with finer-scale variability (Materials and 
Methods and SI Appendix, Fig. S16). These validations confirm that 
the complex 3D circulation of the atmosphere at high southern 
latitudes can be approximated by mixing along one dimension (the 
coordinate Mθe), at least for the purpose of resolving zonal-averaged 
SO CO2 fluxes.

Diabatic Mixing Rate Evaluation. We find that the MSE-based 
mixing rates from MERRA-2 and JRA-55 are highly consistent 
with each other, while ATM-based mixing rates have a large spread 

up to threefold and are faster than MSE-based mixing rates in 
austral summer over the high latitudes (Fig. 3 and SI Appendix, 
Fig. S3). We believe that the MSE-based mixing rates are more 
reliable for two reasons: First, the MSE-based constraint is 
powerful because surfaces of constant MSE are exactly parallel 
with the Mθe coordinate and because MSE has strong gradients 
across Mθe in all seasons. Second, the MSE-based constraint is 
consistent with an additional constraint on mixing that is available 
when combining CO2 data from both aircraft and surface stations. 
The available inverse models compute CO2 fluxes using surface 
data only but also yield troposphere CO2 gradients which can be 
compared to airborne observations. We find that the cross-Mθe 
CO2 gradients in most inverse models are inconsistent with the 
observed gradients in airborne data during the austral summer in 
the mid- to high latitude (Fig. 4 A and B). The discrepancies in 
simulated CO2 gradients correlate strongly with the diagnosed 
diabatic mixing rates from each corresponding ATM (Fig.  4), 
showing that ATMs with stronger diabatic mixing produce smaller 
CO2 gradients compared to observations. Based on the correlation, 
we find that the larger observed CO2 gradients from airborne data 
than model simulations appear to require a slower mixing rate at 
the 15 and 30 Mθe surfaces (Fig. 4 A and B), respectively, in the 
austral summer. The required mixing rates are consistent with 
the MSE-based mixing rate, thus providing strong evidence for 
the MSE-based estimates to be more realistic. Among all ATMs, 
the ACTM model yields a realistic summer gradient and mixing 
rates that are compatible with the MSE budget. In the rest of the 
year, both MSE-based mixing rates and ATM-based mixing rates, 
as well as simulated and observed CO2 gradients are generally 
within the 1 � uncertainty of the observed gradients and close to 
two MSE-based mixing rates (SI Appendix, Fig. S7).

For the 4-box inversions presented here, we alternately use 
MSE-based mixing rates derived from MERRA-2 and JRA-55 to 
invert airborne CO2 observations, allowing for uncertainty in 
mixing based on the spread between these two estimates and their 
small IAV (detailed in SI Appendix, Text S2).

Airborne-Based Air–Sea CO2 Fluxes. We calculate air–sea CO2 
fluxes using the observed CO2 inventory of each Mθe box and CO2 
gradients across Mθe surfaces from each airborne campaign, which 
are resolved by binning airborne data into four Mθe bands (detailed 

Fig. 2. (A) Monthly reconstructed air–sea CO2 fluxes (solid gray) for the 0 to 30 (1016 kg) Mθe band (south of ~43°S near the Earth surface) based on CarbonTracker 
2019b, compared with the original monthly 3D inversion fluxes for the same Mθe band (dashed black). The other components (i.e., diabatic CO2 transport and 
CO2 inventory change, detailed in Materials and Methods, and Eq. 1) of the box-model reconstruction are shown as well. Positive values of the diabatic transport 
represent CO2 transport into the 0 to 30 Mθe band (poleward transport). We note that the inventory change (blue) equals the sum of fluxes (black) and diabatic 
transport (red). (B) Similar to (A), but showing the flux and other components as climatological monthly averages (2009 to 2018). Shaded regions show IAV, 
which is calculated as the SD over 10 y for the corresponding month. We also show these reconstructions for other 3D inversion products and other surface 
Mθe bands in SI Appendix, Figs. S4–S6.D
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in Materials and Methods). We correct for small biases in CO2 
inventory and gradient induced by sparse spatial coverage of the 
airborne observations (SI Appendix, Text S1 and Tables S5 and S6) 
by comparing averaged CO2 from full 3D model data and flight 
track-subsampled model data. We also correct the contribution 
of small nonoceanic CO2 flux to the CO2 mass balance based on 
flux estimates in four inversion products (SI Appendix, Fig. S8). 
Our flux estimates allow for uncertainties from CO2 measurement 
imprecision, spread and IAV of MSE-based diabatic mixing rates, 
spatial coverage corrections, flux IAV due to insufficient temporal 

sampling, and nonoceanic CO2 flux corrections (SI  Appendix, 
Texts S1 and S2). Although we report a similar random error as 
Long21, we expect our results to be subject to smaller systematic 
errors from uncertainty in atmospheric mixing and importantly 
also allow resolving fluxes at finer spatial scales with the same data. 
The reported random error is dominated by CO2 measurement 
error derived from comparing different instruments.

The 4-box inversion resolves clear seasonal cycles of air–sea CO2 
flux in all three latitude bands, with clear differences in amplitude 
and phasing between the bands. Over the polar band (Fig. 5A), 
we find a strong CO2 uptake in the summer (DJF) and a weak 
outgassing in the winter (JJA). Over the subpolar band (Fig. 5B), 
we find a strong uptake in the summer and a weak uptake in the 
winter. In the subtropical band (Fig. 5C), the seasonality is 
reversed, with a weak uptake in the summer and a strong uptake 
in the rest of the year. Averaged over the full year, all bands show 
net uptake. We now discuss each of these prominent features in 
turn.

The airborne-based estimates suggest a weak winter-time CO2 
outgassing of 0.05 ±   0.03 PgC integrated from June to August 
(equivalent to 0.56 ±   0.35 gC m−2 mo−1) in the polar band 
(Fig. 5A). Winter outgassing is expected from strong winter-time 
upwelling which brings carbon-rich deep water to the surface (12). 
This outgassing pattern is consistent with several recent pCO2- 
based flux estimates, for example, observations from uncrewed 
surface vehicles in the Antarctic Zone during June and July of 
2019 (0.7 gC m−2 mo−1) (48), reconstructed winter-time (July, 
2004 to 2014 average) fluxes using summer-time measurements 
(0.04 ±   0.008 PgC) (49), and neural-network interpolation of 
ship-based SOCAT measurements (0.03 PgC, Fig. 5E) (15), but 
is smaller than estimates solely based on neural-network interpo-
lation of SOCCOM float data during 2014 and 2017 (~0.23 PgC, 
Fig. 5E) (16). The small winter-time outgassing in our results is 
also consistent with several 3D inversions that used surface station 
CO2 observations (Jena inversion, ACTM, and CAMS) but is 
significantly more positive than one 3D inversion (CT 2019b, 
Fig. 5E). The airborne-based flux estimates show a clear phase shift 
between the polar/subpolar bands (Fig. 5 A and B) and the sub-
tropical band (Fig. 5C). The boundary between these two boxes 
in the 4-box model roughly aligns with the subtropical front over 

Fig. 3. Diabatic mixing rates of the 30 (1016 kg) Mθe surface. These mixing 
rates are parameterized from four 3D CO2 inversion products and MSE budget 
of two reanalysis products (MERRA-2 and JRA-55). Error bars represent only 
the IAV of parameterized mixing rates, which is shown to be small, with the 
exception of CAMS in September because of the close-to-zero CO2 gradient 
across the 30 (1016 kg) Mθe surface. Diabatic mixing rates of the 15 and 45 (1016 
kg) Mθe surface are shown in SI Appendix, Fig. S3.

Fig. 4. Exploring the correlation between January and February ATM-based mixing rates at (A) the 15 Mθe surface, (B) the 30 Mθe surface, and (C) the 45 Mθe surface 
and simulated atmospheric CO2 gradients across the corresponding Mθe surface of four transport models (3D CO2 inversion products). Simulated gradients are 
from 3D concentration fields averaged at the mean dates of five airborne campaigns or subcampaigns that took place during January and February (HIPPO1, 
ATom2, and ORCAS1-3). The corresponding ATM-based mixing rate is calculated as the January and February average. For comparison, we show the observed 
CO2 gradients (spatial bias corrected, as detailed in SI Appendix, Text S1) as horizontal black lines, which are calculated as the average of the same five campaigns 
or subcampaigns, while the dashed lines show the 1 � uncertainty (measurement and spatial bias correction uncertainty). We also show two MSE-based mixing 
rates (January and February average) as vertical brown lines. A similar figure exploring the correlation between April to November averaged CO2 gradient and 
averaged diabatic mixing rate is presented in SI Appendix, Fig. S7.D
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the Atlantic and the Indian Ocean but is ~5°S of the subtropical 
front over the Pacific Ocean. This phase shift is likely due to the 
latitudinal change of the dominant mechanism that drives the 
surface–ocean pCO2 seasonal changes. To the north of this 
boundary, the pCO2 cycle is dominated by temperature-related 
solubility changes. To the south, it is dominated by biological 
production/mixing processes driving seasonal changes in dissolved 
inorganic carbon (32, 33, 50). A similar shift across ~40°S has 
been resolved in surface ocean pCO2 data (33, 50, 51) and also 

in flux estimates based on these pCO2 data, but the seasonal 
amplitudes of fluxes in these estimates are weaker in both regions 
than we find from airborne data (Fig. 5 E–G). The phase shift, 
however, is not distinctly resolved in the 3D inversions and two 
neural-network interpolations of pCO2-based products (Fig. 5 
E–G). We note that inversions may be biased by excess diabatic 
transport in the austral summer (Fig. 4), and pCO2-based prod-
ucts are limited by sparse coverage, especially in our lowest lati-
tude band 43 to 37°S (17).

Fig. 5. (A–D) Seasonal cycle of air–sea CO2 fluxes (negative as net oceanic uptake) estimated using the 4-box model based on airborne CO2 observations and 
two sets of MSE-based diabatic mixing rates (Materials and Methods). Each individual point represents the calculated fluxes using airborne observations from 
the corresponding campaign, centering on the mean date of each campaign, while the black line is a 2-harmonic fit. Error bars represent the 1 �   uncertainty 
of each flux estimate, while shaded regions represent the 1 �   uncertainty of the 2-harmonic fits (detailed in SI Appendix, Texts S1 and S2). Values of air–sea CO2 
fluxes calculated for each airborne campaign transect and for each band are summarized in SI Appendix, Table S4. Annual fluxes are from the constant term 
of the 2-harmonic fitted climatological flux cycles, which is equivalent to integrating the fit over a year. These approximate latitude bands (see the Top of each 
panel) are calculated as the zonal average latitude of the corresponding annual average (2009 to 2018) Mθe surface over the ocean (SI Appendix, Fig. S2). We 
also show box-model resolved fluxes calculated using the average of six sets of mixing rates and each set of mixing rate in SI Appendix, Figs. S10 and S11. In 
(E–H), we compare our estimates with four 3D CO2 inversion products, and two neural network interpolated surface ocean pCO2 products using SOCAT pCO2 
observations alone and SOCCOM pCO2 observations alone. Details of these products are in SI Appendix, Text S6. The SOCCOM product is a sensitivity run where 
all shipboard data from SOCAT were excluded (only SOCCOM float data were included). We note that the ocean CO2 flux in Jena sEXTocNEET_v2020 is a prior, 
which is provided by assimilation of surface ocean pCO2 observations (i.e., not neural-network derived pCO2) from SOCAT (29) by the Jena mixed-layer scheme 
(46). The seasonal cycle of each product is calculated as the average between 2009 and 2018, except for SOCCOM, which is averaged from 2015 to 2017. In (I–L), 
we compare our estimates with thermally driven air–sea CO2 flux cycles (dashed red, methods in SI Appendix, Text S3), which is derived from assuming 4% pCO2 
increase per degree Celsius increase in sea-surface temperature (SST) and using wind speed–dependent gas exchange. We calculate the correlation between 
the airborne observed flux cycle and the estimated thermal-driven flux cycle of each band. Black solid curves and shaded regions in (E–L) are corresponding 
airborne observed fluxes and 1σ uncertainty. Panels (I–L) have a different y-axis range compared to panels (A–H). We also compare our estimates with nine global 
ocean biogeochemistry models that are used in the Global Carbon Budget 2020 (10, 47) in SI Appendix, Fig. S9.
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To quantify the contribution of temperature-related solubility 
changes to the CO2 fluxes (Fig. 5 I–L), we compare the airborne-based 
fluxes to results from a simple thermal model, which assumes pCO2 
increases by 4% per degree Celsius increase in sea-surface tempera-
ture (SST) change and uses wind-speed dependent gas exchange 
(methods in SI Appendix, Text S3) (52, 53). In the polar and subpolar 
zones (Fig. 5 I–J), the thermal model yields fluxes that are strongly 
out of phase compared with observations (correlation � = −0.81 and 
−0.83). In the subtropical region (Fig. 5K), the cycle from the ther-
mal model broadly aligns with the observed cycle ( � = 0.62).

Despite the correlation, the observed flux cycle in the subtropical 
band has significant deviations in the austral spring compared to the 
thermal-driven cycle. The strengthening of CO2 uptake from January 
to April is faster than expected from warming alone (Fig. 5K), which 
requires a contribution from biological-driven changes, possibly 
associated with the fall phytoplankton bloom (54, 55).

We find a summer-time ocean CO2 uptake of 0.13 ± 0.04 PgC 
(integrated from December to February, DJF) in the polar band 
(Fig. 5A) and 0.14 ± 0.04 PgC in the subpolar band (Fig. 5B), which 
contributes to most of the annual uptake of 0.36 ± 0.16 PgC south 
of ~43°S (Fig. 5D). Our results are qualitatively consistent with prior 
estimates using the same airborne observations (Long21). However, 
our annual uptake estimate integrated over the polar and subpolar 
band is smaller (within uncertainty) than that of Long21 (0.53 ± 
0.23 PgC). The difference is mainly explained by larger summer-time 
CO2 uptake in Long21, but the comparison is complicated by small 
differences in ocean domains between these two studies (the 30 Mθe 
surface, compared to 45°S, displaces ~2° southward over the western 
Pacific and ~3° in other basins). The larger summer uptake in Long21 
can be attributed to the dependence on ATMs, which we suggest 
have unrealistically fast mixing rates in summer (Fig. 3). Summertime 
fluxes from our box model are especially sensitive to the diabatic 
mixing rate because summertime cross-Mθe gradients are large, and 
the inventory change is small (Fig. 2). The winter-time fluxes are less 
sensitive to the diabatic mixing rate because wintertime CO2 gradi-
ents are small, and the inverted flux is mainly diagnosed from the 
observed atmospheric CO2 inventory change.

Our results support prior work suggesting possible biases in 
SOCCOM pCO2 data (56). Compared to the airborne-based flux 
estimates, the SOCCOM-based estimates (Fig. 5 E–H) show sig-
nificantly larger CO2 outgassing (or weaker uptake) all year round 
in the two high-latitude bands (Fig. 5 E and F). In these bands, 
the airborne-based results are in better agreement with flux esti-
mates from SOCAT data.

Our airborne-based estimates show large differences from global 
ocean biogeochemistry models, which have known difficulties in 
representing CO2 exchange over the SO (7, 47, 57) given the large 
competing process drivers. We find several models that suggest sim-
ilar phase shifts, but we did not find any model that agrees well with 
our estimates in all three bands (SI Appendix, Fig. S9). Airborne-based 
estimates are relatively consistent with pCO2-based estimates and 
inversions, while sharply deviating from GOBMs, underscoring the 
need for a better understanding of the physical and biogeochemical 
processes that drive SO air–sea CO2 fluxes in GOBMs.

Overview and Outlook. We have resolved air–sea CO2 fluxes over 
three zonal bands of the SO using airborne data and a 4-box inversion 
approach based on Mθe coordinates. This framework adequately 
describes large-scale CO2 transports needed for resolving fluxes at the 
scale of three zonal bands over the mid- to high latitudes of the SO, 
showing that the complex meridional CO2 transport can be simplified 
to diabatic transport. This framework also incorporates constraints 
on the diabatic mixing rate from MSE budgets of atmospheric 
reanalyses, without requiring an ATM. We demonstrate that the 

diabatic mixing rates inferred from the MSE budgets are realistic, 
based on a CO2 gradient-mixing rate constraint, but the mixing 
in most ATMs is too fast in the austral summer. These differences 
in representing mixing led to our summer uptake estimates being 
somewhat smaller than the uptake estimated by Long21, despite 
using the same airborne CO2 data. In the austral winter, ATM- and 
MSE-based mixing rates are generally comparable.

This study provides robust zonal average flux estimates from air-
borne data by capitalizing on rapid atmospheric mixing to integrate 
zonal heterogeneities. Our estimates have advantages over the pub-
lished atmospheric inversions using surface station data because 
airborne data more accurately reflect large-scale features, and atmos-
pheric vertical CO2 gradients are much more sensitive to fluxes than 
horizontal surface gradients. Also, our method is less sensitive to large 
uncertainties in simulated atmospheric mixing and the representa-
tion error due to model resolution (45). Compared to pCO2-based 
products, our estimates also have advantages, not being subject to 
uncertainty in gas exchange velocity and sparse coverage in pCO2 
observations (28). A corresponding disadvantage, however, is the 
inability to resolve finer-scale spatial features.

The 4-box inverse model provides insights that have potential 
value for understanding and improving the simulated atmospheric 
circulation and structure in 3D ATMs. We show inconsistency in 
MSE-based and ATM-based diabatic mixing rates and in CO2 gra-
dients between airborne data and inversion systems that are opti-
mized by surface data (Fig. 4). These inconsistencies strongly 
motivate the incorporation of airborne data into CO2 inversion 
systems. They also identify key errors during the construction of 
modern ATMs related to diabatic mixing. Previous studies have 
highlighted uncertainty in vertical mixing as a major source of error 
in CO2 fluxes estimated via inverse model calculations (41, 42). 
Vertical mixing in the mid-troposphere has both along- and cross-Mθe 
components, and the cross-Mθe mixing (diabatic) component would 
typically be rate limiting because the along-Mθe (adiabatic) mixing 
is more rapid. Reducing uncertainty in vertical mixing thus requires 
reducing uncertainty in diabatic mixing, which we show can be 
constrained with MSE budgets. A first step would be to understand 
more fully the origin of the spread in mixing rates between ATMs. 
Based on the much larger spread in mixing rates between ATMs and 
the reanalysis products and the convergence of the MSE-based (from 
reanalysis) and ATMs-based mixing rates, we expect that the spread 
in ATMs mostly arises from different choices made in postprocessing 
of reanalysis data to generate ATMs, such as parameterization of 
convection or regridding and interpolation from the finer reanalysis 
grid to the coarser ATM grid. Future work should focus on ensuring 
that ATM mixing rates are consistent with the MSE budgets of the 
original reanalyses.

Our study motivates obtaining additional airborne data to 
improve estimates of large-scale carbon uptake across different 
latitudes of the SO. The ocean uptake over the entire SO has 
increased in recent decades according to surface ocean pCO2 data 
and models (1, 6–8, 10–12, 20). Here, we only attempted to 
resolve a seasonal climatology of the SO CO2 flux over different 
latitudes over the period 2009 to 2018, but resolving interannual 
variations would be feasible with regular sampling from Antarctic 
cargo aircraft. The Mθe coordinate is suitable also for studying the 
sources and sinks of other tracers, for example, computing air–sea 
O2 fluxes, and atmospheric CH4 chemical loss rates.

Materials and Methods

Airborne Campaigns and Airborne CO2 Observations. We use airborne CO2 
observations from three aircraft campaigns, the HIAPER Pole-to-Pole Observation 
project [HIPPO, (58), the O2/N2 Ratio and CO2 Airborne Southern Ocean Study D
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[ORCAS, (59), and the Atmospheric Tomography Mission [ATom, (60). HIPPO 
and ATom have global coverage, mostly along a Pacific or Atlantic transect, while 
ORCAS focused on the SO adjacent to Drake Passage (horizontal flight tracks are 
shown in SI Appendix, Fig. S1). HIPPO consisted of five campaigns (HIPPO1 to 
5) and ATom consisted of four campaigns (ATom1 to 4), each with several flights 
south of 35°S. ORCAS was a single 6-week campaign but with much denser tem-
poral sampling, so we have split it into three subcampaigns (ORCAS1 to 3) in our 
analysis. Detailed descriptions of these airborne campaigns are in SI Appendix, 
Text S4 and Table S2. We primarily use CO2 airborne measurements collected 
by the NCAR AO2 instrument (61). To evaluate potential uncertainty (detailed 
in SI Appendix, Text S2.1), we also use measurements from three other in-situ 
instruments, the Harvard QCLS instrument (62), Harvard OMS instrument (63), 
and NOAA Picarro, and measurements from two flask samplers, the NCAR/Scripps 
Medusa flask sampler (61, 64) and NOAA Portable Flask Packages [PFP, (65)]. AO2 
and QCLS are available on all campaigns. However, OMS did not fly on ORCAS 
or ATom, NOAA PFPs did not fly on ORCAS, and the NOAA Picarro did not fly on 
HIPPO. The in-situ measurements are averaged to 10-s intervals.

Mass-Indexed Moist Isentropic Coordinate (Mθe). The Mθe coordinate, first 
introduced in the study by Jin et al. (38), is defined as the total dry air mass 
under a specific moist isentropic surface (θe) in the troposphere of a given hem-
isphere. Surfaces of constant Mθe align with surfaces of constant θe but the rela-
tionship changes with season, as the atmosphere warms and cools. A schematic 
of the annual zonal average atmospheric Mθe value is in shown Fig. 1A, while 
climatological positions of the near-Earth surface contours of three Mθe surfaces  
(15, 30, and 45 1016 kg) are shown in Fig. 1B and SI Appendix, Fig. S2. Details of 
the calculation of Mθe are described in SI Appendix, Text S5.

We also relate bands of constant Mθe to approximate latitude bands (Fig. 5) 
based on the zonal average latitude of corresponding daily surface Mθe (averaged 
from 2009 to 2018) over the ocean.

Box Model Architecture and Diabatic Mixing Rates. We build a 4-box 
atmospheric model using selected Mθe surfaces (15, 30, 45, and 60, 1016 kg) as 
boundaries, shown in Fig. 1A. This box model takes advantage of θe (or Mθe) being 
the preferential mixing surface of CO2 throughout the hemisphere, especially 
over midlatitude storm tracks (34, 37). The box model allows surface CO2 fluxes 
(Fi, PgC y−1) to be computed from the CO2 mass balance of each Mθe box, based 
on the knowledge of atmospheric CO2 inventory ( Mi , PgC) in each box and the 
diabatic transport of CO2 between boxes ( Qi,i+1 , PgC y−1)

	 [1]

where i = 1 is the highest latitude (lowest Mθe) box.
In Eq. 1, Qi,i+1 represents the transport (PgC y−1) of CO2 between the ith and 

i + 1th box, with poleward flux as positive. Qi,i+1 is parameterized according to

	 [2]

where Di,i+1 is the diabatic mixing rate (kg2 d−1) that represents the mixing rate across 
the boundary of box i and i + 1, � i is the CO2 concentration (PgC per kg air mass) 
of the ith box, calculated as CO2 inventory of the box divided by the total airmass of 
the box (15 × 1016 kg), and ∆Mθe is the distance in Mθe coordinates between box 
centers, which for evenly spaced boxes is the same as the total airmass of each box. � 
is a constant (365) to convert from PgC d−1 to PgC y−1. Eq. 2 is a variant of Fick’s law, 
with Mθe as an effective distance coordinate, and (

χi+1 −χi)

ΔMθe
 is a measure of the CO2 

concentration gradient. With this approach, Di,i+1 is a property of the corresponding 

Mθe surface and is insensitive to the choice of box size.
We adopt two independent methods to estimate climatological (2009 to 2018 

average) monthly diabatic mixing rates ( Di,i+1 ). The first method extracts diabatic 
mixing rates from transport models using total CO2 fields from 3D inversion 
products (SI Appendix, Table S3). We first use the daily 3D atmospheric field of 
Mθe computed from MERRA-2 to assign a Mθe value to each daily model grid 
cell from 2009 to 2018. The atmospheric 3D CO2 fields and surface CO2 flux 

fields of inversions are interpolated to the MERRA-2 reanalysis grids (1° × 1°, 26 
vertical levels from 1,000 to 100 mbar). We then calculate a daily CO2 inventory 
( Mi ) of each Mθe band as the sum of CO2 mass for all 3D grid boxes within the 
corresponding Mθe domain. We calculate monthly CO2 inventory change ( dMi

dt
 ) by 

taking the time derivative of the monthly atmospheric CO2 inventory. We note that 
monthly CO2 inventory change is computed by first averaging daily CO2 inventory 
by month but shifting the phase of the averaging window by 15 d to center at the 
beginning of each month and then differencing these values to obtain a rate of 
change centered midmonth. We calculate monthly CO2 gradients between two 
Mθe boxes ( � i+1 − � i ) by averaging daily gradients. We calculate monthly surface 
CO2 flux ( Fi ) by averaging daily flux, which is computed by integrating all daily 3D 
inversion flux grids with surface Mθe values within the corresponding Mθe range.

The CO2 transport across the north boundary of each Mθe box in the model can 
be calculated from the CO2 inventory change and surface flux of that box and the 
boxes further southward, according to

	 [3]

Combining Eqs. 2 and 3, climatological average (2009 to 2018 average) monthly 
Di,i+1 is calculated following

	 [4]

where [] denotes the average of corresponding monthly values of all years (2009 
to 2018). The 1 � uncertainty is calculated as the SD of resolved Di,i+1(t) for that 
month over all years, representing the IAV, which is shown to be small (Fig. 3 
and SI Appendix, Fig. S3), with the exception of CAMS in September because of 
close-to-zero CO2 gradients across the 30 (1016 kg) Mθe surface.

The second method relies on MSE budgets from meteorological reanalyses, of 
which we use MERRA-2 and JRA-55 (66, 67). MSE is a measure of static energy that 
is conserved in adiabatic ascent/descent and during latent heat release due to conden-
sation and is thus aligned with surfaces of θe or Mθe. This method provides much more 
well-defined mixing rate estimates because finite MSE gradients exist in each reanal-
ysis time step and do not reverse sign, in contrast to CO2. MSE is defined following

	 [5]

where Cp   (1005.7 J kg−1 K−1) is the specific heat of dry air at a constant pressure, 
T is temperature (K), g is the gravity constant assumed to be 9.81 ms−2, q is the 
specific humidity of air (kg water vapor per kg air mass), and Lv is the latent heat 
of evaporation at temperature T (K). Lv is defined as 2,406 kJ kg−1 at 40 °C and 
2,501 kJ kg−1 at 0 °C and scales linearly with temperature.

MSE transport at the northern boundary of each box is calculated by energy 
conservation within the box, which follows Eq. 3 but has a small modification to 
account for atmospheric energy sources or sinks ( Ei , J d−1):

	
[6]

where S is the total MSE (J) that is calculated using temperature (T) and specific 
humidity (q) from corresponding reanalyses (Eq. 5). Fi is modified as surface heat 
flux (J d−1), including surface sensible and latent heat flux, which is directly avail-
able from MERRA-2 and JRA-55. Ei is defined as heating rate due to radiative 
imbalance and is calculated using temperature tendency analysis ( �Ti

�t
 , K d−1) of 

these reanalyses, following

	 [7]

With MERRA-2, the temperature tendency due to radiative imbalance is directly 
available, while with JRA-55, it is calculated as the sum of heating rates due to 
longwave and shortwave radiation.

𝜕Mi

𝜕t
=

{

Fi+Qi,i+1

Fi+Qi,i+1−Qi−1,i

if i=1

if i<1
,
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)

ΔM
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(
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dt
− F
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)
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To estimate climatological monthly Di,i+1 from reanalysis, the gradient 
( � i+1 − � i ) in Eq. 4 is modified to be the energy density gradient (J per kg 
airmass), calculated from the total MSE of each box divided by the total airmass 
of the box (15 × 1016 kg in this study).

We thus calculate monthly 
dS

i
′ (t)

dt
 , F

i
� (t) , E

i
′ (t) from 2009 to 2018 by averaging 

6-hourly data from MERRA-2 and JRA-55, with 6-h Si shifted by 15 d before 

calculating 
dS

i
′ (t)

dt
 , as for ATM CO2.

The calculation of monthly D based on MSE is according to a modified version 
of Eq. 4:

	 [8]

We show six (four ATM-based and two MSE-based) sets of monthly diabatic mix-
ing rates for the Mθe surfaces at 15, 30, and 45 (1016 kg) in Fig. 3 and SI Appendix, 
Fig. S3. Climatological daily mixing rates are further calculated by 4-harmonic 
fits to monthly data.

Validation of the Box-Model Approach. We validate the use of the 4-box 
model for estimating surface CO2 flux by showing that this approach successfully 
reconstructs monthly surface CO2 fluxes for each of the four 3D CO2 inversion prod-
ucts. This approach uses Eqs. 1 and 2, with � i based on the gridded atmospheric 
CO2 fields averaged over grid cells within corresponding Mθe box and uses Di,i+1 
calculated using CO2 gradients from each transport model as described in the 
previous section. We then average daily reconstructed fluxes to monthly, centered 
at the middle of each month, shown as solid black curves in Fig. 2 and SI Appendix, 
Figs. S4–S6. We assess representation error due to the coarse resolution of the 
box model, by reconstructing the zonal-averaged flux from the neural-network 
interpolation of SOCAT data, using the 3D atmospheric field generated by the TM3 
model with SOCAT-based air–sea CO2 flux, together with fossil fuel and ecosystem 
CO2 fluxes from the Jena sEXTocNEEv2020 (SI Appendix, Fig. S16). We find clear 
alignment between the original and reconstructed SOCAT-based flux, suggesting 
that our method is not limited by representation error.

Airborne Estimates of Air–Sea CO2 Fluxes. We use the 4-box model (Eqs. 1 
and 2) and airborne CO2 observations to calculate air–sea CO2 fluxes for each 
surface Mθe band and each airborne campaign, centering on the mean date of 
the campaign, shown as points in Fig. 5 A–D. This calculation includes the fol-
lowing steps.

We first detrend airborne CO2 observations by subtracting a smoothed inter-
annual CO2 trend at the South Pole (SPO) (68). The trend is calculated by a stiff 
cubic spline function to the monthly average SPO data (69). We then compute 
the detrended average CO2 (χ̂i)   for each campaign and each box by trapezoi-
dal integration of detrended CO2 as a function of Mθe [as in the study by Jin 
et al. (38)] and dividing by the Mθe range of the box (i.e., 15 × 1016 kg). Prior to 
trapezoidal integration, we extrapolate airborne observations to Mθe = 0 surface 
using the average of the 100 observations with the lowest Mθe values near 0. The 
extrapolation only results in a slightly different averaged CO2 for the lowest Mθe 
box compared to the value without extrapolation (<0.03 ppm) because we have 
sufficient measurements across Mθe surfaces. The exceptions are HIPPO1 and 4 
(difference ≈ 0.1 ppm), in which we do not have observations on low Mθe surfaces 
(SI Appendix, Fig. S15). For HIPPO, we only extrapolate airborne observations 
to the lowest Mθe values near 15 because due to the absence of observations 
in the entire first Mθe box, and only estimate fluxes for the 30 to 45 (1016 kg) 
box. We then correct for bias in CO2 estimates due to limited spatial coverage 
(detailed in SI Appendix, Text S1). For each Mθe box, we conduct a 2-harmonic 
fit with an annual offset to χ̂i   of 12 campaigns, yielding a fitted seasonal cycle 
(with offset) of χ̂i   . We then compute the long-term (2009 to 2018) time series 
of observed � i   as the sum of the climatological seasonal cycle of χ̂i   and the CO2 
trend at SPO. We note that we use the same trend for each Mθe band, preserving 
each band’s annual mean offset from SPO. The time series of CO2 inventory ( Mi   ) 
of each box is therefore computed by multiplying � i   and the Mθe range of the 
box (i.e., 15 × 1016 kg in this study). The fitted � i   and Mi   values of each cam-
paign are defined as the values at the mean date of the corresponding campaign. 
Observed surface CO2 fluxes for each airborne campaign are then calculated as the 

combination of two components, namely the CO2 inventory change �Mi

�t
   and CO2 

diabatic transport Qi, i+1, following Eqs. 1 and 2. We calculate the component �Mi

�t
 

as the time derivative of the daily timeseries of Mi from combining the seasonal 
cycle fit and the SPO trend fit. The component Qi, i+1 for each airborne campaign 
mean date is calculated as the product of the observed atmospheric CO2 gradient 
(without fitting) between two boxes and the 4-harmonic fitted diabatic mixing 
rate at the campaign mean date (average of two MSE-based mixing rates) of the 
corresponding Mθe surface.

The surface CO2 fluxes estimated from the 4-box model are the total fluxes 
that also contain any land ecosystem CO2 emission/uptake and fossil fuel CO2 
emission. We correct for these nonoceanic components by subtracting the corre-
sponding flux components using the average of four 3D CO2 inversion products. 
The magnitude of this correction is small compared to the total air–sea fluxes, as 
shown in SI Appendix, Fig. S8.

We estimate the uncertainty of each individual flux estimate and the seasonal 
flux cycle by generating an ensemble (2,000 iterations) of flux estimates, allowing 
for uncertainty of these sources: 1) uncertainty of CO2 measurements; 2) uncer-
tainty of the correction for spatial bias due to insufficient airborne coverage; 3) 
IAV of the diabatic mixing rate; 4) spread of the diabatic mixing rate between the 
two reanalyses; 5) correction for the biosphere and fossil fuel CO2 flux; and 6) IAV 
of the flux. Detailed bias and uncertainty analyses are presented in SI Appendix, 
Texts S1 and S2. The overall uncertainties of each flux estimate are shown as error 
bars in Fig. 5 A–D. The overall uncertainties of 2-harmonic fitted seasonal flux 
cycles are shown as shaded regions in Fig. 5 A–D.

We also show the averaged air–sea CO2 fluxes calculated using 6 sets of 
diabatic mixing rates (four sets of ATM-based and two sets of MSE-based) in 
SI Appendix, Fig. S10. These are estimated using the average and 1 � uncertainty 
of 6,000 iterations of flux estimates, with 1,000 iterations for each set of mixing 
rates. We also show the air–sea CO2 fluxes calculated using each set of mixing 
rates in SI Appendix, Fig. S11.

We calculate the annual CO2 uptake of each Mθe box from the constant term 
of the 2-harmonic fitted seasonal flux cycles (shown as text in Fig. 5).

Data, Materials, and Software Availability. The aircraft data are available 
in references for HIPPO (70), ORCAS (71), and ATom (72). All CO2 inversions are 
available via the University Corporation for Atmospheric Research/National Center 
for Atmospheric Research (UCAR/NCAR)—Digital Asset Services Hub Repository 
(73). Air–sea CO2 fluxes from neural-network interpolation of pCO2 products can 
be accessed from ref. 16. Air-sea CO2 fluxes from global ocean biogeochemis-
try models are available from ref. 74. MERRA2 reanalysis data are downloaded 
from the NASA Goddard Earth Sciences Data and Information Services Center at 
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. JRA-55 reanalysis data 
are downloaded from the NCAR Research Data Archive at https://rda.ucar.edu/
datasets/ds628.0/dataaccess/.
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