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We present improved estimates of air-sea CO, exchange over three latitude bands
of the Southern Ocean using atmospheric CO, measurements from global airborne
campaigns and an atmospheric 4-box inverse model based on a mass-indexed isen-
tropic coordinate (M,,). These flux estimates show two features not clearly resolved in
previous estimates based on inverting surface CO, measurements: a weak winter-time
outgassing in the polar region and a sharp phase transition of the seasonal flux cycles
between polar/subpolar and subtropical regions. The estimates suggest much stronger
summer-time uptake in the polar/subpolar regions than estimates derived through
neural-network interpolation of pCO, data obtained with profiling floats but some-
what weaker uptake than a recent study by Long et al. [Science 374, 1275-1280
(2021)], who used the same airborne data and multiple atmospheric transport models
(ATMs) to constrain surface fluxes. Our study also uses moist static energy (MSE)
budgets from reanalyses to show that most ATMs tend to have excessive diabatic mix-
ing (transport across moist isentrope, 6., or My, surfaces) at high southern latitudes
in the austral summer, which leads to biases in estimates of air—sea CO, exchange.
Furthermore, we show that the MSE-based constraint is consistent with an inde-
pendent constraint on atmospheric mixing based on combining airborne and surface
CO, observations.

carbon sink | atmospheric diabatic mixing | inverse model | atmospheric transport model |
airborne observation

Precise assessments of the air—sea CO, flux of the Southern Ocean (SO), which includes
both natural and anthropogenic components, are of critical importance to understanding
the global carbon cycle and predicting future oceanic carbon uptake under climate change
(1-4). The high-latitude SO (<58°S) was likely a significant natural source of CO, to the
atmosphere in the preindustrial era but has switched to being a net sink in the present-day
(5). Available estimates suggest that uptake over the entire SO (<35°S) strengthened from
1980 to 2015, with significant decadal variability (4, 6-12).

Observation-based flux estimates of the entire SO remain highly uncertain. The net
SO CO, flux has been quantified using pCO, measurements from ship-based and Argo
float observations (7, 13-20) and from atmospheric CO, measurements at surface stations
that are inverted by atmospheric transport models (ATMs) (21-27). These products,
however, show a large spread of flux estimates and are limited by sparse observations,
possible measurement biases, and uncertainties in near-surface wind speed, gas exchange
coeflicients, and modeled atmospheric transport.

Recently, Long et al. [(28), henceforth Long21] used atmospheric CO, observations
from a series of global airborne campaigns to estimate the seasonal cycle of SO CO, flux
of a sinigle region (90°S to 45°S) and reported an annual oceanic uptake of 0.53 + 0.23
PgC y " averaged from 2009 to 2018. This annual sink estimate is consistent with the
average of atmospheric inversion products (henceforth 3D inversions) and neural-network
interpolation of ship-based pCO, products (Surface Ocean CO, Atlas, SOCAT) (15, 29)
but larger than recent pCO,-based estimates using neural-network interpolation of pro-
filing float data from the SO Carbon and Climate Observations and Modeling project
(SOCCOM) (16, 17, 30). Long21 also identified a larger summer-time CO, uptake
compared to the SOCCOM-based flux estimates and the average of multiple atmospheric
inversion products. The method of Long21 uses the atmospheric CO, gradient across
potential temperature (6) as an emergent constraint on the underlying air—sea flux, taking
advantage of the tendency of CO, to be well-mixed on 8 surfaces (31).

Here, we provide improved estimates of seasonal SO CO, flux using a 4-box tropo-
spheric inverse method (Fig. 14, henceforth 4-box inversion) and the same airborne
datasets as in Long21 (detailed in Materials and Methods and SI Appendix, Fig. S1).
Whereas Long21 resolved fluxes over a single domain (south of 45°S), our method resolves
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changes in CO, uptake by the SO.
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Fig. 1. (A) Schematic of the box model. Boundaries of the box model are selected My, surfaces at 15, 30, 45, and 60 M,, values (10'® kg), which are shown
as zonal and 2009 to 2018 averages. (B) Selected near-surface M, contours as 2009 to 2018 averages. M, is computed from 3-h MERRA-2 reanalysis. These
Mge bands are nearly fixed with season (S/ Appendix, Fig. S2). Red triangles show the location of surface stations that are used in the Carbon Tracker 2019b 3D

(three-dimensional) CO, inversion product.
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fluxes in three finer bands (“polar,” “subpolar,” and “subtropical”)
between 90°S and ~37°S (Fig. 1B and SI Appendix, Fig. S2), which
allows closer comparison with pCO,-based flux products (15-17)
and provides insights into the latitudinal structure of processes
driving seasonal pCO, changes, such as the interactions between
marine photosynthesis, ocean ventilation, and warming/cooling
(32, 33).

At midlatitudes, CO, and other long-lived tracers tend to be
rapidly dispersed along surfaces of constant moist potential tem-
perature (0,), yielding gradients that are roughly parallel to the
gradients in 0, (34-37). Such mixing can be termed “adiabatic mix-
ing,” in contrast to “diabatic mixing” which is defined as transport
across 0, surfaces involving diabatic heating or cooling. Our box
model builds on recent work (38, 39) by aligning the box bound-
aries with fixed values of a mass-indexed isentropic coordinate My,
which is parallel to 6, at any instant time but is adjusted to conserve
dry air mass in each box. This approach yields box boundaries that
are nearly fixed with respect to latitude and season despite large
seasonal displacements in 6, and it highlights diabatic mixing as a
critical process for quantifying large-scale tracer dispersion.
Atmospheric transport is conventionally determined using ATMs,
but these models show a large spread of simulated diabatic transport,
which is related to uncertainty in advection, convection, and bound-
ary height parameterizations (23, 40, 41). Prior studies have iden-
tified errors in ATMs by pointing to vertical CO, gradients being
overestimated in simulations at midlaticude (42, 43). We provide
estimates of diabatic mixing rates that are independent of ATMs by
using the moist static energy (MSE) budget of reanalyses. As MSE
surfaces are identical to 6, and My, surfaces, which are all conserved
during adiabatic processes, MSE-based mixing rates provide precise
constraints on cross-Mg, diabatic transport.

In this paper, we start by describing and validating the
Mg, -aligned box-model inversion method. We conduct a system-
atic analysis of uncertainty in ATMs-simulated diabatic mixing
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rates across three My, surfaces over the mid- to high laticude SO
by developing two relevant constraints, one based on MSE budgets
and the other based on atmospheric CO, gradients across Mg,
surfaces. We present our airborne-based seasonal flux estimates
resolved from the box-model inversion method that is constrained
by MSE-based diabatic mixing rates and discuss key features and
mechanisms that cause the flux cycles to vary meridionally.
Estimates obtained from airborne measurements are further com-
pared with other flux products to identify any limitations these
products may have. We also discuss the broad implications of our
method for resolving decadal variability and long-term trends in
SO CO, fluxes, resolving surface fluxes of other species and in
other regions, and the potential to improve ATMs in general.

Results and Discussion

Box-Model Architecture and Evaluation. The 4-box inversion
model, shown in Fig. 14 (detailed in Materials and Methods), divides
the troposphere in the Southern Hemisphere into discrete boxes,
with lateral boundaries aligned with fixed values of M, (38). The
Mg, coordinate is aligned with 6, but a given My, surface constantly
adjusts to keep the total dry airmass under it conserved. Each M,
surface is indexed to the corresponding contained airmass. The
three primary boxes of the model each contain 15 X 10" kg of dry
air and intersect the surface of the Earth in zonal bands (Fig. 1B).
‘The northernmost fourth box provides a boundary condition for
the third box. The CO, flux at the bottom of each primary box is
calculated from mass balance, based on diagnosed CO, transport
between boxes and observed inventory changes within the boxes
(Eq. 1). A key assumption of the 4-box model is that the adiabatic
transport (along 8, or M, transport) is sufficiently rapid that CO,
meridional transport is mainly controlled by bidirectional diabatic
transport (across 0, or M, transport) between boxes, thus effectively
reducing the troposphere to a discrete 1-dimensional mixing system.
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'This assumption and the performance of the box model are validated
below. In this model, diabatic transport is parameterized based on
the cross-M,, CO, gradient and a seasonally dependent diabatic
mixing rate, expressed in ng d! (Eq. 2). Because airmass (kg) has
replaced latitude or length in our box model, these mixing rates are
analogous to diffusion coeflicients, with the advantage of representing
fundamental properties of the atmosphere that are independent of
model discretization. We provide two approaches (Materials and
Methods) to calculate climatological monthly diabatic mixing rates,
one based on CO, inversion systems that are constrained by surface
CO, observations and transport model simulations (ATM-based
mixing rates) and one based on MSE budgets derived from MERRA-2
and JRA-55 reanalyses (MSE-based mixing rates).We validate the
4-box inversion approach by applying the method to reconstruct
surface CO, fluxes from four CO, inverse models, using the full
3D gridded atmospheric CO, fields of each product, averaged over
each box, and using the corresponding parameterized climatological
ATM-based mixing rates from the same model (Materials and
Methods). 'This method provides an internally consistent system
for each 3D inversion, and the reconstructed surface fluxes align
well with original inverted fluxes over each zonal band (RMSE <
0.12 PgC yil, Fig. 24 and SI Appendix, Figs. S4-S6 and Table S1),
especially over the climatological seasonal cycle (Fig. 2B). The 4-
box inversion also reconstructs the interannual variability (IAV) of
fluxes (e.g., Fig. 2A4), even though the box-model uses interannually
constant mixing rates, showing that flux IAV can be learned from
variations in atmospheric CO, gradients, while the impact of IAV
on the atmospheric dynamics is relatively small. The method for
resolving the zonal-averaged flux is not biased by the representation
error (44, 45) that arises from the coarse resolution inverse model,
which we verify by successfully reconstructing zonal-averaged air—sea
CO, flux from a product with finer-scale variability (Materials and
Methods and SI Appendix, Fig. S16). These validations confirm that
the complex 3D circulation of the atmosphere at high southern
latitudes can be approximated by mixing along one dimension (the
coordinate My,), at least for the purpose of resolving zonal-averaged

SO CO, fluxes.
Diabatic Mixing Rate Evaluation. We find that the MSE-based

mixing rates from MERRA-2 and JRA-55 are highly consistent
with each other, while ATM-based mixing rates have a large spread

Reconstructing CarbonTracker 2019b Flux ( Mge : 0 - 30)

up to threefold and are faster than MSE-based mixing rates in
austral summer over the high latitudes (Fig. 3 and SI Appendix,
Fig. $3). We believe that the MSE-based mixing rates are more
reliable for two reasons: First, the MSE-based constraint is
powerful because surfaces of constant MSE are exactly parallel
with the M, coordinate and because MSE has strong gradients
across M, in all seasons. Second, the MSE-based constraint is
consistent with an additional constraint on mixing that is available
when combining CO, data from both aircraft and surface stations.
The available inverse models compute CO, fluxes using surface
data only but also yield troposphere CO, gradients which can be
compared to airborne observations. We find that the cross-Mg,
CO, gradients in most inverse models are inconsistent with the
observed gradients in airborne data during the austral summer in
the mid- to high latitude (Fig. 4 A and B). The discrepancies in
simulated CO, gradients correlate strongly with the diagnosed
diabatic mixing rates from each corresponding ATM (Fig. 4),
showing that ATMs with stronger diabatic mixing produce smaller
CO, gradients compared to observations. Based on the correlation,
we find that the larger observed CO, gradients from airborne data
than model simulations appear to require a slower mixing rate at
the 15 and 30 M, surfaces (Fig. 4 A and B), respectively, in the
austral summer. The required mixing rates are consistent with
the MSE-based mixing rate, thus providing strong evidence for
the MSE-based estimates to be more realistic. Among all ATMs,
the ACTM model yields a realistic summer gradient and mixing
rates that are compatible with the MSE budget. In the rest of the
year, both MSE-based mixing rates and ATM-based mixing rates,
as well as simulated and observed CO, gradients are generally
within the 16 uncertainty of the observed gradients and close to
two MSE-based mixing rates (S/ Appendix, Fig. S7).

For the 4-box inversions presented here, we alternately use
MSE-based mixing rates derived from MERRA-2 and JRA-55 to
invert airborne CO, observations, allowing for uncertainty in
mixing based on the spread between these two estimates and their

small AV (detailed in S/ Appendix, Text S2).

Airborne-Based Air-Sea CO, Fluxes. We calculate air—sea CO,
fluxes using the observed CO, inventory of each My, box and CO,
gradients across My, surfaces from each airborne campaign, which
are resolved by binning airborne data into four My, bands (detailed
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Fig.2. (A)Monthly reconstructed air-sea CO, fluxes (solid gray) for the 0 to 30 (10%® kg) My, band (south of ~43°S near the Earth surface) based on CarbonTracker
2019b, compared with the original monthly 3D inversion fluxes for the same M, band (dashed black). The other components (i.e., diabatic CO, transport and
CO, inventory change, detailed in Materials and Methods, and Eq. 1) of the box-model reconstruction are shown as well. Positive values of the diabatic transport
represent CO, transport into the 0 to 30 M, band (poleward transport). We note that the inventory change (blue) equals the sum of fluxes (black) and diabatic
transport (red). (B) Similar to (A), but showing the flux and other components as climatological monthly averages (2009 to 2018). Shaded regions show IAV,
which is calculated as the SD over 10y for the corresponding month. We also show these reconstructions for other 3D inversion products and other surface

Mge bands in S/ Appendix, Figs. S4-S6.
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Fig. 3. Diabatic mixing rates of the 30 (10'® kg) M,, surface. These mixing
rates are parameterized from four 3D CO, inversion products and MSE budget
of two reanalysis products (MERRA-2 and JRA-55). Error bars represent only
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exception of CAMS in September because of the close-to-zero CO, gradient
across the 30 (10'° kg) M,, surface. Diabatic mixing rates of the 15 and 45 (10'®
kg) Mg, surface are shown in S/ Appendlix, Fig. S3.

in Materials and Methods). We correct for small biases in CO,
inventory and gradient induced by sparse spatial coverage of the
airborne observations (87 Appendix, Text S1 and Tables S5 and S6)
by comparing averaged CO, from full 3D model data and flight
track-subsampled model data. We also correct the contribution
of small nonoceanic CO, flux to the CO, mass balance based on
flux estimates in four inversion products (S/ Appendix, Fig. S8).
Our flux estimates allow for uncertainties from CO, measurement
imprecision, spread and IAV of MSE-based diabatic mixing rates,
spatial coverage corrections, flux IAV due to insufficient temporal

sampling, and nonoceanic CO, flux corrections (S Appendix,
Texts S1 and S2). Although we report a similar random error as
Long21, we expect our results to be subject to smaller systematic
errors from uncertainty in atmospheric mixing and importantly
also allow resolving fluxes at finer spatial scales with the same data.
The reported random error is dominated by CO, measurement
error derived from comparing different instruments.

'The 4-box inversion resolves clear seasonal cycles of air—sea CO,
flux in all three latitude bands, with clear differences in amplitude
and phasing between the bands. Over the polar band (Fig. 54),
we find a strong CO, uptake in the summer (DJF) and a weak
outgassing in the winter (JJA). Over the subpolar band (Fig. 5B),
we find a strong uptake in the summer and a weak uptake in the
winter. In the subtropical band (Fig. 5C), the seasonality is
reversed, with a weak uptake in the summer and a strong uptake
in the rest of the year. Averaged over the full year, all bands show
net uptake. We now discuss each of these prominent features in
turn.

The airborne-based estimates suggest a weak winter-time CO,
outgassing of 0.05 + 0.03 PgC integrated from June to August
(equivalent to 0.56 + 0.35 ¢C m™> mo™') in the polar band
(Fig. 5A4). Winter outgassing is expected from strong winter-time
upwelling which brings carbon-rich deep water to the surface (12).
This outgassing pattern is consistent with several recent pCO,-
based flux estimates, for example, observations from uncrewed
surface vehicles in the Antarctic Zone during June and July of
2019 (0.7 gC m ™ mo™') (48), reconstructed winter-time (July,
2004 to 2014 average) fluxes using summer-time measurements
(0.04 + 0.008 PgC) (49), and neural-network interpolation of
ship-based SOCAT measurements (0.03 PgC, Fig. 5E) (15), but
is smaller than estimates solely based on neural-network interpo-
lation of SOCCOM float data during 2014 and 2017 (~0.23 PgC,
Fig. 5E) (16). The small winter-time outgassing in our results is
also consistent with several 3D inversions that used surface station
CO, observations (Jena inversion, ACTM, and CAMS) but is
significantly more positive than one 3D inversion (CT 2019b,
Fig. 5E). The airborne-based flux estimates show a clear phase shift
between the polar/subpolar bands (Fig. 5 A and B) and the sub-
tropical band (Fig. 5C). The boundary between these two boxes
in the 4-box model roughly aligns with the subtropical front over
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two sets of MSE-based diabatic mixing rates (Materials and Methods). Each individual point represents the calculated fluxes using airborne observations from
the corresponding campaign, centering on the mean date of each campaign, while the black line is a 2-harmonic fit. Error bars represent the 1¢ uncertainty
of each flux estimate, while shaded regions represent the 16 uncertainty of the 2-harmonic fits (detailed in S/ Appendix, Texts S1 and S2). Values of air-sea CO,
fluxes calculated for each airborne campaign transect and for each band are summarized in S/ Appendix, Table S4. Annual fluxes are from the constant term
of the 2-harmonic fitted climatological flux cycles, which is equivalent to integrating the fit over a year. These approximate latitude bands (see the Top of each
panel) are calculated as the zonal average latitude of the corresponding annual average (2009 to 2018) M, surface over the ocean (S/ Appendix, Fig. S2). We
also show box-model resolved fluxes calculated using the average of six sets of mixing rates and each set of mixing rate in S/ Appendix, Figs. S10 and S11. In
(E-H), we compare our estimates with four 3D CO, inversion products, and two neural network interpolated surface ocean pCO, products using SOCAT pCO,
observations alone and SOCCOM pCO, observations alone. Details of these products are in S/ Appendix, Text S6. The SOCCOM product is a sensitivity run where
all shipboard data from SOCAT were excluded (only SOCCOM float data were included). We note that the ocean CO, flux in Jena SEXTocNEET_v2020 is a prior,
which is provided by assimilation of surface ocean pCO, observations (i.e., not neural-network derived pCO,) from SOCAT (29) by the Jena mixed-layer scheme
(46). The seasonal cycle of each product is calculated as the average between 2009 and 2018, except for SOCCOM, which is averaged from 2015 to 2017. In (/-L),
we compare our estimates with thermally driven air-sea CO, flux cycles (dashed red, methods in S/ Appendix, Text S3), which is derived from assuming 4% pCO,
increase per degree Celsius increase in sea-surface temperature (SST) and using wind speed-dependent gas exchange. We calculate the correlation between
the airborne observed flux cycle and the estimated thermal-driven flux cycle of each band. Black solid curves and shaded regions in (E-L) are corresponding
airborne observed fluxes and 1c uncertainty. Panels (/-L) have a different y-axis range compared to panels (A-H). We also compare our estimates with nine global
ocean biogeochemistry models that are used in the Global Carbon Budget 2020 (10, 47) in S/ Appendix, Fig. S9.

the Atlantic and the Indian Ocean but is ~5°S of the subtropical
front over the Pacific Ocean. This phase shift is likely due to the
latitudinal change of the dominant mechanism that drives the
surface—ocean pCO, seasonal changes. To the north of this
boundary, the pCO, cycle is dominated by temperature-related
solubility changes. To the south, it is dominated by biological
production/mixing processes driving seasonal changes in dissolved
inorganic carbon (32, 33, 50). A similar shift across ~40°S has
been resolved in surface ocean pCO, data (33, 50, 51) and also
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in flux estimates based on these pCO, data, but the seasonal
amplitudes of fluxes in these estimates are weaker in both regions
than we find from airborne data (Fig. 5 F~G). The phase shift,
however, is not distinctly resolved in the 3D inversions and two
neural-network interpolations of pCO,-based products (Fig. 5
E-G). We note that inversions may be biased by excess diabatic
transport in the austral summer (Fig. 4), and pCO,-based prod-
ucts are limited by sparse coverage, especially in our lowest lati-

tude band 43 to 37°S (17).
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To quantify the contribution of temperature-related solubility
changes to the CO, fluxes (Fig. 5 [-L), we compare the airborne-based
fluxes to results from a simple thermal model, which assumes pCO,
increases by 4% per degree Celsius increase in sea-surface tempera-
ture (SST) change and uses wind-speed dependent gas exchange
(methods in ST Appendix, Text S3) (52, 53). In the polar and subpolar
zones (Fig. 5 I-), the thermal model yields fluxes that are strongly
out of phase compared with observations (correlation p = -0.81 and
-0.83). In the subtropical region (Fig. 5K), the cycle from the ther-
mal model broadly aligns with the observed cycle (p = 0.62).

Despite the correlation, the observed flux cycle in the subtropical
band has significant deviations in the austral spring compared to the
thermal-driven cycle. The strengthening of CO, uptake from January
to April is faster than expected from warming alone (Fig. 5K), which
requires a contribution from biological-driven changes, possibly
associated with the fall phytoplankton bloom (54, 55).

We find a summer-time ocean CO, uptake of 0.13 + 0.04 PgC
(integrated from December to February, DJF) in the polar band
(Fig. 54) and 0.14 + 0.04 PgC in the subpolar band (Fig. 5B), which
contributes to most of the annual uptake of 0.36 + 0.16 PgC south
of ~43°S (Fig. 5D). Our results are qualitatively consistent with prior
estimates using the same airborne observations (Long21). However,
our annual uptake estimate integrated over the polar and subpolar
band is smaller (within uncertainty) than that of Long21 (0.53 +
0.23 PgC). The difference is mainly explained by larger summer-time
CO, uptake in Long21, but the comparison is complicated by small
differences in ocean domains between these two studies (the 30 M,
surface, compared to 45°S, displaces ~2° southward over the western
Pacificand ~3° in other basins). The larger summer uptake in Long21
can be attributed to the dependence on ATMs, which we suggest
have unrealistically fast mixing rates in summer (Fig. 3). Summertime
fluxes from our box model are especially sensitive to the diabatic
mixing rate because summertime cross-Mg, gradients are large, and
the inventory change is small (Fig. 2). The winter-time fluxes are less
sensitive to the diabatic mixing rate because wintertime CO, gradi-
ents are small, and the inverted flux is mainly diagnosed from the
observed atmospheric CO, inventory change.

Our results support prior work suggesting possible biases in
SOCCOM pCO, data (56). Compared to the airborne-based flux
estimates, the SOCCOM-based estimates (Fig. 5 E~H) show sig-
nificantly larger CO, outgassing (or weaker uptake) all year round
in the two high-latitude bands (Fig. 5 £ and F). In these bands,
the airborne-based results are in better agreement with flux esti-
mates from SOCAT data.

Our airborne-based estimates show large differences from global
ocean biogeochemistry models, which have known difficulties in
representing CO, exchange over the SO (7, 47, 57) given the large
competing process drivers. We find several models that suggest sim-
ilar phase shifts, but we did not find any model that agrees well with
our estimates in all three bands (57 Appendix, Fig. S9). Airborne-based
estimates are relatively consistent with pCO,-based estimates and
inversions, while sharply deviating from GOBMs, underscoring the
need for a better understanding of the physical and biogeochemical
processes that drive SO air—sea CO, fluxes in GOBMs.

Overview and Outlook. We have resolved air—sea CO, fluxes over
three zonal bands of the SO using airborne data and a 4-box inversion
approach based on M, coordinates. This framework adequately
describes large-scale CO, transports needed for resolving fluxes at the
scale of three zonal bands over the mid- to high latitudes of the SO,
showing that the complex meridional CO, transport can be simplified
to diabatic transport. This framework also incorporates constraints
on the diabatic mixing rate from MSE budgets of atmospheric
reanalyses, without requiring an ATM. We demonstrate that the
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diabatic mixing rates inferred from the MSE budgets are realistic,
based on a CO, gradient-mixing rate constraint, but the mixing
in most ATMs is too fast in the austral summer. These differences
in representing mixing led to our summer uptake estimates being
somewhat smaller than the uptake estimated by Long21, despite
using the same airborne CO, data. In the austral winter, ATM- and
MSE-based mixing rates are generally comparable.

This study provides robust zonal average flux estimates from air-
borne data by capitalizing on rapid atmospheric mixing to integrate
zonal heterogeneities. Our estimates have advantages over the pub-
lished atmospheric inversions using surface station data because
airborne data more accurately reflect large-scale features, and atmos-
pheric vertical CO, gradients are much more sensitive to fluxes than
horizontal surface gradients. Also, our method is less sensitive to large
uncertainties in simulated atmospheric mixing and the representa-
tion error due to model resolution (45). Compared to pCO,-based
products, our estimates also have advantages, not being subject to
uncertainty in gas exchange velocity and sparse coverage in pCO,
observations (28). A corresponding disadvantage, however, is the
inability to resolve finer-scale spatial features.

The 4-box inverse model provides insights that have potential
value for understanding and improving the simulated atmospheric
circulation and structure in 3D ATMs. We show inconsistency in
MSE-based and ATM-based diabatic mixing rates and in CO, gra-
dients between airborne data and inversion systems that are opti-
mized by surface data (Fig. 4). These inconsistencies strongly
motivate the incorporation of airborne data into CO, inversion
systems. They also identify key errors during the construction of
modern ATMs related to diabatic mixing. Previous studies have
highlighted uncertainty in vertical mixing as a major source of error
in CO, fluxes estimated via inverse model calculations (41, 42).
Vertical mixing in the mid-troposphere has both along- and cross-Mj,
components, and the cross-M,, mixing (diabatic) component would
typically be rate limiting because the along-M, (adiabatic) mixing
is more rapid. Reducing uncertainty in vertical mixing thus requires
reducing uncertainty in diabatic mixing, which we show can be
constrained with MSE budgets. A first step would be to understand
more fully the origin of the spread in mixing rates between ATMs.
Based on the much larger spread in mixing rates between ATMs and
the reanalysis products and the convergence of the MSE-based (from
reanalysis) and ATMs-based mixing rates, we expect that the spread
in ATMs mostly arises from different choices made in postprocessing
of reanalysis data to generate ATMs, such as parameterization of
convection or regridding and interpolation from the finer reanalysis
grid to the coarser ATM grid. Future work should focus on ensuring
that ATM mixing rates are consistent with the MSE budgets of the
original reanalyses.

Our study motivates obtaining additional airborne data to
improve estimates of large-scale carbon uptake across different
latitudes of the SO. The ocean uptake over the entire SO has
increased in recent decades according to surface ocean pCO, data
and models (1, 6-8, 10-12, 20). Here, we only attempted to
resolve a seasonal climatology of the SO CO, flux over different
latitudes over the period 2009 to 2018, but resolving interannual
variations would be feasible with regular sampling from Antarctic
cargo aircraft. The My, coordinate is suitable also for studying the
sources and sinks of other tracers, for example, computing air—sea
O, fluxes, and atmospheric CH; chemical loss rates.

Materials and Methods

Airborne Campaigns and Airborne CO, Observations. We use airborne CO,
observations from three aircraft campaigns, the HIAPER Pole-to-Pole Observation
project [HIPPO, (58), the O,/N, Ratio and CO, Airborne Southern Ocean Study
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[ORCAS, (59), and the Atmospheric Tomography Mission [ATom, (60). HIPPO
and ATom have global coverage, mostly along a Pacific or Atlantic transect, while
ORCAS focused on the SO adjacent to Drake Passage (horizontal flight tracks are
shown in S/ Appendix, Fig. S1). HIPPO consisted of five campaigns (HIPPO1 to
5) and ATom consisted of four campaigns (ATom1 to 4), each with several flights
south of 35°S. ORCAS was a single 6-week campaign but with much denser tem-
poral sampling, so we have splititinto three subcampaigns (ORCAST to 3)in our
analysis. Detailed descriptions of these airborne campaigns are in S/ Appendix,
Text S4 and Table S2. We primarily use CO, airborne measurements collected
by the NCAR AO2 instrument (61). To evaluate potential uncertainty (detailed
in SI Appendix, Text S2.1), we also use measurements from three other in-situ
instruments, the Harvard QCLS instrument (62), Harvard OMS instrument (63),
and NOAA Picarro, and measurements from two flask samplers, the NCAR/Scripps
Medusa flask sampler (61, 64) and NOAA Portable Flask Packages [PFP, (65)]. AO2
and QCLS are available on all campaigns. However, OMS did not fly on ORCAS
or ATom, NOAA PFPs did not fly on ORCAS, and the NOAA Picarro did not fly on
HIPPO. The in-situ measurements are averaged to 10-s intervals.

Mass-Indexed Moist Isentropic Coordinate (M,.). The My, coordinate, first
introduced in the study by Jin et al. (38), is defined as the total dry air mass
under a specific moist isentropic surface (6,) in the troposphere of a given hem-
isphere. Surfaces of constant My, align with surfaces of constant 6, but the rela-
tionship changes with season, as the atmosphere warms and cools. A schematic
of the annual zonal average atmospheric My, value is in shown Fig. 14, while
climatological positions of the near-Earth surface contours of three My, surfaces
(15,30,and 45 10" kg) are shown in Fig. 1Band SI Appendix, Fig. 52. Details of
the calculation of My, are described in S/ Appendix, Text S5.

We also relate bands of constant My, to approximate latitude bands (Fig. 5)
based on the zonal average latitude of corresponding daily surface My, (averaged
from 2009 to 2018) over the ocean.

Box Model Architecture and Diabatic Mixing Rates. We build a 4-box
atmospheric model using selected My, surfaces (15, 30, 45, and 60, 10" kg) as
boundaries, shown in Fig. 14.This box model takes advantage of 6, (or Mg,) being
the preferential mixing surface of CO, throughout the hemisphere, especially
over midlatitude storm tracks (34, 37). The box model allows surface CO, fluxes
(F, PgCy™") to be computed from the CO, mass balance of each My, box, based
on the knowledge of atmospheric CO, inventory (M, PgC) in each box and the
diabatic transport of CO, between boxes (Q; ., PgCy™")

a_Mi { F +O| i+1
ot F +Q| i+

if i=1
Q_,; if <1’ (1]
where i = 1is the highest latitude (lowest Mg,) box.

In Eq 1,Q,,, represents the transport (PgC y ') of CO, between the i and
i + 1™ box, with poleward flux as positive.Q, ., ,is parameterized according to

i,i+1
(}(i+1 Xi )
Qi,i+w = Di,i+1 : —AIVI9 c K, (2]
whereD; s the diabatic mixing rate (kg” d ") that represents the mixing rate across

the boundary of boxiand i + 1, y;is the CO, concentration (PgC per kg air mass)

of the " box, calculated as CO, inventory of the box divided by the total airmass of

the box (15 x 10" kg), and AM,, is the distance in My, coordinates between box

centers, which for evenly spaced boxes is the same asthetotal airmass of each box.x

isa constant (365) to convert from PgC d"to PgCE/ .Eq. 2 is a variant of Fick's law,
X

with My, as an effective distance coordinate, and ~=-—=2 %) is a measure of the o,
concentration gradient. With this approach, D, ,;is a property of the corresponding

M, surface and is insensitive to the choice of box size.

We adopt two independent methods to estimate climatological (2009 t0 2018
average) monthly diabatic mixing rates (D; ;, ;). The first method extracts diabatic
mixing rates from transport models using total CO, fields from 3D inversion
products (S/ Appendix, Table S3). We first use the daily 3D atmospheric field of
My, computed from MERRA-2 to assign a My, value to each daily model grid
cell from 2009 to 2018. The atmospheric 3D CO, fields and surface CO, flux
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fields of inversions are interpolated to the MERRA-2 reanalysis grids (1° x 1°,26
vertical levels from 1,000 to 100 mbar). We then calculate a daily CO, inventory
(M) of each Mg, band as the sum of CO, mass for all 3D grid boxes within the
corresponding Mo, domain. We calculate monthly CO, inventory change( =) by
taking the time derivative of the monthly atmospheric CO, inventory. We note that
monthly CO, inventory change is computed by first averaging daily CO, inventory
by month but shifting the phase of the averaging window by 15 d to center at the
beginning of each month and then differencing these values to obtain a rate of
change centered midmonth. We calculate monthly CO, gradients between two
Mo, boxes (y.,.1— x:) by averaging daily gradients. We calculate monthly surface
CO, flux(F,) by averaging daily flux, which is computed by integrating all daily 3D
inversion flux grids with surface Mg, values within the corresponding My, range.

The CO, transport across the north boundary of each M, box in the model can
be calculated from the CO, inventory change and surface flux of that box and the
boxes further southward, according to

=i dMi/ @®)
QM= Z (T —F (t)>' (3]
=1

Combining Egs. 2 and 3, climatological average (2009 to 2018 average) monthly
D, ,is calculated following

(=2 (% -Fo)]

[)(i+1(t)_)(i(t)]

ii+1

Di,i+1 ®H= AMee: (4]

where[] denotes the average of corresponding monthly values of all years (2009
to 2018). The 1o uncertainty is calculated as the SD of resolved D; ;. ,(t) for that
month over all years, representing the 1AV, which is shown to be small (Fig. 3
and S/ Appendix, Fig. S3), with the exception of CAMS in September because of
close-to-zero CO, gradients across the 30 (10" kg) My, surface.

The second method relies on MSE budgets from meteorological reanalyses, of
which we use MERRA-2 and JRA-55 (66, 67). MSE is a measure of static energy that
is conserved in adiabatic ascent/descentand during latent heat release due to conden-
sation and is thus aligned with surfaces of ©, or My, This method provides much more
well-defined mixing rate estimates because finite MSE gradients existin each reanal-
ysis time step and do not reverse sign, in contrast to CO,. MSE is defined following

MSE(t) = C, - T(t) + gz + L,(T)q(t), [5]

whereC,(1005.7J kg™ K™")is the specific heat of dry air at a constant pressure
Tis temperature( ) g is the gravity constant assumed to be 9.81 ms™ ,q is the
specific humidity of air (kg water vapor per kg air mass), and L, is the latent heat
of evaporation at temperature T(K). L, is defined as 2,406 kJ kg’1 at 40 °C and
2,501 kJ kg~"at 0 °C and scales ||near|y with temperature.

MSE transport at the northern boundary of each box is calculated by energy
conservation within the box, which follows Eq. 3 but has a small modification to
account for atmospheric energy sources or sinks (E, J d'):

(=i ds, (t)

||+1(t) 21 <T - Fi, ®- Eil(t)>, [6]
where S is the total MSE (J) that is calculated using temperature (T) and specific
humidity(q)from corresponding reanalyses (Eq. 5).F,is modified as surface heat
flux(Jd™"),including surface sensible and latent heat flux, which is directly avail-
able from MERRA-2 and JRA-55.E; is defined as heating rate due to rad|at|ve
imbalance and is calculated using temperature tendency anaIyS|s( ,Kd™") of
these reanalyses, following

Et)=C (T)i(t)M (7]

With MERRA-2, the temperature tendency due to radiative imbalance is directly
available, while with JRA-55, it is calculated as the sum of heating rates due to
longwave and shortwave radiation.
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To estimate climatological monthly D;;,, from reanalysis, the gradient
(xie1 — x1) in Eq. 4 is modified to be the energy density gradient (J per kg
airmass), calculated from the total MSE of each box divided by the total airmass
of the box (15 x 10" kg in this study).

We thus calculate monthly@,ﬁ, (1), E/(t) from 2009 to 2018 by averaging
6-hourly data from MERRA-2 and JRA-55, with 6-h S; shifted by 15 d before
calculating % as for ATM CO,.

The calculation of monthly D based on MSE is according to a modified version
of Eq. 4:

- AM, . 8
i () — 1 (D] o '8l

We show six (four ATM-based and two MSE-based) sets of monthly diabatic mix-
ing rates for the My, surfaces at 15, 30, and 45 (10" kg) in Fig. 3 and S/ Appendix,
Fig. S3. Climatological daily mixing rates are further calculated by 4-harmonic
fits to monthly data.

Validation of the Box-Model Approach. We validate the use of the 4-box
model for estimating surface CO, flux by showing that this approach successfully
reconstructs monthly surface CO, fluxes for each of the four 3D CO, inversion prod-
ucts. This approach uses Eqs. 1and 2, with y, based on the gridded atmospheric
CO, fields averaged over grid cells within corresponding Mg, box and usesD;
calculated using CO, gradients from each transport model as described in the
previous section. We then average daily reconstructed fluxes to monthly, centered
at the middle of each month, shown as solid black curves in Fig. 2 and S/ Appendix,
Figs. S4-S6. We assess representation error due to the coarse resolution of the
box model, by reconstructing the zonal-averaged flux from the neural-network
interpolation of SOCAT data, using the 3D atmospheric field generated by the TM3
model with SOCAT-based air-sea CO, flux, together with fossil fuel and ecosystem
CO, fluxes from the Jena sEXTocNEEv2020 (S/ Appendix, Fig. S16). We find clear
alignment between the original and reconstructed SOCAT-based flux, suggesting
that our method is not limited by representation error.

Airborne Estimates of Air-Sea CO, Fluxes. We use the 4-box model (Egs. 1
and 2) and airborne CO, observations to calculate air-sea CO, fluxes for each
surface My, band and each airborne campaign, centering on the mean date of
the campaign, shown as points in Fig. 5 A-D. This calculation includes the fol-
lowing steps.

We first detrend airborne CO, observations by subtracting a smoothed inter-
annual CO, trend at the South Pole (SPO) (68). The trend is calculated by a stiff
cubic spline function to the monthly average SPO data (69). We then compute
the detrended average CO, (;) for each campaign and each box by trapezoi-
dal integration of detrended CO, as a function of My, [as in the study by Jin
etal.(38)]and dividing by the My, range of the box (i.e., 15 x 10" kg). Prior to
trapezoidal integration, we extrapolate airborne observations to My, = 0 surface
using the average of the 100 observations with the lowest My, values near 0. The
extrapolation only results in a slightly different averaged CO, for the lowest M,
box compared to the value without extrapolation (<0.03 ppm) because we have
sufficient measurements across Mg, surfaces. The exceptions are HIPPO1 and 4
(difference = 0.1 ppm), in which we do not have observations on low My, surfaces
(SI Appendix, Fig. S15). For HIPPO, we only extrapolate airborne observations
to the lowest My, values near 15 because due to the absence of observations
in the entire first My, box, and only estimate fluxes for the 30 to 45 (10" k)
box. We then correct for bias in CO, estimates due to limited spatial coverage
(detailed in SI Appendix, Text S1). For each Mg, box, we conduct a 2-harmonic
fit with an annual offset to ¥; of 12 campaigns, yielding a fitted seasonal cycle
(with offset) of %;. We then compute the long-term (2009 to 2018) time series
of observed y; as the sum of the climatological seasonal cycle of ¥; and the CO,
trend at SPO. We note that we use the same trend for each My, band, preserving
each band's annual mean offset from SPO. The time series of CO, inventory (M,)
of each box is therefore computed by multiplying ; and the My, range of the
box (i.e., 15 x 10" kg in this study). The fitted y; and M, values of each cam-
paign are defined as the values at the mean date of the corresponding campaign.
Observed surface CO, fluxes for each airborne campaign are then calculated as the
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combination of two components, namely the CO, inventory change aa—Nt" and CO,

diabatictransport Q, ;,,, following Eqs. 1 and 2. We calculate the component’%“f‘
as the time derivative of the daily timeseries of M; from combining the seasonal
cycle fitand the SPO trend fit. The component Q, .., for each airborne campaign
mean date is calculated as the product of the observed atmospheric CO, gradient
(without fitting) between two boxes and the 4-harmonic fitted diabatic mixing
rate at the campaign mean date (average of two MSE-based mixing rates) of the
corresponding My, surface.

The surface CO, fluxes estimated from the 4-box model are the total fluxes
that also contain any land ecosystem CO, emission/uptake and fossil fuel CO,
emission. We correct for these nonoceanic components by subtracting the corre-
sponding flux components using the average of four 3D CO, inversion products.
The magnitude of this correction is small compared to the total air-sea fluxes, as
shown in S/ Appendix, Fig. S8.

We estimate the uncertainty of each individual flux estimate and the seasonal
flux cycle by generating an ensemble (2,000 iterations) of flux estimates, allowing
for uncertainty of these sources: 1) uncertainty of CO, measurements; 2) uncer-
tainty of the correction for spatial bias due to insufficient airborne coverage; 3)
IAV of the diabatic mixing rate; 4) spread of the diabatic mixing rate between the
two reanalyses; 5) correction for the biosphere and fossil fuel CO, flux; and 6) IAV
of the flux. Detailed bias and uncertainty analyses are presented in S/ Appendix,
Texts STand S2.The overall uncertainties of each flux estimate are shown as error
bars in Fig. 5 A-D. The overall uncertainties of 2-harmonic fitted seasonal flux
cycles are shown as shaded regions in Fig. 5 A-D.

We also show the averaged air-sea CO, fluxes calculated using 6 sets of
diabatic mixing rates (four sets of ATM-based and two sets of MSE-based) in
SIAppendix, Fig. S10.These are estimated using the average and 1o uncertainty
of 6,000 iterations of flux estimates, with 1,000 iterations for each set of mixing
rates. We also show the air-sea CO, fluxes calculated using each set of mixing
rates in S/ Appendix, Fig. S11.

We calculate the annual CO, uptake of each My, box from the constant term
of the 2-harmonic fitted seasonal flux cycles (shown as text in Fig. 5).

Data, Materials, and Software Availability. The aircraft data are available
in references for HIPPO (70), ORCAS (71), and ATom (72). All CO, inversions are
available via the University Corporation for Atmospheric Research/National Center
for Atmospheric Research (UCAR/NCAR)-Digital Asset Services Hub Repository
(73). Air-sea CO, fluxes from neural-network interpolation of pCO, products can
be accessed from ref. 16. Air-sea CO, fluxes from global ocean biogeochemis-
try models are available from ref. 74. MERRA2 reanalysis data are downloaded
from the NASA Goddard Earth Sciences Data and Information Services Center at
https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. JRA-55 reanalysis data
are downloaded from the NCAR Research Data Archive at https://rda.ucar.edu/
datasets/ds628.0/dataaccess/.
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