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Abstract Using machine learning (ML) for the online correction of coarse-resolution atmospheric models
has proven effective in reducing biases in near-surface temperature and precipitation rate. However, ML
corrections often introduce new biases in the upper atmosphere and causes inconsistent model performance
across different random seeds. Furthermore, they produce profiles that are outside the distribution of samples
used in training, which can interfere with the baseline physics of the atmospheric model and reduce model
reliability. This study introduces the use of a novelty detector to mask ML corrections when the atmospheric
state is deemed out-of-sample. The novelty detector is trained on profiles of temperature and specific humidity
in a semi-supervised fashion using samples from the coarsened reference fine-resolution simulation. The
novelty detector responds to particularly biased simulations relative to the reference simulation by categorizing
more columns as out-of-sample. Without novelty detection, corrective ML occasionally causes undesirably
large climate biases. When coupled to a running year-long coarse-grid simulation, novelty detection deems
about 21% of columns to be novelties. This identification reduces the spread in the root-mean-square error
(RMSE) of time-mean spatial patterns of surface temperature and precipitation rate across a random seed
ensemble. In particular, the random seed with the worst RMSE is improved by up to 60% (depending on the
variable) while the best seed maintains its low RMSE. By reducing the variance in quality of ML-corrected
climate models, novelty detection offers reliability without compromising prediction quality in atmospheric
models.

Plain Language Summary Fine-grid global storm-resolving models produce more accurate rainfall
and temperature forecasts than coarse-grid climate models, but are too computationally expensive to run for
many years. Corrective machine learning (ML) can help coarse-grid climate models act more like fine-grid
models, but also makes them more vulnerable to inputs lying outside the range of training data for the ML
algorithm. For such “out-of-sample” inputs, the ML may give unreliable results. Using a separate ML scheme,
we identify out-of-sample data and disable the ML correction for these cases. We find that this robustly
improves the time-mean temperature and precipitation patterns predicted by ML-corrected climate simulations
to be 30%—-50% better than similar simulations without ML. Incorporating novelty detectors into ML-corrected
simulations can improve their prediction skill by helping them avoid drifting into “out-of-sample” states.

1. Introduction

Accurate, reliable climate models are essential for projecting climate change and its impacts. To explore a range
of scenarios and account for natural climate variability, climate models must also be computationally effi-
cient. This is typically achieved in the atmospheric model by using relatively coarse grid resolutions (typically
between 50 and 200 km) and representing processes that operate at finer spatial scales by somewhat empirical
human-designed “subgrid parameterizations.”

The use of machine learning in atmospheric modeling has taken various forms, including emulating existing
physical parameterizations (e.g., Chantry et al., 2021; Krasnopolsky et al., 2010), replacing physics parameteri-
zations by learning from a high-resolution model (e.g., Brenowitz & Bretherton, 2019; Rasp et al., 2018; Wang
et al., 2022; Yuval & O'Gorman, 2020), or using ML for online correction of a complete atmospheric model
(Bretherton et al., 2022; Chen et al., 2022; Clark et al., 2022; Kwa et al., 2022; Watt-Meyer et al., 2021). Here we
will focus on the latter strategy.
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Previous works (Brenowitz & Bretherton, 2019; Rasp et al., 2018; Watt-Meyer et al., 2021; Yuval &
O'Gorman, 2020) have suggested that correcting or augmenting physics-based climate models with machine
learning (ML) can improve weather forecast skill and reduce climate biases. However, ML-augmented models
can be susceptible to instabilities (Brenowitz, Beucler, et al., 2020), and their performance when coupled to the
atmospheric model can be sensitive to subtle ML training differences, such as random seed selection (Brenowitz,
Henn, et al., 2020; Wang et al., 2022).

This study draws on the idea of using a compound parameterization (Krasnopolsky et al., 2008; Song et al., 2021)
to mask ML models with high uncertainty. Specifically, we train a novelty detection algorithm (Hodge &
Austin, 2004) and use it at each timestep of a coarse-grid simulation to mask ML corrections when the column
atmospheric state is determined to be outside the distribution of the data set used to train the ML model estimating
online corrections. Our approach adds robustness to past approaches (specifically Kwa et al., 2022) while consist-
ently improving temperature and precipitation bias metrics. A preliminary version of this study was presented in
C. H. Sanford et al. (2022); an important but unrelated software bug fix and some changes in configuration led to
substantial changes in interpretation of the effects of the novelty detector, as discussed in Section 2.5.

We model the atmosphere as a discretized system of partial differential equations. The atmospheric state is
modeled as X = (xq,...,xy) € R¥* a three-dimensional grid of N latitude/longitude coordinates with
d-dimensional column vectors concatenating the vertical profiles of gridpoint values of air temperature, specific
humidity, winds and other fields. In a “baseline” model with no added ML corrections, the state of a particular
column x; € R? evolves over time as

d Xi

ar = fiX,1) )]

for some fixed f; derived from physically based assumptions.

The number of grid columns N scales with the inverse square of the desired grid spacing; large N (a fine grid)
typically yields more accurate average estimates of the temperature, humidity, and precipitable water in the atmos-
phere, at the cost of computational efficiency. While accuracy penalties due to poor grid resolution are expected
for small NV, coarse-grid simulations are also biased by imperfect representations of subgrid-scale processes like
thunderstorms and cloud radiative effects (Woelfle et al., 2018; Zhang & Wang, 2006). ML is an appealing way
to de-bias this coarse climate model by predicting and compensating for its error. The ML-corrected model can
be written

dx;

ar = fi(X, 1) + g(xi, i3 0), 2
where g(-;0) : R — R?is a learned function with parameters & that predicts corrective tendencies from the
column, x; € R4, and its insolation, surface elevation, and latitude @; € R>. The ML correction enables the base-
line to better approximate a reference fine-grid model while maintaining the underlying physics as the core of the
modeling approach (Brenowitz & Bretherton, 2019; Watt-Meyer et al., 2021).

The ML model is trained and evaluated “offline” by generating predictions over single timesteps from their corre-
sponding input state columns in a fixed data set. In “online” application, the model is coupled to the components
of the coarse-grid atmosphere model as the year-long forecast is simulated. While ML-based models frequently
improve overall error, these models—especially deep neural networks—are often not robust, meaning they
perform poorly for out-of-sample data. In online application, where predictions are fed back into the model, the
corrective ML can induce errors in the overall simulation that accumulate in time, creating large systematic biases
and instabilities (Brenowitz, Henn, et al., 2020).

This motivated us to employ semi-supervised novelty detection to predict when a column x; belongs to the train-
ing distribution of g and suppress the tendencies of the ML model if not. This paper shows that strategy can
substantially improve the model stability and climate accuracy. With novelty detection, our model has the form

% = filX,0) + n(xi; p)g(xi, @13 0), )

for a novelty detector #(+; p) : R* — [0, 1] with parameter vector p.
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2. Methodology
2.1. Data Set

We train the ML tendency correction g(-; 6) offline as described by Kwa et al. (2022). The training samples ((x,,
@), Y)» ---» ((x,, @,), y,) consist of input features and target nudging tendencies y/(described below) for a set of
atmospheric columns sampled at time steps of a nudged coarse model simulation. A neural net with parameters ¢
is trained to make g best match the nudging tendencies.

The nudged coarse model simulation is constructed to track the evolution of a reference fine-grid no-ML climate
model simulation, averaged to the coarse grid cells. Symbolically, the atmospheric state in this reference simula-
tion is denoted XV, ..., XD e RNxd,

fine” * fine

To nudge the coarse simulation to this fine-grid reference, we add a relaxation term- referred to as a nudging
tendency- to the coarse-grid model of the form

yii= T )

with a specified nudging timescale = = 3 hr. By construction, the time-evolving atmospheric state XV, ..., XD of
this nudged run is approximately (but not exactly) the same as in the fine-grid reference. The y, are the nudging
tendencies that we learn; we denote the N X d arrays of their values at each time as Y, ..., YD,

The coarse-grid model f; is the same as used in Bretherton et al. (2022) and Kwa et al. (2022). We use a version
of NOAA's FV3GFS global weather forecast model (Zhou et al., 2019) with a C48 cubed-sphere grid of approxi-
mately 200 km horizontal grid spacing (Putman & Lin, 2007). In this grid, the Earth is divided into 6 square tiles
with a 48-by-48 grid imposed on each, for N = 6 - 482 grid columns. This model has 79 vertical levels between
the surface and the top of the atmosphere. Time-varying sea surface temperature and sea ice are prescribed using
a coarsened version of the same fields from the fine-grid reference.

Our fine-grid reference simulation is the same as used in Kwa et al. (2022). It is created using the X-SHiELD
model, a modified configuration of FV3GFS on a C3072 (approximately 3 km) cubed-sphere grid with 79 verti-
cal model levels (Cheng et al., 2022). The FV3GFS convective gravity wave drag and deep cumulus parametri-
zation schemes are disabled in the fine-grid model, while the shallow cumulus convection scheme is active.
We used a year of three-hourly reference model output coarsened to the C48 grid by horizontal pressure-level
averaging (Bretherton et al., 2022).

Samples are collected from a year-long nudged coarse-grid simulation; the state and nudging tendencies are
saved every 3 hr. After dividing this data into interleaved time blocks for the train/test split and randomly subsam-
pling down to 15% of the columns in each timestep, we are left with n = 2834611 training samples spanning
2020-01-19 through 2021-01-17.

The same data set D, = {x,- eRl:ie [n]} is used to train the novelty detector 7(:; p). The nudging tendencies
y; are omitted, as the novelty detection procedure requires no labels.

2.2. ML-Corrected Climate Models and Data

The novelty detection procedure does not affect the training of the neural nets used to predict the nudging tenden-
cies. We consider two such corrective ML models: gr, and gr,.:

* gy, corrects vertical columns of air temperature 7" and specific humidity ¢ tendencies, but does not correct
winds. That is, x; is a d = (2 - 79)-dimensional vector with 79 temperature and 79 humidity coordinates, each
corresponding to an atmospheric model level.

® &rqy also corrects tendencies of the horizontal wind components (u, v) at each level, making x; a
d = (4 - 79)-dimensional vector.

grq(;0) : R1® x R¥ — R!38 predicts the vector of temperature and humidity nudging tendencies y, from the
temperature and humidity profiles x,, as well as the insolation, surface elevation, and latitude of the corresponding
cell (¢,). Hyperparameters for the corrective ML models were selected after performing a sweep optimized on
single-timestep validation loss. We represent g (-; ¢) as a three-layer dense multi-layer perceptron of width 419.

SANFORD ET AL.

3of 14



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems 10.1029/2023MS003809

The loss is measured by the mean absolute error (MAE) with L, kernel regularization of strength 10=4. We found
that models trained with MAE loss were less prone to instabilities and drifts in online simulations than those
trained with mean squared error loss. We train the model with the Adam optimizer for 500 epochs using a fixed
learning rate of 0.00014 and a batch size of 512 samples.

On the other hand, grquw(-;0) : R*® x R? — R3¢ is defined as the concatenation of two learned functions for
input x = (x1q, xuy) € R x R1%:

gTquv(x’ ®; 0) = (gTq (qu, @; eTq)y 8uv (qu, Xuv, @5 guv) ) (5)

where gr(+; 6,) is the same as the aforementioned model. guy(+; fuv) : R3¢ x R? — R'8 is separately trained to
infer wind nudging tendencies from temperatures, humidities, and horizontal winds. Besides the different input
dimension, g, (-; 8,,) is otherwise structured and trained identically to the other model.

2.2.1. Fixed Vertically Flipped Application of Corrective Wind Tendencies

Kwa et al. (2022) obtained better prognostic simulations using g, than by also adding wind tendency correction
8rqu- We have since found this was due to our inadvertently applying the learned wind tendency correction in
each column upside-down, such that the correction of the lowest level 79 was applied on the highest level 1, and
vice versa. This configuration error, which also affected the wind-corrected simulations discussed by Watt-Meyer
et al. (2021), Bretherton et al. (2022), and Clark et al. (2022), arose because FV3GFS uses opposite vertical
indexing of grid levels in the physical parameterizations and dynamical core. After fixing this error, including
corrective wind tendencies no longer leads to numerical instability, and most metrics of 3—7 days weather skill
(e.g., RMSEs of 850 hPa temperature) are significantly improved.

We tested both the erroneous and the fixed corrective approaches to trace through the effects of rectifying the
error caused by vertical flipping. Both corrective approaches benefit from the inclusion of novelty detection.

2.3. Novelty Detection

Novelty detection is a well-studied semi-supervised learning problem about estimating the support of a data set
using only positive examples (Hodge & Austin, 2004). Most novelty detection algorithms predict whether a new
sample x (which does not appear in the finite-size training data set) belongs in the support of the training data set,
which is a subset S of the input space such that all columns x € S have some positive probability of being drawn
by the probability distribution used to generate the training set. Lacking access to any explicit characterization
of this training distribution, novelty detectors estimate the set S statistically, using the training features without
labels (i.e., positive examples). We frame the problem as novelty detection rather than outlier detection (an unsu-
pervised problem with mixture of in-distribution and out-of-distribution samples) or standard two-class super-
vised classification, because we have no data set of representative out-of-distribution samples and constructing
such a data set would introduce additional model-dependence into this process.

In our work, the novelty detector 5 predicts an estimate of the support of the training data S, which we use to mask
the ML-predicted corrections of input x when x ¢ S. Specifically, if a column is determined to not be a novelty
(ie., x € S), then we let n(x; p) = 1 (recall Equation 3) to take full advantage of the learned correction g(x, ¢; 6);
otherwise, we ignore g(x, ¢; ) by setting n(x; p) = 0.

There are many known approaches to novelty detection, including local-outlier factor (Breunig et al., 2000),
k-means clustering (Nairac et al.,, 1999), and minimum-volume ellipsoid estimation (Van Aelst &
Rousseeuw, 2009). Our exploratory work considers two approaches: a simple “min-max” novelty detector
and a one-class support vector machine (OCSVM). For each of these we consider novelty detectors 7, with
79-dimensional temperature vectors as input and 7, with 158-dimensional combined temperature and specific
humidity vectors.

We did not consider novelty detectors with wind inputs. Adding more inputs to the OCSVM classifier requires
further hyperparameter tuning (see Section 2.3.3) to keep the evaluation time low enough to be useable within
prognostic simulations; we therefore limit the scope of this work to out-of-sample detection on temperature and
specific humidity fields.
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2.3.1. Naive “Min-Max” Novelty Detector

The min-max novelty detector considers the smallest axis-aligned hyper-rectangle that contains all training
samples and categorizes any sample outside the rectangle as a novelty:

1 ifx, € [Xmin,k, xmax,k] Vk € [d],
ﬂmin—mux(x; (xmin, xmax)) = (6)
0 otherwise,

o
ik
feature. While efficient, this novelty detector cannot identify irregular correlations between input features that
nevertheless lie within the bounding box.

for xmpinx = min;, xﬁ']{ and xjyuxx = max;, x;, as the minimum and maximum over the training data of the kth

2.3.2. One-Class Support Vector Machine (OCSVM)

The one-class SVM algorithm of Scholkopf et al. (2001) repurposes the SVM classification algorithm to estimate
the support of a distribution by finding the maximum-margin hyperplane separating training samples from the
origin. The OCSVM has been applied to novelty detection for genomics (Sommer et al., 2017), video footage
(Amraee et al., 2018), propulsion systems (Tan et al., 2019), and the internet of things (Yang et al., 2021).

We normalize each input x; and utilize the kernel trick, lifting it to the infinite-dimensional feature space ¢(x;)
corresponding to the radial basis function (RBF) kernel «,(x,x’) = exp(—yllx - x'll%). We parameterize the
novelty detector with p = (a, &, y) in its dual form,

1 Y aik, (X, x;) > &,
Hocsvm(x; (@, €,7)) = o @)
0 otherwise.

The sensitivity of the novelty detector can be adjusted by choosing a cutoff & > 0. The learnable real-valued
weights a; > 0 quantify the influence of each training sample x; on predictions on any new sample x. By directly
weighting the kernel k,(x, x,), a large a; indicates that the proximity of x to x; is highly salient to 7ocgyy's predic-
tion of whether x; belongs in the support. If ; = 0, then x (x, x,) is irrelevant to the prediction and need not be
computed. The goal is to find a relatively small subsample of training samples x; with nonzero weights a;,, known
as the support vectors, that can be used to confidently and efficiently assess whether x is out of sample.

The weights a; are learned by solving a convex optimization problem based on the training data. The number of
nonzero weights ; depends on the sensitivity y and a regularization parameter v. To obtain a robust and compu-
tationally efficient novelty detector, for a given y we choose v to ensure the number of support vectors is on the
order of at most 104, less than 0.5% of the training data sample. Smaller values of y correspond to novelty detec-
tors with highly smoothed support estimations that may be larger than necessary, while large y provides a smaller
and perhaps more topologically complex region.

2.3.3. Parameterization of the One-Class Support Vector Machine

For the main results presented in 3, we chose y = 4/79, v = 107#, and £ = 0.12 as our OCSVM model parameters.
Here, we discuss the process of OCSVM parameter selection and the resulting trade-offs. Specifically, y was set
to moderate a bias-variance trade-off (although a wide variety of choices produce similar results), v guarantees
that the costs of computing the outcome of the novelty detector are dominated by the other steps of the simulation,
and & was set to tune the classification boundary.

The RBF kernel in our OCSVM can be tuned to trade off bias and variance with its inverse-radius parameter y. A
large choice of y ensures that k (x, x') only has non-negligible output if x is extremely close to x', while smaller y
selections cause a large “ball” of x around x’ to all have k (x, x") = 1. Choosing large y makes for a more expres-
sive classifier that can be used to fit any training data, but raises the risk of classifying many “holes” in between
training data samples as out-of-sample. A smaller y imposes a smoothing effect on the learned classifier. The

default SVM setting in scikit-learnis y = #fealwres = ﬁ. For our application, we find that a larger choice of y tends

to produce better outcomes and focus our study on four choices: y € { %, 7%, 74—9, % }
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Table 1
One-Class SVM Parameterizations

14 v #SVs o2s $os o5 005 099
1 5-10°3 14,365 351 321 289 227 153

5-1073 15,029 80 70 60 42 22
i 1-10+* 16,030 0.18 0.15 0.12 0.065 0.023

8, 4.10°¢ 12,152 5.9-107* 4410~ 2.8-107* 9.3-107° 1.7-1073

Note. For each kernel radius y, we select a regularization parameter v in order to constrain the number of support vectors to
roughly 10,000 for computational efficiency, which is in turn used to train a parameter vector . Five cutoffs & are identified
to adjust the conservatism of the model: £ is chosen to ensure that a p fraction of the training data set is categorized as
in-distribution, that is, 75cgym(; (@, &, 7)) = 1. Bold values indicate the OCSVM parameters used in the main results.

The scikit-learn implementation of an OCSVM uses a regularization parameter v in the training procedure to
trade off classification accuracy and model simplicity when learning weights a € [0,1]” (Scholkopf et al., 2000).
v does so by regulating the number of allowable support vectors, which are samples x; that have respective
weight a;, > 0. A looser bound on support vectors in turn scales the computational cost of each application of the
OCSVM. Choosing a large value of v puts a greater premium on categorizing every sample correctly by using
more support vectors. Here, we use a parameter search to choose a v for each y that results in roughly 10 support
vectors.

Finally, the cutoff £ affects the sensitivity of the learned novelty detector. A large choice of & causes an aggressive
detector that categorizes a large number of samples as novelties (and hence, frequently disables the ML-corrected
tendencies), while a small £ classifies more samples as in-distribution. We use the maximum score observed in
the training data, £ = 0.12, which classifies none of the training data and an acceptably small 2.6% of a with-
held test set of reference data as out-of-sample.

Section 4 investigates the dependence of simulations' accuracy metrics on several choices of the sensitivity y and
cutoff £&. We calibrate the sensitivity by drawing samples from a full year of an ML-corrected run and choosing
a cutoff £, such that a fraction p of the given data are categorized as in-distribution; a larger choice of p results
in a smaller ¢,. For the sensitivity study in Section 4, we consider the corresponding &, choices for each y for
p €{0.25,0.5,0.75,0.95,0.99}. The value of £ = 0.12 used in our results corresponds to p = 0.75 when evaluated
on the ML-corrected run. In Table 1, we give the respective choices of v and £, for each y.

2.4. Computing Scalar Metrics

We measure the success of a coarse-grid simulated run by computing the root mean-square error (RMSE) of
time-averaged quantities (850 hPa and 200 hPa temperature, surface precipitation, total precipitable water) with
respect to those same quantities for the coarsened fine-grid run. We compute the RMSE of the time-averaged
field s as follows:

N T 2
RMSE(s) = 1| Y a,~<% Z( 50— sg;ﬁj)) , ®)

i=l t=1

(ﬁ’:lei denote the field value at grid cell i € [N] and time ¢ € [T] in our coarse-grid and the reference

fine-grid simulations respectively, and a, are the normalized area weights of grid cells.

§(f )

where §;” and s

2.5. Methodological Updates Versus Sanford et al. (2022)

We made two important methodological updates in this study compared to a similar recent work on which it is
based (C. H. Sanford et al., 2022). First, we fixed the previous error (see Section 2.2.1), discovered after that
earlier work, where the ML wind tendencies in each grid column were applied with inverted vertical indexing
during online simulations. The second change is related to the application of the ML corrections g, and g7,
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a) b) Jrquv S€eed 0 c) JTquv Seed 3
Baseline (highest PWAT error) (lowest PWAT error)
_ =

Latitude [deg]
zonal-mean novelty fraction

Figure 1. Zonal-mean fraction of novelties detected by the 77y, ocsyy NOVelty detector over the first 16 weeks of the (a)
baseline, (b) seed 0 gy, and (c) seed 3 gy, simulations.

in the upper atmosphere. C. H. Sanford et al. (2022) followed the approach of Kwa et al. (2022), in which the
ML-predicted tendencies in the top three model layers were not applied as corrections. The rationale was that the
sponge layer differences between low and high resolution models was a process we did not wish to correct, and
there were relatively large magnitude nudging tendencies at these levels. In this study, we use a more aggressive
tapering in which the ML-predicted outputs are tapered to zero throughout the uppermost 25 model levels using
an exponential decay, as in Equation 6 of Clark et al. (2022). This improves the simulation of lower atmospheric
air temperatures, and more importantly, helps prevent large upper atmospheric temperature drifts when using
ML corrections of horizontal winds. Both of these changes improve the ML-corrected simulations described by
Equation 2 and impose a higher bar for the novelty detection to add value.

3. Results

3.1. Offline Application of Novelty Detection

Before integrating a novelty detector into online simulations with an ML-corrected climate model, we test it
offline on data produced by the preexisting simulations. We compare the frequency of offline novelty detection
for data sets generated from the first 16 weeks of three C48 simulations—a no-ML baseline model simulation
and two gy, ~corrected simulations that differ only in the random initial seed used in training the g;,,, models.
The gr,,, seed O run has the largest yearly mean precipitable water RMSE (4.4 kg/m?) across a set of four 8rquv
simulations, while the seed 3 run has the smallest (2.4 kg/m?), slightly smaller than that of the baseline run
(2.7 kg/m?). Feedback loops between less reliable ML corrections and out-of-sample column states may exacer-
bate mean-state drifts, showing up as locally higher offline novelty fractions. We selected the two ML-corrected
runs with the highest and lowest precipitable water biases in order to test this hypothesis. The baseline simula-
tion tests the extent to which mean-state biases developing in a conventional climate model lead to detectable
novelties.

Figure 1 focuses on the first 16 simulated weeks of the simulation to make the drifts into out-of-sample states
more visible. Within a few days, the baseline model moistens relative to the reference model until it generates
enough clouds and precipitation to balance surface evaporation, after which it settles into a new, slightly biased
equilibrium in which about 25% of the columns are flagged as novelties.

Initially, the seed O and seed 3 gy, corrections both have the intended effect of keeping the global state closer to
the fine-grid reference distribution. These ML-corrected gy, runs have lower global novelty fractions than the
baseline over the first 2 months, particularly in the tropics. However, from March onward, the novelty fraction in
the baseline tropics plateaus, while both g, simulations continue to drift farther out-of-sample in the tropics.

By the end of the 16 weeks shown in Figure 1, the “highest PWAT error” seed 0 gy, simulation has roughly
twice as many out-of-sample columns compared to the baseline and “lowest PWAT error” seed 3 runs. This
demonstrates that suboptimal ML corrections (as in the seed 0 gy,,, model) can indeed push the state further out
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Table 2
The Root Mean-Square Error Scores of Time-Averaged Metrics and Novelty Detection Rates for Year-Long Simulations
Run % Novelty T200 (K) T850 (K) SP (mm/day) PWAT (kg/m?)
Baseline - 248 2.09 1.78 2.79
81q - 2.50 (0.40) 1.97 (0.08) 1.52 (0.07) 3.97 (0.29)
Stquy - 3.30 (0.49) 1.31 (0.14) 1.40 (0.12) 3.40 (0.73)
Srquy Ttmin — max 0.6 (0.3) 3.04 (0.65) 1.29 (0.06) 1.36 (0.07) 3.28 (0.72)
Erquv TT.0CsSVM 5.0 (1.0 2.84 (0.49) 1.38 (0.09) 1.37 (0.08) 3.36 (0.83)
8rquw 1q,0C5vM 20.6 (4.8) 1.24 (0.05) 1.30 (0.08) 1.29 (0.07) 2.38 (0.37)

Note. Values for ML-corrected runs are the mean, with standard deviation in parentheses, across the four random seeds. The
“% Novelty” column represents the percent of columns over the simulated year which were classified as out-of-sample and
did not receive ML corrections. Metrics are 200- and 850-hPa temperature (T200, T850), surface precipitation rate (SP) and
precipitable water (PWAT). For each metric, the run with the lowest RMSE is bolded.

of the training set distribution, setting the stage for less reliable ML corrections that further exacerbate climate
drifts. The higher rate of novelty detection in the tropics and extratropics in the seed 0 simulation is correlated
with higher moist biases (not shown) in those regions than in the seed 3 run. This should not be interpreted as the
sole physical driver behind the out-of-sample drifts though, as the 775, oy novelty detector uses the full column
profiles of air temperature and specific humidity in its classification.

3.2. Online Novelty Detection Improves Temperature and Precipitation Predictions

We assess the utility of the novelty detectors by incorporating #(:; p) into the coarse grid model and numerically
simulating Equation 3 for 1 year. We compare the predicted atmospheric states %; to x;,,; using the RMSE of
four time-averaged diagnostics calculated using Equation 8: air temperatures at pressures of 200 hPa and 850 hPa
(T200, T850) representative of the lower and upper troposphere, surface precipitation rate (SP) (Current climate
models make less consistent predictions of regional shifts in precipitation than of surface temperatures; contrast
Sections B.2.1 and B.3.1 of IPCC (2021).), and precipitable water (PWAT) (PWAT is the total mass of water
contained in a vertical atmospheric column per cross-sectional area and is highly correlated with the regional
precipitation rate (Bretherton et al., 2004).).

Table 2 compares the performance of six global simulations. The first is the no-ML baseline simulation; the next
two are ML-corrected runs without and with wind tendency corrections; and the remaining three simulations use
8rquy corrections and include novelty detection from Equation 3—these differ in the choice of novelty detector
1 and its inputs. The y, OCSVM uses the same parameter choices as for the offline comparisons. For the 7y
OCSVM, which uses fewer inputs, we use the same y = 4/79 and v = 10~* but readjust the cutoff £ to 2.02 to the
minimum needed to suppress 7-only novelties within the training data set. For all the configurations except the
baseline, we perform an ensemble of simulations using four identically trained ML-correction models g initial-
ized with different random seeds. These are identical to the ML-corrective models used in Kwa et al. (2022) in
order to enable direct comparison to the year-long simulations in that previous work.

Without a novelty detector, the conclusions for the g, model (ML-corrected temperature and humidity tenden-
cies only) are similar to Kwa et al. (2022). The metrics (second row in Table 2) are 10%—20% better than for
the baseline model, except for the PWAT RMSE which worsens. Adding corrective ML for winds (third row in
Table 2) significantly improves the 850 hPa air temperature errors (ensemble-mean RMSE decreases from 1.97
to 1.31 K), somewhat improves SP and PWAT, but substantially worsens the T200 RMSE.

The min-max novelty detector (fourth row in Table 2) slightly improves the RMSEs but has limited impact since
it activates only rarely (in 0.6% of atmospheric columns, as shown in the second column of the table). This indi-
cates the importance of bounding the data distribution more tightly than a high-dimensional box. The 77, ocgym
novelty detector classifies a higher fraction of columns as novelties (5%) than the min-max detector, but the over-
all RMSE for the gr,, 711,0csym Simulations are mostly on par with the g, results without novelty detection,
with the exception of further improvements in T200 RMSE.

The 7714 ocsym NOVelty detector, on the other hand, improves 200 hPa air temperature, surface precipitation, and
precipitable water RMSEs by 62%, 8%, and 30% respectively, compared to the 8rquy Simulations without novelty
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Figure 2. Root mean-square error of time-mean fields in groups of ML-corrected simulations and the baseline prognostic
run. Each group of four blue points shows a range of results across four randomly seeded corrective-ML models. The same
randomly seeded gy, models are used in all ML-corrected groups. The same four g,, models are used in both the g;,,, and

8Tquv Itq.0csvm ELOUPS.

detection. To achieve these improvements, the OCSVM novelty detectors activate in 21% of all atmospheric
columns, averaged over the course of the year-long simulations. If compared to the same 16 weeks time period
as the offline analysis of g;,,, runs without novelty detection in Section 3.1, online novelty detection reduces the
novelty fraction in ML-corrected runs by roughly half. In summary, suppressing ML corrections to columns with
atypical temperature and specific humidity profiles helps keep the g, -corrected model within the envelope of
its training data, where it is skillful in reducing temperature and humidity biases.

Figure 2 shows the RMSE of time-mean surface precipitation, 200 hPa and 850 hPa temperature, and precipitable
water across individual ensemble members of simulations using gy, g1qu,» aNd 8ryuys Mrqocsvm: This illustrates
that the 773,, ocgyy NOVelty detection substantially reduces the variance in skill across the ML-corrected runs (also
demonstrated by the standard deviations reported in parentheses in Table 2), especially for precipitable water and
200 hPa temperature. The novelty detection reduces variance and improves the overall ensemble skill by bringing
the worst-performing g, seeds closer in line with the better performers.

3.3. Improvements for a Particular ML-Corrected Simulation

In this subsection, the ML-corrected simulation results are shown just for the worst gy, seed (0), to provide
a clear illustration of how novelty detection especially benefits poorly performing prognostic runs. This seed's
8tquy g ocsym Simulation had a novelty fraction of 24.3%, slightly higher than the ensemble mean of 20.6%.

3.3.1. Zonal-Mean Biases

Figure 3 compares the time evolution of zonal-mean 200 hPa air temperature biases in three ML-corrected
year-long simulations: g, Without novelty detection, and two simulations with novelty detectors 77 ocyy and
Nrgocsym that use different feature sets.
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Figure 3. Time versus zonal-mean plots visualizing upper-atmospheric temperature biases (against the fine-grid reference simulation) at the 200 hPa pressure level
(top) and fractions of novelties identified (bottom) by three different models initialized from random seed O (left to right): (1) the ML-corrected climate model Srquv
without novelty detection, (2) gr,,, With one-class support vector machine (OCSVM) novelty detection 773 o5y USing temperature as the input feature, and (3) g,
with OCSVM novelty detection 7y, ocsvy Using temperature and specific humidity as input features.

The ML-corrected gy, model without novelty detection develops a significant 5-10 K warm bias in 200 hPa
air temperature across latitudes. The temperature-only novelty detection in gy, 7 ocsym femoves the largest
magnitude warm bias at the North Pole during boreal summer, but otherwise does not prevent the global warm
drift. Though the g, 77 ocsym Simulation develops 5-10 K biases within the first 16 weeks, the 77y ey acti-
vates infrequently as it still classifies these columns' temperature profiles as lying within the training distribution,
presumably due to the large weather-associated variability of temperature sampled therein.

The prognostic run in the right column of Figure 3 shows that using specific humidity inputs in addition to
temperature inputs is necessary for successful bias reduction via novelty detection. This greatly increases the rate
of out-of-sample classification, especially in the tropics. The 200 hPa temperature bias is dramatically reduced
out to high latitudes, despite the majority of the novelty detection occurring in the tropics. We speculate that this
is due to changes in tropical convection, where the 7y, ocgyy DOVelty detector is most active other than extreme

polar latitudes.

Figure 4 shows sections of time- and zonal-mean air temperature and specific humidity biases. Instead of the gy,
N1.0csym TUn, Figure 4 includes a baseline (no-ML) simulation for comparison, since that is what we are aiming
to improve on. The baseline model air temperature is biased low in the tropical stratosphere and throughout the
column in high northern latitudes. The ML-corrected g,,, model without novelty detection corrects the cold
bias at high northern latitudes but develops an overall warm bias that is largest in the extratropical stratosphere.
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Figure 4. Annual-averaged zonal mean temperature (top) and humidity (bottom) biases plotted over pressure levels, for the baseline model (left) and seed-0 gy,
models with no novelty detection (center) and with 775, sy nOVelty detection (right).
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Figure 5. Probability distribution function of daily mean precipitation from

all grid columns around the globe, shown for the fine-grid reference, baseline,

ML-corrected gr,,, run without novelty detection, and ML-corrected gy,
frqocsvm Tun. The y-axis uses linear scaling above 0.01 (mm/day)~" and log

scaling below.

Adding the 1y, sy NOVelty detector on top of the gp,,, corrections removes
most of this stratospheric warm bias.

Similarly, the ML-corrected gr,,, model without novelty detection develops
a tropical moist bias in specific humidity that is larger in magnitude than the
baseline biases in both the boundary layer and the troposphere. Adding the
Ngocsvm DOVelty detector greatly reduces this bias.

3.4. Daily Mean Precipitation Distribution

The ML-corrected gy, fiq ocsvm Simulation also captures the global-mean
probability distribution function (pdf) of daily mean precipitation in the
reference fine-grid simulation better than the baseline (no-ML) and gr,,
approaches (Figure 5). The baseline run underestimates the frequency of
low daily mean precipitation below a few mm/day, while the ML-corrected
simulations more closely match the fine-grid reference at the low end of the
distribution. The baseline run over-estimates the high-precipitation tail of the
target pdf, while the gy, run underestimates the pdf in the tail. The g,
Ngocsvm Tun matches the tail of the global precipitation pdf more closely up
to rates over 100 mm/day.

4. Varying Novelty Detector Sensitivity

Section 3 considered an OCSVM with y = 4/79 and cutoff ¢ set to the
maximum score observed in the training data (See Section 2.3.3 for a more
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Figure 6. Root mean-square error of time-averaged 850 hPa temperature
(top), surface precipitation (center), and precipitable water (bottom) of
year-long global C48 simulations, all with ML-correction gy, and novelty

detector 77y, oesyy With kernel inverse radius y € { ~ 223 } The plots

797797797 79
show each error metric as a function of the total fraction of identified novelties
(a monotonic increasing function of &) on the x-axis. The choices of & are
given in Table 1 in Section 2.3.3. The single green star marker represents the
one-class support vector machine parameters used in the Results section. Filled
markers indicate consistent novelty detectors that classify no more than 5% of
the holdout reference training data set as out-of-sample; open circles indicate
inconsistent detectors.

thorough discussion of how the value of cutoff £ impacts novelty frequency
in online simulations.). This model, whether applied only to temperature or
to both temperature and humidity, appears to find a consistent “sweet spot”
between the baseline run and the ML-corrected run with no novelty detection
that reduces the mean-state drifts of both approaches. This section presents a
sensitivity study that supports this finding by considering several choices of
y and varying ¢ to adjust the aggressiveness of the novelty detector. We show
that these approaches interpolate between the baseline and ML-corrected run
as the cutoffs change, and that choosing an intermediate model that cate-
gorizes a substantial fraction of samples as novelties balances the trade-off
between the quality of temperature and surface precipitation estimates and of
precipitable water estimates.

In Figure 6, we consider an ML-corrected model g, augmented with an
OCSVM novelty detector 77y, ocsyy With various choices of inverse radius
parameter y and cutoff parameter £. We plot the error metrics as a function
of the fraction of novelties identified online for each cutoff. We find that an
intermediate cutoff balances strong performance on temperature and surface
precipitation (for which the ML-correction-only simulation has a lower RMSE
than the baseline simulation) and total precipitable water estimates (which are
better predicted by the baseline model than the ML-correction-only simulation).
Optimal temperature and precipitable water predictions generally occur when
approximately 20% and 60% of samples are categorized as novelties, respec-
tively (and hence suppressed). The plots demonstrate that this approach effec-
tively interpolates between those two extreme cases and that the cutoff £ used
in the preceding section lies near that sweet spot. The figure also demonstrates
that different combinations of radius parameter y and cutoff £ result in similarly
performing simulations when the fraction of novelties detected is the same.

A potential pitfall of applying novelty detection within simulations is that
the detector may falsely flag some columns as novelties and suppress legit-
imate ML corrections. We try to reduce the occurrence of this behavior by
our choice of classification cutoff £. As £ is increased, a greater fraction of
samples from the reference data set distribution will also be classified as
out-of-sample. Detectors are considered inconsistent if they return a signifi-
cant novelty fraction when evaluated on a holdout set from the training data,
as this means that the detector has a higher false positive rate in flagging
samples as novelties when they are still within the training distribution. In
this analysis we set a false-positive threshold of 5% to determine which (y, &)
combinations are consistent OCSVMs. OCSVMs which classify >5% of the
holdout reference data as out-of-sample are deemed inconsistent and indi-
cated as open circles in Figure 6. These include all detectors that classify less
than 75% of online ML-corrected samples as typical and, for certain y, even
detectors classifying up to 95% as such. That is, the best climate performance
using this ML correction model is found by using the maximum & consistent
with the false-positive threshold on the withheld reference data. The parame-
ters used in the 773, gy detector in the preceding sections resulted in a 2.6%
false positive rate.

It is also likely that atmospheric states may arise in the coarse-grid model
which are consistent with fine-grid model behavior but are wrongly flagged
as novelties because the limited time span of the year-long training data set
does not fully capture this desired range of behavior. These instances of false
positive errors would not be flagged as such by our method described above.
They could be reduced by training on longer reference data sets spanning
multiple years.
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5. Conclusion and Future Work

This study demonstrates that applying novelty detection to ML-corrected coarse-grid atmospheric climate
models can improve the quality and reliability of their temperature and precipitation estimates. Future efforts
using corrective ML models within simulations may find this approach useful for improving forecast skill and
avoiding climate drift into states outside the training distribution.

Offline, a novelty detection algorithm trained on samples from a coarsened high-resolution simulation tends to
classify more columns as novelties in runs that drift further from the high-resolution reference. When applied
online to mask ML-predicted corrective tendencies, the novelty detector maintains or improves the spatial
patterns of time-mean surface precipitation rate, lower and upper atmospheric temperature and precipitable water.
Furthermore, for an ensemble of ML-corrected simulations (in which each simulation uses an ML model trained
with a different random seed initialization of weights), use of novelty detection decreases the spread in model
skill across the ensemble. This is a valuable property, since online use of ML parameterizations can be highly
sensitive to subtle changes in the offline training, such as random seed (e.g., Wang et al., 2022).

Future work can build on this effort by experimenting with different novelty detection approaches, OCSVM
kernels, inputs to 7, and methods for integrating the novelty detector into the ML-corrected climate model. Prac-
tical implementation of the novelty detector can become a simulation bottleneck if the number of support vectors
(2.3.1) is too high. For the settings used in Section 3, the novelty detector roughly doubled the wall clock time per
simulation timestep. It would be worth further investigation into how few support vectors are needed to improve
ML-corrected simulations online. In addition the more classical ML approaches to novelty detection explored
here, future work may consider using neural networks directly for density estimation for the purpose of novelty
detection. Finally, further analysis of the character of the out-of-sample behaviors that are being detected by the
trained novelty detectors could help us better understand their causes.

Data Availability Statement

The code used to configure experiments and analyze their results is available at https://github.com/ai2cm/
out-of-sample (C. Sanford, 2023). The version of the codebase used to train models and run them within coarse-
grid simulations is available at https://github.com/ai2cm/fv3net (AI2CM, 2023). The coarsened fine-grid data
used for initial conditions and in the nudged coarse-grid simulation is available upon request through a Google
Cloud Storage “requester pays” bucket.
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