
1.  Introduction
Accurate, reliable climate models are essential for projecting climate change and its impacts. To explore a range 
of scenarios and account for natural climate variability, climate models must also be computationally effi-
cient. This is typically achieved in the atmospheric model by using relatively coarse grid resolutions (typically 
between 50 and 200 km) and representing processes that operate at finer spatial scales by somewhat empirical 
human-designed “subgrid parameterizations.”

The use of machine learning in atmospheric modeling has taken various forms, including emulating existing 
physical parameterizations (e.g., Chantry et al., 2021; Krasnopolsky et al., 2010), replacing physics parameteri-
zations by learning from a high-resolution model (e.g., Brenowitz & Bretherton, 2019; Rasp et al., 2018; Wang 
et al., 2022; Yuval & O'Gorman, 2020), or using ML for online correction of a complete atmospheric model 
(Bretherton et al., 2022; Chen et al., 2022; Clark et al., 2022; Kwa et al., 2022; Watt-Meyer et al., 2021). Here we 
will focus on the latter strategy.

Abstract  Using machine learning (ML) for the online correction of coarse-resolution atmospheric models 
has proven effective in reducing biases in near-surface temperature and precipitation rate. However, ML 
corrections often introduce new biases in the upper atmosphere and causes inconsistent model performance 
across different random seeds. Furthermore, they produce profiles that are outside the distribution of samples 
used in training, which can interfere with the baseline physics of the atmospheric model and reduce model 
reliability. This study introduces the use of a novelty detector to mask ML corrections when the atmospheric 
state is deemed out-of-sample. The novelty detector is trained on profiles of temperature and specific humidity 
in a semi-supervised fashion using samples from the coarsened reference fine-resolution simulation. The 
novelty detector responds to particularly biased simulations relative to the reference simulation by categorizing 
more columns as out-of-sample. Without novelty detection, corrective ML occasionally causes undesirably 
large climate biases. When coupled to a running year-long coarse-grid simulation, novelty detection deems 
about 21% of columns to be novelties. This identification reduces the spread in the root-mean-square error 
(RMSE) of time-mean spatial patterns of surface temperature and precipitation rate across a random seed 
ensemble. In particular, the random seed with the worst RMSE is improved by up to 60% (depending on the 
variable) while the best seed maintains its low RMSE. By reducing the variance in quality of ML-corrected 
climate models, novelty detection offers reliability without compromising prediction quality in atmospheric 
models.

Plain Language Summary  Fine-grid global storm-resolving models produce more accurate rainfall 
and temperature forecasts than coarse-grid climate models, but are too computationally expensive to run for 
many years. Corrective machine learning (ML) can help coarse-grid climate models act more like fine-grid 
models, but also makes them more vulnerable to inputs lying outside the range of training data for the ML 
algorithm. For such “out-of-sample” inputs, the ML may give unreliable results. Using a separate ML scheme, 
we identify out-of-sample data and disable the ML correction for these cases. We find that this robustly 
improves the time-mean temperature and precipitation patterns predicted by ML-corrected climate simulations 
to be 30%–50% better than similar simulations without ML. Incorporating novelty detectors into ML-corrected 
simulations can improve their prediction skill by helping them avoid drifting into “out-of-sample” states.
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Previous works (Brenowitz & Bretherton,  2019; Rasp et  al.,  2018; Watt-Meyer et  al.,  2021; Yuval & 
O'Gorman,  2020) have suggested that correcting or augmenting physics-based climate models with machine 
learning (ML) can improve weather forecast skill and reduce climate biases. However, ML-augmented models 
can be susceptible to instabilities (Brenowitz, Beucler, et al., 2020), and their performance when coupled to the 
atmospheric model can be sensitive to subtle ML training differences, such as random seed selection (Brenowitz, 
Henn, et al., 2020; Wang et al., 2022).

This study draws on the idea of using a compound parameterization (Krasnopolsky et al., 2008; Song et al., 2021) 
to mask ML models with high uncertainty. Specifically, we train a novelty detection algorithm (Hodge & 
Austin, 2004) and use it at each timestep of a coarse-grid simulation to mask ML corrections when the column 
atmospheric state is determined to be outside the distribution of the data set used to train the ML model estimating 
online corrections. Our approach adds robustness to past approaches (specifically Kwa et al., 2022) while consist-
ently improving temperature and precipitation bias metrics. A preliminary version of this study was presented in 
C. H. Sanford et al. (2022); an important but unrelated software bug fix and some changes in configuration led to 
substantial changes in interpretation of the effects of the novelty detector, as discussed in Section 2.5.

We model the atmosphere as a discretized system of partial differential equations. The atmospheric state is 
modeled as 𝐴𝐴 𝐴𝐴 = (𝑥𝑥1, . . . , 𝑥𝑥𝑁𝑁 ) ∈ ℝ

𝑁𝑁×𝑑𝑑 , a three-dimensional grid of N latitude/longitude coordinates with 
d-dimensional column vectors concatenating the vertical profiles of gridpoint values of air temperature, specific 
humidity, winds and other fields. In a “baseline” model with no added ML corrections, the state of a particular 
column 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ ℝ

𝑑𝑑 evolves over time as

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑖𝑖(𝑋𝑋𝑋 𝑋𝑋)� (1)

for some fixed fi derived from physically based assumptions.

The number of grid columns N scales with the inverse square of the desired grid spacing; large N (a fine grid) 
typically yields more accurate average estimates of the temperature, humidity, and precipitable water in the atmos-
phere, at the cost of computational efficiency. While accuracy penalties due to poor grid resolution are expected 
for small N, coarse-grid simulations are also biased by imperfect representations of subgrid-scale processes like 
thunderstorms and cloud radiative effects (Woelfle et al., 2018; Zhang & Wang, 2006). ML is an appealing way 
to de-bias this coarse climate model by predicting and compensating for its error. The ML-corrected model can 
be written

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑖𝑖(𝑋𝑋𝑋 𝑋𝑋) + 𝑔𝑔(𝑥𝑥𝑖𝑖, 𝜑𝜑𝑖𝑖; 𝜃𝜃),� (2)

where 𝐴𝐴 𝐴𝐴(⋅; 𝜃𝜃) ∶ ℝ
𝑑𝑑+3

→ ℝ
𝑑𝑑 is a learned function with parameters θ that predicts corrective tendencies from the 

column, 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ ℝ
𝑑𝑑 , and its insolation, surface elevation, and latitude 𝐴𝐴 𝐴𝐴𝑖𝑖 ∈ ℝ

3 . The ML correction enables the base-
line to better approximate a reference fine-grid model while maintaining the underlying physics as the core of the 
modeling approach (Brenowitz & Bretherton, 2019; Watt-Meyer et al., 2021).

The ML model is trained and evaluated “offline” by generating predictions over single timesteps from their corre-
sponding input state columns in a fixed data set. In “online” application, the model is coupled to the components 
of the coarse-grid atmosphere model as the year-long forecast is simulated. While ML-based models frequently 
improve overall error, these models—especially deep neural networks—are often not robust, meaning they 
perform poorly for out-of-sample data. In online application, where predictions are fed back into the model, the 
corrective ML can induce errors in the overall simulation that accumulate in time, creating large systematic biases 
and instabilities (Brenowitz, Henn, et al., 2020).

This motivated us to employ semi-supervised novelty detection to predict when a column xi belongs to the train-
ing distribution of g and suppress the tendencies of the ML model if not. This paper shows that strategy can 
substantially improve the model stability and climate accuracy. With novelty detection, our model has the form

𝑑𝑑𝑑𝑑𝑖𝑖

𝑑𝑑𝑑𝑑
= 𝑓𝑓𝑖𝑖(𝑋𝑋𝑋 𝑋𝑋) + 𝜂𝜂(𝑥𝑥𝑖𝑖; 𝜌𝜌)𝑔𝑔(𝑥𝑥𝑖𝑖, 𝜑𝜑𝑖𝑖; 𝜃𝜃),� (3)

for a novelty detector 𝐴𝐴 𝐴𝐴(⋅; 𝜌𝜌) ∶ ℝ
𝑑𝑑
→ [0, 1] with parameter vector ρ.
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2.  Methodology
2.1.  Data Set

We train the ML tendency correction g(⋅; θ) offline as described by Kwa et al. (2022). The training samples ((x1, 
φ1), y1), …, ((xn, φn), yn) consist of input features and target nudging tendencies yi(described below) for a set of 
atmospheric columns sampled at time steps of a nudged coarse model simulation. A neural net with parameters θ 
is trained to make g best match the nudging tendencies.

The nudged coarse model simulation is constructed to track the evolution of a reference fine-grid no-ML climate 
model simulation, averaged to the coarse grid cells. Symbolically, the atmospheric state in this reference simula-
tion is denoted 𝐴𝐴 𝐴𝐴

(1)

fine
, . . . , 𝑋𝑋

(𝑇𝑇 )

fine
∈ ℝ

𝑁𝑁×𝑑𝑑 .

To nudge the coarse simulation to this fine-grid reference, we add a relaxation term- referred to as a nudging 
tendency- to the coarse-grid model of the form

𝑦𝑦𝑖𝑖 ∶=
𝑥𝑥fine,𝑖𝑖 − 𝑥𝑥𝑖𝑖

𝜏𝜏
,� (4)

with a specified nudging timescale τ = 3 hr. By construction, the time-evolving atmospheric state X (1), …, X (T) of 
this nudged run is approximately (but not exactly) the same as in the fine-grid reference. The yi are the nudging 
tendencies that we learn; we denote the N × d arrays of their values at each time as Y (1), …, Y (T).

The coarse-grid model fi is the same as used in Bretherton et al. (2022) and Kwa et al. (2022). We use a version 
of NOAA's FV3GFS global weather forecast model (Zhou et al., 2019) with a C48 cubed-sphere grid of approxi-
mately 200 km horizontal grid spacing (Putman & Lin, 2007). In this grid, the Earth is divided into 6 square tiles 
with a 48-by-48 grid imposed on each, for N = 6 ⋅ 48 2 grid columns. This model has 79 vertical levels between 
the surface and the top of the atmosphere. Time-varying sea surface temperature and sea ice are prescribed using 
a coarsened version of the same fields from the fine-grid reference.

Our fine-grid reference simulation is the same as used in Kwa et al. (2022). It is created using the X-SHiELD 
model, a modified configuration of FV3GFS on a C3072 (approximately 3 km) cubed-sphere grid with 79 verti-
cal model levels (Cheng et al., 2022). The FV3GFS convective gravity wave drag and deep cumulus parametri-
zation schemes are disabled in the fine-grid model, while the shallow cumulus convection scheme is active. 
We used a year of three-hourly reference model output coarsened to the C48 grid by horizontal pressure-level 
averaging (Bretherton et al., 2022).

Samples are collected from a year-long nudged coarse-grid simulation; the state and nudging tendencies are 
saved every 3 hr. After dividing this data into interleaved time blocks for the train/test split and randomly subsam-
pling down to 15% of the columns in each timestep, we are left with n = 2834611 training samples spanning 
2020-01-19 through 2021-01-17.

The same data set 𝐴𝐴 𝑥𝑥 =
{

𝑥𝑥𝑖𝑖 ∈ ℝ
𝑑𝑑 ∶ 𝑖𝑖 ∈ [𝑛𝑛]

}

 is used to train the novelty detector η(⋅; ρ). The nudging tendencies 
yi are omitted, as the novelty detection procedure requires no labels.

2.2.  ML-Corrected Climate Models and Data

The novelty detection procedure does not affect the training of the neural nets used to predict the nudging tenden-
cies. We consider two such corrective ML models: gTq and gTquv:

•	 �gTq corrects vertical columns of air temperature T and specific humidity q tendencies, but does not correct 
winds. That is, xi is a d = (2 ⋅ 79)-dimensional vector with 79 temperature and 79 humidity coordinates, each 
corresponding to an atmospheric model level.

•	 �gTquv also corrects tendencies of the horizontal wind components (u, v) at each level, making xi a 
d = (4 ⋅ 79)-dimensional vector.

𝐴𝐴 𝐴𝐴Tq(⋅; 𝜃𝜃) ∶ ℝ
158 ×ℝ

3
→ ℝ

158 predicts the vector of temperature and humidity nudging tendencies yi from the 
temperature and humidity profiles xi, as well as the insolation, surface elevation, and latitude of the corresponding 
cell (φi). Hyperparameters for the corrective ML models were selected after performing a sweep optimized on 
single-timestep validation loss. We represent gTq(⋅; θ) as a three-layer dense multi-layer perceptron of width 419. 
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The loss is measured by the mean absolute error (MAE) with L2 kernel regularization of strength 10 −4. We found 
that models trained with MAE loss were less prone to instabilities and drifts in online simulations than those 
trained with mean squared error loss. We train the model with the Adam optimizer for 500 epochs using a fixed 
learning rate of 0.00014 and a batch size of 512 samples.

On the other hand, 𝐴𝐴 𝐴𝐴Tquv(⋅; 𝜃𝜃) ∶ ℝ
316 ×ℝ

3
→ ℝ

316 is defined as the concatenation of two learned functions for 
input 𝐴𝐴 𝐴𝐴 =

(

𝑥𝑥Tq, 𝑥𝑥uv

)

∈ ℝ
158 ×ℝ

158 :

𝑔𝑔Tquv(𝑥𝑥𝑥 𝑥𝑥; 𝜃𝜃) =
(

𝑔𝑔Tq

(

𝑥𝑥Tq,𝜑𝜑 ; 𝜃𝜃Tq

)

, 𝑔𝑔uv

(

𝑥𝑥Tq, 𝑥𝑥uv,𝜑𝜑 ; 𝜃𝜃uv

))

� (5)

where gTq(⋅; θTq) is the same as the aforementioned model. 𝐴𝐴 𝐴𝐴uv(⋅; 𝜃𝜃uv) ∶ ℝ
316 ×ℝ

3
→ ℝ

158 is separately trained to 
infer wind nudging tendencies from temperatures, humidities, and horizontal winds. Besides the different input 
dimension, guv(⋅; θuv) is otherwise structured and trained identically to the other model.

2.2.1.  Fixed Vertically Flipped Application of Corrective Wind Tendencies

Kwa et al. (2022) obtained better prognostic simulations using gTq than by also adding wind tendency correction 
gTquv. We have since found this was due to our inadvertently applying the learned wind tendency correction in 
each column upside-down, such that the correction of the lowest level 79 was applied on the highest level 1, and 
vice versa. This configuration error, which also affected the wind-corrected simulations discussed by Watt-Meyer 
et al.  (2021), Bretherton et al.  (2022), and Clark et al.  (2022), arose because FV3GFS uses opposite vertical 
indexing of grid levels in the physical parameterizations and dynamical core. After fixing this error, including 
corrective wind tendencies no longer leads to numerical instability, and most metrics of 3–7 days weather skill 
(e.g., RMSEs of 850 hPa temperature) are significantly improved.

We tested both the erroneous and the fixed corrective approaches to trace through the effects of rectifying the 
error caused by vertical flipping. Both corrective approaches benefit from the inclusion of novelty detection.

2.3.  Novelty Detection

Novelty detection is a well-studied semi-supervised learning problem about estimating the support of a data set 
using only positive examples (Hodge & Austin, 2004). Most novelty detection algorithms predict whether a new 
sample x (which does not appear in the finite-size training data set) belongs in the support of the training data set, 
which is a subset 𝐴𝐴  of the input space such that all columns x ∈ S have some positive probability of being drawn 
by the probability distribution used to generate the training set. Lacking access to any explicit characterization 
of this training distribution, novelty detectors estimate the set S statistically, using the training features without 
labels (i.e., positive examples). We frame the problem as novelty detection rather than outlier detection (an unsu-
pervised problem with mixture of in-distribution and out-of-distribution samples) or standard two-class super-
vised classification, because we have no data set of representative out-of-distribution samples and constructing 
such a data set would introduce additional model-dependence into this process.

In our work, the novelty detector η predicts an estimate of the support of the training data 𝐴𝐴 ̂ , which we use to mask 
the ML-predicted corrections of input x when 𝐴𝐴 𝐴𝐴 ∉ ̂ . Specifically, if a column is determined to not be a novelty 
(i.e., 𝐴𝐴 𝐴𝐴 ∈ ̂ ), then we let η(x; ρ) = 1 (recall Equation 3) to take full advantage of the learned correction g(x, φ; θ); 
otherwise, we ignore g(x, φ; θ) by setting η(x; ρ) = 0.

There are many known approaches to novelty detection, including local-outlier factor (Breunig et al., 2000), 
k-means clustering (Nairac et  al.,  1999), and minimum-volume ellipsoid estimation (Van Aelst & 
Rousseeuw,  2009). Our exploratory work considers two approaches: a simple “min-max” novelty detector 
and a one-class support vector machine (OCSVM). For each of these we consider novelty detectors ηT with 
79-dimensional temperature vectors as input and ηTq with 158-dimensional combined temperature and specific 
humidity vectors.

We did not consider novelty detectors with wind inputs. Adding more inputs to the OCSVM classifier requires 
further hyperparameter tuning (see Section 2.3.3) to keep the evaluation time low enough to be useable within 
prognostic simulations; we therefore limit the scope of this work to out-of-sample detection on temperature and 
specific humidity fields.
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2.3.1.  Naive “Min-Max” Novelty Detector

The min-max novelty detector considers the smallest axis-aligned hyper-rectangle that contains all training 
samples and categorizes any sample outside the rectangle as a novelty:

�min−max(�; (�min, �max)) =

⎧

⎪

⎨

⎪

⎩

1 if �� ∈
[

�min,�, �max,�
]

∀� ∈ [�],

0 otherwise,
� (6)

for 𝐴𝐴 𝐴𝐴min,𝑘𝑘 = min𝑖𝑖𝑖𝑖𝑖 𝑥𝑥
(𝑡𝑡)

𝑖𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴max,𝑘𝑘 = max𝑖𝑖𝑖𝑖𝑖 𝑥𝑥

(𝑡𝑡)

𝑖𝑖𝑖𝑖𝑖
 as the minimum and maximum over the training data of the kth 

feature. While efficient, this novelty detector cannot identify irregular correlations between input features that 
nevertheless lie within the bounding box.

2.3.2.  One-Class Support Vector Machine (OCSVM)

The one-class SVM algorithm of Schölkopf et al. (2001) repurposes the SVM classification algorithm to estimate 
the support of a distribution by finding the maximum-margin hyperplane separating training samples from the 
origin. The OCSVM has been applied to novelty detection for genomics (Sommer et al., 2017), video footage 
(Amraee et al., 2018), propulsion systems (Tan et al., 2019), and the internet of things (Yang et al., 2021).

We normalize each input xi and utilize the kernel trick, lifting it to the infinite-dimensional feature space ϕ(xi) 
corresponding to the radial basis function (RBF) kernel 𝐴𝐴 𝐴𝐴𝛾𝛾 (𝑥𝑥𝑥 𝑥𝑥

′) = exp
(

−𝛾𝛾‖𝑥𝑥 − 𝑥𝑥′
‖

2

2

)

 . We parameterize the 
novelty detector with ρ = (α, ξ, γ) in its dual form,

𝜂𝜂OCSVM(𝑥𝑥; (𝛼𝛼𝛼 𝛼𝛼𝛼 𝛼𝛼)) =

⎧

⎪

⎨

⎪

⎩

1 if
∑𝑛𝑛

𝑖𝑖=1
𝛼𝛼𝑖𝑖𝜅𝜅𝛾𝛾 (𝑥𝑥𝑥 𝑥𝑥𝑖𝑖) ≥ 𝜉𝜉𝜉

0 otherwise.

� (7)

The sensitivity of the novelty detector can be adjusted by choosing a cutoff ξ > 0. The learnable real-valued 
weights αi ≥ 0 quantify the influence of each training sample xi on predictions on any new sample x. By directly 
weighting the kernel κγ(x, xi), a large αi indicates that the proximity of x to xi is highly salient to ηOCSVM's predic-
tion of whether xi belongs in the support. If αi = 0, then κγ(x, xi) is irrelevant to the prediction and need not be 
computed. The goal is to find a relatively small subsample of training samples xi with nonzero weights αi, known 
as the support vectors, that can be used to confidently and efficiently assess whether x is out of sample.

The weights αi are learned by solving a convex optimization problem based on the training data. The number of 
nonzero weights αi depends on the sensitivity γ and a regularization parameter ν. To obtain a robust and compu-
tationally efficient novelty detector, for a given γ we choose ν to ensure the number of support vectors is on the 
order of at most 10 4, less than 0.5% of the training data sample. Smaller values of γ correspond to novelty detec-
tors with highly smoothed support estimations that may be larger than necessary, while large γ provides a smaller 
and perhaps more topologically complex region.

2.3.3.  Parameterization of the One-Class Support Vector Machine

For the main results presented in 3, we chose γ = 4/79, ν = 10 −4, and ξ = 0.12 as our OCSVM model parameters. 
Here, we discuss the process of OCSVM parameter selection and the resulting trade-offs. Specifically, γ was set 
to moderate a bias-variance trade-off (although a wide variety of choices produce similar results), ν guarantees 
that the costs of computing the outcome of the novelty detector are dominated by the other steps of the simulation, 
and ξ was set to tune the classification boundary.

The RBF kernel in our OCSVM can be tuned to trade off bias and variance with its inverse-radius parameter γ. A 
large choice of γ ensures that κγ(x, x′) only has non-negligible output if x is extremely close to x′, while smaller γ 
selections cause a large “ball” of x around x′ to all have κγ(x, x′) ≈ 1. Choosing large γ makes for a more expres-
sive classifier that can be used to fit any training data, but raises the risk of classifying many “holes” in between 
training data samples as out-of-sample. A smaller γ imposes a smoothing effect on the learned classifier. The 
default SVM setting in scikit-learn is 𝐴𝐴 𝐴𝐴 =

1

# features
=

1

2⋅79
 . For our application, we find that a larger choice of γ tends 

to produce better outcomes and focus our study on four choices: 𝐴𝐴 𝐴𝐴 ∈

{

1

79
,

2

79
,

4

79
,

8

79

}

 .
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The scikit-learn implementation of an OCSVM uses a regularization parameter ν in the training procedure to 
trade off classification accuracy and model simplicity when learning weights α ∈ [0,1] n (Schölkopf et al., 2000). 
ν does so by regulating the number of allowable support vectors, which are samples xi that have respective 
weight αi > 0. A looser bound on support vectors in turn scales the computational cost of each application of the 
OCSVM. Choosing a large value of ν puts a greater premium on categorizing every sample correctly by using 
more support vectors. Here, we use a parameter search to choose a ν for each γ that results in roughly 10 4 support 
vectors.

Finally, the cutoff ξ affects the sensitivity of the learned novelty detector. A large choice of ξ causes an aggressive 
detector that categorizes a large number of samples as novelties (and hence, frequently disables the ML-corrected 
tendencies), while a small ξ classifies more samples as in-distribution. We use the maximum score observed in 
the training data, ξ = 0.12, which classifies none of the training data and an acceptably small 2.6% of a with-
held  test set of reference data as out-of-sample.

Section 4 investigates the dependence of simulations' accuracy metrics on several choices of the sensitivity γ and 
cutoff ξ. We calibrate the sensitivity by drawing samples from a full year of an ML-corrected run and choosing 
a cutoff ξp such that a fraction p of the given data are categorized as in-distribution; a larger choice of p results 
in a smaller ξp. For the sensitivity study in Section 4, we consider the corresponding ξp choices for each γ for 
p ∈ {0.25, 0.5, 0.75, 0.95, 0.99}. The value of ξ = 0.12 used in our results corresponds to p = 0.75 when evaluated 
on the ML-corrected run. In Table 1, we give the respective choices of ν and ξp for each γ.

2.4.  Computing Scalar Metrics

We measure the success of a coarse-grid simulated run by computing the root mean-square error (RMSE) of 
time-averaged quantities (850 hPa and 200 hPa temperature, surface precipitation, total precipitable water) with 
respect to those same quantities for the coarsened fine-grid run. We compute the RMSE of the time-averaged 
field s as follows:

RMSE(𝑠𝑠) =

√
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where 𝐴𝐴 𝐴𝐴𝐴
(𝑡𝑡)

𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

(𝑡𝑡)

fine,𝑖𝑖
 denote the field value at grid cell i ∈ [N] and time t ∈ [T] in our coarse-grid and the reference 

fine-grid simulations respectively, and ai are the normalized area weights of grid cells.

2.5.  Methodological Updates Versus Sanford et al. (2022)

We made two important methodological updates in this study compared to a similar recent work on which it is 
based (C. H. Sanford et al., 2022). First, we fixed the previous error (see Section 2.2.1), discovered after that 
earlier work, where the ML wind tendencies in each grid column were applied with inverted vertical indexing 
during online simulations. The second change is related to the application of the ML corrections gTq and gTquv 

γ ν # SVs ξ0.25 ξ0.5 ξ0.75 ξ0.95 ξ0.99

𝐴𝐴
1

79
  5 ⋅ 10 −3 14,365 351 321 289 227 153

𝐴𝐴
2

79
  5 ⋅ 10 −3 15,029 80 70 60 42 22

𝐴𝐴
𝟒𝟒

𝟕𝟕𝟕𝟕
  1 ⋅ 10 −4 16,030 0.18 0.15 0.12 0.065 0.023

𝐴𝐴
8

79
  4 ⋅ 10 −6 12,152 5.9 ⋅ 10 −4 4.4 ⋅ 10 −4 2.8 ⋅ 10 −4 9.3 ⋅ 10 −5 1.7 ⋅ 10 −5

Note. For each kernel radius γ, we select a regularization parameter ν in order to constrain the number of support vectors to 
roughly 10,000 for computational efficiency, which is in turn used to train a parameter vector α. Five cutoffs ξ are identified 
to adjust the conservatism of the model: ξp is chosen to ensure that a p fraction of the training data set is categorized as 
in-distribution, that is, ηOCSVM(x; (α, ξp, γ)) = 1. Bold values indicate the OCSVM parameters used in the main results.

Table 1 
One-Class SVM Parameterizations
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in the upper atmosphere. C. H. Sanford et al. (2022) followed the approach of Kwa et al. (2022), in which the 
ML-predicted tendencies in the top three model layers were not applied as corrections. The rationale was that the 
sponge layer differences between low and high resolution models was a process we did not wish to correct, and 
there were relatively large magnitude nudging tendencies at these levels. In this study, we use a more aggressive 
tapering in which the ML-predicted outputs are tapered to zero throughout the uppermost 25 model levels using 
an exponential decay, as in Equation 6 of Clark et al. (2022). This improves the simulation of lower atmospheric 
air temperatures, and more importantly, helps prevent large upper atmospheric temperature drifts when using 
ML corrections of horizontal winds. Both of these changes improve the ML-corrected simulations described by 
Equation 2 and impose a higher bar for the novelty detection to add value.

3.  Results
3.1.  Offline Application of Novelty Detection

Before integrating a novelty detector into online simulations with an ML-corrected climate model, we test it 
offline on data produced by the preexisting simulations. We compare the frequency of offline novelty detection 
for data sets generated from the first 16 weeks of three C48 simulations—a no-ML baseline model simulation 
and two gTquv-corrected simulations that differ only in the random initial seed used in training the gTquv models. 
The gTquv seed 0 run has the largest yearly mean precipitable water RMSE (4.4 kg/m 2) across a set of four gTquv 
simulations, while the seed 3 run has the smallest (2.4 kg/m 2), slightly smaller than that of the baseline run 
(2.7 kg/m 2). Feedback loops between less reliable ML corrections and out-of-sample column states may exacer-
bate mean-state drifts, showing up as locally higher offline novelty fractions. We selected the two ML-corrected 
runs with the highest and lowest precipitable water biases in order to test this hypothesis. The baseline simula-
tion tests the extent to which mean-state biases developing in a conventional climate model lead to detectable 
novelties.

Figure 1 focuses on the first 16 simulated weeks of the simulation to make the drifts into out-of-sample states 
more visible. Within a few days, the baseline model moistens relative to the reference model until it generates 
enough clouds and precipitation to balance surface evaporation, after which it settles into a new, slightly biased 
equilibrium in which about 25% of the columns are flagged as novelties.

Initially, the seed 0 and seed 3 gTquv corrections both have the intended effect of keeping the global state closer to 
the fine-grid reference distribution. These ML-corrected gTquv runs have lower global novelty fractions than the 
baseline over the first 2 months, particularly in the tropics. However, from March onward, the novelty fraction in 
the baseline tropics plateaus, while both gTquv simulations continue to drift farther out-of-sample in the tropics.

By the end of the 16 weeks shown in Figure 1, the “highest PWAT error” seed 0 gTquv simulation has roughly 
twice as many out-of-sample columns compared to the baseline and “lowest PWAT error” seed 3 runs. This 
demonstrates that suboptimal ML corrections (as in the seed 0 gTquv model) can indeed push the state further out 

Figure 1.  Zonal-mean fraction of novelties detected by the ηTq,OCSVM novelty detector over the first 16 weeks of the (a) 
baseline, (b) seed 0 gTquv, and (c) seed 3 gTquv simulations.
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of the training set distribution, setting the stage for less reliable ML corrections that further exacerbate climate 
drifts. The higher rate of novelty detection in the tropics and extratropics in the seed 0 simulation is correlated 
with higher moist biases (not shown) in those regions than in the seed 3 run. This should not be interpreted as the 
sole physical driver behind the out-of-sample drifts though, as the ηTq,OCSVM novelty detector uses the full column 
profiles of air temperature and specific humidity in its classification.

3.2.  Online Novelty Detection Improves Temperature and Precipitation Predictions

We assess the utility of the novelty detectors by incorporating η(⋅; ρ) into the coarse grid model and numerically 
simulating Equation 3 for 1 year. We compare the predicted atmospheric states 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 to xfine,i using the RMSE of 
four time-averaged diagnostics calculated using Equation 8: air temperatures at pressures of 200 hPa and 850 hPa 
(T200, T850) representative of the lower and upper troposphere, surface precipitation rate (SP) (Current climate 
models make less consistent predictions of regional shifts in precipitation than of surface temperatures; contrast 
Sections B.2.1 and B.3.1 of IPCC (2021).), and precipitable water (PWAT) (PWAT is the total mass of water 
contained in a vertical atmospheric column per cross-sectional area and is highly correlated with the regional 
precipitation rate (Bretherton et al., 2004).).

Table 2 compares the performance of six global simulations. The first is the no-ML baseline simulation; the next 
two are ML-corrected runs without and with wind tendency corrections; and the remaining three simulations use 
gTquv corrections and include novelty detection from Equation 3—these differ in the choice of novelty detector 
η and its inputs. The ηTq OCSVM uses the same parameter choices as for the offline comparisons. For the ηT 
OCSVM, which uses fewer inputs, we use the same γ = 4/79 and ν = 10 −4 but readjust the cutoff ξ to 2.02 to the 
minimum needed to suppress T-only novelties within the training data set. For all the configurations except the 
baseline, we perform an ensemble of simulations using four identically trained ML-correction models g initial-
ized with different random seeds. These are identical to the ML-corrective models used in Kwa et al. (2022) in 
order to enable direct comparison to the year-long simulations in that previous work.

Without a novelty detector, the conclusions for the gTq model (ML-corrected temperature and humidity tenden-
cies only) are similar to Kwa et al. (2022). The metrics (second row in Table 2) are 10%–20% better than for 
the baseline model, except for the PWAT RMSE which worsens. Adding corrective ML for winds (third row in 
Table 2) significantly improves the 850 hPa air temperature errors (ensemble-mean RMSE decreases from 1.97 
to 1.31 K), somewhat improves SP and PWAT, but substantially worsens the T200 RMSE.

The min-max novelty detector (fourth row in Table 2) slightly improves the RMSEs but has limited impact since 
it activates only rarely (in 0.6% of atmospheric columns, as shown in the second column of the table). This indi-
cates the importance of bounding the data distribution more tightly than a high-dimensional box. The ηT,OCSVM 
novelty detector classifies a higher fraction of columns as novelties (5%) than the min-max detector, but the over-
all RMSE for the gTquv, ηT,OCSVM simulations are mostly on par with the gTquv results without novelty detection, 
with the exception of further improvements in T200 RMSE.

The ηTq,OCSVM novelty detector, on the other hand, improves 200 hPa air temperature, surface precipitation, and 
precipitable water RMSEs by 62%, 8%, and 30% respectively, compared to the gTquv simulations without novelty 

Run % Novelty T200 (K) T850 (K) SP (mm/day) PWAT (kg/m 2)

Baseline - 2.48 2.09 1.78 2.79

gTq - 2.50 (0.40) 1.97 (0.08) 1.52 (0.07) 3.97 (0.29)

gTquv - 3.30 (0.49) 1.31 (0.14) 1.40 (0.12) 3.40 (0.73)

gTquv, ηT, min  − max 0.6 (0.3) 3.04 (0.65) 1.29 (0.06) 1.36 (0.07) 3.28 (0.72)

gTquv, ηT,OCSVM 5.0 (1.0) 2.84 (0.49) 1.38 (0.09) 1.37 (0.08) 3.36 (0.83)

gTquv, ηTq,OCSVM 20.6 (4.8) 1.24 (0.05) 1.30 (0.08) 1.29 (0.07) 2.38 (0.37)

Note. Values for ML-corrected runs are the mean, with standard deviation in parentheses, across the four random seeds. The 
“% Novelty” column represents the percent of columns over the simulated year which were classified as out-of-sample and 
did not receive ML corrections. Metrics are 200- and 850-hPa temperature (T200, T850), surface precipitation rate (SP) and 
precipitable water (PWAT). For each metric, the run with the lowest RMSE is bolded.

Table 2 
The Root Mean-Square Error Scores of Time-Averaged Metrics and Novelty Detection Rates for Year-Long Simulations
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detection. To achieve these improvements, the OCSVM novelty detectors activate in 21% of all atmospheric 
columns, averaged over the course of the year-long simulations. If compared to the same 16 weeks time period 
as the offline analysis of gTquv runs without novelty detection in Section 3.1, online novelty detection reduces the 
novelty fraction in ML-corrected runs by roughly half. In summary, suppressing ML corrections to columns with 
atypical temperature and specific humidity profiles helps keep the gTquv-corrected model within the envelope of 
its training data, where it is skillful in reducing temperature and humidity biases.

Figure 2 shows the RMSE of time-mean surface precipitation, 200 hPa and 850 hPa temperature, and precipitable 
water across individual ensemble members of simulations using gTq, gTquv, and gTquv, ηTq,OCSVM. This illustrates 
that the ηTq,OCSVM novelty detection substantially reduces the variance in skill across the ML-corrected runs (also 
demonstrated by the standard deviations reported in parentheses in Table 2), especially for precipitable water and 
200 hPa temperature. The novelty detection reduces variance and improves the overall ensemble skill by bringing 
the worst-performing gTquv seeds closer in line with the better performers.

3.3.  Improvements for a Particular ML-Corrected Simulation

In this subsection, the ML-corrected simulation results are shown just for the worst gTquv seed (0), to provide 
a clear illustration of how novelty detection especially benefits poorly performing prognostic runs. This seed's 
gTquv, ηTq,OCSVM simulation had a novelty fraction of 24.3%, slightly higher than the ensemble mean of 20.6%.

3.3.1.  Zonal-Mean Biases

Figure  3 compares the time evolution of zonal-mean 200  hPa air temperature biases in three ML-corrected 
year-long simulations: gTquv without novelty detection, and two simulations with novelty detectors ηT,OCSVM and 
ηTq,OCSVM that use different feature sets.

Figure 2.  Root mean-square error of time-mean fields in groups of ML-corrected simulations and the baseline prognostic 
run. Each group of four blue points shows a range of results across four randomly seeded corrective-ML models. The same 
randomly seeded gTq models are used in all ML-corrected groups. The same four guv models are used in both the gTquv and 
gTquv, ηTq,OCSVM groups.
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The ML-corrected gTquv model without novelty detection develops a significant 5–10 K warm bias in 200 hPa 
air temperature across latitudes. The temperature-only novelty detection in gTquv, ηT,OCSVM removes the largest 
magnitude warm bias at the North Pole during boreal summer, but otherwise does not prevent the global warm 
drift. Though the gTquv, ηT,OCSVM simulation develops 5–10 K biases within the first 16 weeks, the ηT,OCSVM acti-
vates infrequently as it still classifies these columns' temperature profiles as lying within the training distribution, 
presumably due to the large weather-associated variability of temperature sampled therein.

The prognostic run in the right column of Figure  3 shows that using specific humidity inputs in addition to 
temperature inputs is necessary for successful bias reduction via novelty detection. This greatly increases the rate 
of out-of-sample classification, especially in the tropics. The 200 hPa temperature bias is dramatically reduced 
out to high latitudes, despite the majority of the novelty detection occurring in the tropics. We speculate that this 
is due to changes in tropical convection, where the ηTq,OCSVM novelty detector is most active other than extreme 
polar latitudes.

Figure 4 shows sections of time- and zonal-mean air temperature and specific humidity biases. Instead of the gTquv, 
ηT,OCSVM run, Figure 4 includes a baseline (no-ML) simulation for comparison, since that is what we are aiming 
to improve on. The baseline model air temperature is biased low in the tropical stratosphere and throughout the 
column in high northern latitudes. The ML-corrected gTquv model without novelty detection corrects the cold 
bias at high northern latitudes but develops an overall warm bias that is largest in the extratropical stratosphere. 

Figure 3.  Time versus zonal-mean plots visualizing upper-atmospheric temperature biases (against the fine-grid reference simulation) at the 200 hPa pressure level 
(top) and fractions of novelties identified (bottom) by three different models initialized from random seed 0 (left to right): (1) the ML-corrected climate model gTquv 
without novelty detection, (2) gTquv with one-class support vector machine (OCSVM) novelty detection ηT,OCSVM using temperature as the input feature, and (3) gTquv 
with OCSVM novelty detection ηTq,OCSVM using temperature and specific humidity as input features.
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Adding the ηTq,OCSVM novelty detector on top of the gTquv corrections removes 
most of this stratospheric warm bias.

Similarly, the ML-corrected gTquv model without novelty detection develops 
a tropical moist bias in specific humidity that is larger in magnitude than the 
baseline biases in both the boundary layer and the troposphere. Adding the 
ηTq,OCSVM novelty detector greatly reduces this bias.

3.4.  Daily Mean Precipitation Distribution

The ML-corrected gTquv, ηTq,OCSVM simulation also captures the global-mean 
probability distribution function (pdf) of daily mean precipitation in the 
reference fine-grid simulation better than the baseline (no-ML) and gTquv 
approaches (Figure  5). The baseline run underestimates the frequency of 
low daily mean precipitation below a few mm/day, while the ML-corrected 
simulations more closely match the fine-grid reference at the low end of the 
distribution. The baseline run over-estimates the high-precipitation tail of the 
target pdf, while the gTquv run underestimates the pdf in the tail. The gTquv, 
ηTq,OCSVM run matches the tail of the global precipitation pdf more closely up 
to rates over 100 mm/day.

4.  Varying Novelty Detector Sensitivity
Section  3 considered an OCSVM with γ  =  4/79 and cutoff ξ set to the 
maximum score observed in the training data (See Section 2.3.3 for a more 

Figure 4.  Annual-averaged zonal mean temperature (top) and humidity (bottom) biases plotted over pressure levels, for the baseline model (left) and seed-0 gTquv 
models with no novelty detection (center) and with ηTq,OCSVM novelty detection (right).

Figure 5.  Probability distribution function of daily mean precipitation from 
all grid columns around the globe, shown for the fine-grid reference, baseline, 
ML-corrected gTquv run without novelty detection, and ML-corrected gTquv, 
ηTq,OCSVM run. The y-axis uses linear scaling above 0.01 (mm/day) −1 and log 
scaling below.
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thorough discussion of how the value of cutoff ξ impacts novelty frequency 
in online simulations.). This model, whether applied only to temperature or 
to both temperature and humidity, appears to find a consistent “sweet spot” 
between the baseline run and the ML-corrected run with no novelty detection 
that reduces the mean-state drifts of both approaches. This section presents a 
sensitivity study that supports this finding by considering several choices of 
γ and varying ξ to adjust the aggressiveness of the novelty detector. We show 
that these approaches interpolate between the baseline and ML-corrected run 
as the cutoffs change, and that choosing an intermediate model that cate-
gorizes a substantial fraction of samples as novelties balances the trade-off 
between the quality of temperature and surface precipitation estimates and of 
precipitable water estimates.

In Figure  6, we consider an ML-corrected model gTquv augmented with an 
OCSVM novelty detector ηTq,OCSVM with various choices of inverse radius 
parameter γ and cutoff parameter ξ. We plot the error metrics as a function 
of the fraction of novelties identified online for each cutoff. We find that an 
intermediate cutoff balances strong performance on temperature and surface 
precipitation (for which the ML-correction-only simulation has a lower RMSE 
than the baseline simulation) and total precipitable water estimates (which are 
better predicted by the baseline model than the ML-correction-only simulation). 
Optimal temperature and precipitable water predictions generally occur when 
approximately 20% and 60% of samples are categorized as novelties, respec-
tively (and hence suppressed). The plots demonstrate that this approach effec-
tively interpolates between those two extreme cases and that the cutoff ξ used 
in the preceding section lies near that sweet spot. The figure also demonstrates 
that different combinations of radius parameter γ and cutoff ξ result in similarly 
performing simulations when the fraction of novelties detected is the same.

A potential pitfall of applying novelty detection within simulations is that 
the detector may falsely flag some columns as novelties and suppress legit-
imate ML corrections. We try to reduce the occurrence of this behavior by 
our choice of classification cutoff ξ. As ξ is increased, a greater fraction of 
samples from the reference data set distribution will also be classified as 
out-of-sample. Detectors are considered inconsistent if they return a signifi-
cant novelty fraction when evaluated on a holdout set from the training data, 
as this means that the detector has a higher false positive rate in flagging 
samples as novelties when they are still within the training distribution. In 
this analysis we set a false-positive threshold of 5% to determine which (γ, ξ) 
combinations are consistent OCSVMs. OCSVMs which classify >5% of the 
holdout reference data as out-of-sample are deemed inconsistent and indi-
cated as open circles in Figure 6. These include all detectors that classify less 
than 75% of online ML-corrected samples as typical and, for certain γ, even 
detectors classifying up to 95% as such. That is, the best climate performance 
using this ML correction model is found by using the maximum ξ consistent 
with the false-positive threshold on the withheld reference data. The parame-
ters used in the ηTq,OCSVM detector in the preceding sections resulted in a 2.6% 
false positive rate.

It is also likely that atmospheric states may arise in the coarse-grid model 
which are consistent with fine-grid model behavior but are wrongly flagged 
as novelties because the limited time span of the year-long training data set 
does not fully capture this desired range of behavior. These instances of false 
positive errors would not be flagged as such by our method described above. 
They could be reduced by training on longer reference data sets spanning 
multiple years.

Figure 6.  Root mean-square error of time-averaged 850 hPa temperature 
(top), surface precipitation (center), and precipitable water (bottom) of 
year-long global C48 simulations, all with ML-correction gTquv and novelty 
detector ηTq,OCSVM with kernel inverse radius 𝐴𝐴 𝐴𝐴 ∈
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 . The plots 
show each error metric as a function of the total fraction of identified novelties 
(a monotonic increasing function of ξ) on the x-axis. The choices of ξ are 
given in Table 1 in Section 2.3.3. The single green star marker represents the 
one-class support vector machine parameters used in the Results section. Filled 
markers indicate consistent novelty detectors that classify no more than 5% of 
the holdout reference training data set as out-of-sample; open circles indicate 
inconsistent detectors.
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5.  Conclusion and Future Work
This study demonstrates that applying novelty detection to ML-corrected coarse-grid atmospheric climate 
models can improve the quality and reliability of their temperature and precipitation estimates. Future efforts 
using corrective ML models within simulations may find this approach useful for improving forecast skill and 
avoiding  climate drift into states outside the training distribution.

Offline, a novelty detection algorithm trained on samples from a coarsened high-resolution simulation tends to 
classify more columns as novelties in runs that drift further from the high-resolution reference. When applied 
online to mask ML-predicted corrective tendencies, the novelty detector maintains or improves the spatial 
patterns of time-mean surface precipitation rate, lower and upper atmospheric temperature and precipitable water. 
Furthermore, for an ensemble of ML-corrected simulations (in which each simulation uses an ML model trained 
with a different random seed initialization of weights), use of novelty detection decreases the spread in model 
skill across the ensemble. This is a valuable property, since online use of ML parameterizations can be highly 
sensitive to subtle changes in the offline training, such as random seed (e.g., Wang et al., 2022).

Future work can build on this effort by experimenting with different novelty detection approaches, OCSVM 
kernels, inputs to η, and methods for integrating the novelty detector into the ML-corrected climate model. Prac-
tical implementation of the novelty detector can become a simulation bottleneck if the number of support vectors 
(2.3.1) is too high. For the settings used in Section 3, the novelty detector roughly doubled the wall clock time per 
simulation timestep. It would be worth further investigation into how few support vectors are needed to improve 
ML-corrected simulations online. In addition the more classical ML approaches to novelty detection explored 
here, future work may consider using neural networks directly for density estimation for the purpose of novelty 
detection. Finally, further analysis of the character of the out-of-sample behaviors that are being detected by the 
trained novelty detectors could help us better understand their causes.

Data Availability Statement
The code used to configure experiments and analyze their results is available at https://github.com/ai2cm/
out-of-sample (C. Sanford, 2023). The version of the codebase used to train models and run them within coarse-
grid simulations is available at https://github.com/ai2cm/fv3net (AI2CM, 2023). The coarsened fine-grid data 
used for initial conditions and in the nudged coarse-grid simulation is available upon request through a Google 
Cloud Storage “requester pays” bucket.
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