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EDITOR Is NOTE 

LFM (limited area fine mesh model) parameters are now used as predictors. 
in the probability of precipitation forecasts, referred to as PEATMOS 
POP in this study. The effect of this change on the results presented 
here is unknown. It is recommended that the results of this study be 
used in a qualitative, rather than quantitative, sense. 
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ABSTRACT 

An objeative teahnique.has been developed.for modifying l2- to 24-hour 
preaipitation guidanae foreaasts from the NMC primitive equation model by 
using manually digitized radar and the Limited Fine Mesh Model l2- to 24-
hourpreaipitation, Developmental data were from two stations in the. 
eastern United States for the summer season, Construated radar variables 
were entered into a stepwise multiple regression program with the PE pre­
aipitation probabilities and the LFM preaipitation foreaast, The resulting 
equation yielded a l5-35% improvement in the Brier saore over the PE; In 
aomparison, subjeative improvement by Eastern Region foreaast offiaes of 
the National Weather Serviae over the PE guidanae amounts to l0-l5%, 

INTRODUCTION 

Forecasts of the probability of precipitation are prepared by computer 
at the National Meteorological Center· and transmitted by teletype for use 
of the field forecaster. The time required for the collection of initial 
data and the preparation of the forecasts results in a delay of some 7,5 
hours, ·During this delay period, other information becomes available to 
the forecaster which should offer some assistance in improving upon trans­
mitted probability forecasts. This includes radar coverage information 
available by teletype and facsimile and the quantitative precipitation 
forecasts prepared with the limited area fine mesh model (Cooley, 1971), 

This study has been directed at obtaining an objective procedure of 
modifying the precipitation probability forecast. It has been restricted 
to the summer months, in the time period between 12 and 24 hours following 
the observation hour, and to two stations in the northeastern United States, 
Furthermore, it deals only with the probability of measurable precipitation, 
i.e., at least .01 inch, 

These computer produced forecasts are called primitive eguation (PE) and 
trajectory model probability of precipitation forecasts (PEATMOS POP) and 
have been routinely available since 1972 (Glahn & Lowry, 1972), These 
PEATMOS POP forecasts were developed by statistically relating the 
occurrence of measurable precipitation to variables predicted by the PE 
and trajectory models. A stepwise multiple regression program screened 
many model output variabl~to obtain the twelve best predictors for in­
clusion into the statistical model. Most of these predictor· variables 
are forecast vertical motion, moisture and stability parameters (Cooley, 
1974). Because clifferent equations are developed for different areas of 
the United States and for different seasons, the PEATMOS POP has little 
bias •. However, no radar or LFM information is included in the transmitted 
PEATMOS POP. 

Moore and Smith (1972) incorporated manually digitized radar information 
(MDR) with the PEATMOS POP for three southern stations during the winter 
season for short-range forecast improvement, Manually digitized radar 
is a scheme of providing data for the eastern two-thirds of the-United 
States for 40 n- mi grid squares. Information on intensity and coverage 



by echoes is encoded for each square . The latest coding scheme and the 
MDR data grid are given in Moore, Cummings , and Smith (1974) . Areal 
coverage and the presence or absenca of radar echoes in MDR squares 
0-250 n mi west of the verifying point were the most useful variables . 
In this paper, areal coverage represents the ratio of MDR squares with 
echoes to all MDR squares , examined . When these were combined in a re­
gre~sion routine with the PEATMOS POP, they resulted in a 10-15% improve­
ment in forecasting skill over PEATMOS POP alone. Independent verifica­
tion of this improvement during the following winter at Atlanta, Georgia, 
proved successful (Peters & Barnes, 1973)o 

During 1971, the LFM model became available for forecast use . The LFM is 
essentially a PE model with a grid size one- half of the PE's and a much 
improved moisture initialization procedure . Because of this, forecast 
precipitation from this model might improve the accuracy of the PEATMOS 
POP . Ronco (1972 , 1973) used the LFM quantitative precipitation fore­
cast (12-24 hours after initial time) and the PEATMOS POP to obtain an 
improved probability forecast . His studies focused on a number of sta­
tions in New Hampshire and Maine for both winter and summer . A similar 
study for five other stations in the Eastern Region (National Weather 
Service, 1974) showed its applicability through most of the East during 
the s~mmer months . 

The temporal relationship of these techniques is illustrated in Figure 1. 
The data input time for the PE model is at 0000 GMT, but the PEATMOS POP 
is not received until 0730 GMT . Radar data made available at this time 
and LFM information from the 0000 GMT run are combined with the PEATMOS 
POP to obtain an updated probability (POPUP) before the public forecast 
release time . This POPUP is valid for the verifying period 12-00 GMT . 
An analogous procedure is followed at 1930 GMT for the 1200 GMT PE and 
LFM runs . 

The question posed by this study is : Can MDR variables and LFM forecast 
precipitation be used to similarly update the PEATMOS POP for stations in 
the northeastern United States during the summer? Also, more specifically, 
will the improvement due to the LFM cancel or mask any possible improve­
ment due to radar? An attempt will be made to answer these questions 
through a multiple stepwise regression procedure, the subject of the next 
section . 

Model Initial 
Data Time 

! r 
00 GMT 

12 GMT 

POPUP 
~ime 

~I 
0730 GMT 

1930 GMT 

Forecast Release 
T:% 
I..: + 

12 GMT 

00 GMT 

Verifying Period 

Figure 1. Temporal Relationship of the Predictors . 
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·· stepwise Multiple Regression Procedure 

Multiple regression is a procedure directed at fitting the best possible 
plane to data in n- dimensional space ~ where n is the total number of 
variables . The best plane is defined to be the plane that has the least 
sum of squared verti cal deviations of the data from the pl ane . Our tenta­
tively enter tained regression model i n such a si tuation i s 

(1) 

where Y is our dependent vari able Q x 1 ~ x2 •• • Xn-} are the independent 
variables or predictors ~ and E i s residual error . n our case Y is a 
0-1 variable 9 zero for no rain and one for rai n. 

In a multi variate regression ~ one is always faced with the problem of 
which predictors shoul d be included in the analysis . Forwa rd stepwise 
multiple regression is one way of handli ng the order of inclusion of pre­
dictors into the analysis . The fi rst predictor i ncluded in our regression 
is the X variable that has the h1ghest correlation coefficient with Y 
(let •s call this variable x1) . By def in1tion 9 this will be t~e relation­
ship that gives the highest possibl e reduction of variance (R ) . To test 
the statistical signi f icance of this rel ationship between x1 and Y an F­
test is performed . If i t is s i gn i ficant ~ the slope and intercept of this 
line of best fit is al so calculated. 

To obta in the next predictor for i ncl usion i nto our equation ~ partial cor­
relation coefficients are computed between Y and X2 through Xn-J• The 
predictor with t he highest partial correlation i s 1ncluded next and the 
total reduction of variance is computed . This time a par t i al F-value is con­
structed to dete rmine the sign1ficance of the added term along with a total 
F to test the entire regression s1gni ficance . This procedure of adding 
variables continues until ~ 

1. The par t i al F- test on the new var1able fails to be significant 
(o:=.Ol) 11 or 

2. The additional reducti on of var1ance (6R2) as the result of 
adding a new var iable is less t han 0. 5%. Thus it is unlikely 
that all of the X vari ables would be i ncl uded i n our model . 

This procedure was obtained by reference to standard texts on multiple 
regression such as Draper and Sm1th (1966) and Iver sen (1971) . 

Basic regression approaches descri bed above assure that the residuals are 
normally di stributed . Here , however 9 our dependent variable is a 0- 1 
variable which introduces some complications . If all the X variables have 
extreme values 11 it is li kely that our forecast Y wil l be outside of the 
range (0 ,1) , thus mak ing no physical sense . Fortunate ly i the occurrence 
of this effect in probability regress1ons i s slight . If 1. 14 or -0. 03 is 
the forecast v ~ the practical way of deal i ng with it is to make the fore­
cast values 100% and 0% ~ respecti vely . 
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A more serious problem is illustrated next . Suppose that for low values 
of x1 (say PEATMOS POP) ~ there is a large effect of x2 (say a radar variable) 
on Y. With high values of X ~ the effect of x2 on Y 1s slight . Yet, a 
multiple linear regression m6de1 with a 0-1 variable Y variable would have 
to add the same effect of X for all values of X • One way of including 
this effect is by inclusion2of an interaction or1cross product term 
(Xl*X2): This effect turns out to be significant in some of the following 
regress1ons . 

Another serious difficulty of not having the residuals normally distributed 
is that our partial F-tests become inexact . Hence, these are included as 
merely descriptive statistics and no inferences on statistical significance 
can be drawn . 

A dependent 0- 1 variable also raises the question of the appropriateness 
of correlation coefficients in such a situation . The accuracy of our cor­
relation coefficients is essential to multiple regression since it determines 
which variables are selected at each step . (Editor ' s Note: Additional 
statistical analysis in the author ' s original thesis has been removed from 
this Technical Memorandum edition to make it more appropriate for the 
operationally oriented reader. ) 

Selection of Radar Varia~les 

Data for only two summers (1973 and 1974) were available since the manually ) 
digitized radar program started in the spring of 1973 . Also , since none 
of the LFM or radar vari ables were recorded in any form convenient for 
computer processing ~ tedious manual extraction of the data was necessary . 
Therefore p efforts were concentrated in a pilot study on two nor theastern 
stations ~ Williamsport , Pa . (IPT) and Huntington, W. Va . (HTS), which had 
good upwind radar coverage . 

MDR values were first tabulated for grid squares near both stations for 
the 0730 and 1930 GMT radar observations for the period 1 June to 30 Septem­
ber 1973. These are the times of the latest radar observations prior to 
public forecast release times . The time period was held to these three 
mid-summer months in order to limit our data to precipitation mainly from 
convective sources . The 1974 data were not used initially in order to pro­
vide a data set for independent verification of the 1973 results . 

In order to select good predictive radar variables p it was necessary to 
determine which MDR squa res have the highest association with precipita­
tion at the verifying point (IPT or HTS) during the ensuing 12- hour period . 
One approach to this problem is the following : Given an echo in the indi­
cated square t what percentage of time does precipitation verify at the 
individual station dur ing the ver ifying period? This statistic is shown 
for both stations in Figure 2 using the 0730 GMT radar report . Figure 3 
shows the same statistic fo r the 1930 GMT radar report . Radar data for 
the selected influence area of IPT was provided by Buffalo, N. Y.p and ) 
Pittsburgh , Pa . , rada rs and those for HTS by Cincinnati 5 Ohio, Evansville, 
Indiana 5 and Marseille ) Illinois ~ radars . 
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~gure 3. Same as Fig. 2 e~cept 
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Same as Figure 3 for HTS except 1930 GMT echo 
(Figure 4), or 230°-270° (Figure 5) . 
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This frequency occurrence statistic provides some information on the nature 
of the precipitation pattern over the northeast during the summer. Since 
higher numbers are shown for the 0730 GMT radar observation (verifying 
period 12-00 GMT) than for the 1930 GMT observation, the morning radar 
echoes (at 3:30 AM EDT) would appear to have more forecast value for future 
precipitation than do the afternoon (3:30 PM EDT) echoes. This seems 
realistic since 3:30AM echoes are most likely caused by some mesoscale 
or synoptic scale disturbance which is likely to have some persistence. 
On the other hand, 3:30 PM echoes may be caused by diurnal heating on an 
otherwise unfavorable day, and may not persist into the night. Note also 
that the highest numbers occur 100-250 miles west to northwest of the 
verifying point indicating slow eastward moving precipitation regime. 

In order to test an areal coverage type variable in our multiple re­
gression, an area of highest influence containing good predictive radar 
information is.sought. Five to twelve squares were sought which had a 
high frequency of occurrence statistic, yet were within good range of at 
least one radar station. Another statistic tabulated was the number of 

,times precipitation verified, yet no echo was reported in this grid square. 
Lower values of this statistic revealed squares which have a higher degree 
of association with ensuing precipitation, Squares that met all three of 
these criteria were chosen to be in an "influence region." The different 
regions for each station and each time are shown by the outlined squares 

.. ~ ._) 

in Figures 2 and 3. This selection involved some subjectivity and there .·~--
is no certainty that the areas pictured give optimum reduction of variance 
in the ensuing regression. 

Up to this point, these influence regions represent a climatological 
approach to the inclusion of radar data into our regression scheme. A 
reasonable question to be asked is, "Can information on direction of area 
movement be used to improve our prediction?". In order to answer this ques­
tion, the frequency of occurrence tabulations were stratified by direction 
of movement for the 1930 GMT HTS data only. More specifically, the data 
were divided according to area movement from the NW (280°-360°) versus. 
movement from the SW (230°-270°), If the area movement was from any other 
direction, an areal coverage of our climatological influence region would 
be used in place of this variable. If two radar stations reported different 
area movements, the most northerly direction was chosen. Results of this 
stratification are shown in Figures 4 and 5 along with the new influence 
areas. 

Summing up, for the 1930 GMT HTS data, a new variable called adjusted 
areal coverage will be included in the screening procedure. Its value 
will be the areal coverage of the influence area given in Figure 4 if 
there is NW area movement, or the area 1 coverage of the influence region 
given in Figure 5 if there is SW movement, or the areal coverage of the 
influence region in Figure 3 if there is another direction of moti.on •. 
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1930 GMT Williamsport Regression 

One hundred and twenty- two days from 1 June to 30 September 1973 that had 
complete 1930 GMT radar reports and PEATMOS POPs were used to arrive at a 
regression plane explain ing the variation between the chance of rain and 
our predictors . On only 110 of these days was LFM information available, 
so pairwise deletion was used in determining correlation coefficients . 
Hence, a missing value for a particular variable causes that case to be 
eliminated from calculations involving that variable only. Table 1 lists 
the variables screened for this regression , their range, the variables re­
tained and their order of inclusion, the reduction of variance and the 
final analysis of variance table . Notice that two other radar vari ables 
that were screened were Sum DR , the sum of the MDR numbers in the influence 
region, and E 1 ~ the presence or absence of an echo in our highest fre ­
quency of occurrence square . Neither of these variables explains as much 
of the variance of Y as does an areal coverage type variable. 

Table 1. 1930 GMT Williamsport Regression 

A listing of variables screened , variables selected , their partial F upon 
inclusion , the reduction of variance (RD), the final regression equation , 
and the final analysis of variance (ANOVA) table . 

Tentatively Entertained Mod~l : 
A 

Y=a+~X 1 +c(dum)X 1 +dX2+eX3+fX4+gX5 Where : dum=O if PEATMOS POP less 
than 20%, 

Variables R2 

Area 1 coverage 
Selected Ar . Cvrg. 
LFM QPF 

PEATMOS POP 
Sum DR 
El 

Not Included 
44 . 1% 
6. 3% 

Not Included 
Not Included 
Not Included 

50. 4% 
Final Equation : y= . 0438+. 516(dum)X1+. 314X2 
Final ANOVA Table : 

Source df 
Regression 2 
Residual 107 

df = degrees of freedom 
SS = sum of squares 
MS = mean squares 

ss 
9. 532 
9. 406 

- 7 -

dum=l if PEATMOS POP equal 
or greater than 20% 

Partial F-Value Range 

MS 

85 . 057 
13 . 516 

4. 766 
. 087 

. 00-1.00 
0 00-l. 00 
O=no rai n 
1=.01 11 - . 49 11 

2= . 50 11 or greater 
0- 100 
0-81 
0 or 1 

Tota l F-Value 
54. 215 



The variable that has the highest correlation coefficient with Y is a 
selected areal coverage . This is the number of squares that have echoes 
in them divided by the total number of squares in our influence region 
only if the PEATMOS POP is 20% or greater . This variable was included 
for screening when a cross- tabulation of these three variables revealed 
that it rarely rained if PEATMOS POP was less than 20%i no matter how 
large our areal coverage was . This is an 11 abrupt 11 type of interaction 
effect that can be represented as a 0- 1 dummy variable times areal 
coverage in our initial regression model . Perhaps the 11 abruptness 11 of 
the interaction here is due to our small sample size or an idiosyncrasy 
of station iocale . 

The only other variable included in our model was the LFM QPF . The 
partial F for the LFM was 13 . 516 . This is greater than the 1% signifi­
cance level Fl 107=6 .93 (a= .Ol) . At the end of step two, the next 
highest partiai correlation coefficient is PEATMOS POP with a partial F 
of 2. 484 . This term was not included in our model since a partial F of 
this value meant that there was an 11 . 8% probability that this term 
could have been included by chance. Inclusion of this term would further 
reduce the variance by only 1. 1%. Even though the PEATMOS POP does not 
explicity enter i n the final equation , information from it was used in 
our selected areal coverage term. 

1930 GMT Huntington Regression 

One hundred and twenty-four days from 1 June to 30 September 1973i that 
had complete 1930 GMT radar reports and PEATMOS POP values were used in 
the Huntington regression analysis . Again , on only 114 of these 124 
days was the LFM QPF available, so pairwise deletion was used when com­
puting correlation coefficients . Table 2 lists vital information for this 
regression plus the results . Note that we are screening both a climatologi­
cal areal coverage and an adjusted one . The "climatological areal coverage 11 

is defined to be the pe rcentage of those seven influence region squares 
indicated in Figure 3 that have echoes reported. The 11 adjusted areal 
coverage 11 is defined to be the percentage of those influence region squares 
in Figures 4 and 5 that have echoes (stratified according to echo movement, 
as discussed earl ier). The adJUSted areal coverage is the first term in­
cluded in the stepwise regression procedure because i t had the highest cor­
relation coefficient wi th Y (. 665) . The climatological areal coverage had 
only a . 544 correlat1on coefficient withY , thus indicating the value of 
stratifying according to echo movement . The initial overall F is 88.622. 

The next variable selected was the LFM QPF because its partial F is 22.045, 
and the overall F is 63 . 66 . This is the f inal step because our highest 
partial Fat the end of step 2 is 1. 64 (this variable is x2*x3 interaction) . 
This partial F i~ no way warrants its inclusion and this extra term would 
have increased R only by another 0. 7%. Notice that the PEATMOS POP does J 
not even enter into this regression equation . 
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Table 2. 1930 GMT Huntington Regression 

Tentativel~ Entertained Model : 
A 

Y=a+bX1+cX2+dX1X2+eX3+fX3X2+gX4+hX5 
Variables R2 ·Total F-Value Range 

xl Climatological Not Included • 00-l.OO 
Areal Coverage 

x2 PEATMOS POP Not Included 0-100 

x1x2 Interaction Not Included .00-100.00 

x3 Adjusted Areal 44 . 1% 88 .622 . 00-1.00 
coverage 

x4 LFM QPF 9. 3% 22 .045 0,1, or 2 
(as before) 

x5 Sum DR Not Included 0-63 
x2x3 Interaction Not Included . 00-1 00 .00 

53.4% 
" Final Eguation : y=.0205+.562X3+. 317X4 

Final ANOVA Table : 
Source df ss MS Total F-Value 

Regression 2 10 . 722 5. 361 63 . 660 

Residual 111 9. 348 . 084 

0730 GMT Williamsport Regression 

One hundred and fourteen summer days from 1 June to 30 September 1973 , had 
complete 0730 GMT radar observations that were used as our data base for 
this regression . A cross- tabulation of areal coverage versus frequency 
of occurrence of precipitation reveals an interesting jump in frequency 
between . 00 and • 10 coverage (see Figure 6) . Considering that a large pe r­
centage of our data has . 00 or . 10 echq coverage ~ this represents a signifi ­
cant departure from linearity . A similar graph for the 1930 GMT areal 
coverage (unmodified) versus frequency of occurrence reveals no such trend 
here (see Figure 7) . While sampling error is still a possibility, the 
graphs shown i which are based on two summers, are essentially the same as 
those based on the data for the individual summers . Also, there may be a 
good physical explanation of this trend . 

Notice in Figure 6 that after the jump in frequency between . 00 and . 10 
coverage , additional increase in coverage to .40 does not bring any in­
crease in the frequency . The abrupt increase between .00 and . 10 coverage 
may be due to the fact that even one small echo at 3:30 AM could indicate 
the presence of a feature likely to persist . But , why then doesn ' t the 
frequency keep on increasing past . 10 coverage? 

- 9 -
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Consider a circular area of precipitation 20 miles in diameter . If it is 
completely in one square, our areal coverage variable would be .10. However, 
if it were centered within 10 miles of a corner of our grid, an areal 
coverage of . 40 is recorded . Yet , we would not expect any increase in 
frequency of precipitation because the real area of the precipitation 
remains the same . So it is possible to have values of .40 areal coverage 
with only small areas of precipitation . Larger coverages would have to 
mean larger areas (on the order of 50 miles diameter) or smaller cells 
scattered throughout five or more squares . Perhaps this is why the fre ­
quency increases markedly in the region . 40 to . 60 areal coverage . 

Regardless of whether we truly have the real physical explanation or not, 
we must take the irregularities into account i n our statistical analysis . 
Obviously, linear regression would not give us a good fit here, our esti­
mate (y) would overforecast the . 00 and . 40 areal coverage cases , but 
would underforecast the . 10 cases. One solution is to treat the . 00 
coverage cases separately in a contingency table approach and to treat 
cases with coverage greater than or equal to . 10 in a linear or curvilinear 
regression . This approach can handle the jump in frequency between .00 and 
. 10 well and it is simple to utilize . 

Table 3 shows the frequency of precipitation for different values of PEATMOS 
POP wheh there is no areal coverage . For 0, 10 , and 20% PEATMOS POP, it 
rains 3, 11 , and 13% of the cases , respectively . There is very little data 
for POP va 1 ues , :_ 30%. Hence, no change in the PEATMOS POP is. suggested here . 

Table 3. Frequency of Precipitation for PEATMOS POP values when 0730 GMT 
areal radar coverage=zero . Data is for Williamsport , Pa ., 1 June to 
30 September 1973. 

PEATMOS POP 

0 & 2 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
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Frequency of Precipitation 12-00 GMT 

l / 32=03% 
2/ 18=11 % 
3/ 23=13% 
0/ 9 ==00% 
l/2 =50% 
No Data 
0/2 =00% 
No Data 
No Data 
No Data 
No Data 



Table 4 shows the results of the regression approach taken when coverage is J 
greater than .00~ The tilt~l·number of cases is only 36, so it would be hard 
for more than one term to have a high partial F statistic. Consequently, 
less of a premium was plac~9 on high f-values, as long as.the terms. reduced 
the variance. Notice that in the final equation, the areal coverage., a trans­
formation·ofthe PEATMOS POP, and an interaction term are included, but not 
the LFM QPF. The tot a 1 . reduction of variance is sma 11 because these 36 cases 
repr~sent some of the most.widely deviant behavior of the summer. The total F 
is OnlY 3,03 and this is the equation that undergoes independent verification. 

Table 4. 0730 GMT Williamsport Regression for 1973 data only. 
36 cases when areal coverage is not zero. 

Tentatively Entertained Model: 
A • 

Y=a+bX1+cX2+dX3+e(Log10x1)+f(Log10x1)*X2 
Variables R2 Partial .F-Value 

xl PEATMOS POP 

x2 Areal Coverage 

x3 LFM QPF 

Log10x1 
Log10x1*x2 

Final Equation: 

Not Included -....... __ 

1 o. 3% 

Not Included 

4.6% 

7.3% 

22.2% 

1.80 

2.98 

Y=-.6965+2.575X2+.7603(Log10x1)-1.356(Log10x1)*X2 
Final ANOVA.Table: 

Source 

Regression 

Residual 

df 

3 

32 

ss 

1. 774 

6.225 

- 12 -

MS 

• 5913 

• 1945 

Range 

0-100 

,00-1.0 

0,1, or 2 

1.0-2.0 

0.0-2.0 

Total F-Value 

3.039 

J 

J 
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After using the 1974 data for independent verification , we added this new 
data to our regression, bringing the total number of cases to 60 . The 
results of this regression are presented in Table 5. Notice that the total 
reduction of variance and final F-value are much higher due to the added 
data, and perhaps to the effect of some new variables . One Square is the 
radar variable that is selected first. It is a 0-1 variable indicating 
the presence or absence of an echo in the one highest frequency square NW 
of IPT. Other terms included are the LFM QPF, a transformation of the 
PEATMOS POP, and an interaction effect . 

Table 5. 0730 GMT Williamsport Regression for 1973 and 1974 data combined. 
60 cases when areal coverage is not zero. 

Tentativel~ Entertained Model : 
A 

Y=a+bX1+cX2+dX3+fX4+gX5+h(Log10x1)+i(Log10X1)*X2+j(X1*X2) 

Variable R2 Partial F-Value Range 

xl PEATMOS POP Not Included 0-100 

x2 Areal Coverage Not Included 0.00-1 . 00 

x3 LFM QPF 22 .9% 17 .20 O,l , or2 
(as before) 

x4 Sum DR Not Included 0-90 

x5 One Square 5. 3% 4.21 O=no echoes 
1=1 or more 

echoes 

Log10x1 2.2% 1.78 1.00-2 0 00 

Log10x1*x2 Not Included 0.00-2. 00 

X *X 1 2 
4.2% 3. 51 0.0-100 .0 

34 .6% 

Final Equation : Y=- . l40+350X3+. 317X5+.454(Log10x1)- .0076(x1*x2) 

Final ANOVA Table : 

Source df ss MS Total . F-Value 

Regression 4 4. 358 1.089 7. 269 

Residual 55 8. 242 • 150 
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0730 GMT Huntington Regression 

One hundred and thirty-two cases from 15 May to 30 September 1973, served 
as our data base for this regression . Again , a graph of areal coverage 
versus frequency of verification revealed a jump in frequency between .00 
and .10. The frequency at .00 is 12% while the frequency for . 10 and .20 
grouped together is 40%. The same method of dealing with this problem is 
carried out as before . 

Table 6 shows frequency of precipitatim for various PEATMOS POP values when 
coverage=zero . The table reveals a trend similar to that observed for 
Williamsport . Hence i no change in the PEATMOS POP . 

For the 48 days when coverage is not zero , a regression approach is taken. 
The first term selected for inclusion in the model is the PEATMOS POP. 
Areal Coverage interaction effect with an initial F of 11.795. The next 
variable included is the LFM QPF with a partial F of 4. 738. After this 
step i none of the other variables has a partial F greater than one, so we 
stop here . 
Table 6. Frequency of Precipitation for PEATMOS POP values when 0730 GMT 
areal radar coverage:zero. Data is for Huntington, wv , 15 May to 
30 September 1973. There were no cases with POP grea~er than 80%. 

PEATMOS POP Frequency of Precipitation 12-00 GMT 
0 4/33=12% 
10 0/11=00% 
20 3/21=14% 
30 l / 6 =17% 
40 0/8 =00% 
50 l/2 =50% 
60 0/l =00% 
70 0/1 =00% 
80 l/1 =1 00% 

Table 7. 0730 GMT Huntington Regressi~ 

Tentatively Enter tained Model : 
A 

V=a+bX1+cX2+d(Log10x1)+e(Log1ox1)*(X2)+fX3 
Variables · R2 Partial F-Value Range 

~1 PEATMOS POP Not Included 

x2 Areal Coverage Not Incl uded 
LoglOxl Not Included 

Logl0Xl*X2 20 .4% 11 . 795 

x3 LFM QPF 7.6% 4. 738 

28 , 0 
Final Eguation : Y=O.l67+0.226*( Log10x1)*X

2
+0 . 405*X3 

Final ANOVA Table : 
Source df 

Regression 2 
Residual 45 

ss 
3.213 
8. 266 
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MS 
1.607 

. 184 

0-100 
. 00- 1.00 
1.00-2 .00" 
0. 00-2.00 
0, 1, or 2 

Total F-Value 
8. 746 
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Measuring Forecast Improvement - The Brier Score 

Since radar and LFM information were included in all of our regression 
equations, we would expect to see improvement in forecasting accuracy 
over PEATMOS POP . But, how large is this additional increase in accuracy? 
Is it worth the effort? Also, is this improvement over PEATMOS POP less 
than or greater than made subjectively by NWS forecasters? 

One common way of measuring skill in probability forecasting is the Brier 
score (Brier , 1950), n 

B = [ L (F .-0. )2] I N 
i=l 1 1 

where:F.=Forecast probability for each case , rounded to the nearest 10%, 
1 

Oi=l (Rain) or 0 (No Rain) observed for each case , 
N = Total number of cases . 

For comparison of several different techniques at one station for the same 
period of time , the Brier score is an unbiased estimator of forecast 
accuracy . 

To compute the forecaster ' s Brier score, we used the WSFO forecaster •s 
probability of precipitation and not the forecast value actually released 
to the public by the local office (WSO) . What subjective improvement was 
made to PEATMOS POP most probably came from LFM information , radar indica­
tions, and a good regional analysis . Table 8 shows the percent decrease 
in Brier score over the PEATMOS POP for both POPUP and the forecasters . 
This statistic was computed for both stations 9 oath times of day, and for 
both dependent data (1973, used to develop the regressions) and independent 
data (summer 1974) . The POPU~ technique results in about twice the improve­
ment made subjectively by the forecasters . Thus , it appears that forecasters 
were not utilizing LFM and radar information to the fullest extent possible . 
Table 8. Pe rcentage Improvement in Brier Score Over PEATMOS POP . 

Dependent Sample - IPT 
0730 GMT EQN . 1930 GMT EQN . 

POPUP 30.5% 24 . 6% 
Forecaster ' s 11 .5% 6. 9% 

Independent Sample - IPT 
POPUP 
Forecaster ' s 

POPUP 
Forecaster ' s 

POPUP 
Forecaster ' s 

32 .9% 19 . 9% 
10 .6% 9. 6% 

Dependent Sample - HTS 
22 . 2% 41 . 0% 
11. 3% 5. 7% 
Independent Sample - HTS 
15.3% 17 . 8% 
14 . 7% 9. 4% 
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Figure 8 shows POPUP ver sus PEATMOS POP fo r two months of independent data 
at Will i amsport . It hel ps to graphically show the improvement ; POPUP fore­
casts higher than PEATMOS POP on days that rain occurred, and vice versa. 
Also , it i s noteworthy that in 16 of the 56 cases in Figure 8, POPUP is 
the same as PEATMOS POP i whi l e in another 20 of the cases POPUP differs 
by only 10%. Thus , a majority of the improvement comes on the· remaining 
20 days . 

c... 
::> 
c... 
0 
c... 

c... 
::> 
c... 
0 
c... 

100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
oa 

RAIN 

1 1 

1 

~----------------0 1 2 3 4 5 6 7 8 9 10 

PEATMOS POP (in lOs of percent) 

NO RAIN 

100 1 
90 
80 
70 
60 
50 
40 
30 
20 
10 
00 12 1 1 1 

0 1 2 3 4 5 6 7 8 9 10 

PEATMOS POP ( in l Os of percent) 

Figure 8. POPUP versus PEATMOS POP for days when precipitation occurred 
and days when i t didn ' t. 1930 GMT IPT Equation f rom 5/16/74 to 7/12/74 . 
Number of cases are shown for j oi nt val ues of POPUP and PEATMOS POP . 
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CONCLUSIONS 

1. A 15-35% improvement in Brier Score over PEATMOS POP is likely with 
the POPUP scheme in summer . Improvement over forecaster ' s subjective 
forecasts is also likely. 

It has been earlier stated that LFM improvement over PEATMOS POP occurs 
at a variety of stations throughout the East during the summer (National 
Weather Service, 1974) . Since LFM QPF is a key term in our POPUP scheme, 
it is reasonable to generalize that there would be some POPUP improvement 
throughout the entire mid-Atlantic and northeastern states . Improvement 
due to radar information is less easy to generalize . Stations whose in­
fluence regions lie in poor radar range would expect less forecast improve­
ment due to this term. 

2. Inclusion of interaction terms between PEATMOS POP and areal coverage 
plus the use of LFM QPF were both vital in the forecasting ability of 
this model . 

The fact that interaction terms are statistically significant show us that 
the relationship is by no means linear . More data should help us if cer­
tain irregularities persist . If they do, perhaps a three-dimensional con­
tingency table would handle these irregularities better than would a re­
gression approach . 

3. The improved forecasting skill of the POPUP technique is attributed 
to : 

A. later information available through use of radar data, 

B. incorporation of sub-synoptic i nformation through radar data 
and to some extent through LFM . 

4. Radar improvement fails with fast moving precipitation areas that move 
greater than 250 miles in a 12- hour period and also with precipitation 
motion from unusual di rections . Improvement coul d still take place due to 
LFM information in these cases . 

5. The precision of manually dig i tized radar data was necessary to obtain 
this forecast improvement . 

Current radar summary charts have a tendency to mask the exact pattern 
that appears on the radarscope (Moore , Cummings & Smith , 1974) . Indeed ~ 
much of the inf ormati on on exact ce l l locati on and intensity is not 
carried by this code . A study on the forecast value of radar summary 
charts (Wilson & Kessler , 1963) showed that translation forecasts based 
on these charts could barely beat persistence after only six hours . 
Surprisingly , they recommend a manually digitized radar data scheme much 
like the present one to overcome these weaknesses . 
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6. Prospects for the future include POPUPs centrally computer produced 
and smaller MDR gridding. For the next few years , POPUPs can be computed 
manually at the forecast office . Prior experience ~Y Peters and Barnes 
(1973) indicates that POPUP can be evaluated quickly in routine operating 
conditions . However, all of the variables in POPUP can be stored on 
magnetic tape for many different locations , and thus implement a nation­
wide POPUP effort . Smaller gridding may help highlight areas of enhanced 
convection in the summer season and therefore be of some forecast value . 

7. Use of satellite information in early morning hours could be helpful 
in establishing daytime probabilities of precipitation . 

Purdom and Gurka (1974) have shown several cases where the low level 
cloud cover in the early morning helps inhibit afternoon convection 
while neighboring clear spots are the first to experience shower develop­
ment . This is physically consistent with the princi ple of differential 
solar heating . This may be an especially si gnificant factor in the 
southeastern United States where uniform instability and moisture pat­
terns exist for most of the summer . Perhaps some way of including this 
information into a POPUP scheme could be developed . 
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