

1
2 An N isotopic mass balance of the Eastern Tropical North Pacific Oxygen Deficient Zone
3
4
5

6 Clara A. Fuchsman¹, Allan H. Devol¹, Karen L. Casciotti², Carolyn Buchwald^{3,4}, Bonnie X.
7 Chang^{1,5,6} Rachel E. A. Horak¹
8
9

10 ¹ University of Washington, School of Oceanography, Seattle, WA

11 ² Stanford University, Stanford, CA

12 ³ Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program in
13 Chemical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA

14 ⁴ Dalhousie University, Halifax, Nova Scotia, Canada

16
17 ⁵ National Oceanic and Atmospheric Administration, Pacific Marine Environmental Lab, Seattle,
18 WA

19 ⁶ JISAO (Joint Institute for the Study of the Atmosphere and Ocean), Seattle, WA

20

21 **Abstract**

22 Oxygen deficient zones host up to 50% of marine N₂ production and the Eastern Tropical North
23 Pacific (ETNP) is the largest marine oxygen deficient zone. We measured δ¹⁵N-NO₃⁻, δ¹⁵N-
24 NO₂⁻, and δ¹⁵N-N₂ at 7 stations along a transect normal to the coast in the heart of the ETNP
25 oxygen deficient zone in 2012. The δ¹⁵N-N₂ minimum was 0.34‰ at 300m, which corresponded
26 with the N₂/Ar maximum. When the atmospheric N₂ background was removed, the biological
27 δ¹⁵N-N₂ for the ODZ ranged from -7‰ to -22‰. In the ODZ, δ¹⁵N-NO₃⁻ ranged from 15 to 24‰
28 while δ¹⁵N-NO₂⁻ was generally between -11 and -18‰, generating differences up to 40‰
29 between δ¹⁵N-NO₃⁻ and δ¹⁵N-NO₂⁻. The isotopic separation between nitrite and nitrogen gas
30 (Δ¹⁵N_{NO2-N2}) changed sign from ~5‰ at the top of the oxygen deficient zone to ~-10‰ at 300m,
31 indicating an important shift in nitrogen cycling with depth. We calculated the closed system
32 Rayleigh isotope effect (ε) for N₂ production from both the δ¹⁵N-DIN (ε_{DIN} = 26±11‰) and δ¹⁵N-
33 N₂ (ε_{N2} = 27±6‰) data. When examined individually by depth, both ε_{DIN} and ε_{N2} matched closely
34 and both ε depth profiles showed maximal fractionation at 300m. Additionally, closed system
35 isotope effects were calculated for one offshore station from the Arabian Sea in 2007 using δ¹⁵N-
36 N₂ (ε_{N2} = 24±4‰) and δ¹⁵N-DIN (ε_{DIN} = 26±3‰). The relatively large isotope effects for N₂
37 production appear to be found in both major offshore oxygen deficient zones, which implies a
38 large denitrification term in the marine N budget.

39
40 KEYWORDS: Nitrogen Isotopes, Oxygen Deficient Zone, Nitrogen Gas, Eastern Tropical North
41 Pacific

42 **1. Introduction**

43 Fixed nitrogen, e.g. nitrate, nitrite and ammonia, is essential for the growth of
44 phytoplankton and other microbes, and limits primary production in much of the surface ocean
45 (Moore et al., 2013). The balance between N₂ fixation and N₂ production controls the amount of
46 marine fixed-N present in the ocean (Brandes and Devol, 2002; DeVries et al., 2012). There are
47 three major oxygen deficient zones (ODZs) in the ocean: the Arabian Sea in the Indian Ocean,
48 the Eastern Tropical North Pacific (ETNP) and the Eastern Tropical South Pacific (ETSP).
49 Despite constituting <1% of the ocean volume, ODZs host 30-50% of marine fixed-N loss
50 through N₂ production (DeVries et al., 2013). Evidence suggests that the oxygen content of the
51 Pacific is decreasing (Ito et al., 2017, 2016; Stramma et al., 2008; Whitney et al., 2007) and a 1%
52 reduction in the ocean O₂ inventory could double the size of ODZs (Deutsch et al., 2011).
53 Indeed, repeat measurements along 110° W longitude in the eastern tropical North Pacific
54 (ETNP) indicate that the ODZ thickness has increased over the past 40 years (Horak et al.,
55 2016). The oxygen content of the ocean is sensitive both to temperature, and to increases in
56 anthropogenic iron deposition (Ito et al., 2016). While the current decrease in oxygen is likely
57 due to anthropogenic impacts and the Pacific Decadal Oscillation, the volume of ODZs should
58 also increase with future climate change (Ito et al., 2016; Ito and Deutsch, 2013). Thus, ODZs
59 are predicted to expand in the future, increasing the area favorable for fixed-N loss.

60 Although we have a reasonably good idea of the magnitude of fixed-N loss through
61 denitrification (org C + NO₃⁻ → N₂) and anammox (NH₄⁺ + NO₂⁻ → N₂) in the three major
62 ODZs (Chang et al., 2012, 2010), our understanding of the factors affecting these two processes
63 is still limited. The interpretation of the stable isotopic composition of the reactants and products
64 of the N-cycle provides a way to examine low oxygen systems without manipulation or
65 incubation. To date there are relatively few studies examining the $\square\delta^{15}\text{N-N}_2$ in low oxygen
66 waters (Altabet et al., 2012; Bourbonnais et al., 2015; Brandes et al., 1998; Cline and Kaplan,
67 1975; Fuchsman et al., 2008; Hu et al., 2016; Manning et al., 2010). Older studies such as
68 Brandes et al (1998) and Cline and Kaplan (1975) examine $\delta^{15}\text{N-N}_2$ in offshore oxygen deficient
69 waters but the authors did not use $\delta^{15}\text{N-N}_2$ to calculate isotope effects. Many of the recent $\delta^{15}\text{N-}$
70 N₂ measurements have been on the Peru shelf of the ETSP and the region offshore of the shelf
71 which is affected by upwelling and eddies (Altabet et al., 2012; Bourbonnais et al., 2015; Hu et
72 al., 2016). In this system, nitrate concentrations are low and can be drawn down to zero. This

73 differs from far offshore ODZs where nitrate concentrations are consistently between 20 and 30
74 μM (Chang et al., 2012, 2010). It was found that the isotope effect for N_2 production from
75 nitrate was small, as low as 11‰ on the Peru shelf (Hu et al., 2016) and 14‰ in a eddy off shore
76 of the shelf (Bourbonnais et al., 2015). While no studies in the ETNP and Arabian Seas have
77 previously examined the isotope effect for N_2 production from the N_2 perspective, studies on the
78 isotopic composition of dissolved inorganic N ($\delta^{15}\text{N}$ -DIN) in offshore oxygen minimum zones in
79 the 1990s has yielded closed isotope effect estimates of $\epsilon_{\text{DIN}}=22\text{--}25\text{\textperthousand}$ (Brandes et al., 1998; Voss
80 et al., 2001). The $\delta^{15}\text{N}$ -DIN data from the ETNP in 1972 yielded open system isotope effect
81 estimates of 30‰ to 40‰ (Cline and Kaplan, 1975), but the $\delta^{15}\text{N}$ -DIN values were actually
82 similar to those seen in the 1990s. Thus, current estimates for the N_2 production isotope effect
83 vary from 11‰ to 40‰.

84 Studies of cultured bacteria also yield large range of estimates for isotope effects
85 involved in steps of N_2 production. Wastewater anammox bacteria have a nitrite reduction
86 isotope effect of $\epsilon_{\text{NO}_2}=16\pm4\text{\textperthousand}$ (Brunner et al., 2013). Denitrifier cultures grown at slow growth
87 rates and reduced C source produced small isotope effects for nitrate reduction ($\epsilon_{\text{NO}_3}=10$ to 15‰;
88 Kritee et al., 2012). However, denitrifier cultures grown at fast growth rates had large isotope
89 effects (ϵ_{NO_3} up to 30‰; (Granger et al., 2008; Kritee et al., 2012). However, the nitrate
90 reduction isotope effect should not be confused with the isotope effect for N_2 production (Fig 1).
91 While Bourbonnais et al (2015) found an isotope effect for N_2 production of 14‰ in an ETSP
92 eddy, they also found an isotope effect for nitrate reduction of 16-21‰. Similarly, a recent
93 modeling study of $\delta^{15}\text{N}$ - NO_2^- and $\delta^{15}\text{N}$ - NO_3^- in the ETSP found that an isotope effect of 18-23‰
94 for nitrate reduction best fit the available data (Peters et al., 2016). This difference between the
95 isotope effect of N_2 production and nitrate reduction highlights the importance of looking at
96 actual $\delta^{15}\text{N}$ - N_2 data.

97 In the marine environment, the apparent isotope effect between nitrate and N_2 is affected
98 by nitrite oxidation (Fig 1). Nitrite oxidation has an inverse isotope effect, making nitrite more
99 depleted and nitrate more enriched (Casciotti, 2009). The difference between $\delta^{15}\text{N}$ - NO_3^- and
100 $\delta^{15}\text{N}$ - NO_2^- ($\Delta^{15}\text{N}$) can reach 40 to 50‰ in low oxygen waters (Bourbonnais et al., 2015;
101 Buchwald et al., 2015; Gaye et al., 2013; Hu et al., 2016; Martin and Casciotti, 2017). Although
102 it has been suggested that ODZs are functionally anoxic (Revsbech et al., 2009; Ulloa et al.,
103 2012), the low oxygen K_m for nitrite oxidation 0.5±4 nM (Bristow et al., 2016), indicates nitrite

104 oxidation is possible at oxygen concentrations below detection of a STOX oxygen sensor (1-10
105 nM; Ulloa et al., 2012). Furthermore, rates of oxygen advection and diffusion may be large
106 enough to supply the necessary oxygen to the upper and lower parts of the ODZ, but not the core
107 (Peters et al., 2016). Stable $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$ isotopes indicate parallel processes of nitrite oxidation
108 and denitrification in ODZs (Buchwald et al., 2015; Gaye et al., 2013; Martin and Casciotti, 2017;
109 Peters et al., 2016). In large ODZs, measured and modeled nitrite oxidation rates dwindle in the
110 core of the ODZ, but the depth range of nitrite oxidation and N_2 production overlap (Babbin et
111 al., 2017, 2014; Buchwald et al., 2015; Peng et al., 2015; Penn et al., 2016; Peters et al., 2016).
112 $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-NO}_2^-$ are affected oppositely by nitrite oxidation, but their combined
113 isotopic pool (DIN) is unaffected. However many N_2 production processes use nitrite directly, so
114 changes in $\delta^{15}\text{N-NO}_2^-$ from nitrite oxidation would affect their N_2 isotopic signature. □

115 Unlike water column denitrification, sedimentary denitrification is thought to usually
116 have a very small isotope effect (<3‰) due to near complete consumption of nitrate (Brandes
117 and Devol, 1997; Lehmann et al., 2007; Sigman et al., 2003). Higher fractionation effects have
118 been documented (Dähnke and Thamdrup, 2013), but in general the isotope effect is thought to
119 be small. The balance between sedimentary denitrification and water column denitrification sets
120 the $\delta^{15}\text{N}$ of oceanic DIN. Thus, the isotope effect from nitrate to N_2 during water column
121 denitrification can be used to estimate rates of sedimentary denitrification. A large isotope effect
122 associated with denitrification in offshore ODZs implies significantly more sedimentary
123 denitrification than water column denitrification (Brandes and Devol, 2002). A small
124 fractionation effect for water column denitrification reduces estimates of sedimentary
125 denitrification and requires less N_2 fixation to attain global marine N balance (Altabet, 2007;
126 Bourbonnais et al., 2015; Brandes and Devol, 2002; Kritee et al., 2012). DeVries et al. (2013)
127 were able to model the a balanced ocean N budget with a 3-D biogeochemical model using an
128 apparent isotope effect for nitrate reduction of 17‰ and a marine denitrification rate of 120-240
129 Tg N yr^{-1} (DeVries et al., 2013). However, an isotope effect significantly larger than 17‰ could
130 potentially imply both larger sources and sinks of N_2 in the ocean.

131 The Eastern Tropical North Pacific (ETNP) ODZ is the largest Oxygen Minimum Zone
132 (Paulmier and Ruiz-Pino, 2009) with over 700m depth of anoxic water at its heart. Here we
133 present $\delta^{15}\text{N-N}_2$, $\delta^{15}\text{N-NO}_2^-$, and $\delta^{15}\text{N-NO}_3^-$ from 7 stations in the heart of the ETNP ODZ
134 including both coastal and far offshore stations (Figure 2; Table S1). Additionally we examine

135 data from one station in the Arabian Sea (Table S1) to expand the range of our findings. Here we
136 present the first analysis of the denitrification isotopic effect based on $\delta^{15}\text{N-N}_2$ outside of the
137 ETSP.

138

139 **2. Methods**

140 *2.1 Study site and sample collection*

141 Samples were collected during R/V Thomas G. Thompson cruise TN278 to the ETNP
142 during March-April 2012 (Fig. 2, Table S1). Water samples were taken using a SeaBird CTD-
143 Rosette system equipped with dual sensors for conductivity, temperature, and oxygen (SBE 043)
144 as well as Chlorophyll fluorescence and transmissivity. A STOX (Switchable Trace Oxygen
145 microsensor; Revsbech et al., 2009) sensor was also attached to the CTD-Rosette and its output
146 was also logged by the CTD. (The STOX data from this cruise has been previously reported in
147 Tiano et al., 2014). The SeaBird SBE43 oxygen sensor was calibrated against Winkler
148 determinations (n=53 depths in triplicate, regression $R^2 = 0.98$).

149 Samples were also collected on the R/V Roger Revelle at Station 1 (Table S1) in the
150 Arabian Sea during September 2007. Water samples were taken using a SeaBird CTD-Rosette
151 system equipped with dual sensors for conductivity, temperature, and oxygen (SBE 043). The
152 SeaBird SBE43 oxygen sensor was calibrated against micro-Winkler determinations.

153

154 *2.2 Nutrient measurements*

155 For the ETNP, nutrient samples collected directly from the Niskin bottles and were
156 filtered through GF/F glass fiber filters and stored refrigerated until analysis on board.
157 Concentrations of NO_2^- , PO_4^{3-} , Si(OH)_4 , and NH_4^+ were determined shortly after sample
158 collection using a Technicon Autoanalyzer and the JGOFS protocols (UNESCO, 1994). For the
159 Arabian Sea, nutrient values were reported in Chang et al (2012).

160

161 *2.3 N_2 and $\delta^{15}\text{N-N}_2$ Methods*

162 For the ETNP, duplicate gas samples used for $\text{N}_2:\text{Ar}$ ratios and $\delta^{15}\text{N-N}_2$ were collected in
163 preweighed, evacuated 185 mL glass flasks sealed with a Louwers-Hapert valve. The sampling
164 flask contained dried mercuric chloride as a preservative (Emerson et al., 1999). To prevent air
165 contamination when sampling, samples were transferred from the Niskin bottle to the sample

166 flask under a local CO₂ atmosphere (Emerson et al., 1999). Sample flasks were filled
167 approximately half full and returned to the University of Washington for analysis. In the
168 laboratory flasks were weighed and equilibrated with the headspace by rotating overnight in a
169 water bath at a known (room) temperature. Immediately after equilibration nearly all liquid water
170 was removed from the flask and the head-space gases were cryogenically processed to
171 completely remove CO₂ and residual water vapor. At the same time a known concentration of
172 ³⁶Ar spike was added to each sample, as done previously (Chang et al., 2010; Fuchsman et al.,
173 2008), to allow the concentration of ⁴⁰Ar to be determined from the ³⁶Ar:⁴⁰Ar ratios.

174 To avoid using an oxygen correction for $\delta^{15}\text{N-N}_2$, most oxic samples were also put
175 through an inline CuO furnace to remove all oxygen. However, to check the validity of the
176 oxygen correction, for some duplicates, one sample was put through the furnace and one was not.
177 The still oxygenated samples were measured against an oxygenated standard and an oxygen
178 correction was used as in (Chang et al., 2012, 2010; Fuchsman et al., 2008; Manning et al.,
179 2010). Duplicates matched indicating that present and older data were comparable (Fig. S1). All
180 gas samples were measured at the Stable Isotope Lab, School of Oceanography, University of
181 Washington on a Finnigan Delta XL isotope ratio mass spectrometer. Anoxic samples were
182 measured against a standard containing zero oxygen, where the standard value was determined
183 from air heated in the inline CuO furnace to remove oxygen.

184 Also included here are $\delta^{15}\text{N-N}_2$ measurements from the Arabian Sea in 2007. N₂
185 concentrations for these samples have been previously reported (Chang et al., 2012). However,
186 $\delta^{15}\text{N-N}_2$ values have not been previously reported. They were measured as above except that a
187 CuO furnace was not used. The effect of oxygen on the measurement of $\delta^{15}\text{N}$ was determined
188 using a series of five flasks that contain variable amounts of oxygen but the same concentrations
189 and $\delta^{15}\text{N}$ of nitrogen gas. The calculated slope from the standards was extrapolated to the
190 sample. The value of the oxygen correction ranged from zero in the ODZ to 0.1 to 0.3‰ in oxic
191 waters.

192 In the Black Sea, a methane correction was used for $\delta^{15}\text{N-N}_2$ (Fuchsman et al., 2008), but in the
193 Black Sea methane reaches 11 μM (Reeburgh et al., 1991). This correction was not needed in the
194 ETNP or Arabian Sea because methane was \leq 100 nM in these ODZs (Chronopoulou et al., 2017;
195 Jayakumar et al., 2001).

196

197 **2.4 $\delta^{15}\text{N-NO}_2^-$, and $\delta^{15}\text{N-NO}_3^-$ Methods**

198 Samples containing $[\text{NO}_2^-] > 0.25 \mu\text{M}$ were chosen for $\delta^{15}\text{N-NO}_2^-$ analysis, purged with
199 N_2 gas to remove *in situ* N_2O , and treated with a sodium azide/acetic acid reagent (McIlvin and
200 Altabet, 2005). Nitrite isotope analyses were conducted on 2-10 nmol of NO_2^- and calibrated to
201 air and VSMOW reference scales (for $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$, respectively) using reference materials N-
202 23, N-7373, and N-10219 (Casotti et al., 2007) each analyzed in triplicate at two different
203 quantities (5 nmol and 10 nmol NO_2^-). $\delta^{15}\text{N-NO}_3^-$ samples were prefiltered with 0.2 μm syringe
204 filters and frozen until returning to the lab. Sulfamic acid was added to samples containing $[\text{NO}_2^-$
205 $] > 0.2 \mu\text{M}$ to remove NO_2^- (Granger and Sigman, 2009). $\delta^{15}\text{N-NO}_3^-$ was determined by the
206 ‘denitrifier method’, which involves the bacterial conversion of NO_3^- to N_2O (Casotti et al.,
207 2002; Sigman et al., 2001). Nitrate isotope analyses were conducted on 20 nmol NO_3^- and
208 calibrated to air and VSMOW reference scales (for $\delta^{15}\text{N}$ and $\delta^{18}\text{O}$, respectively) using reference
209 materials USGS32, USGS34, and USGS35 (Bohlke et al., 2003), each analyzed six times
210 throughout the run in 20 nmol amounts (McIlvin and Casotti, 2011). $\delta^{15}\text{N-NO}_2^-$, and $\delta^{15}\text{N-NO}_3^-$
211 from station 1 in the Arabian Sea 2007 were measured similarly and can be seen in Martin and
212 Casotti (2017).

213

214 **3. Results**

215 The section comprised by our stations in the ETNP showed a significant upward tilt of
216 the isopleths surfaces near the coast (Fig. 3). At stations 132 and 133, the stations closest to the
217 coast (Fig. 2), the top of the ODZ and the nitrite maximum were at shallower depths than open
218 ocean stations on the transect (Fig. 3). Due to this we present the offshore stations data versus
219 depth, but when all stations are combined we plot versus density. At the offshore stations (Fig. 2)
220 the STOX based O_2 concentrations became undetectable at 105 m and remained undetectable
221 until 830 m (Tiano et al, 2014). We define the ODZ as this zone over which oxygen was below
222 detection.

223 The top of the ODZ was also the depth at which a secondary nitrite maximum (SNM)
224 appeared in the water column (Fig. 2a). At the offshore stations, the concentration of NO_2^- in the
225 SNM increased to $\sim 5 \mu\text{M}$ at 140 m and then decreased to zero at 500m (Fig. 2a), while at the
226 coastal stations the maximum was greater ($\sim 6 \mu\text{M}$) and occurred shallower in the water column
227 (Fig. 3 and S2). Nitrate concentrations were very low in the mixed layer, increased rapidly in the

228 pycnocline to about 20 μM , then increased more gradually to a maximum of about 45 μM at
229 1000 m (Fig. 3a). Ammonium concentrations were generally $<0.1 \mu\text{M}$ in the ODZ (Peng et al.,
230 2015; Figure S3), so we consider DIN to be $\text{NO}_3^- + \text{NO}_2^-$. DIN concentrations were similar to
231 nitrate with the exception of a significant elevation in the upper half of the ODZ due to the
232 secondary nitrite maximum.

233 Data from all stations, coastal and offshore, aligned well on density surfaces (Fig. S4).
234 At all stations, the SNM peak was located on the 26.2 sigma-theta surface. This sigma-theta
235 surface coincides with the Pacific Equatorial 13°C water mass (Fig. S5) discussed in (Fiedler and
236 Talley, 2006).

237

238 *3.1 Nitrogen Gas and $\delta^{15}\text{N}$*

239 Measured $\text{N}_2:\text{Ar}$ saturation ratios were high in the ODZ and frequently had two local
240 maxima, one at the top of the ODZ and a second at 300m (Fig. S2). Measured $\text{N}_2:\text{Ar}$ ratios
241 contain both biologically produced N_2 and a large background signal. The background N_2 (and
242 argon) was originally derived from equilibrium with air, but mixing of water masses of different
243 temperatures causes gases to become supersaturated in the ocean (Ito and Deutsch, 2006). We
244 determined biological N_2 (N_2 excess) by subtracting background $\text{N}_2:\text{Ar}$ measurements from oxic
245 waters in the tropical and subtropical Pacific (Chang et al., 2012). The background data was fit
246 with the equation:

247

248
$$\text{N}_2:\text{Ar}_{\text{Background}} = 0.998 + 2.31 \times 10^{-8} e^{0.49\sigma_\theta} \quad (\text{Chang et al., 2012}). \quad (1)$$

249

250 Calculated background values for each station are shown in Fig. S2. N_2 excess, which we
251 consider to be biological N_2 , was then calculated as follows:

252

253
$$\text{N}_2,\text{excess} = (\text{N}_2:\text{Ar}_{\text{measured}} - \text{N}_2:\text{Ar}_{\text{Background}}) \times \text{N}_2,\text{saturation} \times 2 \quad (2)$$

254

255 Where the factor of 2 in the last term converts from moles of N_2 gas to moles N.
256 $\text{N}_2,\text{saturation}$ was calculated as in Hamme and Emerson (Hamme and Emerson, 2004). Thus Ar
257 measurements were not used in the calculation of N_2 excess reported here. Argon concentrations
258 were up to 6% supersaturated in the upper oxic waters, but were very close to saturation in the

259 ODZ (Fig S6). Since the argon measurements were close to saturation, using Ar measurements to
260 determine N₂ concentrations from N₂/Ar measurements and background calculations, instead of
261 N_{2,saturation}, produced quite similar results (Fig. S7). N₂ excess values were high through the ODZ
262 with concentrations between 10 and 15 μM (Fig. 4 and S2).

263 The amount of fixed N loss in an ODZ, has frequently been expressed as N deficit, which
264 is the difference between measured [DIN] and expected DIN. The expected DIN (N_{expected}) is
265 typically estimated from phosphate to DIN ratios determined from waters outside the ODZ and
266 phosphate concentrations within the ODZ:

267

268 $N_{expected,ETNP} = 14.4 \times [PO_4^{3-}] - 1.1$ (Chang et al., 2012). (3)

269

270 In the ETNP, depth distribution of N deficit generally matches N₂ excess (Fig. 4), with N
271 deficit, like N₂ excess, maximal at the top of the ODZ and at 300m. There is a local minimum in
272 both N deficit and N₂ excess located at 200 m (density surface 26.3). In general, N₂ excess and N
273 deficit values match closely with a slope of 0.9 ($R^2=0.86$; Fig. S8). However, at stations 162 and
274 163 there is a significant mismatch (2-4 μM) between N deficit and N₂ excess in the ODZ (Fig.
275 S2). The reasons for this mismatch are unknown, but are likely related to our background values
276 imperfectly capturing the actual background due to water mass mixing.

277 The ETNP $\delta^{15}\text{N-N}_2$ measurements range from 0.34 to 0.62‰ and frequently have a
278 minimum <0.4‰ at 300m (Fig. S2). These measurements are similar to $\delta^{15}\text{N-N}_2$ data from the
279 ETNP in 1993 (Brandes et al., 1998). Measured $\delta^{15}\text{N-N}_2$ also contains both a biological and
280 background signals. The $\delta^{15}\text{N-N}_2$ value in seawater at equilibrium with air is about 0.68±0.02‰
281 (Knox et al., 1992). Mixing has a much smaller effect on $\delta^{15}\text{N}$ isotopes than on N₂
282 concentrations since all water masses bear the equilibrium isotope signature. The average $\delta^{15}\text{N-N}_2$
283 measurements at 1500m, a depth not influenced by the ODZ, at the 4 offshore stations (data
284 not shown) was 0.65±0.05‰. Here we used 0.68‰ as our background value, but also made
285 calculations using values of 0.65‰ and 0.7‰ in order to estimate potential error in the
286 calculation of $\delta^{15}\text{N-N}_2$ excess (Fig. S2). The resulting $\delta^{15}\text{N-N}_2$ excess values for the ETNP were
287 generally between -10‰ and -30‰ (Fig. 4 and S2, S4).

288 Total $\delta^{15}\text{N-N}_2$ for the Arabian Sea ranged from 0.45‰ to 0.55‰ (Fig. S9). Despite this,
289 $\delta^{15}\text{N-N}_2$ excess values for the Arabian Sea, calculated as above but using $\text{N}_2:\text{Ar}_{\text{background}}$
290 calculations from the Arabian Sea (Chang et al., 2012) were between -14‰ and -20‰ (Fig. 5),
291 which is in the same range as the ETNP.

292 In the ETNP, the $\delta^{15}\text{N-NO}_3^-$ increased from around 10‰ in the oxycline to around 20‰
293 in the ODZ and then values decreased towards the lower oxycline (Fig. 4). In the Arabian Sea,
294 $\delta^{15}\text{N-NO}_3^-$ was 11-12‰ at the top and bottom of the ODZ, but reached 24‰ in the heart of the
295 ODZ (Fig. S10). The ETNP $\delta^{15}\text{N-NO}_2^-$ was generally in the -15‰ to -20‰ range in the ODZ
296 (Fig. 4 and S2). While $\delta^{15}\text{N-NO}_2^-$ had similar range of values as $\delta^{15}\text{N-N}_2$ excess, at each station
297 $\delta^{15}\text{N-N}_2$ excess was enriched compared to $\delta^{15}\text{N-NO}_2^-$ in the upper ODZ, but became more
298 depleted than $\delta^{15}\text{N-NO}_2^-$ at 200-300m (Fig. S2). In the Arabian Sea, $\delta^{15}\text{N-NO}_2^-$ and $\delta^{15}\text{N-N}_2$
299 excess were quite similar at ~-15‰ until 250 m, where $\delta^{15}\text{N-NO}_2^-$ started to become more
300 depleted with depth reaching -31‰ at 375m (Fig 5). $\delta^{15}\text{N-NO}_2^-$ values from the Arabian Sea
301 ODZ (Fig 5) are similar to those seen in the ETNP in 2012.

302 In the ETNP, nitrite concentrations were 5 μM offshore and reached 6 μM closer to the
303 coast (Fig. 3) which is unusually high for the ETNP (Horak et al., 2016). Accordingly, $\delta^{15}\text{N-}$
304 NO_2^- was different in 2012 than values seen in the ETNP in 2003 (Casciotti and McIlvin, 2007).
305 In 2003, $\delta^{15}\text{N-NO}_2^-$ values changed from -15‰ to -18‰ at the top of the ODZ to -8‰ at 300m
306 (Casciotti and McIlvin, 2007). In contrast, in 2012 the $\delta^{15}\text{N-NO}_2^-$ values were more negative at
307 depth than in 2003, with values at 300m of -12‰ to -15‰ (Fig. 4, S2). We suspect that this is
308 due to the higher nitrite concentrations in 2012 than seen in 2003 (3.5 μM). It is still unclear why
309 these differences occurred (Horak et al., 2016), but larger concentrations should buffer the
310 enrichment of the remaining nitrite as it is reduced.

311

312 *3.2 $\Delta^{15}\text{N}$ values*

313 A comparison between different N species $\delta^{15}\text{N}$ values helps quantify the importance of
314 oxidation and reduction in the system (Casciotti, 2009; Casciotti et al., 2013). $\Delta^{15}\text{N}_{\text{NO}_3-\text{NO}_2}$, the
315 difference between $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-NO}_2^-$, was consistently about 32‰ through most of the
316 ETNP ODZ, though values may be slightly smaller below 300m (Fig. 6). Similar results were
317 found in 2003 ETNP data (Casciotti and McIlvin, 2007). In the Arabian Sea, the $\Delta^{15}\text{N}_{\text{NO}_3-\text{NO}_2}$

318 was ~35‰ at the top of the ODZ but was ~40‰ for the majority of the ODZ (Fig. S9).
319 Interestingly, the $\Delta^{15}\text{N}_{\text{NO}_3\text{-NO}_2}$ had significantly more structure in the ETSP (Casotti et al.,
320 2013) than seen here in the ETNP and Arabian Seas. The $\Delta^{15}\text{N}_{\text{NO}_3\text{-NO}_2}$ values seen here are
321 greater than ~25‰, an upper estimate on the isotope effect (ϵ) value for nitrate reduction
322 (Granger et al., 2008), indicating the influence of nitrite oxidation on the system (Casotti et al.,
323 2013). Nitrite oxidation has an inverse fractionation effect, which means that the nitrate
324 produced becomes more enriched and the nitrite remaining becomes more depleted (Buchwald
325 and Casotti, 2010; Casotti, 2009). Thus, nitrite oxidation can increase the isotopic separation
326 between NO_3^- and NO_2^- . The more nitrite oxidation the greater the $\Delta^{15}\text{N}_{\text{NO}_3\text{-NO}_2}$ (Casotti et al.,
327 2013). However, one would expect that nitrite oxidation to be higher at the edges of the ODZ
328 (Babbin et al., 2017; Penn et al., 2016; Peters et al., 2016), and $\Delta^{15}\text{N}_{\text{NO}_3\text{-NO}_2}$ does not follow this
329 trend both for the ETNP and the Arabian Sea (Fig 6, S10). We also looked at $\Delta^{15}\text{N}_{\text{N}_2\text{-NO}_2}$, the
330 $\delta^{15}\text{N}$ difference between excess N_2 and nitrite for the ETNP. These values consistently become
331 more depleted with depth, changing sign from 2‰ to 10‰ at the top of the ODZ to -6‰ to -15‰
332 at 300m (Fig. 6). $\Delta^{15}\text{N}_{\text{N}_2\text{-NO}_2}$ values highlight that $\delta^{15}\text{N-N}_2$ excess was enriched compared to
333 $\delta^{15}\text{N-NO}_2^-$ in the upper ODZ, but became more depleted than $\delta^{15}\text{N-NO}_2^-$ at 200-300m (Fig. 6,
334 S2). The change between positive to negative $\Delta^{15}\text{N}_{\text{N}_2\text{-NO}_2}$ occurs at the nitrite maximum, which
335 is in the 13°C water mass. Interestingly, the positive $\Delta^{15}\text{N}_{\text{NO}_2\text{-N}_2}$ in the top 50m of the ODZ
336 indicates that the N_2 produced is more enriched than nitrite even though nitrite is the source of
337 N_2 (Fig. 6). Isotope effects for nitrite reduction of $\epsilon=22\text{\textperthousand}$ have been found in bacterial cultures
338 containing the copper-type nitrite reductase (NirK) and $\epsilon=8\text{\textperthousand}$ in cultures containing the heme-
339 type nitrite reductase (NirS) (Martin and Casotti, 2016). In an eddy in the ETSP, the isotope
340 effect for nitrite reduction was calculated to be 12‰ (Bourbonnais et al., 2015), similar to
341 cultures with the NirK copper nitrite reductase (Martin and Casotti, 2016). However, *in situ*
342 nitrite data has been successfully modeled with no fractionation during nitrite reduction in the
343 Southern ETNP (Buchwald et al., 2015) and ETSP (Casotti et al., 2013; Peters et al., 2016),
344 and $\delta^{15}\text{N-NO}_2^-$ and $\delta^{15}\text{N-N}_2$ excess values were nearly identical in the Arabian Sea (Fig 5).
345 Scenarios to explain this data are discussed below (section 4.3).
346
347 *3.3 Isotope effect for N_2 production*

348 To minimize the complication of nitrite oxidation on our calculations, we combine $\delta^{15}\text{N}$ -
349 NO_2^- , and $\delta^{15}\text{N-NO}_3^-$ to form $\delta^{15}\text{N-DIN}$. We calculated the closed system fractionation effect for
350 N_2 production from $\delta^{15}\text{N-DIN}$ and from $\delta^{15}\text{N}$ of biologically produced N_2 ($\delta^{15}\text{N-N}_2$ excess).
351 Closed system calculations assume no re-supply of substrate, in this case nitrate, so are
352 appropriate where there is little mixing (Hu et al., 2016). As our stations were far removed from
353 the edges of the ODZ where mixing and re-supply of nitrate would occur, we chose a closed
354 system isotope effect calculation. Individual isotope effects were calculated for each sample
355 using the equations for closed system fractionation (Mariotti et al., 1981):

356 $\delta^{15}\text{DIN} = \delta^{15}\text{DIN}_{\text{initial}} + \varepsilon \times \ln[f]$ (4)

357 $\delta^{15}\text{N}_{\text{2,excess}} = \delta^{15}\text{DIN}_{\text{initial}} - \varepsilon \left(\frac{f}{1-f} \right) \ln[f]$ (5)

358 where ε is the isotope effect and f is the fraction of DIN remaining. In all cases, values for f were
359 calculated as:

360 $f = \frac{\text{NO}_3^- + \text{NO}_2^-}{\text{DIN}_{\text{expected}}}$ (6)

361 where

362 $\text{DIN}_{\text{expected}} = \text{NO}_3^- + \text{NO}_2^- + \text{N}_{\text{2,excess}}$ (7)

363 Thus, instead of calculating expected DIN based on an assumed N:P ratio, $\text{N}_{\text{2,excess}}$
364 measurements were used to quantify the amount of DIN removed. The isotope effect for nitrate
365 reduction was calculated similarly to DIN. Also, instead of assuming a deep water value for
366 $\delta^{15}\text{N-DIN}_{\text{initial}}$, we calculated $\delta^{15}\text{N-DIN}_{\text{initial}}$ by combining the mass-weighted isotopes of nitrate,
367 nitrite, and N_2 excess (Figure S11) which contains the influence of remineralized organic matter
368 as well as the original nitrate. In the ODZ, we assumed that remineralized organic matter is
369 converted to N_2 via anammox. For this calculation, we assumed that N_2 fixation rates were
370 negligible. Offshore nitrogen fixation rates measured in the ODZ on this cruise were 0.2 nM per
371 day (Jayakumar et al., 2017), supporting this assumption. We did not include N_2O in this
372 calculation, but N_2O concentrations were from 0-60 nM in the ODZ for this cruise (Babbin et al.,
373 2015), so were insignificant to the calculation when mass-weighted. Ammonium concentrations
374 were also generally below detection in the ODZ (Peng et al., 2015). Averaging across all samples
375 yielded $\delta^{15}\text{N-DIN}_{\text{initial}}$ of $5.3 \pm 0.8\text{\textperthousand}$ for the ETNP and $5.6\text{\textperthousand} \pm 0.9\text{\textperthousand}$ for the Arabian Sea. These
376 average values were used as $\delta^{15}\text{N-DIN}_{\text{initial}}$ in our calculations. Our average $\delta^{15}\text{N-DIN}_{\text{initial}}$ values
377 of $5.3\text{\textperthousand}$ and $5.6\text{\textperthousand}$ are very similar to those used in previous isotope effect calculations in the

378 ETSP (5.5‰; Bourbonnais et al., 2015; Hu et al., 2016). However, more enriched $\delta^{15}\text{N-NO}_3^-$
379 values have been found for the intermediate waters at station ALOHA (6.4‰; Sigman et al.,
380 2009) and in the 200-600m Pacific equatorial waters (7‰; Rafter et al., 2013). Thus $\delta^{15}\text{N-}$
381 $\text{DIN}_{\text{initial}}$ in the ODZ is more depleted than nitrate in the ODZ source waters. By using this
382 calculated $\delta^{15}\text{N-DIN}_{\text{initial}}$ based on our data, we avoid the over estimation of the N_2 production
383 isotope effect due to aerobic respiration as discussed by Marconi et al (2017). If $\delta^{15}\text{N-DIN}_{\text{initial}}$
384 were chosen from source waters, the addition of remineralized organic N would be incidentally
385 included in the isotope effect calculation (Marconi et al., 2017). In fact, given the relatively
386 enriched source waters, it does appear that our depleted $\delta^{15}\text{N-DIN}_{\text{initial}}$ values are probably due to
387 the influence of remineralization. Sediment trap samples from our ETNP cruise had a $\delta^{15}\text{N}$ of
388 $8.1 \pm 0.4\text{\textperthousand}$ offshore (n=2) and $8.7 \pm 0.4\text{\textperthousand}$ onshore (n=5) (Table S2; Rick Keil, personal
389 communication). Due to little seasonality in the chlorophyll a, productivity, and nitrate supply in
390 our region of the ETNP (Pennington et al., 2006), we assume that the isotopic composition of our
391 sediment trap samples were representative. Sediment trap material from the Arabian Sea 2007
392 ODZ (collection described in Keil et al., 2016) had $\delta^{15}\text{N}$ of $7 \pm 1\text{\textperthousand}$ (n=12; Table S2; Rick Keil,
393 personal communication), similar to values from the ETNP. Given a isotope effect for organic
394 matter remineralization to ammonium of 4‰ (Macko et al., 1994; Saino and Hattori, 1980;
395 Wada, 1980), remineralized N should have been ~4 to 5‰ in the ODZ, similar to our $\delta^{15}\text{N-}$
396 $\text{DIN}_{\text{initial}}$ of $5.3 \pm 0.8\text{\textperthousand}$ or $5.6\text{\textperthousand} \pm 0.9\text{\textperthousand}$.

397 When calculated for each depth, the closed isotope effects for the ETNP derived from
398 DIN and N_2 excess match closely; they are -20 to -25‰ at the top of the ODZ, increase to -30 to
399 -45‰ at ~300m, and then decrease again toward the bottom of the ODZ (Fig. 7, and S12). In the
400 Arabian Sea, the closed isotope effects derived from DIN and N_2 excess were fairly constant,
401 varying between -24‰ and -30‰ (Fig 8). As expected, in both the ETNP and the Arabian Sea,
402 $\delta^{15}\text{N-NO}_2^-$ was often most depleted at the top of the ODZ, where one would expect nitrite
403 oxidation (Fig. 5, and S2). However, unlike the Arabian Sea, where $\delta^{15}\text{N-NO}_2^-$ and $\delta^{15}\text{N-N}_2$ are
404 closely correlated for the top 300m and $\delta^{15}\text{N-N}_2$ is fairly constant with depth (Fig 5), in the
405 ETNP, $\delta^{15}\text{N-N}_2$ excess does not track $\delta^{15}\text{N-NO}_2^-$, and $\delta^{15}\text{N-N}_2$ excess has the most depleted
406 values in 250m-300m range towards the bottom of the SNM (Fig. 4, S2, S4). Unsurprisingly,
407 250m-300m is the same range where the isotope effects are the largest (Fig. 7, Fig S12).

408 For the ETNP, the average apparent closed isotope effect for consumption of DIN was -
409 $26\pm1\text{\textperthousand}$ (using equation 4) and it was $-27\pm6\text{\textperthousand}$ for production of N_2 excess (using equation 5).
410 The closed isotope effect from St 132, our ETNP coastal station ($-23\pm3\text{\textperthousand}$ for N_2 and $-23\pm5\text{\textperthousand}$
411 for DIN; 550 m bottom depth; Fig. 7), is similar to our offshore average value ($-29\pm5\text{\textperthousand}$ for N_2).
412 If the closed isotope effect for the ETNP was calculated by the more traditional Rayleigh plot,
413 the values were quite similar to our average depth calculations ($-25.1\text{\textperthousand}$ for DIN; Figure S13),
414 but due to the previously mentioned variability with depth, the R^2 value was only 0.5 for DIN
415 and was worse for N_2 gas (data not shown). Though we prefer a closed system calculation, we
416 also examined our results with an open system calculation where mixing is assumed to be a
417 dominant process:

418 $\delta^{15}\text{DIN} = \delta^{15}\text{DIN}_{\text{initial}} + \varepsilon \times (1 - f)$ (8)

419 $\delta^{15}\text{N}_{2,\text{excess}} = \delta^{15}\text{DIN}_{\text{initial}} - \varepsilon \times f$ (9).

420 Our isotope effects were similar, though more variable, if an open system calculation was used ($-$
421 $29\pm17\text{\textperthousand}$ for DIN and $-32\pm8\text{\textperthousand}$ for N_2 in the ETNP). This similarity between closed and open
422 systems supports the robustness of our calculations. Given that the N deficit (calculated from
423 nutrients) and the N_2 excess (calculated from N_2 gas) were quite similar (Fig. 4, S2, S4, S8), as
424 were the isotope effects calculated from reactants and from the product, we assume that we have
425 mass balance in our system.

426 The Arabian Sea is another major ODZ. We have $\delta^{15}\text{N-N}_2$ excess and $\delta^{15}\text{N-DIN}$ from
427 one offshore station from Arabian Sea in 2007 (R/V Revelle) (Fig. 5). Sediment trap material
428 from the Arabian Sea 2007 ODZ (Keil et al., 2016) had $\delta^{15}\text{N}$ of $7\pm1\text{\textperthousand}$ ($n=12$; Table S2; Rick
429 Keil, personal communication), similar to values from the ETNP. Thus it is not surprising that
430 $\delta^{15}\text{N-DIN}_{\text{initial}}$ was also similar ($5.6\text{\textperthousand} \pm 0.9\text{\textperthousand}$). When $\delta^{15}\text{N-N}_2$ is examined from the Arabian
431 Sea, the closed isotope effect was $26\pm4\text{\textperthousand}$ and the isotope effect for $\delta^{15}\text{N-DIN}$ was $26\pm3\text{\textperthousand}$ (Fig.
432 8), which is also similar to the offshore ETNP. These numbers are significantly larger than those
433 determined from the coastal ETSP data (Hu et al., 2016) but are consistent with older $\delta^{15}\text{N-DIN}$
434 data from the Arabian Sea in 1993, 1994, and 1995 ($\varepsilon=22\pm3\text{\textperthousand}$ with a $\delta^{15}\text{N-DIN}_{\text{initial}}$ of 6\textperthousand and
435 $\varepsilon=24$ with $\delta^{15}\text{N-DIN}_{\text{initial}}$ of 5\textperthousand) and ETNP in 1993 ($\varepsilon=25\pm2\text{\textperthousand}$ with a $\delta^{15}\text{N-DIN}_{\text{initial}}$ of 6\textperthousand) and
436 in the ETNP in 1997 ($\varepsilon=22.5\text{\textperthousand}$ with a $\delta^{15}\text{N-DIN}_{\text{initial}}$ of $6.2\text{\textperthousand}$) (Brandes et al., 1998; Voss et al.,
437 2001). Combined, this data indicates that the isotope effect for N_2 production is similar for the
438 offshore regions of these two ODZs and is approximately $25\text{\textperthousand}$.

439 The isotope effect for nitrate reduction in the ETNP was $-28\pm6\text{\textperthousand}$, which was in the same
440 range as the isotope effect for DIN. In Arabian Sea the isotope effect for nitrate reduction was $-25\pm6\text{\textperthousand}$, also in the same range as the isotope effect for DIN. This differs from the ETSP where
441 isotope effect for nitrate reduction has been repeatedly found to be significantly larger than that
442 for DIN conversion to N₂ (Bourbonnais et al., 2015; Casciotti et al., 2013; Peters et al. this
443 issue).

445

446 **4. Discussion**

447 The Eastern Tropical North Pacific (ETNP) ODZ is the largest marine ODZ by volume and
448 accounts for ~40% of marine anoxic waters by area (Paulmier and Ruiz-Pino, 2009). At offshore
449 stations in the core of the ODZ in 2012, oxygen was below detection for a STOX sensor from
450 105 m to 800 m. Both rates of N₂ production by denitrification and anammox were measured in
451 incubation experiments during this cruise (Babbin et al., 2015, 2014) and the addition of
452 sediment trap material stimulated denitrification rates (Babbin et al., 2014). Denitrifier RNA has
453 been found to be enriched within particles in the ETNP (Ganesh et al., 2015). The Arabian Sea
454 only accounts for 8% of marine anoxic waters by area, but thickness of the ODZ is comparable
455 to the ETNP (Paulmier and Ruiz-Pino, 2009). On our cruise in the Arabian Sea in 2007,
456 denitrification rates and genes dominated over anammox (Ward et al., 2009) and the addition of
457 sediment trap material stimulated denitrification rates (Chang et al., 2014). N₂ gas and $\delta^{15}\text{N}$,
458 $\delta^{15}\text{N-NO}_2^-$ and $\delta^{15}\text{N-NO}_3^-$ were measured along a coast to open ocean transect in core of the
459 ETNP ODZ and on one station in the Arabian Sea. Interestingly in the ETNP, $\Delta^{15}\text{N}_{\text{NO}_2-\text{N}_2}$
460 changed with a clear trend from negative to positive with depth and the isotope effects for N₂
461 production also changed with depth. These same features were not seen in the Arabian Sea. In
462 both the ETNP and Arabian Sea, the isotope effects calculated from DIN and N₂ were quite
463 similar, and the magnitude of the isotope effect was large.

464 *4.3 Change in isotope effect with depth*

465 In the ETNP, the absolute values of the apparent isotope effects for DIN and N₂ excess
466 increase with depth until ~300m and then decrease again (Fig. 7, S12). This same change in
467 isotope effects with depth is not seen in the Arabian Sea (Fig 8). Instead in the Arabian Sea there
468 is a slight decrease in apparent isotope effect with depth (Fig 8). Below we discuss 6 possible
469 explanations for this observation in the ETNP. One hypothesis to explain this could be the

470 influence of nitrite oxidation at the top of the ODZ. $\delta^{15}\text{N-NO}_3^-$ and $\delta^{15}\text{N-NO}_2^-$ values from the
471 Southern ETNP (Costa Rica Dome) were similar to values presented here and could be modeled
472 completely by nitrate and nitrite reduction, with nitrite oxidation (Buchwald et al., 2015) but N_2
473 gas was not included in the model. Nitrite oxidation could affect the system by modifying $\delta^{15}\text{N-NO}_2^-$,
474 and $\delta^{15}\text{N-NO}_3^-$ and by affecting the nitrite concentrations. Isotope effects are often
475 reduced at low substrate concentrations. However, the DIN and N_2 excess isotope effects are
476 largest at 250-300m where nitrite concentrations are already greatly reduced, so nitrite
477 concentrations cannot explain the isotope effect depth profile. Additionally, nitrite oxidation
478 would affect the intermediate reactant $\delta^{15}\text{N-NO}_2^-$, which could then affect $\delta^{15}\text{N-N}_2$ and the
479 isotope effect. However, $\delta^{15}\text{N-NO}_2^-$ and $\delta^{15}\text{N-N}_2$ excess do not correlate in the 250-300m region,
480 implying a different cause for the change in isotope effect. All together, nitrite oxidation does not
481 appear to be responsible for the change in isotope effects with depth.

482 A second hypothesis would involve the input of ammonium into the ODZ from migrating
483 micronekton/zooplankton. ADCP data indicates micronekton migrate to 300m in the ETNP
484 (Bianchi et al., 2014). $\delta^{15}\text{N}$ of ammonium from excretion under ODZ conditions is not well
485 quantified. Theoretically, the input of depleted ammonium from zooplankton at 300m could
486 affect $\delta^{15}\text{N-N}_2$ gas, making it more depleted. However, any significant depletion from injected
487 ammonium would also appear in our $\text{DIN}_{\text{initial}}$ calculations, and it does not (Figure S11).

488 A third hypothesis is that the differences in isotope effects are due to differences in
489 physical processes. The T/S diagram (Fig. S5), shows that the nitrite maximum is in the Pacific
490 Equatorial 13°C water (Fiedler and Talley, 2006). The anoxic water masses above and below
491 could carry different signals that would then mix. Theoretically, the calculated DIN fractionation
492 effect in the 13°C water could be affected by mixing with oxic water above it (Marconi et al.,
493 2017). In fact, the enriched $\delta^{15}\text{N-NO}_3^-$ in the oxycline above the ODZ (Fig. 4) suggests that
494 mixing is occurring. However, calculation errors from this mixing would be, once again, related
495 to incorrect choice of $\delta^{15}\text{N-DIN}_{\text{initial}}$. Since our $\delta^{15}\text{N-DIN}_{\text{initial}}$ (section 4.2) and $\text{DIN}_{\text{expected}}$ (Eq 7)
496 are calculated from our DIN and N_2 data without assumptions that could vary with water mass, it
497 remains unclear why the different water masses would have different fractionation effects.

498 Because the $\Delta^{15}\text{N}_{\text{NO}_3^--\text{NO}_2^-}$ has little variability from the top of the ODZ to 300m while
499 $\Delta^{15}\text{N}_{\text{NO}_2-\text{N}_2}$ changes with a clear trend (Fig. 6), it seems possible that the change in isotope effect
500 for N_2 production with depth has to do with nitrite reduction. A fourth hypothesis to explain the

501 difference in isotope effects with depth would be a change in the N₂ producing bacterial
502 community at 200-400m. Different types of bacteria are known to have different nitrite reduction
503 isotope effects based on their type of nitrite reductase (Martin and Casciotti, 2016). However,
504 *nirK* was the dominant nitrite reductase gene throughout the ODZ (Fuchsman et al., 2017) and
505 $\Delta^{15}\text{N}_{\text{NO}_2-\text{N}_2}$ values were positive in the upper ODZ and negative below, switching sign at the
506 nitrite maximum. It seems unlikely that some bacteria would have a positive isotope effect for
507 nitrite reduction and other bacteria would have a negative nitrite reduction isotope effect.
508 However, it is possible that some denitrifiers could use nitrate as an oxidant, and keep and use
509 the nitrite produced internally, while others use nitrite from the bulk water column. Given the
510 large difference in $\delta^{15}\text{N}$ between nitrate and nitrite, these two hypothetical types of bacteria
511 would produce very different $\delta^{15}\text{N-N}_2$. For example, at 100m a denitrifying bacterium using
512 nitrate would start with a reactant at $\sim 12\text{\textperthousand}$ while a bacterium using nitrite would start with a
513 reactant at $\sim -18\text{\textperthousand}$. For the nitrate case, an isotope effect of $\sim 20\text{\textperthousand}$ would explain the $\delta^{15}\text{N-N}_2$
514 excess (-12 to $-18\text{\textperthousand}$) at 100m while the nitrite case would need a reverse isotope effect.
515 However, at 300m, nitrate is $20\text{\textperthousand}$ while nitrite is -14 to $-16\text{\textperthousand}$. Thus a nitrite reduction isotope
516 effect of $10\text{\textperthousand}$ would successfully explain $\delta^{15}\text{N-N}_2$ excess ($\sim 26\text{\textperthousand}$) at 300m while an isotope
517 effect from nitrate would be exceptionally large ($46\text{\textperthousand}$). It appears that a switch in the type of
518 denitrifier could reproduce our measurements. What is unclear is if these two types of bacteria
519 actually exist. In gram negative bacteria, nitrite reduction occurs in the periplasm (Zumft, 1997),
520 where nitrite can escape the cell across the outer membrane. However, an internal nitrite pool has
521 been demonstrated for denitrifying bacteria in a sulfidic fjord (Jensen et al., 2009). The idea is
522 that if a bacterium performs both nitrate reduction and nitrite reduction, some nitrite may escape
523 the cell, but the nitrite concentrations inside the cell is still higher than its surroundings (Jensen
524 et al., 2009). Additionally, the use of an internal nitrite pool for at least some denitrifiers has
525 been suggested previously in the ETSP and Arabian Seas to explain excess $\delta^{29}\text{N}_2$ produced in
526 enriched ¹⁵N experiments with nitrite (Chang et al., 2014; De Brabandere et al., 2014).

527 Additionally the apparent isotope effects for nitrate and nitrite reduction could be reduced
528 at the top of the ODZ due to assimilation. Cyanobacteria are photosynthesizing at the top of the
529 ODZ in the ETNP (Garcia-Robledo et al., 2017), so are presumably assimilating nitrogen in
530 some form. Assimilation has a small isotope effect of 5-7‰ (Altabet, 2001; Granger et al., 2004)

531 and so could be reducing the combined apparent isotope effect at the top of the ODZ. However,
532 neither assimilation of nitrate nor of nitrite can explain the $\Delta^{15}\text{N}_{\text{NO}_2\text{-N}_2}$ changes in sign.

533 Finally, denitrifiers are known to be attached to particles (Ganesh et al., 2015, 2014).
534 Given sediment trap data ($\delta^{15}\text{N}$ of organic N of 8‰), in the ETNP, and with a isotope effect for
535 organic matter remineralization to ammonium of 4‰ (Macko et al., 1994; Saino and Hattori,
536 1980; Wada, 1980), nitrite produced from remineralized ammonium within particles would be
537 enriched compared to the highly depleted, water column nitrite measurements. Low levels of
538 particle associated nitrite has been found in oxic waters at Station ALOHA (Wilson et al., 2014).
539 The presence of nitrite has been showed to stimulate N_2O production in particles at Station
540 ALOHA (Wilson et al., 2014). Theoretically, N_2 could also be produced from nitrite in particles.
541 Nitrite can only be produced from particle remineralization when some oxygen is available.
542 Thus, as the presence of even trace amounts of oxygen diminishes with depth, more enriched N_2
543 produced from remineralized nitrite in particles would also decrease. In this case a bacterium
544 using remineralized nitrite in a particle would start with a reactant at ~4‰. As the proportion of
545 N_2 produced with this remineralized nitrite decreased with depth, utilization of depleted water
546 column nitrite would become dominant. For example, a simple calculation using St 161 as a
547 template (Fig S2), assuming water column nitrite of -16‰, and N_2 excess of -12‰ at the top of
548 the ODZ with a constant nitrite reduction isotope of effect of 10‰, approximately 70% of nitrite
549 reduced would need to be from particles (producing N_2 at -6‰) and ~30% from the water
550 column (producing N_2 at -26‰). While at 300m, the measured N_2 excess (-25‰) could be
551 reproduced by using 100% water column nitrite. This hypothesis could explain the apparent
552 change in isotope effect with depth along with changes in $\Delta^{15}\text{N}_{\text{NO}_2\text{-N}_2}$ values. Additionally, the
553 large use of remineralized organic matter in this scenario would also be consistent with our
554 calculated 5.3‰ $\text{DIN}_{\text{initial}}$ values, which reflect remineralization.

555 While nitrite oxidation, migrating zooplankton and mixing between water masses
556 undoubtedly occur in the ODZ and may affect our isotope values, alone they cannot explain our
557 variability in isotope effects. However, both a shift between denitrifiers with and without an
558 internal nitrite pool or denitrification inside sinking particles can explain our ETNP data.
559

560 *4.4 Magnitude of N_2 production isotope effect*

561 Lately, evidence has mounted for a small fractionation effect (<15‰) for water column
562 denitrification. This small fractionation effect is based on culture experiments and isotopic data
563 from the ETSP (Bourbonnais et al., 2015; Casciotti et al., 2013; Hu et al., 2016; Kritee et al.,
564 2012). However, our data from the heart of the ETNP indicates a large apparent isotope effect of
565 26±11‰, calculated from DIN, or 27±6‰, calculated from N₂ excess. Similarly our data from
566 the Arabian Sea also indicated a large apparent closed isotope effect of 26±4‰ from δ¹⁵N-N₂
567 excess and 26±3‰ for δ¹⁵N-DIN. Our result also contrasts with isotope effect calculations
568 derived from DIN data collected on in the ETSP ODZ, which ranged from 11‰ to 14‰
569 (Bourbonnais et al., 2015; Hu et al., 2016). Additionally, nitrate reduction and DIN isotope
570 effects are similar in the ETNP and Arabian Sea, but have been repeatedly found to differ in the
571 ETSP (Bourbonnais et al., 2015; Casciotti et al., 2013; Peters et al. this issue). The isotope effect
572 calculation is extremely sensitive to the fraction remaining, which often depends on phosphate in
573 N deficit calculations, but Hu et al (2016), Bourbonnais et al (2015), and our calculations avoid
574 this issue by using measured N₂ excess instead of N deficit in the fraction remaining calculations.
575 The difference between our isotope effects and published isotope effects from the ETSP could be
576 due to differences associated with the location of sampling in those studies. One of the ETSP
577 studies was coastal with bottom depths less than 150m (Hu et al., 2016) and the other two were
578 from eddies influenced by coastal water (Altabet et al., 2012; Bourbonnais et al., 2015). Nitrate
579 concentrations were greatly reduced on these study sites compared to our stations (Altabet et al.,
580 2012; Bourbonnais et al., 2015; Hu et al., 2016). On the coastal transect, there were mismatches
581 between N₂ excess and N deficit (Hu et al., 2016). Data from an along shore transect in the ETSP
582 in 2013 also found mismatches between N₂ excess and N deficit at some stations (Peters et al.,
583 this issue). The coastal ETSP shelf, where δ¹⁵N-N₂ excess was examined, was affected by
584 sediments (Hu et al., 2016), which have near zero isotope effects (Brandes and Devol, 1997;
585 Lehmann et al., 2007). Perhaps, due to the larger width of the Peru shelf (Smith and Sandwell,
586 1997; visualization on http://topex.ucsd.edu/marine_topo), sedimentary processes influence the
587 isotope effects in this region. Our coastal station from the ETNP did not have reduced isotope
588 effects compared to the offshore ETNP (Fig. 7). However, the ETNP shelf in the region sampled
589 was quite narrow (Smith and Sandwell, 1997). It seems that the ETSP system is more
590 complicated in some way than the ETNP and Arabian Sea, which affects the apparent isotope
591 effects calculated there.

592 Our DIN and N₂ excess isotope effects are apparent isotope effects that include both
593 denitrification and anammox. However, our nitrate reduction isotope effects for the ETNP (-
594 28±6‰), and Arabian Sea (-25±6‰) were also large. In culture, denitrifiers grown at slow rates
595 to mimic the estimated in situ water column rates exhibit small nitrate reduction fractionation
596 effects (Kritee et al., 2012). However, cultures grown at high rates show large fractionation
597 effects (Granger et al., 2008; Kritee et al., 2012). Mounting evidence suggests that denitrifiers
598 are preferentially partitioned onto particles (Ganesh et al., 2015, 2014). In all three ODZs,
599 denitrification rates were high when sinking particles were included (Babbin et al., 2014; Chang
600 et al., 2014). This suggests that much of the denitrification in the ODZ may be taking place at
601 higher growth rates associated with particles and therefore, with a larger fractionation effect.
602

603 *Implications*

604 The balance between sedimentary denitrification and water column denitrification sets
605 the $\delta^{15}\text{N}$ of oceanic nitrate. Assuming that in general sedimentary denitrification has a very small
606 fractionation effect, a small the water-column isotope effect for denitrification allows the
607 calculation of a lower the sedimentary denitrification rate (Altabet, 2007; Brandes and Devol,
608 2002; DeVries et al., 2012). We find evidence for relatively large isotope effects in all three
609 ODZs implying correspondingly large sedimentary denitrification rates. If the ocean is at steady
610 state, denitrification and N₂ fixation should balance, and have been modeled to do so (DeVries et
611 al., 2013, 2012). However, the balance between denitrification and N₂ fixation also depends on
612 N₂ fixation rates, values for which are presently in a state of flux (Konno et al., 2010; Mohr et
613 al., 2010; Moisander et al., 2010). Older N₂ fixation rates calculated from ¹⁵N additions are likely
614 to be underestimates due to problems with the measurement (Konno et al., 2010; Mohr et al.,
615 2010). Additionally, new N₂ fixing organisms with a greater geographic range have been
616 discovered (Moisander et al., 2010), increasing the area for potential N₂ fixation. Correction for
617 these issues may almost double N₂ fixation rates (Großkopf et al., 2012). Due to the current
618 uncertainty in N₂ fixation estimates, even the large fractionation effects calculated here do not
619 preclude a balanced N budget (DeVries et al., 2012).
620

621 **Acknowledgements**

622 We thank Matthew Forbes for technical assistance with the nitrate and nitrite isotope analyses.
623 We thank Steve Emerson and Paul Quay for use of their lab space and facilities, and to Johnny
624 Stutsman, Mark Haught, and Chuck Stump for assistance during the N₂ gas measurement
625 process. Thank you to the captain and crew of the R/V Thompson, and to co-Chief Scientist B.B.
626 Ward. We thank Rick Keil for δ¹⁵N of sediment trap material, and Aaron Morello for shipboard
627 nutrient analyses. Thanks to Justin Penn for discussions.

628 This work was supported by the US National Science Foundation OCE 1029316 and OCE-
629 0647981 to AHD and OCE 1140404 to KLC. BXC was partially funded by the Joint Institute for
630 the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement
631 NA10OAR4320148 (2010-2015) and NA15OAR4320063 (2015-2020), Contribution No. 2017-
632 072. This is NOAA-PMEL contribution no. 4633.

633
634
635 Funding: This work was supported by the National Science Foundation [grant numbers: OCE-
636 1029316, OCE-0647981 and OCE 1140404].

637
638 References

639 Altabet, M.A., 2007. Constraints on oceanic N balance / imbalance from sedimentary 15N
640 records. *Biogeosciences* 4, 75–86.
641 Altabet, M. a., 2001. Nitrogen isotopic evidence for micronutrient control of fractional NO₃-
642 utilization in the equatorial Pacific. *Limnol. Oceanogr.* 46, 368–380.
643 doi:10.4319/lo.2001.46.2.0368
644 Altabet, M. a., Ryabenko, E., Stramma, L., Wallace, D.W.R., Frank, M., Grasse, P., Lavik, G.,
645 2012. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum
646 zone. *Biogeosciences* 9, 4897–4908. doi:10.5194/bg-9-4897-2012
647 Babbin, A.R., Bianchi, D., Jayakumar, A., Ward, B.B., 2015. Rapid nitrous oxide cycling in the
648 suboxic ocean. *Science* (80-). 348, 1127–1129. doi:10.1126/science.aaa8380
649 Babbin, A.R., Keil, R.G., Devol, A.H., Ward, B.B., 2014. Oxygen Control Nitrogen Loss in the
650 Ocean. *Science* (80-). 344, 406.
651 Babbin, A.R., Peters, B.D., Mordy, C.W., Widner, B., Casciotti, K.L., Ward, B.B., 2017. Novel
652 metabolisms support the anaerobic nitrite budget in the Eastern Tropical South Pacific.
653 *Global Biogeochem. Cycles* 31, 258–271. doi:10.1002/2016GB005407
654 Bianchi, D., Babbin, a. R., Galbraith, E.D., 2014. Enhancement of anammox by the excretion of
655 diel vertical migrators. *Proc. Natl. Acad. Sci.* 111, 15653–15658.
656 doi:10.1073/pnas.1410790111

657 Bohlke, J.K., Mroczkowski, S.K., Coplen, T.B., 2003. Oxygen isotopes in nitrate: new reference
658 materials for O-18: O-17: O-16 measurements and observations on nitrate-water
659 equilibration. *Rapid Commun. Mass Spectrom.* 17, 1835–1846.

660 Bourbonnais, A., Altabet, M.A., Charoenpong, C.N., Larkum, J., Hu, H., Bange, H.W., Stramma,
661 L., 2015. N-loss isotope effects in Peru oxygen minimum zone studied using a mesoscale
662 eddy as a natural tracer experiment. *Global Biogeochem. Cycles* 29, 793–811.
663 doi:10.1002/2014GB005001.Received

664 Brandes, J.A., Devol, A.H., 2002. A global marine-fixed nitrogen isotopic budget : Implications
665 for Holocene nitrogen cycling. *Global Biogeochem. Cycles* 16, 1120.
666 doi:10.1029/2001GB001856

667 Brandes, J.A., Devol, A.H., 1997. Isotope fractionation of oxygen and nitrogen in coastal marine
668 sediments. *Geochim. Cosmochim. Acta* 61, 1793–1801.

669 Brandes, J.A., Rd, B.B., Devol, H., 1998. Isotopic composition of nitrate in the central Arabian
670 Sea and eastern North Pacific : A tracer for mixing and nitrogen cycles. *Limnol. Oceanogr.*
671 43, 1680–1689.

672 Bristow, L.A., Dalsgaard, T., Tiano, L., Mills, D.B., Bertagnolli, A.D., Wright, J.J., Hallam, S.J.,
673 Ulloa, O., Canfield, D.E., Peter, N., Thamdrup, B., 2016. Ammonium and nitrite oxidation
674 at nanomolar oxygen concentrations in oxygen minimum zone waters. *Proc. Natl. Acad.
675 Sci.* 113, 10601–6. doi:10.1073/pnas.1600359113

676 Brunner, B., Contreras, S., Lehmann, M.F., Matantseva, O., Rollog, M., Kalvelage, T.,
677 Klockgether, G., Lavik, G., Jetten, M.S.M., Kartal, B., Kuypers, M.M.M., 2013. Nitrogen
678 isotope effects induced by anammox bacteria. *Proc. Natl. Acad. Sci.* 110, 18994–9.
679 doi:10.1073/pnas.1310488110

680 Buchwald, C., Casciotti, K.L., 2010. Oxygen isotopic fractionation and exchange during
681 bacterial nitrite oxidation. *Limnol. Oceanogr.* 55, 1064–1074.

682 Buchwald, C., Santoro, A.E., Stanley, R.H.R., Casciotti, K.L., 2015. Nitrogen cycling in the
683 secondary nitrite maximum of the eastern tropical North Pacific off Costa Rica. *Global
684 Biogeochem. Cycles* 29, 2061–2081. doi:10.1002/2015GB005187

685 Casciotti, K., Bohlke, J., McIlvin, M., Mroczkowski, SJ Hannon, J., 2007. Oxygen isotopes in
686 nitrite: Analysis, calibration, and equilibration. *Anal. Chem.* 79, 2427–2436.

687 Casciotti, K.L., 2009. Inverse kinetic isotope fractionation during bacterial nitrite oxidation.

688 Geochim. Cosmochim. Acta 73, 2061–2076. doi:10.1016/j.gca.2008.12.022

689 Casciotti, K.L., Buchwald, C., McIlvin, M., 2013. Deep-Sea Research I Implications of nitrate
690 and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru
691 oxygen deficient zone. Deep. Res. Part I 80, 78–93. doi:10.1016/j.dsr.2013.05.017

692 Casciotti, K.L., McIlvin, M.R., 2007. Isotopic analyses of nitrate and nitrite from reference
693 mixtures and application to Eastern Tropical North Pacific waters. Mar. Chem. 107, 184–
694 201. doi:10.1016/j.marchem.2007.06.021

695 Casciotti, K.L., Sigman, D.M., Hastings, M.G., Bohlke, J.K., Hilkert, A., 2002. Measurement of
696 the oxygen isotopic composition of nitrate seawater and freshwater using the denitrifier
697 method. Anal. Chem. 74, 4905–4912. doi:10.1021/ac020113w

698 Chang, B.X., Devol, A.H., Emerson, S.R., 2012. Fixed nitrogen loss from the eastern tropical
699 North Pacific and Arabian Sea oxygen deficient zones determined from measurements of N
700 2 :Ar. Global Biogeochem. Cycles 26, GB004207. doi:10.1029/2011GB004207

701 Chang, B.X., Devol, A.H., Emerson, S.R., 2010. Denitrification and the nitrogen gas excess in
702 the eastern tropical South Pacific oxygen deficient zone. Deep Sea Res. Part I Oceanogr.
703 Res. Pap. 57, 1092–1101. doi:10.1016/j.dsr.2010.05.009

704 Chang, B.X., Rich, J.R., Jayakumar, A., Naik, H., Pratihary, A.K., Keil, R.G., Ward, B.B.,
705 Devol, A.H., 2014. The effect of organic carbon on fixed nitrogen loss in the eastern
706 tropical South Pacific and Arabian Sea oxygen deficient zones. Limnol. Oceanogr. 59,
707 1267–1274. doi:10.4319/lo.2014.59.4.1267

708 Chronopoulou, P.-M., Shelley, F., Pritchard, W.J., Maanoja, S.T., Trimmer, M., 2017. Origin
709 and fate of methane in the Eastern Tropical North Pacific oxygen minimum zone. ISME J.
710 11, 1386–1399. doi:10.1038/ismej.2017.6

711 Cline, J.D., Kaplan, I.R., 1975. ISOTOPIC FRACTIONATION OF DISSOLVED NITRATE
712 DURING DENITRIFICATION IN THE EASTERN TROPICAL NORTH PACIFIC
713 OCEAN. Mar. Chem. 3, 271–299.

714 Dähnke, K., Thamdrup, B., 2013. Nitrogen isotope dynamics and fractionation during
715 sedimentary denitrification in Boknis Eck, Baltic Sea. Biogeosciences 10, 3079–3088.
716 doi:10.5194/bg-10-3079-2013

717 De Brabandere, L., Canfield, D.E., Dalsgaard, T., Friederich, G.E., Revsbech, N.P., Ulloa, O.,
718 Thamdrup, B., 2014. Vertical partitioning of nitrogen-loss processes across the oxic-anoxic

719 interface of an oceanic oxygen minimum zone. *Environ. Microbiol.* 16, 3041–3054.
720 doi:10.1111/1462-2920.12255

721 Deutsch, C., Brix, H., Ito, T., Frenzel, H., Thompson, L., 2011. Climate-forced variability of
722 ocean hypoxia. *Science* 333, 336–339. doi:10.1126/science.1202422

723 DeVries, T., Deutsch, C., Primeau, F., Chang, B., Devol, A., 2012. Global rates of water-column
724 denitrification derived from nitrogen gas measurements. *Nat. Geosci.* 5, 547–550.
725 doi:10.1038/ngeo1515

726 DeVries, T., Deutsch, C., Rafter, P. a., Primeau, F., 2013. Marine denitrification rates determined
727 from a global 3-D inverse model. *Biogeosciences* 10, 2481–2496. doi:10.5194/bg-10-2481-
728 2013

729 Emerson, S., Stump, C., Wilbur, D., Quay, P., 1999. Accurate measurement of O₂, N₂, and Ar
730 gases in water and the solubility of N₂. *Mar. Chem.* 64, 337–347. doi:10.1016/S0304-
731 4203(98)00090-5

732 Fiedler, P.C., Talley, L.D., 2006. Hydrography of the eastern tropical Pacific: A review. *Prog.*
733 *Oceanogr.* 69, 143–180. doi:10.1016/j.pocean.2006.03.008

734 Fuchsman, C.A., Devol, A.H., Saunders, J.K., McKay, C., Rocap, G., 2017. Niche Partitioning
735 of the N cycling microbial community of an offshore Oxygen Deficient Zone. *Front.*
736 *Microbiol.* 8, 2384.

737 Fuchsman, C.A., Murray, J.W., Konovalov, S.K., 2008. Concentration and natural stable isotope
738 profiles of nitrogen species in the Black Sea. *Mar. Chem.* 111, 90–105.
739 doi:10.1016/j.marchem.2008.04.009

740 Ganesh, S., Bristow, L. a, Larsen, M., Sarode, N., Thamdrup, B., Stewart, F.J., 2015. Size-
741 fraction partitioning of community gene transcription and nitrogen metabolism in a marine
742 oxygen minimum zone. *ISME J.* 9, 2682–2696. doi:10.1038/ismej.2015.44

743 Ganesh, S., Parris, D.J., DeLong, E.F., Stewart, F.J., 2014. Metagenomic analysis of size-
744 fractionated picoplankton in a marine oxygen minimum zone. *ISME J.* 8, 187–211.
745 doi:10.1038/ismej.2013.144

746 Garcia-Robledo, E., Padilla, C.C., Aldunate, M., Stewart, F.J., Ulloa, O., Paulmier, A., Gregori,
747 G., Revsbech, N.P., 2017. Cryptic oxygen cycling in anoxic marine zones. *Proc. Natl. Acad.*
748 *Sci.* 201619844. doi:10.1073/pnas.1619844114

749 Garcia, H.E., Locarnini, R. a, Boyer, T.P., Antonov, J.I., Mishonov, a V, Baranova, O.K.,

750 Zweng, M.M., Reagan, J.R., Johnson, D.R., 2013. World Ocean Atlas 2013. Vol. 3:
751 Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. S. Levitus, Ed.;
752 A. Mishonov, Technical Ed. 3, 27.

753 Gaye, B., Nagel, B., Dähnke, K., Rixen, T., Emeis, K.C., 2013. Evidence of parallel
754 denitrification and nitrite oxidation in the ODZ of the Arabian Sea from paired stable
755 isotopes of nitrate and nitrite. *Global Biogeochem. Cycles* 27, 1059–1071.
756 doi:10.1002/2011GB004115

757 Granger, J., Sigman, D.M., 2009. Removal of nitrite with sulfamic acid for nitrate N and O
758 isotope analysis with the denitrifier method. *Rapid Commun. mass Spectrom.* 23, 3753–
759 3762.

760 Granger, J., Sigman, D.M., Lehmann, M.F., Tortell, P.D., 2008. Nitrogen and oxygen isotope
761 fractionation during dissimilatory nitrate reduction by denitrifying bacteria. *Limnol.*
762 *Oceanogr.* 53, 2533–2545. doi:10.4319/lo.2008.53.6.2533

763 Granger, J., Vt, C., Sigman, D.M., Needoba, J.A., Harrison, P.J., 2004. Coupled nitrogen and
764 oxygen isotope fractionation of nitrate during assimilation by cultures of marine
765 phytoplankton 49, 1763–1773.

766 Großkopf, T., Mohr, W., Baustian, T., Schunck, H., Gill, D., Kuypers, M.M.M., Lavik, G.,
767 Schmitz, R.A., Wallace, D.W.R., Laroche, J., 2012. Doubling of marine dinitrogen-fixation
768 rates based on direct measurements. *Nature* 488, 361–364. doi:10.1038/nature11338

769 Hamme, R.C., Emerson, S.R., 2004. The solubility of neon , nitrogen and argon in distilled water
770 and seawater. *Deep Sea Res. Part I Oceanogr. Res. Pap.* 51, 1517–1528.
771 doi:10.1016/j.dsr.2004.06.009

772 Horak, R.E.A., Ruef, W., Ward, B.B., Devol, A.H., 2016. Expansion of denitrification and
773 anoxia in the eastern tropical North Pacific from 1972 to 2012. *Geophys. Res. Lett.* 43,
774 5252–5260. doi:10.1002/2016GL068871

775 Hu, H., Bourbonnais, A., Larkum, J., Bange, H.W., Altabet, M.A., 2016. Nitrogen cycling in
776 shallow low-oxygen coastal waters off Peru from nitrite and nitrate nitrogen and oxygen
777 isotopes. *Biogeosciences* 13, 1453–1468. doi:10.5194/bg-13-1453-2016

778 Ito, T., Deutsch, C., 2013. Variability of the oxygen minimum zone in the tropical North Pacific
779 during the late twentieth century. *Global Biogeochem. Cycles* 27, 1119–1128.
780 doi:10.1002/2013GB004567

781 Ito, T., Deutsch, C., 2006. Understanding the saturation state of argon in the thermocline: The
782 role of air-sea gas exchange and diapycnal mixing. *Global Biogeochem. Cycles* 20, 1–15.

783 Ito, T., Minobe, S., Long, M.C., Deutsch, C., 2017. Upper ocean O₂ trends: 1958–2015.
784 *Geophys. Res. Lett.* 44, 4214–4223. doi:10.1002/2017GL073613

785 Ito, T., Nenes, A., Johnson, M.S., Meskhidze, N., Deutsch, C., 2016. Acceleration of oxygen
786 decline in the tropical Pacific over the past decades by aerosol pollutants. *Nat. Geosci.* 9,
787 443–448. doi:10.1038/NGEO2717

788 Jayakumar, A., Chang, B.X., Widner, B., Bernhardt, P., Mulholland, M.R., Ward, B.B., 2017.
789 Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North
790 Pacific ocean. *ISME J.* online, 1–12. doi:10.1038/ismej.2017.97

791 Jayakumar, D.A., Naqvi, S.W.A., Narvekar, P. V., George, M.D., 2001. Methane in coastal and
792 offshore waters of the Arabian Sea. *Mar. Chem.* 74, 1–13. doi:10.1016/S0304-
793 4203(00)00089-X

794 Jensen, M.M., Petersen, J., Dalsgaard, T., Thamdrup, B., 2009. Pathways, rates, and regulation
795 of N₂ production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. *Mar.*
796 *Chem.* 113, 102–113. doi:10.1016/j.marchem.2009.01.002

797 Keil, R.G., Neibauer, J.A., Biladeau, C., Van Der Elst, K., Devol, A.H., 2016. A multiproxy
798 approach to understanding the “enhanced” flux of organic matter through the oxygen-
799 deficient waters of the Arabian Sea. *Biogeosciences* 13, 2077–2092. doi:10.5194/bg-13-
800 2077-2016

801 Knox, M., Quay, P.D., Wilbur, D.O., 1992. Kinetic isotopic fractionation during air□water gas
802 transfer of O₂, N₂, CH₄, and H₂. *J. Geophys. Res.* ... 97, 335–343. doi:10.1029/92JC00949

803 Konno, U., Tsunogai, U., Komatsu, D.D., Daita, S., Nakagawa, F., Tsuda, A., Matsui, T., Eum,
804 Y.-J., Suzuki, K., 2010. Determination of total N 2 fixation rates in the ocean taking into
805 account both the particulate and filtrate fractions. *Biogeosciences* 7, 2369–2377.
806 doi:10.5194/bg-7-2369-2010

807 Kritee, K., Sigman, D.M., Granger, J., Ward, B.B., Jayakumar, A., Deutsch, C., 2012. Reduced
808 isotope fractionation by denitrification under conditions relevant to the ocean. *Geochim.*
809 *Cosmochim. Acta* 92, 243–259. doi:10.1016/j.gca.2012.05.020

810 Lehmann, M.F., Sigman, D.M., Mccorkle, D.C., Granger, J., Hoffmann, S., Cane, G., Brunelle,
811 B.G., 2007. The distribution of nitrate 15 N / 14 N in marine sediments and the impact of

812 benthic nitrogen loss on the isotopic composition of oceanic nitrate. *Geochim. Cosmochim. Acta* 71, 5384–5404. doi:10.1016/j.gca.2007.07.025

813

814 Macko, S.A., Engel, M.H., Qian, Y., 1994. Early diagenesis and organic matter preservation - a
815 molecular stable carbon isotope perspective. *Chem. Geol.* 114, 365–379. doi:10.1016/0009-
816 2541(94)90064-7

817 Manning, C.C., Hamme, R.C., Bourbonnais, A., 2010. Impact of deep-water renewal events on fi
818 xed nitrogen loss from seasonally-anoxic Saanich Inlet. *Mar. Chem.* 122, 1–10.
819 doi:10.1016/j.marchem.2010.08.002

820 Marconi, D., Kopf, S., Rafter, P.A., Sigman, D.M., 2017. Aerobic respiration along isopycnals
821 leads to overestimation of the isotope effect of denitrification in the ocean water column.
822 *Geochim. Cosmochim. Acta* 197, 417–432. doi:10.1016/j.gca.2016.10.012

823 Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieu, A., Tardieu, P., 1981.
824 Experimental determination of nitrogen kinetic isotope fractionation-some principles--
825 Illustration for the denitrification and nitrification processes. *Plant Soil* 62, 413–430.

826 Martin, T.S., Casciotti, K.L., 2017. Paired N and O isotopic analysis of nitrate and nitrite in the
827 Arabian Sea oxygen deficient zone. *Deep. Res. Part I Oceanogr. Res. Pap.* 121, 121–131.
828 doi:10.1016/j.dsr.2017.01.002

829 Martin, T.S., Casciotti, K.L., 2016. Nitrogen and oxygen isotopic fractionation during microbial
830 nitrite reduction. *Limnol. Oceanogr.* 61, 1134–1143. doi:10.1002/lno.10278

831 McIlvin, M.R., Altabet, M.A., 2005. Chemical conversion of nitrate and nitrite to nitrous oxide
832 for nitrogen and oxygen isotopic analysis in freshwater and seawater. *Anal Chem* 77, 5589–
833 5595. doi:10.1021/ac050528s

834 McIlvin, M.R., Casciotti, K.L., 2011. Technical Updates to Bacterial method for nitrate isotopic
835 analyses. *Anal. Chem.* 83, 1850–1856.

836 Mohr, W., Grosskopf, T., Wallace, D.W.R., LaRoche, J., 2010. Methodological underestimation
837 of oceanic nitrogen fixation rates. *PLoS One* 5, e12583. doi:10.1371/journal.pone.0012583

838 Moisander, P.H., Beinart, R.A., Hewson, I., White, A.E., Johnson, K.S., Carlson, C.A., Montoya,
839 J.P., Zehr, J.P., 2010. Unicellular cyanobacterial distributions broaden the oceanic N2
840 fixation domain. *Science* (80-). 327, 1512–4. doi:10.1126/science.1185468

841 Moore, C.M., Mills, M.M., Arrigo, K.R., Berman-Frank, I., Bopp, L., Boyd, P.W., Galbraith,
842 E.D., Geider, R.J., Guieu, C., Jaccard, S.L., Jickells, T.D., La Roche, J., Lenton, T.M.,

843 Mahowald, N.M., Marañón, E., Marinov, I., Moore, J.K., Nakatsuka, T., Oschlies, a., Saito, M. a., Thingstad, T.F., Tsuda, a., Ulloa, O., 2013. Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* 6, 701–710. doi:10.1038/ngeo1765

844

845

846 Paulmier, A., Ruiz-Pino, D., 2009. Oxygen minimum zones (OMZs) in the modern ocean. *Prog. Oceanogr.* 80, 113–128. doi:10.1016/j.pocean.2008.08.001

847

848 Peng, X., Fuchsman, C.A., Jayakumar, A., Oleynik, S., Martens-habbena, W., 2015. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific. *Global Biogeochem. Cycles* 29, 2034–2049.

849

850

851 Penn, J., Weber, T., Deutsch, C., 2016. Microbial functional diversity alters the structure and sensitivity of oxygen deficient zones. *Geophys. Reserach Lett.* 43, 9773–9780.

852

853 doi:10.1002/2016GL070438

854 Pennington, J.T., Mahoney, K.L., Kuwahara, V.S., Kolber, D.D., Calienes, R., Chavez, F.P., 2006. Primary production in the eastern tropical Pacific: A review. *Prog. Oceanogr.* 69, 285–317. doi:10.1016/j.pocean.2006.03.012

855

856

857 Peters, B.D., Babbin, A.R., Lettmann, K.A., Mordy, C.W., Ulloa, O., Ward, B.B., Casciotti, K.L., 2016. Vertical modeling of the nitrogen cycle in the eastern tropical South Pacific oxygen deficient zone using high-resolution concentration and isotope measurements. *Global Biogeochem. Cycles* 30, GB005415. doi:10.1002/2016GB005415. Received

858

859

860

861 Rafter, P.A., Difiore, P.J., Sigman, D.M., 2013. Coupled nitrate nitrogen and oxygen isotopes and organic matter remineralization in the Southern and Pacific Oceans. *J. Geophys. Res. Ocean.* 118, 4781–4794. doi:10.1002/jgrc.20316

862

863

864 Reeburgh, W.S., Ward, B.B., Whalen, S.C., Sandbeck, K.A., Kilpatrick, K.A., Kerkhof, L.J., 1991. Black Sea methane geochemistry. *Deep Sea Res. Part A. Oceanogr. Res. Pap.* 38, S1189–S1210. doi:10.1016/S0198-0149(10)80030-5

865

866

867 Revsbech, N.P., Larsen, L.H., Gundersen, J., Dalsgaard, T., Ulloa, O., Thamdrup, B., 2009. Determination of ultra-low oxygen concentrations in oxygen minimum zones by the STOX sensor. *Limnol. Oceanogr.* 7, 371–381.

868

869

870 Saino, T., Hattori, A., 1980. 15N natural abundance in oceanic suspended particulate matter. *Nature* 283, 752–754. doi:10.1038/283752a0

871

872 Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., Böhlke, J.K., 2001. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater.

873

Anal. Chem. 73, 4145–4153. doi:10.1021/ac010088e

Sigman, D.M., Difiore, P.J., Hain, M.P., Deutsch, C., Karl, D.M., Bo, V., 2009. Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific. Geophys. Res. Lett. 36, 1–5. doi:10.1029/2008GL035784

Sigman, D.M., Robinson, R., Knapp, A.N., Geen, A. Van, Mccorkle, D.C., Brandes, J.A., Thunell, R.C., 2003. Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochemistry Geophys. Geosystems 4, 1040. doi:10.1029/2002GC000384

Smith, W.H., Sandwell, D., 1997. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science (80-). 277, 1956–1962. doi:10.1126/science.277.5334.1956

Stramma, L., Johnson, G.C., Sprintall, J., Mohrholz, V., 2008. Expanding Oxygen-Minimum Zones in the Tropical Oceans. Science (80-). 320, 655–658.

Ulloa, O., Delong, E.F., Letelier, R.M., Stewart, F.J., 2012. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003. doi:10.1073/pnas.1205009109

UNESCO, 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. New York.

Voss, M., Dippner, J.W., Montoya, J.P., 2001. Nitrogen isotope patterns in the oxygen-de “ cient waters of the Eastern Tropical North Paci ” c Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 1905–1921.

Wada, E., 1980. Nitrogen isotope fractionation in biogeochemical processes occurring in marine environments., in: Goldberg, E.D., Horibe, Y. (Eds.), Isotope Marine Chemistry. Uchida Rokakuho, Tokyo, pp. 375–398.

Ward, B.B., Devol, A.H., Rich, J.J., Chang, B.X., Bulow, S.E., Naik, H., Pratihary, A.K., Jayakumar, A., 2009. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461, 78.

Whitney, F.A., Freeland, H.J., Robert, M., 2007. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75, 179–199. doi:10.1016/j.pocean.2007.08.007

Wilson, S.T., del Valle, D.A., Segura-Noguera, M., Karl, D.M., 2014. A role for nitrite in the

905 production of nitrous oxide in the lower euphotic zone of the oligotrophic North Pacific
906 Ocean. Deep. Res. Part I Oceanogr. Res. Pap. 85, 47–55. doi:10.1016/j.dsr.2013.11.008
907

908 Figure Captions:

909 Figure 1. Schematic depicting individual isotope effects and N sources that are included in
910 the apparent isotope effect for N₂ production.

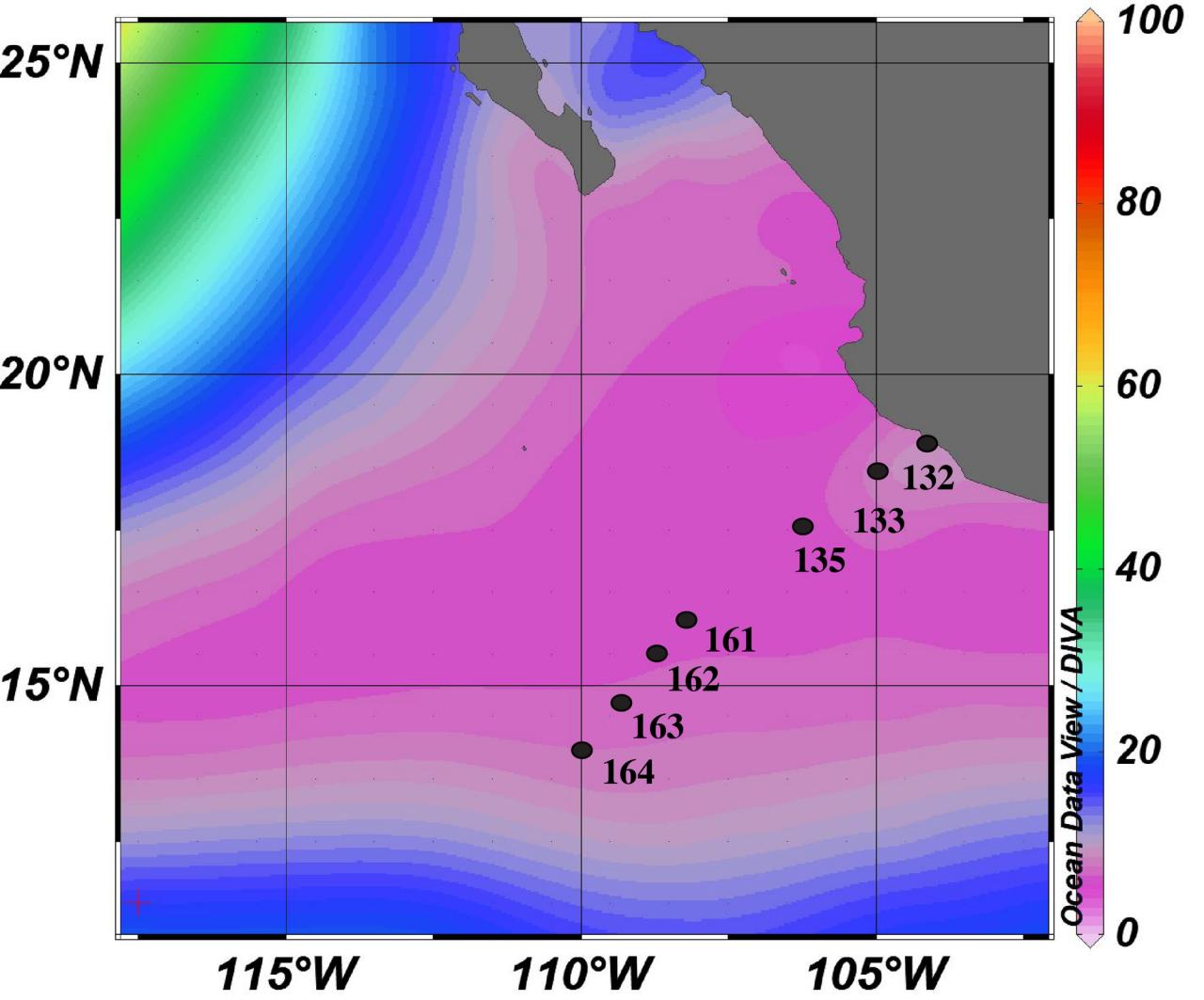
911 Figure 2. A map of the Eastern Tropical North Pacific shaded by oxygen concentration
912 according to the World Ocean Atlas (2013) (Garcia et al., 2013) at density surface $\sigma=26.5$.
913 Black dots indicate stations examined in this paper.

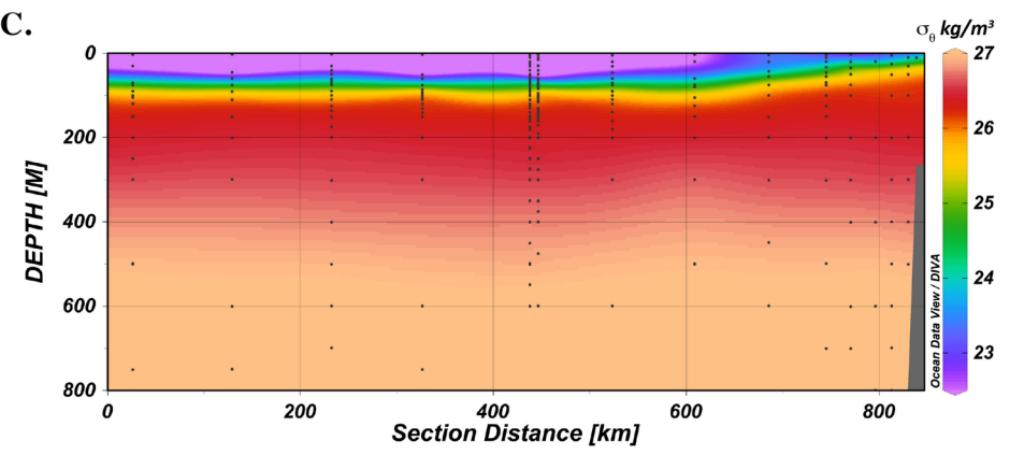
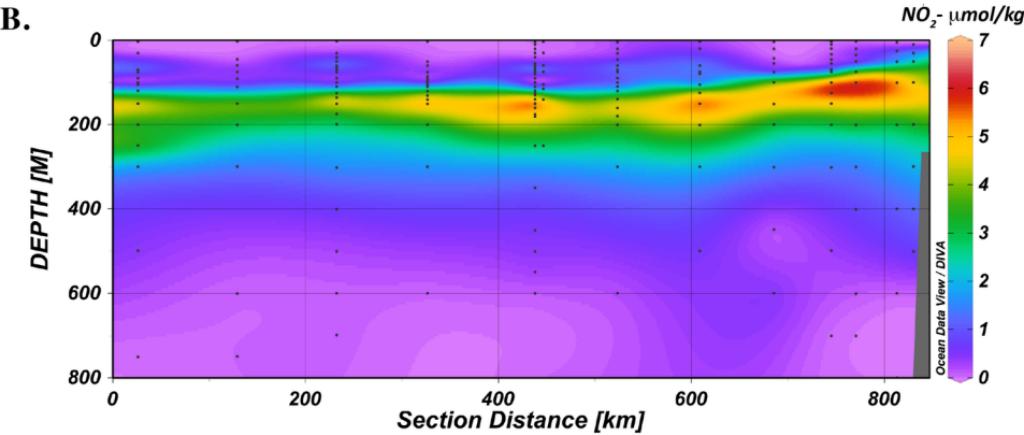
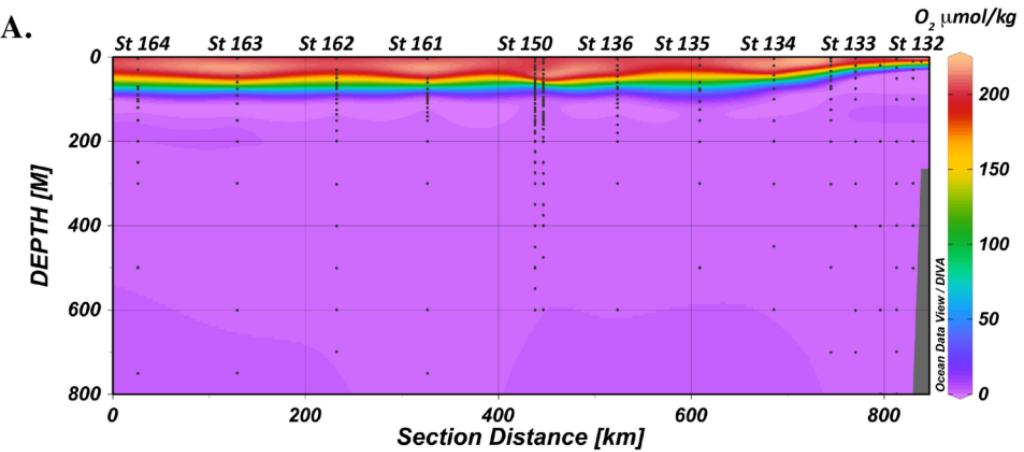
914
915 Figure 3. Section plot of A) oxygen ($\mu\text{mol/kg}$), B) nitrite ($\mu\text{mol/kg}$) and C) potential density
916 (kg/m^3) for the ETNP in 2012. Sampled depths are indicated by black dots. Station names are
917 listed at the top of part A and include some stations where isotope data was not available. The
918 shelf is indicated by dark grey.

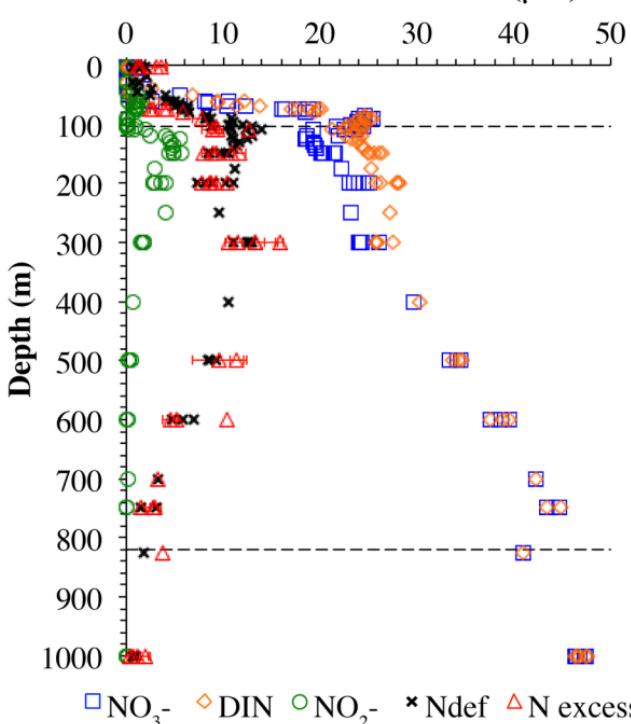
919
920 Figure 4. Compilation of ETNP N concentrations (A) and isotopes (B) for offshore stations
921 (St 135-164) plotted versus depth. Dashed lines indicate the boundaries of the ODZ using
922 STOX oxygen electrode measurements from Tiano et al. (2014).

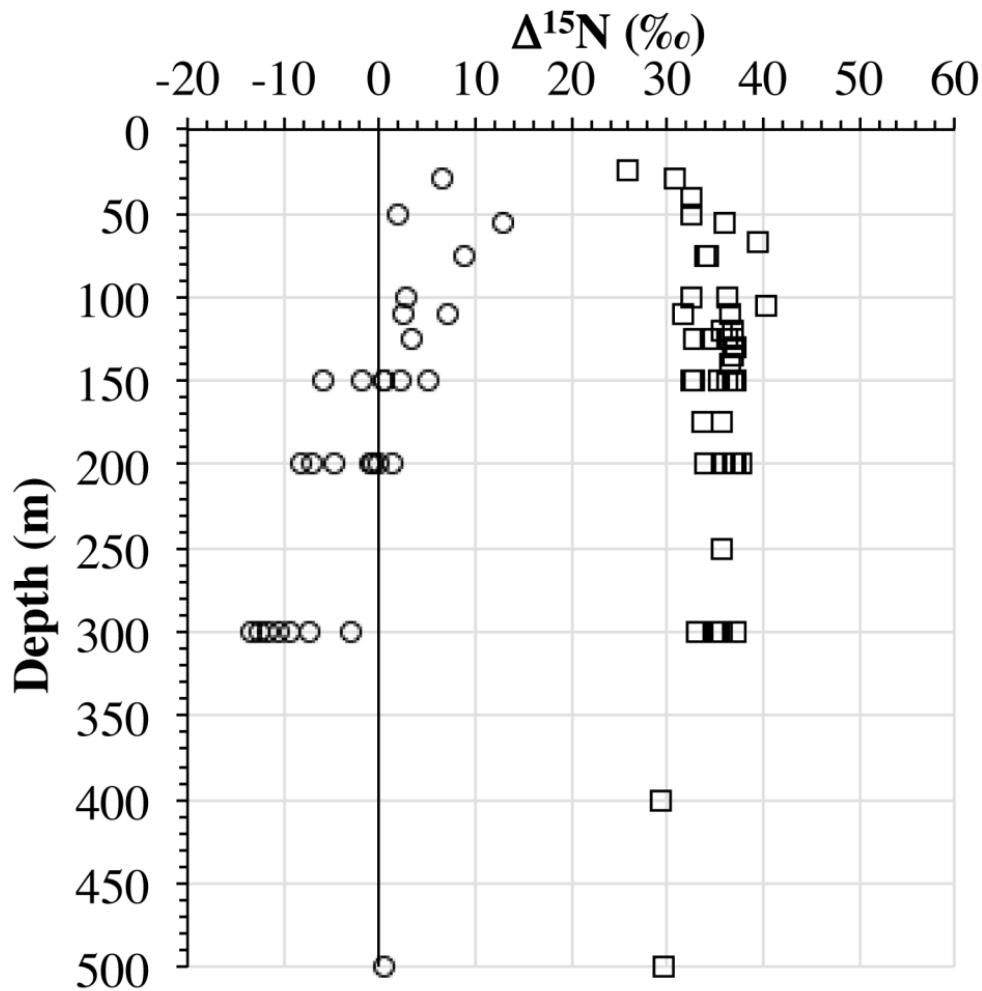
923
924 Figure 5. $\delta^{15}\text{N}$ data for the Arabian Sea St 1. The $\delta^{15}\text{N}$ of N₂ excess is calculated by
925 subtracting background values. Red triangles are $\delta^{15}\text{N}$ of N₂ excess for a background value
926 of 0.68‰ (Knox et al., 1992). Red lines indicate the range of values if background is varied
927 between 0.65‰ and 0.7‰. $\delta^{15}\text{N-NO}_2^-$ is also shown where available (green circles). Nitrite
928 concentrations (lower axis) are shown for comparison (blue triangles). Dashed lines
929 indicate the boundaries of the ODZ.

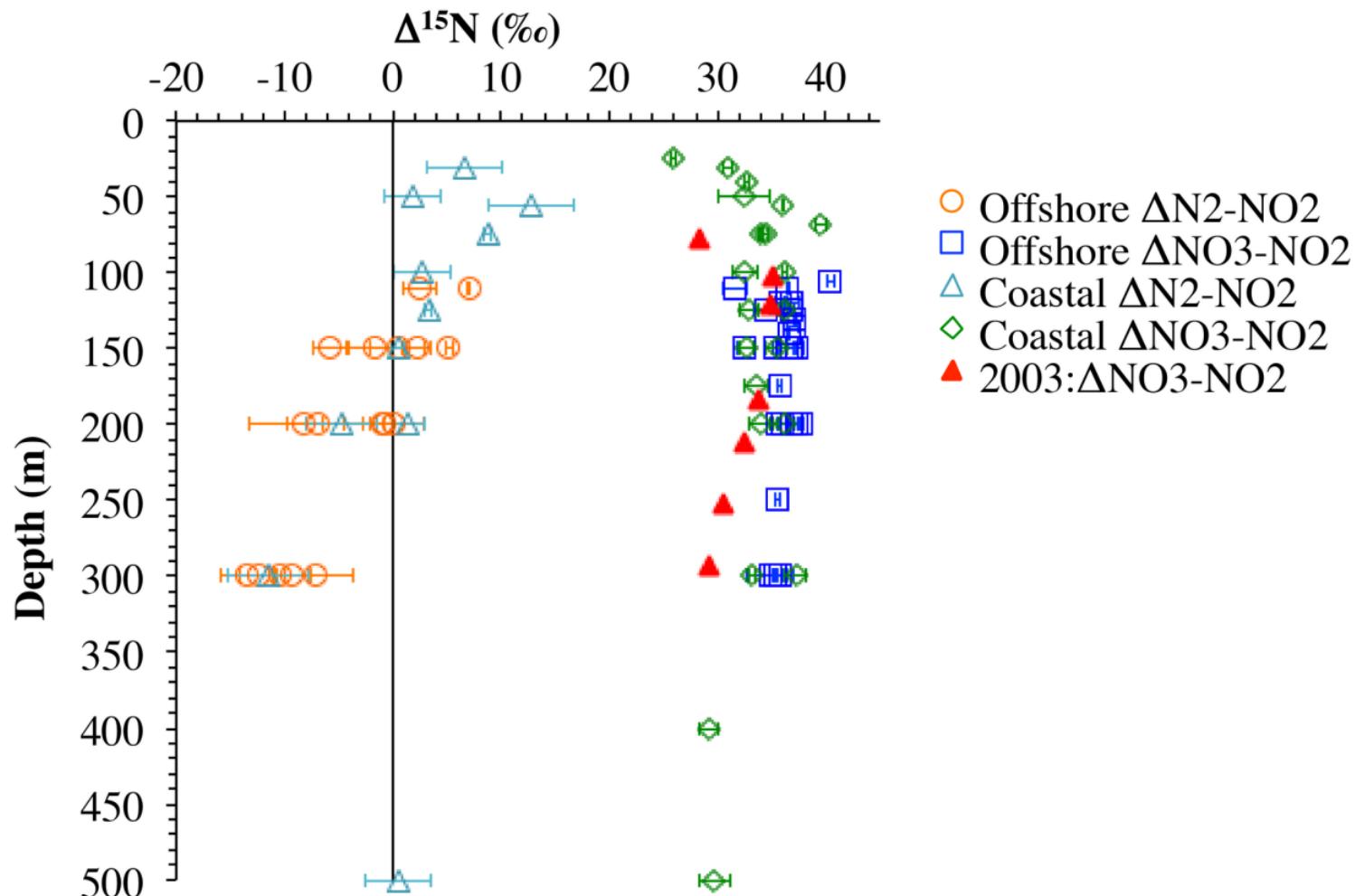
930
931 Figure 6. A compilation of $\Delta^{15}\text{N}$ for the difference between nitrate and nitrite and for the
932 difference between N₂ and nitrite for the secondary nitrite peak at both offshore and
933 coastal stations in the ETNP. All data points are in the ODZ.

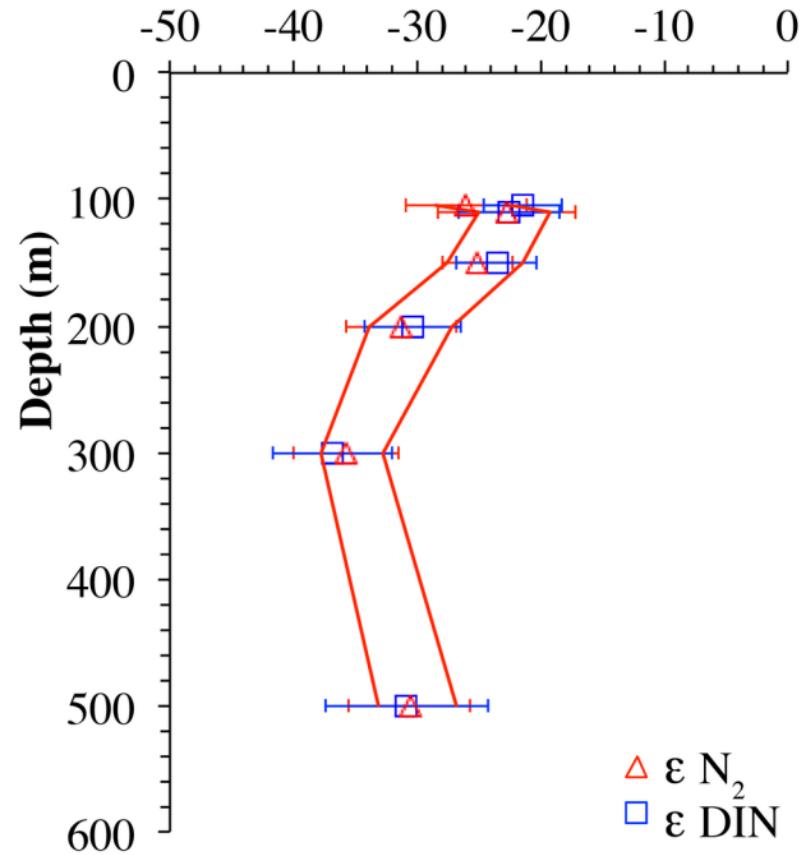
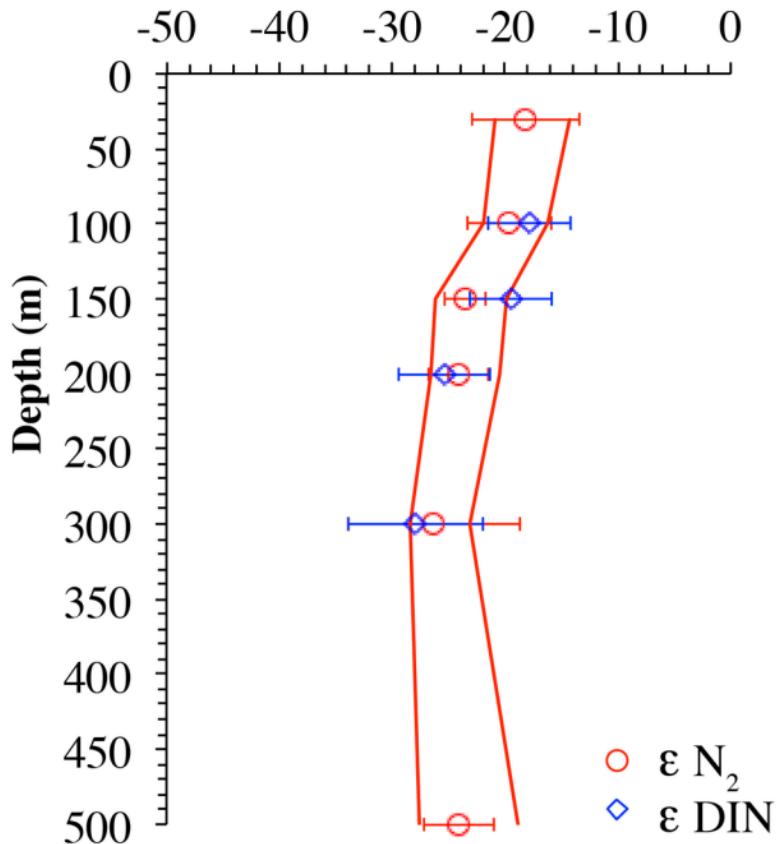

934
935 Figure 7. Variability of the isotope effect (ϵ) for N₂ production ($\delta^{15}\text{N-DIN}$ or $\delta^{15}\text{N-N}_2$ excess)
936 with depth in the ETNP at A) an average of offshore stations 135-164 (individual stations
937 can be seen in Figure S12) and B) at coastal station 132 (bottom depth 550m). Red lines
938 indicate what the fractionation factor would be if the background was shifted from 0.68‰
939 (Knox et al., 1992) to either 0.65‰ or 0.7‰.

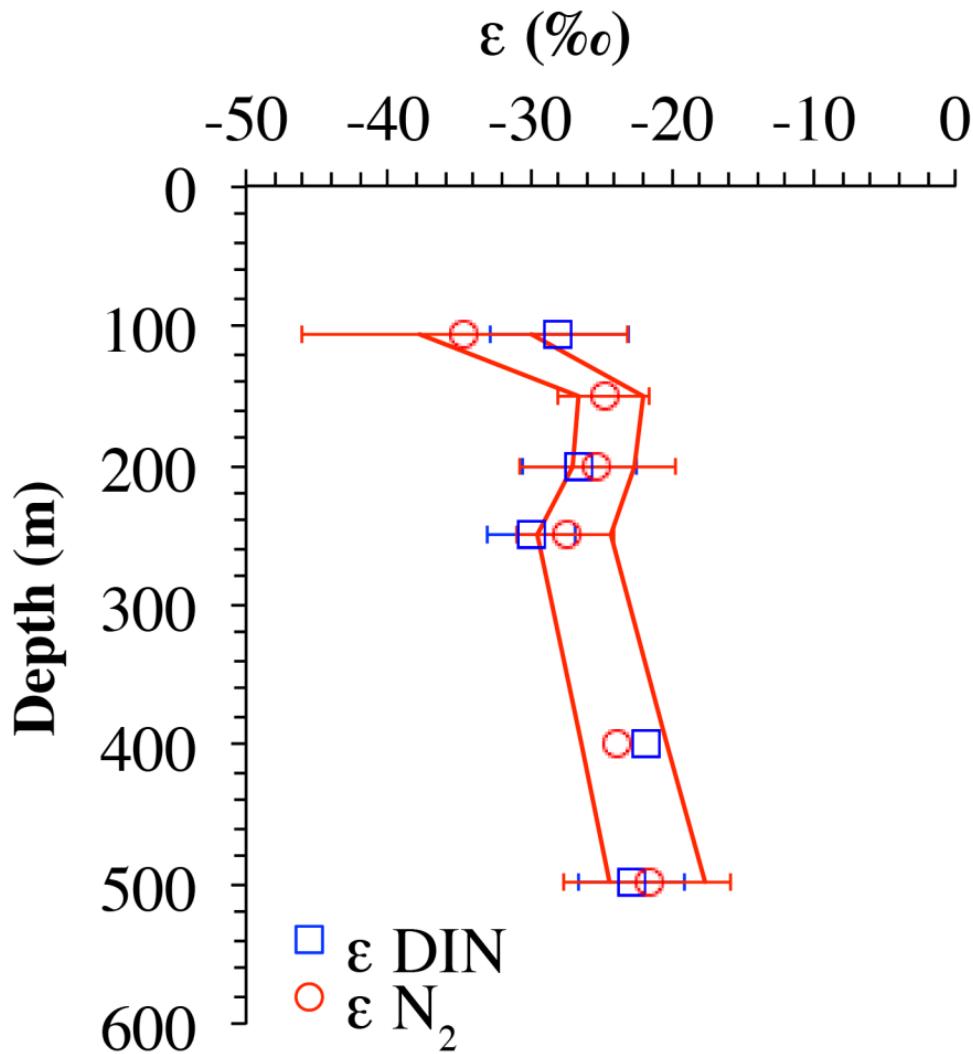



940
941 Figure 8. Closed system fractionation factors for the Arabian Sea in 2007. Red lines
942 indicate what the fractionation factor would be if the background was shifted from 0.68‰
943 (Knox et al., 1992) to either 0.65‰ or 0.7‰.


nitrate red. nitrite red.


anammox (NH₄⁺ completely consumed)




A.**Offshore N concentrations (μM)****B.****Offshore $\delta^{15}\text{N}$ (‰)**

\square NO_3^- \diamond DIN \circ NO_2^- \times Ndef \triangle N excess

A.**Offshore avg (n=5 St) ϵ (‰)****B.****Coastal ϵ (‰)**

