
1.  Introduction
Northern Hemisphere snow falling in October, November and December has a large effect on soil temperatures 
and permafrost (Slater et al., 2017), on wildlife (Cosgrove et al., 2021), and on northern hemisphere circulation 
patterns (Henderson et al., 2018). Across the western continental United States, precipitation falls primarily in 
the fall and winter, making snow accumulation critical for predicting spring and summer streamflow, wildfire 
risks, and water supplies. Thus, seasonal snow predictability is of value for agriculture (Kapnick et al., 2018), 
hydropower (Hamilton et al., 2020), and resource management (Morelli et al., 2016).

Much work has gone into seasonal prediction of snow, ranging from physically based modeling (Kapnick 
et al., 2018) to correlations with atmospheric and sea surface temperature indices (McCabe & Dettinger, 2002). 
However, early season snow itself has been overlooked as a predictor. Early season snow variation results from 
local temperature and precipitation anomalies driven by large-scale ocean and atmospheric states and interactions 
between them, giving an indication of whether conditions are favorable for snow. Early season snow also repre-
sents the state of the land surface. At locations with seasonal, as opposed to intermittent, snow cover, snowfall is 
likely to remain on the ground until spring, meaning that spring snow on the ground will likely be as much as, if 
not greater than, fall snow. Early season snow accumulation may also influence the amount of additional snow to 
be accumulated. For example, snow cover extent over Siberia in November influences December sea level pres-
sure patterns across the Arctic (Gastineau et al., 2017), which influence weather patterns and subsequent snowfall 
across the Arctic. Also, total snow on the ground predicts a snowpack's cold content (Jennings et al., 2018), such 

Abstract  SNOwpack TELemetry observations and model simulations both demonstrate that the fractional 
contribution of October through December (early season) snowfall to peak snow accumulation in North 
America increases with latitude due to both colder temperatures and Pacific storm tracks focusing further 
north earlier in the season. Early season snowfall also makes up greater than 60 percent of peak accumulation 
in interior low-precipitation locations leeward of mountains, particularly those that are subject to strong, 
warm winds and midwinter snow loss. Early season snow observations show promise in predicting peak snow 
water equivalent in locations where large-scale ocean-atmosphere patterns similarly influence fall and winter 
conditions, and in northern maritime locations where winter temperatures are warm enough that rain on snow 
and midwinter melt occur. Because climate change is likely to increase the extent of midwinter melt, the latter 
relationship is expected to become important over more locations in the future.

Plain Language Summary  Across North America, snow accumulates from October until the 
following spring. Early season snow, defined as the snow that accumulates by the end of December, is a 
greater fraction of total snow accumulation at higher latitudes and at colder locations. Early season snow 
accumulation can be used to predict peak snow accumulation. Predictions are more skillful at locations where 
fall precipitation is correlated with winter precipitation because more snow at the end of December indicates 
that weather patterns are favorable for greater than average snowfall to continue. Predictions also have skill at 
warmer northern locations where more snow on the ground early season increases the likelihood that mixed 
rain-snow events add water to the snowpack rather than melting the snow. Predictions at warm southern 
locations do not have skill because winter and spring snowfall is highly variable, and frequently little to no 
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that a deeper snowpack increases the capacity of the snowpack to retain mixed-phase precipitation, and a deeper 
snowpack is less subject to midwinter melt than a shallower snowpack.

Here, we use model simulations (Kim et al., 2021) and SNOwpack TELemetry (SNOTEL) observations (Schaefer 
& Paetzold, 2001) in western North America to investigate the following.

1.	 �On average, what is the relative ratio of early season snow to peak seasonal snow?
2.	 �In terms of interannual variability, how well does early season snow on the ground predict peak snow accu-

mulation for the year?
3.	 �What factors explain spatial variations in the predictive skill of early season snow?

2.  Data and Methods
2.1.  Methodology

A water year is defined as 1 October of the prior year to 30 September. Early season snow is defined as the snow 
water equivalent (SWE) that accumulates on the ground by 1 December or by 1 January in the water year. This 
is compared with peak SWE accumulation at each site, which varies between January and May, depending upon 
site location and year (Kapnick & Hall, 2010).

2.2.  Model Simulations

For continuous spatial coverage of North America, we used the entire duration (water years 2009–2017) of 
5-km resolution simulations from the Snow Ensemble Uncertainty Project, SEUP (Kim et al., 2021), described 
further in Supporting Information S1. Of their multiple ensemble members, we chose to focus on the Noah-MP 
version 3.6 (Niu et al., 2011; Yang et al., 2011) snow simulations forced by Modern-Era Retrospective analy-
sis for Research and Applications, MERRA-2 (Gelaro et al., 2017; Molod et al., 2015). Noah-MP is the most 
sophisticated of the models in the ensemble, representing 3 snow layers, the full energy balance, and influences 
of topography and forest cover on snow at a 5 km scale. MERRA-2 is globally available and widely used. Due to 
the snow model's resolution, we expect it to capture large-scale patterns and timing well but not to match point 
observations of mountain snowpack. Thus, we use the model to complement the direct observations, providing 
continuous estimates of snow patterns at the full continental scale.

To answer question 1, for each pixel, we identified median values over the 9-year period of 1-December SWE, 
1-January SWE, and Peak SWE. We then calculated the ratios for 1-December and 1-January SWE relative to 
the peak value.

2.3.  SNOTEL Observations

We repeated the calculations outlined above using observational data from the United States Department of Agri-
culture (USDA) National Resource Conservation Service SNOTEL Network and the British Columbia Cooper-
ator Snow Sensors. These sites are typically located in small forest clearings in mountain terrain and generally 
consist of a pressure-based precipitation gauge filled with antifreeze, a temperature sensor, and a snow pillow that 
weighs the water content of the snow accumulated on top of it (Schaefer & Paetzold, 2001). Daily observations 
of mean air temperature, accumulated precipitation, and SWE were obtained for water years 2001–2022 for 873 
sites across the western United States and Alaska. Only SWE measurements were available at 49 sites in British 
Columbia, Canada. At each U.S. site, daily mean air temperature was aggregated to mean per month and mean 
for January-February-March (JFM). Precipitation was aggregated to the amount accumulated between 1 October 
and 31 December (fall), and to the amount accumulated between 1 January and 31 March (winter). Correlation 
coefficients were calculated for fall and subsequent winter precipitation. Peak SWE each year was compared to 
the median and to a linear regression fit to 1 January SWE (Figures 1g, 1k, and 1o). For these, we calculated the 
mean absolute deviation (MAD) from the median, to assess interannual variability, and the mean absolute error 
(MAE) from the linear regression, to assess the skill in predicting peak SWE. We chose MAD and MAE over 
variance to minimize the effect of outliers. We calculated the difference (MAD-MAE) to assess the improvement 
in prediction skill added by the linear regression compared to the null hypothesis that the long-term median would 
be the best predictor of peak SWE each year.
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Figure 1.  (a) Western North America elevation map, highlighting locations of mountains, predominant stormtrack directions, and locations of three example sites 
(marked with numbers). (b) Annual mean precipitation from 1991 to 2020 (PRISM, 2022), highlighting importance of mountains to precipitation patterns. (c) December 
average temperature from 1991 to 2020 (PRISM, 2022), highlighting gradients from the coast, across mountains and with latitude. Illustration of methods as applied to 
SNOwpack TELemetry sites: (d–g) 1. Granite Creek, Alaska, (h–k) 2. Meadows Pass, Washington, and (l–o) 3. Yount's Peak, Wyoming. (a, e, and i) Water year snow 
water equivalent (SWE) from 2001 to 2022. Heavy black line shows the median, and vertical dashed lines indicate 1 December and 1 January. (b, f, and j) As in a, but 
SWE plotted as a fraction of the peak SWE for each water year. Horizontal dashed line indicates 50% of the annual total. (c, g, and k) Scatterplot of October-November-
December (OND) precipitation versus January-February-March (JFM) precipitation. (d, h, and I) Scatterplot of SWE on 1 January versus peak SWE each year. Dashed 
lines represent the 1:1 line (black), the median peak SWE value (blue) and the linear regression of peak SWE as predicted from 1 January SWE (red). The mean 
absolute deviation (MAD) about the median and the mean absolute error (MAE) about the regression are included for reference.
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3.  Results
3.1.  What Is the Median Fraction of Peak SWE on the Ground by 1 December and by 1 January?

The fraction of 1 December SWE compared to peak SWE ranges from 0 to 0.6, with consistent patterns across 
model simulations and observations (Figure 2). The fraction increases with latitude, and within a given latitude, 
increases with elevation and distance from the coast. The fraction decreases with warmer November tempera-
tures, with a statistically significant Spearman rank correlation coefficient of −0.82 (Figure 2h).

By the end of December, the pattern of fractional SWE increasing to the north remains, and a pattern of increas-
ing fractional SWE at interior locations emerges (Figures 2c and 2f). In the model simulations, many locations 
with less than 150 mm median peak SWE (Figure 2a) have over 60% of their peak SWE by 1 January (Figures 2c 
and 2f). Many of the highest fractional values are in the rain shadow of major mountain ranges, including interior 
Alaska, a band east of the Rocky Mountains from Saskatchewan, Canada to North Dakota, U.S., and the Northern 
Great Basin region east of the Sierra Nevada and Southern Cascade Mountains (Figure 2c). While the low alti-
tude locations are not represented in the SNOTEL network, a similar spatial pattern appears, with lower fractions 
south of the Alaska range and higher fractions in the interior, with a gradient of lower fractions on the western 
slopes of the Cascades to higher fractions on the eastern slopes (Figure 2f). Many of the highest fractions in the 
lower-48 states are at locations near or bordering the Great Basin, in the same general area as highlighted in the 
model results. Model timeseries of SWE from example locations, as well as closer comparisons of model output 
and observations, are included in Supporting Information S1.

At locations with median December temperatures less than 0°C, the ratio of median 1 January SWE to peak 
SWE changes very little (slope of −0.004 per °C, Figure 2i). However, where median December temperatures 
are warmer than 0°C, the ratio decreases more rapidly as median temperatures increase (a slope of −0.06 per °C, 
Figure 2i). Sites with higher early season SWE fractions tend to be located in drier interior locations (Figure 1b), 
as discussed further in Section 4.

3.2.  How Well Can Observed SWE on 1 January Each Year Predict Peak SWE?

To understand predictability, we must consider that both the mean and variability of peak SWE differ greatly 
across locations. To establish a baseline for prediction, we calculate the interannual variability as the percent 
mean absolute deviation (MAD) in peak SWE compared to the observational median value (Figure 3a). Annual 
peak SWE is much more variable in California, Nevada, Arizona, and New Mexico, than in Washington, Idaho, 
Montana and British Columbia (Figure 3a). This is consistent with long-term evaluations of precipitation varia-
bility (Fatichi et al., 2012). Variability also increases in more coastal locations.

Given this baseline, we assessed the percent MAE of predictions from a linear regression using observed 1 
January SWE as a predictor (e.g., Figures 1g, 1k and 1o) and compared those to mean absolute deviation (MAD) 
about the median (Figure 3b). The linear regression improved prediction skill by greater than 10% at many sites in 
Alaska, Washington, and Oregon, as well as in Utah, Wyoming, Colorado, and northern New Mexico (Figure 3b). 
Sites with very low interannual variability, for example, much of Idaho and Montana, eastern Washington and 
northwest Wyoming, had relatively small deviations from the median and less than 10% improvement when 
using a linear regression. California, much of Nevada, and Arizona had high interannual variability, relatively 
high errors from using the median as a predictor, and, with the exception of a few sites, small or no improvement 
from using a linear regression. Very few BC snow sites had long enough records to perform a linear regression.

3.3.  What Factors Explain Spatial Variations in the Predictive Skill of Early Season Snow?

To better understand spatial variations in predictability, we empirically compared spatial patterns in MAD minus 
MAE to spatial patterns in the correlation coefficient between fall (OND) and winter (JFM) precipitation and 
to spatial patterns in JFM temperatures (Figure 4). Many of the SNOTEL stations in interior Alaska (Figure 4b) 
and along the border of Wyoming with Idaho, Utah and Colorado (Figure 4e) had positively correlated fall and 
winter precipitation. Many sites within these areas did not have high interannual variability, and thus, MAD's 
from the median were less than 20% (Figure 3a), such that the linear regression made small additional improve-
ments. However, individual sites in these areas, such as Yount's Peak (Figures 1l and 1o), with higher interannual 
variability, had reductions in error of up to 20% using a linear regression.
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Figure 2.  (a) Median modeled peak annual snow water equivalent (SWE), (b) Ratio of median modeled SWE on 1 December divided by values in (a), showing 
fraction of peak SWE on the ground on 1 December. (c) Ratio of median modeled 1 January SWE to peak SWE. (c, d, e) Same as for (a, b, c) but using observations 
at SNOwpack TELemetry (SNOTEL) and BC snow stations. (g) Scatterplot of median winter temperature versus median peak SWE for the SNOTEL stations. 
(h) Scatterplot of median mean November temperature versus median 1 December to peak SWE ratio for all SNOTEL stations, with a Spearman rank correlation 
coefficient of −0.82. Best fit slope to all values in (h) is −0.016 per °C. The best fit slope to temperatures above −5°C is −0.018 per ° C, and the best fit slope to 
temperatures below −5°C is −0.011 per °C. (i) Median December mean temperature versus 1 January to peak SWE ratio, with a Spearman rank correlation coefficient 
of −0.15. Note: Best fit line to the values at temperatures less than 0°C has a slope of −0.004 per °C. The best fit line to the values at temperatures greater than 0°C has 
a slope of −0.06 per °C, and at only temperatures greater than 2°C has a slope of −0.12 per °C.
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Many sites in Washington and Oregon, including Meadow Pass (Figures 1j and 1k) showed decreased MAE 
compared MAD (Figure  4d), but these areas had either no significant correlations, or negative correlations, 
between fall and winter precipitation (Figure  4e). Within these states, the magnitude of error reduction was 
correlated with mean winter temperatures, with a Spearman's rank correlation coefficient of −0.61 (Figure 4f). 
A similar pattern was found for sites on the southern side of the Alaska Range (Figures 4b and 4c). These sites 
experience frequent mixed precipitation (both rain and snowfall) and frequent midwinter melt.

With the exception of one site in southern Nevada and a couple sites in New Mexico, the areas with the greatest 
interannual SWE variability (i.e., greatest MAD) had no or very small improvements in predictability when using 
a regression on 1 January SWE (Figure 3). Many of these sites, for example, those in California, Arizona, and 
New Mexico, had warm winter temperatures, but the magnitudes of these temperatures were not correlated with 
error reductions as in the more northern states.

4.  Discussion
4.1.  Understanding Spatial Patterns of Where Early Season Snow Contributes the Most to Peak SWE

The importance of early season snow depends on sufficient precipitation and cold enough temperatures to accu-
mulate snow in the fall, as well as the relative timing of snowfall and of snowmelt throughout the rest of the 
season. Precipitation depends on storm tracks and moisture availability. Across western North America, most 
moisture originates from the Pacific, and Pacific storm track locations shift from north to south as the water 
year progresses (Figure 1a and Supporting Information S1), with most storms making landfall in Alaska in early 
fall, and most storms impacting southern Oregon in January and February (Gershunov et al., 2017; Hoskins & 
Hodges, 2019a, 2019b; Mundhenk et al., 2016). Thus, due to precipitation alone, we would expect early season 
snowfall to be a greater fraction of the total in more northerly latitudes. Decreasing temperatures with latitude 

Figure 3.  (a) Percent mean absolute deviation (MAD) in annual peak snow water equivalent (SWE) compared to the median. (b) Difference between the percent MAD 
and percent mean absolute error (MAE) of the linear regression equation for predicting peak SWE from 1 January SWE. Positive values indicate that MAE is less than 
MAD, while negative values indicate that MAE is greater than MAD.
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also contribute to early season precipitation falling as snow rather than rain, and contribute to that snow accumu-
lating on the ground rather than melting. These latitudinal patterns are evident in the 1 December to peak SWE 
ratio (Figures 2b and 2e).

The 1 January to peak SWE ratio (Figures 2c and 2f) illustrates that beyond the influence of stormtrack latitude 
and temperature, December snowfall contributes the majority of annual SWE in multiple interior locations where 
nearby mountains block general moisture transport. These are locations with shallow snowpacks and minimal 
winter precipitation (Figure 1b), which typically only get one to two snowstorms per year, compared to six to 
30 snowstorms per year in nearby mountain locations (Changnon et al., 2006). The stripe of high early season 
SWE fraction along the eastern flank of the Canadian Rockies through Saskatchewan and stretching southeast 
to North Dakota represents moisture that arrives through gaps in the mountains that occur north of 50°N (Liu 
& Stewart, 2003). Thus, this area receives moisture in November and December as the storm tracks shift south 
(Hoskins & Hodges, 2019b) but receives less moisture transport in the January-February-March period. There-
fore, in these cold, dry interior locations, early-winter SWE is a good predictor of peak SWE because most of the 
limited snowfall occurs early in the winter.

The maximum intensity of integrated water vapor transport, associated with the strongest winds, in the latitudes 
of British Columbia, Washington, and Oregon occurs during the October to December period, leading to the 
farthest inland penetration of water vapor during that time (Gershunov et al., 2017; Rutz et al., 2014). This likely 
explains many sites in the Great Basin region (Figure 2c) that have >50% of median peak SWE occurring before 
1 January.

Figure 4.  For SNOwpack TELemetry (SNOTEL) sites, (a and d) the difference between mean absolute difference (MAD) about the median and mean absolute 
error in regression-estimated annual peak snow water equivalent (SWE), as a percent of the median peak SWE value. (b and e) Correlation coefficients between 
October-November-December and January-February-March precipitation. In general, values between ±0.4 were not statistically significant. Example sites from 
Figure 1 are marked. (c) Map of median JFM mean air temperature across Alaska. (f) Scatterplot of the median JFM mean air temperature versus MAD-MAE (from 
d) for SNOTEL sites in Washington and Oregon states. Spearman's rank correlation coefficient is −0.61. Best fit slope to all values is −1.5% per °C, and to only mean 
temperatures greater than 1°C is −2% per °C.
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Beyond changing interior moisture delivery, the shallow snowpacks in many locations in the Great Basin and 
leeward of the Rocky Mountains are subject to midwinter sublimation or melt. Model timeseries from point 
locations within the zone east of the Rocky Mountains where median 1 January SWE closely equals median 
peak SWE (yellow stripe, Figure 2c) reveal that the majority of snow accumulates during December each year, 
and this snow typically ablates completely in late January or early February (see Supporting Information S1). 
This area of prairie snow is referred to by Gray  (1970) as the Chinook belt because warm dry strong winds 
frequently sublimate or melt out the snow midwinter (Pomeroy & Gray, 1994), as illustrated with detailed obser-
vations by MacDonald et al. (2018). Snowstorms occur again in March and April, but modeled spring SWE melts 
out quickly, and SWE values do not reach magnitudes as large as those on 1 January. Therefore, peak SWE is 
well-predicted by 1-January SWE at these ephemeral snowpack sites because peak SWE usually occurs close to 
1 January.

4.2.  Explaining Correlation of Early Season Snowfall to Subsequent Snowfall

Many of the areas where early season snowfall predicts subsequent snowfall are in regions where large scale 
circulation patterns influence snowfall similarly throughout the water year. Water vapor transport and thus, 
spatial distributions of precipitation and snowfall, are heavily influenced by sea surface temperature patterns, 
which change on annual or longer timescales. Gershunov et al. (2017) found that the largest correlation between 
Pacific coastal water vapor transport and sea surface temperatures occurred with a sea surface temperature 
pattern closely matching the Pacific Decadal Oscillation, PDO (Mantua & Hare, 2002; Newman et al., 2016). 
The warm-phase PDO is correlated with warmer temperatures across Alaska, but the cold-phase PDO is corre-
lated with increased precipitation in interior Alaska (Hartmann & Wendler, 2005; Winski et al., 2017). Recent 
years with high snowfall in both the early and later seasons in interior Alaska (2018, 2020, 2022) have occurred 
during the cold-phase PDO, which is associated with the Pacific North Atlantic pattern shifting the dominant 
atmospheric pressure ridge in the Pacific to the west, which increases the probability of water vapor transport not 
being blocked by the Alaska range, allowing heavy winter precipitation in Fairbanks (L'Heureux et al., 2004). 
Thus, regions of interior Alaska have seasonal predictability (Figures 4a and 4b).

Sea surface temperature patterns have also been related to the likelihood of Pacific storms bringing moisture to 
interior locations in the western U.S. The second-largest correlation found by Gershunov et al.  (2017) relates 
anomalous warmer temperatures in the western equatorial Pacific with increased precipitation near Wyoming, 
highlighting the same area where OND and JFM precipitation are significantly correlated (Figure  4e). This 
pattern differed from the more canonical El Nino Southern Oscillation (ENSO) pattern and warrants further 
investigation. While several studies have linked ENSO with stormtrack orientations and the amount of moisture 
propagating inland of the Cascade Mountain range (Siler et al., 2013; Wise & Dannenberg, 2017), we did not see 
significant correlations between fall and winter precipitation east of the Cascades (Figure 4e). Snowpack corre-
lations in Washington seemed more related to temperatures and the likelihood of midwinter melt (Figure 4f).

4.3.  Explaining Correlation of Predictive Skill and Midwinter Temperatures

Raleigh et al. (2015) found that a precipitation (snowfall) bias was the most important factor determining biases 
in melt rates. This occurs because greater amounts of snow take more energy to warm to isothermal at 0°C before 
melt can occur. Jennings et al. (2018) similarly found that the amount of snowfall was the best predictor of a 
snowpack's cold content. Thus, in locations where temperatures are warm enough for midwinter melt to occur, 
greater snow accumulation in the fall is likely to lead to a decreased probability of midwinter melt and a higher 
peak SWE. Low snow accumulation in the fall is more likely to melt midwinter, making any subsequent snowfall 
still result in a lower peak SWE. Improved predictability in peak SWE as a function of 1 January SWE was corre-
lated with mean winter temperatures in northern maritime regions (Washington, Oregon, and southern Alaska) 
but not in more southern regions because peak SWE in southern regions varies more according to highly variable 
snowfall in January through March than from melt.

4.4.  Implications for Climate Change

While spring trends toward earlier snow disappearance have been observed globally, the date of fall snow onset 
is variable, without clear trends (Bartlett et al., 2005; Bormann et al., 2018; Notarnicola, 2020; Zhang, 2005). 
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Climate models project the snow onset date to become later (Lader et al., 2020), and based on the sensitivity of 
1 December SWE fractions to November temperatures (Figure 2h), we can expect very early season snowfall to 
decrease overall, leading it to be a smaller fraction of peak SWE. However, climate models also project a northern 
shift in storm tracks and an increase in fall precipitation in Alaska and northern Canada (Harvey et al., 2020), so 
in those areas that remain cold enough for precipitation to fall as snow, early season snowfall will likely become 
a greater fraction of peak SWE.

Warming temperatures will increase the likelihood of midwinter melt, which will likely increase the importance 
of early season SWE, particularly for deeper snowpacks with more cold content, in influencing the probability 
of early melt and hence, the resulting peak SWE. Overall, this is expected to increase both interannual variability 
and seasonal predictability, where larger early-season snow years will likely gain more snow overall than lower 
early-season snow years.

4.5.  Implications for Ecosystems and Wildlife

Changes in spring melt timing are causing well-documented ecological responses in alpine and arctic ecosystems, 
but the implications of changes in fall snow on ecosystems are less well understood (Ernakovich et al., 2014). On 
a seasonal basis, earlier snowfall represents greater total insulation than later snowfall (Slater et al., 2017). The 
insulation effect of snow cover reaches a maximum in November (Zhang, 2005), and changes in fall conditions 
affect soil temperatures more than snow cover duration (Bartlett et al., 2005), with snow depths less than about 
30 cm leading to frozen soils (Brooks & Williams, 1999; Slater et al., 2017). In Utquiavik, Alaska, shifting snow 
onset 1 week earlier in the fall made no difference in soil temperatures, but shifting it a week later let soil encoun-
ter colder air temperatures, leading to colder soils for the entire season (Ling & Zhang, 2003). Soil freezing 
affects permafrost (Cheng & Wu, 2007), methane fluxes (Mastepanov et al., 2013), water availability for carbon 
cycling (Brooks et al., 2011), and microbial activity (Brooks & Williams, 1999; Zhang, 2005). Snow insulation, 
or its absence, also influences animals that live under the snow or feed on vegetation under the snow (Berteaux 
et al., 2017). Finally, Cosgrove et al. (2021) found that fall snow depth and fall air temperature explained 41% of 
the variance in Dall sheep reproduction in Alaska and that winter and spring values of snow depth and density 
could be predicted from fall conditions. This suggests that for northern regions, fall snow conditions can be used 
to predict likely impacts on wildlife in spring and plan appropriate management strategies.

5.  Conclusions
Early season snow accumulation provides some predictive potential for peak SWE accumulation across much 
of North America. In locations where a greater fraction of total SWE accumulates early in the season, the peak 
SWE is more predictable simply because the majority of it has already accumulated, and the future will have less 
influence. The fraction of early season SWE relative to peak SWE increases with latitude and in locations with 
cooler fall temperatures. It also increases in interior locations, where mountains frequently block moisture flow, 
and winter downslope (e.g., Chinook) winds melt or sublimate shallow snowpacks. In these locations, the snow 
on the ground by the end of December is close to the peak snow accumulation.

As discussed in Section 4.2, above-average early season SWE indicates in many locations that sea surface and 
large-scale atmospheric conditions are favorable for snowfall, and later season snow accumulation is also likely 
to be above average. Conversely, in locations with winter temperatures conducive to melt, low SWE in the early 
season leads to a higher probability of mid-winter melt, which contributes to lower peak SWE. This increases 
predictability in warmer northern states but not in southern states, where high variability in later-season precipita-
tion has a greater influence on peak SWE. Combined, these factors lead to extreme early seasons leading to more 
extreme peak SWE distributions. Both the extremes and the relationships between fall and winter conditions are 
expected to strengthen as temperatures warm, so understanding these relationships will help with predictability 
and human and wildlife adaptations.

Data Availability Statement
SNOwpack TELemetry data and the BC snow pillow data may be accessed from the USDA Natural Resources 
Conservation Service (2022). SNOwpack TELemetry Network (SNOTEL). National Resource Conserva-
tion Service. https://data.nal.usda.gov/dataset/snowpack-telemetry-network-snotel. Accessed 2022-07-27; The 
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Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA2; Gelaro et al., 2017; 
Molod et al., 2015), is distributed by the NASA Goddard Global Modeling and Assimilation Office (GMAO, 
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/; Gelaro et al., 2017). Model output files used to 
make the graphs shown here are archived at Zenodo (Lundquist & Kim, 2023).

References
Bartlett, M. G., Chapman, D. S., & Harris, R. N. (2005). Snow effect on North American ground temperatures, 1950–2002. Journal of Geophys-

ical Research, 110(F3), F03008. https://doi.org/10.1029/2005JF000293
Berteaux, D., Gauthier, G., Domine, F., Ims, R. A., Lamoureux, S. F., Lévesque, E., & Yoccoz, N. (2017). Effects of changing permafrost and 

snow conditions on tundra wildlife: Critical places and times. Arctic Science, 3(2), 65–90. https://doi.org/10.1139/as-2016-0023
Bormann, K. J., Brown, R. D., Derksen, C., & Painter, T. H. (2018). Estimating snow-cover trends from space. Nature Climate Change, 8(11), 

924–928. https://doi.org/10.1038/s41558-018-0318-3
Brooks, P. D., Grogan, P., Templer, P. H., Groffman, P., Öquist, M. G., & Schimel, J. (2011). Carbon and nitrogen cycling in snow-covered envi-

ronments. Geography Compass, 5(9), 682–699. https://doi.org/10.1111/j.1749-8198.2011.00420.x
Brooks, P. D., & Williams, M. W. (1999). Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydro-

logical Processes, 13(14–15), 2177–2190. https://doi.org/10.1002/%28SICI%291099-1085%28199910%2913%3A14/15%3C2177%3A
%3AAID-HYP850%3E3.0.CO%3B2-V

Changnon, S. A., Changnon, D., & Karl, T. R. (2006). Temporal and spatial characteristics of snowstorms in the contiguous United States. Jour-
nal of Applied Meteorology and Climatology, 45(8), 1141–1155. https://doi.org/10.1175/jam2395.1

Cheng, G., & Wu, T. (2007). Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of 
Geophysical Research, 112(F2), F02S03. https://doi.org/10.1029/2006JF000631

Cosgrove, C. L., Wells, J., Nolin, A. W., Putera, J., & Prugh, L. R. (2021). Seasonal influence of snow conditions on Dall’s sheep productivity in 
Wrangell-St Elias National Park and Preserve. PLoS One, 16(2), e0244787. https://doi.org/10.1371/journal.pone.0244787

Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted 
responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 20(10), 3256–3269. https://
doi.org/10.1111/gcb.12568

Fatichi, S., Ivanov, V. Y., & Caporali, E. (2012). Investigating interannual variability of precipitation at the global scale: Is there a connection with 
seasonality? Journal of Climate, 25(16), 5512–5523. https://doi.org/10.1175/jcli-d-11-00356.1

Gastineau, G., García-Serrano, J., & Frankignoul, C. (2017). The influence of autumnal eurasian snow cover on climate and its link with arctic 
sea ice cover. Journal of Climate, 30(19), 7599–7619. https://doi.org/10.1175/jcli-d-16-0623.1

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). The Modern-Era Retrospective Analysis for Research 
and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/jcli-d-16-0758.1

Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A., & Rutz, J. J. (2017). Assessing the climate-scale variability of atmospheric rivers affect-
ing western North America. Geophysical Research Letters, 44(15), 7900–7908. https://doi.org/10.1002/2017GL074175

Gray, D. M. (1970). Snow hydrology of the prairie environment. Snow hydrology, 21–34.
Hamilton, A. L., Characklis, G. W., & Reed, P. M. (2020). Managing financial risk trade-offs for hydropower generation using snowpack-based 

index contracts. Water Resources Research, 56(10), e2020WR027212. https://doi.org/10.1029/2020WR027212
Hartmann, B., & Wendler, G. (2005). The significance of the 1976 Pacific climate shift in the climatology of Alaska. Journal of Climate, 18(22), 

4824–4839. https://doi.org/10.1175/jcli3532.1
Harvey, B. J., Cook, P., Shaffrey, L. C., & Schiemann, R. (2020). The response of the northern hemisphere storm tracks and jet Streams to climate 

change in the CMIP3, CMIP5, and CMIP6 climate models. Journal of Geophysical Research: Atmospheres, 125(23), e2020JD032701. https://
doi.org/10.1029/2020JD032701

Henderson, G. R., Peings, Y., Furtado, J. C., & Kushner, P. J. (2018). Snow–atmosphere coupling in the northern hemisphere. Nature Climate 
Change, 8(11), 954–963. https://doi.org/10.1038/s41558-018-0295-6

Hoskins, B. J., & Hodges, K. I. (2019a). The annual cycle of northern hemisphere storm tracks. Part I: Seasons. Journal of Climate, 32(6), 
1743–1760. https://doi.org/10.1175/jcli-d-17-0870.1

Hoskins, B. J., & Hodges, K. I. (2019b). The annual cycle of northern hemisphere storm tracks. Part II: Regional detail. Journal of Climate, 32(6), 
1761–1775. https://doi.org/10.1175/jcli-d-17-0871.1

Jennings, K. S., Kittel, T. G. F., & Molotch, N. P. (2018). Observations and simulations of the seasonal evolution of snowpack cold content and its 
relation to snowmelt and the snowpack energy budget. The Cryosphere, 12(5), 1595–1614. https://doi.org/10.5194/tc-12-1595-2018

Kapnick, S., & Hall, A. (2010). Observed climate–snowpack relationships in California and their implications for the future. Journal of Climate, 
23(13), 3446–3456. https://doi.org/10.1175/2010jcli2903.1

Kapnick, S., Yang, X., Vecchi, G. A., Delworth, T. L., Gudgel, R., Malyshev, S., et al. (2018). Potential for western US seasonal snowpack predic-
tion. Proceedings of the National Academy of Sciences, 115(6), 1180–1185. https://doi.org/10.1073/pnas.1716760115

Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L., et al. (2021). Snow Ensemble Uncertainty Project (SEUP): Quanti-
fication of snow water equivalent uncertainty across North America via ensemble land surface modeling. The Cryosphere, 15(2), 771–791. 
https://doi.org/10.5194/tc-15-771-2021

Lader, R., Walsh, J. E., Bhatt, U. S., & Bieniek, P. A. (2020). Anticipated changes to the snow season in Alaska: Elevation dependency, timing 
and extremes. International Journal of Climatology, 40(1), 169–187. https://doi.org/10.1002/joc.6201

L'Heureux, M. L., Mann, M. E., Cook, B. I., Gleason, B. E., & Vose, R. S. (2004). Atmospheric circulation influences on seasonal precipitation 
patterns in Alaska during the latter 20th century. Journal of Geophysical Research, 109(D6). https://doi.org/10.1029/2003JD003845

Ling, F., & Zhang, T. (2003). Impact of the timing and duration of seasonal snow cover on the active layer and permafrost in the Alaskan Arctic. 
Permafrost and Periglacial Processes, 14(2), 141–150. https://doi.org/10.1002/ppp.445

Liu, J., & Stewart, R. E. (2003). Water vapor fluxes over the Saskatchewan river basin. Journal of Hydrometeorology, 4(5), 944–959. https://doi.
org/10.1175/1525-7541(2003)004<0944:wvfots>2.0.co;2

Lundquist, J. D., & Kim, R. S. (2023). Model output from snow ensemble uncertainty project (SEUP) as used in seasonal snow predictability 
derived from early-season snow in North America. https://doi.org/10.5281/zenodo.8156495

MacDonald, M. K., Pomeroy, J. W., & Essery, R. L. H. (2018). Water and energy fluxes over northern prairies as affected by chinook winds and 
winter precipitation. Agricultural and Forest Meteorology, 248, 372–385. https://doi.org/10.1016/j.agrformet.2017.10.025

Acknowledgments
This research was funded by NASA 
Interdisciplinary Research in Earth 
Science (IDS) Grants 80NSSC20K1291 
to JDL and LRP and 80NSSC20K1292 to 
MD. Special thank you to Mark Raleigh 
for sharing Matlab code to download 
SNOTEL data and to John Pomeroy 
for sharing references about Chinook 
winds in the Canadian prairies. We thank 
schools and childcare providers for stay-
ing open, enabling parents to work. We 
thank A. Shcherbina for help with map 
projections and colorbars and L. VanWag-
tendonk for help with figure organiza-
tion. We also thank the University of 
Washington's ADVANCE Write Right 
Now program, which provides a structure 
to help busy professors focus on writing, 
which was essential for this paper.

https://urldefense.com/v3/__https:/gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/__;!!K-Hz7m0Vt54!mTETS_kX7WoaGAQn7_Bq6FTfhS57eZPU6s87N1Pbs_Nenbnc0x0xNAdEDngczwKtaS4tyL-dovHiLzZj_oiKuQ$
https://doi.org/10.1029/2005JF000293
https://doi.org/10.1139/as-2016-0023
https://doi.org/10.1038/s41558-018-0318-3
https://doi.org/10.1111/j.1749-8198.2011.00420.x
https://doi.org/10.1002/%28SICI%291099-1085%28199910%2913%3A14/15%3C2177%3A%3AAID-HYP850%3E3.0.CO%3B2-V
https://doi.org/10.1002/%28SICI%291099-1085%28199910%2913%3A14/15%3C2177%3A%3AAID-HYP850%3E3.0.CO%3B2-V
https://doi.org/10.1175/jam2395.1
https://doi.org/10.1029/2006JF000631
https://doi.org/10.1371/journal.pone.0244787
https://doi.org/10.1111/gcb.12568
https://doi.org/10.1111/gcb.12568
https://doi.org/10.1175/jcli-d-11-00356.1
https://doi.org/10.1175/jcli-d-16-0623.1
https://doi.org/10.1175/jcli-d-16-0758.1
https://doi.org/10.1002/2017GL074175
https://doi.org/10.1029/2020WR027212
https://doi.org/10.1175/jcli3532.1
https://doi.org/10.1029/2020JD032701
https://doi.org/10.1029/2020JD032701
https://doi.org/10.1038/s41558-018-0295-6
https://doi.org/10.1175/jcli-d-17-0870.1
https://doi.org/10.1175/jcli-d-17-0871.1
https://doi.org/10.5194/tc-12-1595-2018
https://doi.org/10.1175/2010jcli2903.1
https://doi.org/10.1073/pnas.1716760115
https://doi.org/10.5194/tc-15-771-2021
https://doi.org/10.1002/joc.6201
https://doi.org/10.1029/2003JD003845
https://doi.org/10.1002/ppp.445
https://doi.org/10.1175/1525-7541(2003)004%3C0944:wvfots%3E2.0.co;2
https://doi.org/10.1175/1525-7541(2003)004%3C0944:wvfots%3E2.0.co;2
https://doi.org/10.5281/zenodo.8156495
https://doi.org/10.1016/j.agrformet.2017.10.025


Geophysical Research Letters

LUNDQUIST ET AL.

10.1029/2023GL103802

11 of 11

Mantua, N. J., & Hare, S. R. (2002). The Pacific decadal oscillation. Journal of Oceanography, 58(1), 35–44. https://doi.
org/10.1023/a:1015820616384

Mastepanov, M., Sigsgaard, C., Tagesson, T., Ström, L., Tamstorf, M. P., Lund, M., & Christensen, T. R. (2013). Revisiting factors controlling 
methane emissions from high-Arctic tundra. Biogeosciences, 10(7), 5139–5158. https://doi.org/10.5194/bg-10-5139-2013

McCabe, G. J., & Dettinger, M. D. (2002). Primary modes and predictability of year-to-year snowpack variations in the west-
ern United States from teleconnections with Pacific Ocean Climate. Journal of Hydrometeorology, 3(1), 13–25. https://doi.
org/10.1175/1525-7541(2002)003<0013:pmapoy>2.0.co;2

Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from 
MERRA to MERRA2. Geoscientific Model Development, 8(5), 1339–1356. https://doi.org/10.5194/gmd-8-1339-2015

Morelli, T. L., Daly, C., Dobrowski, S. Z., Dulen, D. M., Ebersole, J. L., Jackson, S. T., et al. (2016). Managing climate change refugia for climate 
adaptation. PLoS One, 11(8), e0159909. https://doi.org/10.1371/journal.pone.0159909

Mundhenk, B. D., Barnes, E. A., & Maloney, E. D. (2016). All-season climatology and variability of atmospheric river frequencies over the north 
Pacific. Journal of Climate, 29(13), 4885–4903. https://doi.org/10.1175/jcli-d-15-0655.1

Newman, M., Alexander, M. A., Ault, T. R., Cobb, K. M., Deser, C., Di Lorenzo, E., et al. (2016). The Pacific decadal oscillation, revisited. 
Journal of Climate, 29(12), 4399–4427. https://doi.org/10.1175/jcli-d-15-0508.1

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multipa-
rameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research, 
116(D12), D12109. https://doi.org/10.1029/2010JD015139

Notarnicola, C. (2020). Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sensing of Environment, 243, 
111781. https://doi.org/10.1016/j.rse.2020.111781

Pomeroy, J., & Gray, D. (1994). Sensitivity of snow relocation and sublimation to climate and surface vegetation. IAHS Publications-Series of 
Proceedings and Reports-Intern Assoc Hydrological Sciences, 223, 213–226.

PRISM. (2022). 800-m resolution 30-year normals from 1991-2020. Oregon State University. Retrieved from https://prism.oregonstate.edu
Raleigh, M. S., Lundquist, J. D., & Clark, M. P. (2015). Exploring the impact of forcing error characteristics on physically based snow simu-

lations within a global sensitivity analysis framework. Hydrology and Earth System Sciences, 19(7), 3153–3179. https://doi.org/10.5194/
hess-19-3153-2015

Rutz, J. J., Steenburgh, W. J., & Ralph, F. M. (2014). Climatological characteristics of atmospheric rivers and their inland penetration over the 
western United States. Monthly Weather Review, 142(2), 905–921. https://doi.org/10.1175/mwr-d-13-00168.1

Schaefer, G. L., & Paetzold, R. F. (2001). SNOTEL (SNOwpack TELemetry) and SCAN (soil climate analysis network). Automated weather 
stations for applications in agriculture and water resources management: current use and future perspectives, (Vol. 1074, pp. 187–194).

Siler, N., Roe, G., & Durran, D. (2013). On the Dynamical causes of variability in the rain-shadow effect: A case Study of the Washington 
Cascades. Journal of Hydrometeorology, 14(1), 122–139. https://doi.org/10.1175/jhm-d-12-045.1

Slater, A. G., Lawrence, D. M., & Koven, C. D. (2017). Process-level model evaluation: A snow and heat transfer metric. The Cryosphere, 11(2), 
989–996. https://doi.org/10.5194/tc-11-989-2017

Winski, D., Osterberg, E., Ferris, D., Kreutz, K., Wake, C., Campbell, S., et al. (2017). Industrial-age doubling of snow accumulation in the 
Alaska Range linked to tropical ocean warming. Scientific Reports, 7(1), 17869. https://doi.org/10.1038/s41598-017-18022-5

Wise, E. K., & Dannenberg, M. P. (2017). Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America. 
Science Advances, 3(6), e1602263. https://www.science.org/doi/abs/10.1126/sciadv.1602263

Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multipa-
rameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research, 116(D12), D12110. https://doi.
org/10.1029/2010jd015140

Zhang, T. (2005). Influence of the seasonal snow cover on the ground thermal regime: An overview. Reviews of Geophysics, 43(4). https://doi.
org/10.1029/2004RG000157

References From the Supporting Information
Cristea, N. C., Bennett, A., Nijssen, B., & Lundquist, J. D. (2022). When and where are multiple snow layers important for simulations of snow 

accumulation and melt? Water Resources Research, 58(10), e2020WR028993. https://doi.org/10.1029/2020WR028993
Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J., & Lundquist, J. D. (2019). Characterizing biases in mountain snow accumulation 

from global data sets. Water Resources Research, 55(11), 9873–9891. https://doi.org/10.1029/2019wr025350

https://doi.org/10.1023/a:1015820616384
https://doi.org/10.1023/a:1015820616384
https://doi.org/10.5194/bg-10-5139-2013
https://doi.org/10.1175/1525-7541(2002)003%3C0013:pmapoy%3E2.0.co;2
https://doi.org/10.1175/1525-7541(2002)003%3C0013:pmapoy%3E2.0.co;2
https://doi.org/10.5194/gmd-8-1339-2015
https://doi.org/10.1371/journal.pone.0159909
https://doi.org/10.1175/jcli-d-15-0655.1
https://doi.org/10.1175/jcli-d-15-0508.1
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1016/j.rse.2020.111781
https://prism.oregonstate.edu
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.5194/hess-19-3153-2015
https://doi.org/10.1175/mwr-d-13-00168.1
https://doi.org/10.1175/jhm-d-12-045.1
https://doi.org/10.5194/tc-11-989-2017
https://doi.org/10.1038/s41598-017-18022-5
https://www.science.org/doi/abs/10.1126/sciadv.1602263
https://doi.org/10.1029/2010jd015140
https://doi.org/10.1029/2010jd015140
https://doi.org/10.1029/2004RG000157
https://doi.org/10.1029/2004RG000157
https://doi.org/10.1029/2020WR028993
https://doi.org/10.1029/2019wr025350

	Seasonal Peak Snow Predictability Derived From Early-Season Snow in North America
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data and Methods
	2.1. Methodology
	2.2. Model Simulations
	2.3. SNOTEL Observations

	3. Results
	3.1. What Is the Median Fraction of Peak SWE on the Ground by 1 December and by 1 January?
	3.2. How Well Can Observed SWE on 1 January Each Year Predict Peak SWE?
	3.3. What Factors Explain Spatial Variations in the Predictive Skill of Early Season Snow?

	4. Discussion
	4.1. Understanding Spatial Patterns of Where Early Season Snow Contributes the Most to Peak SWE
	4.2. Explaining Correlation of Early Season Snowfall to Subsequent Snowfall
	4.3. Explaining Correlation of Predictive Skill and Midwinter Temperatures
	4.4. Implications for Climate Change
	4.5. Implications for Ecosystems and Wildlife

	5. Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


