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Abstract 21 

The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the 22 

Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into 23 
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the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea 24 

surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and 25 

1100 m depths. Above and below the vortex core the relative vorticity signal decreases in 26 

amplitude while the radius increases by as much as 25-30% relative to the values in the core. 27 

Analyzing the model run, we show that the vertical structure of the LV can be casted into four 28 

standard configurations, each of which forms a distinct cluster in the parameter space of 29 

potential vorticity anomalies in and above the LV core. The stability of the LV for each of the 30 

configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic 31 

(QG) models over a flat bottom as well as over a realistic topography. The QG results show a 32 

number of common features with those of the primitive equation model. Thus, among the 33 

azimuthal modes dominating the LV instability, both the QG model and the primitive equation 34 

model show a major role the 2nd and 3rd modes. In the QG model simulations the LV is the 35 

subject of a rather strong dynamic instability, penetrating deep into the core. The results predict 36 

50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in 37 

the primitive equation model, where, for the same intensity of perturbations, only 10-30% 38 

volume loss during the same period is detected. Taking into account the gently sloping 39 

topography of the central part of the Lofoten basin and the mean flow in the QG model, brings 40 

the rate of developpmet of instability close to that in the primitive equation model. Some 41 

remaining differences in the two models are discussed. Overall, the LV decay rate obtained in 42 

the models is slow enough for eddy mergers and convection to restore the thermodynamic 43 

properties of the LV, primarily re-building its potential energy anomaly. This justifies the 44 

quasi-permanent presence of the LV in the Lofoten Basin.   45 

 46 

Keywords: Lofoten vortex, vertical structure, vortex stability, primitive equation model, QG 47 

model. 48 

 49 

1. Introduction 50 

The Lofoten Basin is a bowl-shape depression in the bottom topography of the Norwegian Sea 51 

(68 - 72 °N and 2 °W - 10 °E) with a maximum depth of about 3250 m. It is located between 52 

the Mohn Ridge (about 2000 m deep) to the northwest and the Scandinavian Peninsula to the 53 

east, and is limited in the south by the Jan-Mayen Fracture zone (about 2000 m deep) and the 54 

north-western flank of the Voring plateau (Fig. 1).  55 
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  56 

Fig. 1. Topographic map of the Lofoten Basin (depth in m) with the major flows overlaid. One 57 

minute GEBCO topography is used. Gray dashed contours mark 3000 m, gray solid contours – 58 

3200 m and solid black contours – 3250 m depth. Surface and deep currents are sketched with 59 

dark red and blue lines, respectively. The magenta dot in the center of the LB is the most 60 

frequent position of the Lofoten Vortex (LV). The magenta line around the dot limits the area 61 

where the LV center is observed 80% of time for the 15 years of simulations with MIT GCM. 62 

NwASC is the Norwegian Atlantic Slope Current, NwCC is the Norwegian Atlantic Coastal 63 

Current.  64 

 65 

Warm and salty Atlantic Water (AW) occupies the upper 800-1000 m of the Lofoten Basin. 66 

The AW overlies denser waters of both lower temperatures and salinities (Blindheim and Rey, 67 

2004; Nilsen and Nilsen, 2007). In the AW layer, temperature and salinity both increase 68 

towards the center of the basin (Boyer et al., 2005), while the density surfaces at mid-depths are 69 

bent down as much as 300 m over the center of the Lofoten Basin and towards the Lofoten 70 

Islands relative to the northwestern and the southwestern basin boundaries (Rossby et al., 2009). 71 

Being the major heat reservoir in the Nordic Seas, this is a region of strong atmosphere–ocean 72 

interactions. It is also a region of intense mesoscale dynamics which impacts the net warm 73 

water flux to the Arctic, making it a sub-Arctic “hot spot” of ocean variability (Volkov et al., 74 

2013). 75 
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The Norwegian Atlantic Current (NwAC) dominates the near-surface circulation along the 76 

eastern rim of the Norwegian Sea and brings the warm and salty AW north at an average 77 

velocity of 20-30 cm s-1 (Blindheim and Rey, 2004, Koszalka et al., 2011, Lumpkin and 78 

Johnson, 2013; Volkov et al., 2015). The NwAC consists of a topographically controlled near-79 

barotropic current flowing along the shelf break of the Scandinavian Peninsula and a strongly 80 

baroclinic jet that follows 2000-2500 m isobaths, the Norwegian Atlantic Slope Current 81 

(NwASC) (Koszalka et al., 2011; Volkov et al., 2015). Instability of the NwAC is considered to 82 

be the main source of the intense mesoscale variability in the Lofoten Basin. Results of a two-83 

layer model (Orvik, 2004) and further observations (Blindheim and Rey, 2004, Gascard and 84 

Mork, 2008, Koszalka et al., 2011, Lumpkin and Johnson, 2013) also revealed a northward 85 

surface current along the Mohn Ridge, at the western edge of the Lofoten Basin, with a mean 86 

velocity of 10-15 cm s-1. 87 

At depth, an overall bottom-intensified cyclonic gyre around the Lofoten Basin was detected in 88 

a diagnostic regional circulation model (Nøst and Isachsen, 2003) and in analyses of Argo float 89 

trajectories (Poulain et al., 1996; Jakobsen et al., 2003; Orvik, 2004). The velocity, estimated 90 

from ARGO float trajectories is 5-10 cm s-1 (Gascard and Mork, 2008). It has been suggested 91 

that the cyclonic gyre is a bottom-trapped branch of the deeper fractions of the NwASC, 92 

maintained by eddy transport of the warm and salty AW into the Lofoten Basin and its further 93 

downwards penetration by vertical diffusion (Ivanov and Korablev, 1995а,b; Pereskokov, 1999; 94 

Orvik, 2004).  95 

Russian hydrographic surveys in the 1970s and 1980s discovered a quasi-permanent 96 

anticyclonic vortex in center of the Lofoten Basin, named the Lofoten Vortex (hereafter LV, 97 

Ivanov and Korablev, 1995a,b). The vortex is located at around 70o N, 2o E, has a diameter of 98 

about 60-80 km, and is characterized by positive temperature and salinity anomalies between 99 

400 and 2000 m depths (Fig. 2, see also Alexeev et al., 1991; Pereskokov, 1999) with the 100 

strongest signal found at around 800 m (Alexeev et al., 1991; Romantcev, 1991). The existence 101 

of the LV was later confirmed by trajectories of neutrally-buoyant floats and surface drifters 102 

(Søiland et al., 2008; Koszalka et al., 2011). Ivanov and Korablev (1995b) suggested that the 103 

LV stays at approximately the same position in the center of the Lofoten Basin due to its 104 

interaction with the mean bottom-intensified cyclonic gyre or, since the LV extends throughout 105 

the entire water column, with the bowl-shaped topography itself (Raj et al., 2015).  106 

Repeated oceanographic surveys from 1985 to 1991 (Ivanov and Korablev, 1995а) show that 107 

the LV thermohaline anomalies strengthen in winter and spring. This is accompanied by a 108 
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reduction of the LV radius and a strengthening of its maximum anticyclonic rotation velocity. 109 

Based on these observations, Ivanov and Korablev (1995а) suggested that the LV regenerates 110 

periodically due to anomalously strong convective mixing over its core in winter. The 111 

seasonality itself has later been confirmed in eddy-resolving primitive equation simulations and 112 

in altimetric observations by Köhl (2007) and Raj et al. (2015). However, these authors 113 

attributed the regeneration not primarily to winter convection but rather to the merger of the LV 114 

with other anticyclones in the basin. In fact, drifter trajectories and satellite altimetry have 115 

confirmed a higher level of eddy activity in the Lofoten Basin in winter and spring (Köhl, 2007; 116 

Søiland et al., 2008; Koszalka et al., 2011). Both cyclones and anticyclones appear to originate 117 

from instability of the Norwegian current near the Lofoten Islands (Søiland et al., 2008; 118 

Koszalka et al., 2011). Thus, Isachsen (2015) used time-averaged fields of an eddy-resolving 119 

numerical ocean simulation to calculate linear growth rates and corresponding length scales 120 

based on linear quasi-geostrophic (QG) vertical mode equations. The fastest unstable growth 121 

was found along the steepest part of the continental slope off the Lofoten-Vesteraalen islands. 122 

The current flowing the Mohn Ridge was also found to be unstable, but with lower growth rates. 123 

Steered by the bowl-shaped topography of the Lofoten Basin, some of the anticyclones 124 

generated in the boundary currents eventually approach and merge with the LV. 125 

So both eddy mergers and winter convection appear to strengthen this vortex. But the observed 126 

quasi-permanent state of the LV must ultimately reflect a long-term balance between re-127 

generation and dissipation (or break-up) processes. As outlined above, the first process has 128 

been studied to some degree. The second process, decay of the LV, has not received similar 129 

attention and is therefore the main focus of this paper.  130 

Mesoscale vortices, like the LV, can in principle decay due to small-scale turbulent diffusion 131 

and to instability triggered by external perturbations. However, since such vortices are typically 132 

surrounded by strong potential vorticity (PV) gradients (Hua et al., 2013; Bashmachnikov et al., 133 

2015), turbulent diffusion is suppressed. In the case of the LV a decay time due to the effect of 134 

turbulent diffusion has been estimated to be dozens of years (Søiland and Rossby, 2013). In 135 

contrast, hydrodynamic instability of the vortex itself could be an efficient decay mechanism 136 

(Smeed, 1988b; Rishardson et al., 2000; Bashmachnikov et al., 2015).  137 

A baroclinic vortex is subject to four main types of instability (Ripa, 1992; Cushman-Roisin and 138 

Beckers, 2011): baroclinic instability (due to coupling of Rossby waves), hybrid and Sakai 139 

instabilities (due to coupling of Rossby waves with frontally-trapped inertia-gravity waves), 140 

Kelvin-Helmholtz instability (due to coupling between inertia-gravity waves) and barotropic 141 
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instability (Rossby waves are sustained by a horizontal shear of the mean flow). Kelvin-142 

Helmholtz and Sakai instabilities are developed only at much higher Rossby numbers ( Ro ) than 143 

observed in the LV. For low Rossby numbers and low ratio of vortex-core thickness to water 144 

depth, hybrid and baroclinic instabilities may be generated. As the ratio of vortex-core thickness 145 

to water depth decreases the instabilities develop at a progressively slower rate (Ripa, 1992; 146 

Cohen et al., 2015a). 147 

In two-dimensional incompressible and inviscid fluids, a circular vortex with uniform relative 148 

vorticity (a Rankine vortex), which is a stationary solution of the Euler equations, is stable to 149 

small-amplitude perturbations on its contour (Lamb, 1885). This result also holds for a two-150 

dimensional vortex with uniform PV in a rotating environment, but it does not hold for a 151 

baroclinic vortex in the ocean. Quite simply, in a two-layer fluid (the simplest approximation of 152 

a baroclinic system) the Rankine vortex may become unstable if the sign of the PV changes 153 

from one layer to another (Pedlosky, 1985; Kozlov et al., 1986; Flierl, 1988; Helfrich and Send, 154 

1988). The instability theory for two-layer vortices was further developed, in particular, in the 155 

works by Sokolovskiy (1988), Paldor and Nof (1990), Ripa (1992), Mesquita and Prahalad 156 

(1999), Sokolovskiy and Verron (2000), Benilov (2000, 2001, 2003, 2004, 2005a, 2005b), 157 

Thivolle-Cazat et al (2005), Reinaud and Carton (2009), Sokolovskiy et al (2010), Carton et al. 158 

(2010a,b), Makarov et al. (2012), Cohen et al. (2015), Cohen et al. (2016).  159 

Similar arguments apply in the three-layer model (Holmboe, 1968; Davey, 1977; Wright, 1980; 160 

Smeed, 1988a, 1988b; Sokolovskiy, 1991; Ikeda, 1993). A sufficient condition for instability is 161 

achieved when at least one of the stratification parameters, 1γ  or 2γ  (inversely proportional to 162 

the first and the second Rossby radii of deformation, respectively, - see Appendix A), reach a 163 

certain threshold value (Sokolovskiy, 1997a, 1997b). Smeed (1988a, 1988b) has shown that for 164 

typical upper ocean conditions, when the density jump across the lower interface ( 2Δρ - 165 

between layers 2 and 3) is much less than that across the upper interface ( 1Δρ - between layers 166 

1 and 2), the instability develops as long waves generated at the sloping isopycnal above the 167 

eddy core (the interface between layers 1 and 2), and short waves generated at the sloping 168 

isopycnal below the eddy core (the interface between layers 2 and 3). This result was 169 

theoretically and numerically confirmed by Sokolovskiy (1997a, 1997b) for a “cylindrical” 170 

vortex in a three-layer fluid, as well as for a “cone-shaped” three-layer vortex (i.e. when the 171 

initially circular vortex patches have different radii in different layers).  172 

Thus, stability analyses of circular geostrophic vortices give evidence that the nonlinear 173 

evolution of such vortices can lead to a break-down of an initially monopolar vortex into 174 
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multiple structures (Pedlosky, 1985; Kozlov et al., 1986; Flierl, 1988; Helfrich and Send, 1988; 175 

Sokolovskiy, 1988, Carton and McWilliams, 1988; Carton and Corréard, 1999). Applications 176 

of the theoretical results to real ocean data suggest that most vortices should be unstable (e.g., 177 

Ikeda 1981; Flierl, 1988; Helfrich and Send, 1988; Carton and McWilliams 1989; Ripa 1992; 178 

Killworth et al., 1997; Benilov et al., 1998; Baey and Carton, 2002; Benilov, 2003; Katsman et 179 

al., 2003). Observations, in contrast, indicate that ocean vortices often persist for years (e.g., 180 

Lai and Richardson, 1977; Bashmachnikov et al., 2015). A promising attempt to solve this 181 

apparent contradiction was made by Dewar and Killworth (1995), who considered a Gaussian 182 

vortex in the upper layer and a relatively weak co-rotating circulation in the lower layer in a 183 

two-layer shallow-water model. It was found that the deep flow can stabilize the eddy or, at 184 

least, weaken its instability considerably. This idea was further developed by Benilov (2004), 185 

who demonstrated that the deep flow, corresponding to a uniform PV in the lower layer, 186 

stabilizes all types of vortices, not only the Gaussian one. Benilov (2004) thus argued that non-187 

zero deep flows are a common feature for long-lived oceanic eddies. 188 

The Lofoten Vortex is long-lived vortex; this is an observational fact. A first explanation of its 189 

dynamic stability was offered by Köhl (2007). Building his results on a 2-layer study by 190 

Benilov (2005a), the author argued that the LV may be stabilized by a 100-m bowl-shaped 191 

depression of the bottom topography. This explanation is questionable since it would only 192 

apply for a first baroclinic Rossby radius of deformation in the Lofoten Basin being several 193 

times larger than actually observed. Also, as is shown in Fig.1 and Fig.2, most of the time the 194 

LV center is situated not over a bottom depression, but is rather surrounded by a set of small 195 

depressions, while high-gradient bowl-shape basin boundaries are separated from the LV center 196 

by a distance of several vortex radii. 197 

It is more likely that PV gradients between the LV core and the surrounding ocean determine 198 

its stability characteristics. Thus, the LV decay has to be studied in terms of barotropic or 199 

baroclinic instability. For such investigation a detailed knowledge of the horizontal and vertical 200 

structure of the LV is critical. Previous studies of remote sensing and model data have given a 201 

relatively good picture of the horizontal structure of the LV near the surface and its time 202 

variability (Köhl, 2007; Soiland and Rossby, 2013; Volkov et al., 2015). The vertical structure 203 

of the vortex, studied so far only from scattered in-situ observations (Ivanov and Korablev, 204 

1995a,b; Blindheim and Rey, 2004; Gascard and Mork, 2008; Soiland and Rossby, 2013; Raj et 205 

al., 2015), is less well known. As outlined above, knowledge of this vertical structure, however, 206 

is key for an understanding of the vortex stability. A closer look at the vertical structure of the 207 

LV is, therefore, also a focus of this study. 208 
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The paper is structured as follows. An overview of data and methods is given in Section 2. The 209 

following section begins by describing the vertical structure of the LV, as obtained in eddy-210 

permitting primitive equation simulations nested into the global ECCO2 state estimate. This 211 

includes a discussion of the time evolution of the main vortex parameters and a classification of 212 

the LV PV states in selected vertical layers (Sections 3.1-3.3). These results are then used to 213 

study the stability of the LV in a 3-layer QG model, both in the linear and nonlinear regimes 214 

(Section 3.4), and also including the effects bottom slope and a background current (Section 215 

3.5). Finally, temporal variability of the LV in the primitive equation model is diagnosed and 216 

compared with the predictions of the stability calculations (Section 3.6). In Section 4 we 217 

summarize and discuss the results. 218 

 219 

2. Data and Methods: 220 

2.1 Primitive equation model  221 

Eddy-permitting numerical experiments of the Lofoten Basin and surrounding ocean regions 222 

(see Fig. 1) have been performed with the Massachusetts Institute of Technology primitive 223 

equation model (MIT GCM, Marshall et al., 1997) nested into the ECCO2 (Estimating the 224 

Circulation and Climate of the Ocean, Phase 2; http://ecco2.jpl.nasa.gov) ocean state estimate 225 

of the North Atlantic and the Arctic Ocean (Nguyen et al, 2011). ECCO2 is an accurate, 226 

physically consistent, time-evolving synthesis of the ocean circulation by a least square fit of 227 

full-depth ocean and sea ice dynamics to selected satellite and in situ data. The eddy-permitting 228 

regional model used for this study adopts the parameter set (surface heat and momentum fluxes, 229 

vertical mixing coefficients, etc.) obtained in the optimized ECCO2 model. The nested model 230 

run is integrated using a finite volume discretization with C-grid staggering of the prognostic 231 

variables and has a horizontal mesh-size of around 4x4 km in the Lofoten Basin. Given a first 232 

baroclinic Rossby radius of deformation of 7-8 km (Nurser and Bacon, 2014) in the region and 233 

a radius of the LV itself of about 30 km, the nested model is hence eddy-permitting. The model 234 

has 50 vertical z-levels, their mean thickness ranging from 10 m in the upper ocean to 456 m 235 

below 2000 m.  236 

The General Bathymetric Charts of the Oceans (GEBCO) with one arc-minute grid (Smith and 237 

Sandwell, 1997) is used as bottom topography. The partial cell formulation (Adcroft et al., 238 

1997) allows for an accurate representation of the bathymetry in the model. The computations 239 

were started from rest, using climatological temperature and salinity from the World Ocean 240 
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Atlas 2009 (WOA09) (Locarnini et al., 2010; Antonov et al., 2010). Over the 1992-2013 period, 241 

the simulations were forced with a 6-hourly atmospheric state obtained from the 25-year Re-242 

Analysis of the Japan Meteorological Agency (JRA25-JMA) with the original 1.25x1.25 degree 243 

spatial resolution. Lateral boundary conditions are taken from ECCO2 simulations. Time-mean 244 

fields used in this paper are taken from the 1995–2010 time period, leaving the first years for 245 

model spin-up. Further details on the model description and set-up are given in Losch et al. 246 

(2010), Nguyen et al. (2011) and Volkov et al. (2015). 247 

Analysis of variations of the LV near-surface mean relative vorticity in the MIT GCM and 248 

satellite altimetry observations (Ray et al., 2015; Volkov et al., 2015) showed that the model 249 

adequately describes seasonal and interannual variations in the LV dynamics at the sea-surface. 250 

The model was also shown to adequately reproduce other details of large-scale and mesoscale 251 

dynamics in the Lofoten Basin, as reported by a number of observational studies (see, for 252 

example, Blindheim and Rey, 2004, Gascard and Mork, 2008, Koszalka et al., 2011, Lumpkin 253 

and Johnson, 2013).  254 

 255 

2.2 Algorithm for obtaining characteristics of the LV  256 

Our study is based on weekly 3D fields of the primitive equation model temperature, salinity 257 

and velocity. The LV is identified at the centre of the Lofoten Basin by the deep penetration of 258 

its temperature and salinity anomalies (Fig. 2), as well as its relative vorticity signature. The 259 

analyses are done in a reference frame following the vortex, so consecutive positions of the LV 260 

were tracked using the peak negative relative vorticity at 700 m depth. The level chosen assures 261 

higher stability of the tracking algorithm, as the peak relative vorticity anomaly of the LV core 262 

at this level nearly always exceeds the corresponding anomalies of surface-intensified 263 

anticyclonic eddies propagating into the basin from the NwAC. Specifically, every new 264 

position of the LV was defined from the minimum of relative vorticity within a 40-km large 265 

disk (slightly larger than the typical LV radius defined by Köhl, 2007), from the vortex position 266 

at the previous step. To cope with the situations where the LV centre has drifted by more than 267 

one LV radius after a week, the algorithm undergoes three iterations for every time step, each 268 

one starting with the newly defined position of the minimum of relative vorticity. This 269 

“creeping” technique allows fixing the LV centre, separated by up to three LV radii from its 270 

previous position (this covers the possibility of LV translation at unrealistic velocities of 20 cm 271 

s-1). The procedure simultaneously avoids unwanted jumps of the LV position to the centre of a 272 

neighboring anticyclone, which happens to have a stronger instantaneous relative vorticity 273 
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anomaly. The robustness of the algorithm was verified by visual inspection of subsequent 274 

vorticity fields. The results show that the main LV core forms the strongest relative vorticity 275 

anomaly even when secondary vortices are separated from its skirt. 276 

 277 

 278 

Fig. 2. A section of salinity (a) and of temperature (°C, b) across the center of the Lofoten 279 

Vortex (69.7°N) at 24.08.2005 in the MIT GCM simulations. Thin isolines mark potential 280 

density surfaces referenced to 500 m depth. The LV position and the mean depths of the 3 281 

layers used for stability analysis are marked with dashed rectangles. GEBCO topography, 282 

interpolated to the model grid, limit the data distribution from below (blue line). Magenta lines 283 

mark the frequency of observation of the LV center along this section (out of scale, the line 284 

edges mark zero number of observations). 285 

 286 

With the LV position identified, the vortex extent was deduced from its relative vorticity field. 287 

Relative vorticity profiles were derived along rays, originating from the LV centre and 288 
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covering an ellipse with 10° increments (Fig. 3). Along each profile, the LV dynamic radius 289 

was defined using two complementary algorithms. In the first algorithm, the radius was defined 290 

as the minimum distance along each ray at which either 1) the relative vorticity profile crosses 291 

zero, or 2) the relative vorticity has a local maximum, or else 3) the rate of decrease of the 292 

relative vorticity slows down significantly (below 25% of its maximum rate along the ray). The 293 

latter two criteria help to avoid situations when the LV core extends across connected filaments. 294 

In the second algorithm only the first criterion was used. At times, special vorticity 295 

configurations were the LV center is fully circled by two nested rings of higher and then lower 296 

relative vorticity were identified (Fig. 3c). Those situations usually take place immediately 297 

after a full or partial merger of a surface anticyclone with the LV. In these cases the LV radius 298 

was defined using the second algorithm.  299 

Having collected the points of the LV boundary, the position of the LV centre was refined 300 

(from the first guess given by the tracking algorithm) as the algebraic mean of the boundary 301 

coordinates. The LV mean radius was further defined as the mean distance from the refined 302 

centre of the LV and the LV boundary points. The maximum and minimum radii were obtained 303 

via a robust least-square fit of the boundary points to an ellipse (Fig. 3).  304 

 305 

 306 
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Fig. 3. Upper panels: relative vorticity distribution at 100 m depth (x10-5 s-1). Red and magenta 307 

lines connect the LV centre and the LV boundaries in radial directions. Lower panel: sampled 308 

profiles of relative vorticity for the distributions above, running from the LV center northwards. 309 

(a) – 10.02.1993; (b) – 08.09.1993; (c) – 11.11.1998. Red ellipse (upper plots) and empty 310 

circles (lower plots) mark the LV boundary defined with the first algorithm (as described in the 311 

text); dashed magenta ellipse (upper plots) and grey stars (lower plots) mark the boundary 312 

defined with the second algorithm (as described in the text). 313 

 314 

2.3 Constructing a 3-layer isopycnal model  315 

To study the vertical structure of the vortex in an isopycnal framework, potential density 316 

surfaces referenced to 500 m ( 0.5σ ) were computed with an increment of 0.02 kg m-3. The bulk 317 

of the analysis to follow assumes a 3-layer structure of the vortex. Further, in Section 3.2, it 318 

will be shown that the LV represents an S-vortex in the classification of Morel and McWilliams 319 

(1997). For such vortices, negative potential vorticity anomalies of the vortex core are 320 

vertically constrained with positive potential vorticity anomalies above and below the core, 321 

resulting from compression of isopycnals (see Figs. 4 and 5). Having this in mind, the 322 

isopycnals that separate the water column into three layers (with the second layer constituting 323 

the vortex core) were defined using two other sets of reference isopycnals. The first set was 324 

taken as the two isopycnals that show the maximum deflection above and below the LV center 325 

from their mean position outside the vortex. Those isopycnals are thus within the weakly-326 

stratified core of the LV. The second set was taken from the isopycnals that experience the 327 

strongest squeezing above and below the core, i.e. the two isopycnals that have the smallest 328 

ratio of the distances to the neighboring isopycnals over the LV center to the mean distances 329 

between the same isopycnals. Finally, the two isopycnals limiting the core from above and 330 

from below were selected as those at mid-distance between the two sets defined above. 331 

With the two isopycnals separating the three layers identified, mean isopycnal depths were 332 

calculated. Deflections of the isopycnals in the LV ( 1η  and 2η ) were then computed as the 333 

differences between the isopycnal depth in the LV center and the mean depth of the same 334 

isopycnal in an extended region around the LV. 335 

 336 

3. Results 337 
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3.1 The vertical structure of the LV  338 

Figure 4 shows typical horizontal maps and vertical sections of relative vorticity across the LV. 339 

The relative vorticity anomaly shows up as a columnar pattern which reaches the ocean bottom. 340 

However, the vorticity intensity sharply decreases and the vortex radius increases below 1000 341 

m depth.  342 

 343 

 344 

Fig. 4. Horizontal maps at 100 m depth (left-hand panels) and vertical profiles (middle and 345 

right-hand panels) of relative vorticity (x10-5 s-1) in the Lofoten Basin: a- 24.08.2005; b- 346 

13.09.2009. In the horizontal maps horizontal velocity vectors are overlaid; black and grey 347 

lines mark the position of vertical section along the LV semi-major and semi-minor axes of the 348 

approximating ellipse, respectively. The vertical sections show cuts along the semi-major axis 349 

(middle panels) and semi-minor axis (right-hand panels) of the vortex. In the vertical sections 350 

solid black isolines are 0.5σ  and vertical white dotted and dashed lines mark the LV axis and 351 

boundaries (dynamic radii), respectively. 352 

 353 
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Time-averaged vertical profiles of selected geometric and dynamic characteristics of the LV are 354 

presented in Figure 5. The LV azimuthal velocity, the relative vorticity and the dynamic radius 355 

reach their peak values at 500-600 m, 700-800 m and 800-900 m, respectively. The 200-800 m 356 

layer is also characterized by the strongest temperature-salinity anomaly (see also Fig. 2), as 357 

well as by the peak negative Ertel PV anomaly. Ertel PV is defined as ( ) gω+fN²=ΠE / , 358 

where N  is the buoyancy frequency, f  is Coriolis parameter, ω  is the mean relative vorticity 359 

of the LV core at a depth level and g  is the gravitational acceleration. Ertel PV anomaly is 360 

defined as the difference between Ertel PV in the LV center and in the surrounding ocean.  361 

Figure 5 (as well as Figs. 2 and 4) shows that the LV core is intensified below the sea-surface. 362 

This suggests that the LV vertical structure can be split in 3 layers. The upper layer (layer 1), 363 

above the LV core, extends on average from the sea-surface to 50-200 m. In this layer, the LV 364 

radius ( R ) increases with depth. The core layer (layer 2) extends from 50-200 m to 900-1100 365 

m and is characterized by overall peak dynamic properties, as described above. In particular, 366 

the peak relative vorticity anomaly is between -2x10-5 and -3x10-5 s-1. R  in the layer decreases 367 

with depth down to a minimum of about 25 km at around 900 m. The lower layer (layer 3), 368 

from 900-1100 m to the ocean bottom, is characterized by a more than a five-fold decrease of 369 

relative vorticity (as compared to its peak value in layer 2) and by a larger R  of around 35 km.  370 
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 371 

 372 

Fig. 5. Vertical profiles of selected time-mean characteristics of the LV (from 1998 to 2012): 373 

black lines with circles are dynamic radii (km) – the mean radius (solid line - avR ), the lengths 374 

of the semi-minor axis (dashed line - minR ) and of the semi-major (dotted line - maxR ) axis; 375 

thick grey lines with crosses are relative vorticity profiles (106 s-1) – the peak (solid line - minω ) 376 

and averaged in the disk with the radius 2/avR  (dashed line - avω ), thick gray line with 377 

squares is the maximum azimuthal velocity (V , cm s-1); black dash-dot line is profile of Ertel 378 

potential vorticity anomaly in the LV center ( EΠ , 1011 s-1). Gray horizontal bands present 379 

approximate positions of the time mean upper and lower boundaries of the LV core. 380 

 381 

3.2 Time evolution of the LV parameters 382 

In this section, the time evolution of the vertical structure and of the horizontal geometry of the 383 

LV, in a 3-layer isopycnal framework (Section 2.3), is considered. The time evolution of the 384 

mean layer thicknesses outside the LV, the layer thicknesses in the LV itself and layer 385 
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deflections at the LV center ( 1η  and 2η ) are presented in Fig. 6. The strong variability of the 386 

depth of the upper layer has both seasonal and interannual pattern. During some years winter 387 

convection penetrates into the LV core, and layers 1 and 2 merge for a couple of months, until 388 

the late spring re-stratification of the upper ocean restores the 3-layer structure of the LV. 389 

Figure 7 shows the evolution of the layer-averaged temperatures and potential densities 390 

referenced to 500 m depth ( 0.5σ ) in the LV. Seasonal fluctuations reach layer 2 although 391 

strongly reduced in amplitude. Both Figs. 6 and 7 show that the first simulation years are 392 

characterized by a noticeable evolution of the LV parameters, from which we conclude that the 393 

LV structure is not fully developed in the model until about 1998. Our further analyses the LV 394 

dynamics will therefore be based on the period from 1998 to 2012.  395 

 396 

Fig. 6. a - time evolution of the mean layer thicknesses (m) outside the LV: layer 1 ( 1h , thick 397 

solid red line) and layer 2 ( 2h , thick dotted magenta line); time evolution of the LV core 398 

thickness (m), - separation between upper and lower interfaces of layer 2 at the LV center 399 

( 2LVh , thin solid blue line). b - time evolution thickness (m) of layer 1 in the LV center ( 1LVh , 400 

thin solid blue line), and elevation of isopycnals over the LV (m): thick solid red line is 1η , 401 

thick dotted magenta line is | 2η |. 402 
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 403 

Fig. 7. a- time evolution of layer-mean temperature (°C), b - time evolution of layer-mean 404 

density 0.5σ  (kg m-3) in the LV. Red line represents layer 1, magenta line - layer 2; blue line – 405 

layer 3. 406 

 407 

Figure 8 shows LV radii, velocities and vorticities. The layer-mean radii (Fig. 8a) of the LV in 408 

layers 1 and 3 are somewhat larger than in layer 2: the ratios 12 / RR  and 32 / RR  are on 409 

average 0.98 and 0.93, respectively. The ratio of semi-minor to semi-major axes at all depths is 410 

on average 0.82 and decreases below 0.70 only for 10% of the time. These results will be taken 411 

as justification for using a simple model of a circular columnar LV (see also Fig. 3) in the 412 

analysis that follows. 413 

The maximum azimuthal velocity ( azV ) in layer 1 (
1

azV ) on average reaches 90% of that in 414 

layer 2 (
2

azV ), while in layer 3 
3

azV  is about 30% of 
2

azV  (Fig. 8b). Given the small variations 415 

of the LV radii with depth, the relative vorticity varies with depth accordingly (ω , Fig. 8c). In 416 

idealized 2-layer vortex models, a co-rotating deep flow of 5-10% is already sufficient for 417 

stabilizing a vortex (Dewar and Killworth, 1995). Further (Section 3.4) we will show that in a 418 

3-layer QG-model the LV is a subject of a weak vortex instability, while in the primitive 419 

equations model with external forcing (Section 3.6) development of perturbations in the LV is 420 

restricted to the vortex skirt. 421 
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 422 

Fig. 8. (a)- time evolution of layer-mean LV radius (km). (b) - time evolution of maximum 423 

azimuthal velocity (cm s-1). (c) - time evolution of the mean relative vorticity within the circle 424 

2/jRr ≤  around the LV center (s-1). Red line represents layer 1, magenta line - layer 2; blue 425 

line – layer 3.  426 

 427 
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Fig. 9. (a) - time evolution of the layer-mean QG PV (Eq. (1), s-1) in the LV ( jRr ≤ , j  =1,2,3 428 

is the layer number). (b) - time evolution of the layer-mean QG PV (s-1) around the LV 429 

( jj rR 2R≤≤ ). Red line represents layer 1, magenta line - layer 2; blue line – layer 3. Note 430 

that y-scale of panel (a) is in 10-4 s-1, while of panel (b) is in 10-5 s-1. 431 

 432 

QG PV for layers 1-3 is estimated as:  433 









−=
+−=

+=

3233

222122

1111

/hηfωΠ

/hηf/hηfωΠ

/hηfωΠ

.                                                                     (1) 434 

Here jh  is the thickness, jω  is the relative vorticity and jη  is isopycnal deflection in the LV 435 

from their mean positions in the surrounding ocean, for layers 3,2,1=j . 2Π  is negative in the 436 

LV core, while above and below 1,3Π  are positive (Fig. 9a). 2Π  outside the LV core 437 

( 2R≤≤ rR ) is also negative on average (Fig. 9b), but its absolute value is more than an order 438 

of magnitude smaller than 2Π  in the core ( R<r ). The positive PV poles above and below the 439 

LV core are formed by squeezing of isopycnals. This suggests that the LV represents a 440 

vertically-shielded S-vortex structure (Morel and McWillams, 1997). As the LV is weakly 441 

horizontally shielded, its interactions with the mesoscale structures around is expected to be 442 

stronger than for an unshielded vortex (Carton 1992; Carton et al., 2002). 443 

 444 

3.3. Identification of typical LV PV structures 445 

Figures 6-9 reveal that the overall LV structure remains quite stable in time, except for short 446 

periods of deep winter convection, penetrating the LV core. Time-mean parameters of the LV 447 

are presented in Table 1. At the same time, a notable time variability of LV parameters exists 448 

on seasonal and shorter time scales. In this section we investigate whether much of this 449 

variability falls within a smaller subset of typical configurations of the vortex. Typical 450 

configurations were identified using K-means cluster analysis performed in the ( )21 Π,Π  451 

parameter space. This parameter space was chosen since layer PVs have a direct influence on 452 

vortex stability and since 1Π  and 2Π  show the strongest variations in time (see Section 3.2). 453 
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The spread of the LV PV configurations in the ( )21 Π,Π  space is shown in Figure 10. The 454 

density distribution of the data-points (Fig. 10) shows concentration around 4 distinct centers, 455 

marked at the plot as A, B, C and D. Objective selection criteria, like Partition Index and 456 

Separation Index decrease slower as the number of clusters exceeds 5, while the Xie and Beni’s 457 

Index becomes leveled at number of clusters over 3. For example, the Partition Index (the ratio 458 

of the sum of compactness to separation distance between the clusters) decreases by 2.9, 2.3, 459 

2.1, 0.2, with an increase of the number of clusters from 2 to 3, from 3 to 4, from 4 to 5 and 460 

from 5 to 6, respectively. Therefore, 5 clusters were selected as the optimum number. In the 461 

cluster analysis, distances along each of the axes in the ( )21 Π,Π  space were normalized by the 462 

corresponding ranges of PV values. After such normalization, PV points that lie within a non-463 

dimensional distance of 0.3 from the center of a given cluster were used to estimate the 464 

characteristic properties of that cluster (Fig. 10). This avoids transitional states. In total, the 465 

four main clusters (A, B, C and D, listed in Table 2) cover over 60% of the model run duration 466 

(470 out of 784 model outputs). The mean vertical distribution of isopycnals for each of the 467 

clusters are shown in Figure 11. The results are discussed in detail below. 468 

 469 
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  470 

Fig. 10 – The state of the LV in ( )21 Π,Π  space (10-4 s-1) and the results of K-mean cluster 471 

analysis. (a) Black dots show data points and grey shading indicate their concentration (darker 472 

shading indicates higher density). The thicker red, magenta, blue, cyan and green dots represent 473 

the ( )21 Π,Π  points identified as belonging to clusters A, B, B1, C, and D, respectively. (b) 474 

Number of observations of different states as a function of season over the period of 475 

simulations in MIT GCM.  476 



22 

 477 

 478 

Fig. 11. Mean isopycnal depths (blue lines) across the LV for the four main clusters in Fig. 10. 479 

(a) - configuration A, which is the most typical for autumn and early winter, (b) - configuration 480 

B, occurring in late winter or early spring, (c) - configuration C, the most typical for late spring, 481 

(d) - configuration D, the most typical for summer. Red stars mark the LV limits. Magenta and 482 

red lines represent isopycnals, marking the upper and the lower boundaries of the LV core, 483 

respectively. 484 

 485 

Configuration A (Fig. 10b, 11a) is characterized by small deflections of isopycnals above the 486 

LV core ( 1η ) compared to the mean thickness of layer 1 ( 1h ), and a comparatively large 487 

thickness of layer 2 ( 2h ). The frequency of such a configuration grows from summer to autumn, 488 

slightly decreases in winter and is very rare in spring. In late autumn and winter the upper 489 

mixed layer deepens due to convection, gradually eroding the upper boundary of the LV. 490 

Configuration B (Fig. 10b, 11b) is a result of deep convective mixing during the cold season, 491 

when the upper layer disappears and a 2-layer approximation of the LV becomes valid: 1h =0 492 
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and 1η =0; 2h  is anomalously large. This configuration occurs only in early spring. A similar 493 

configuration is B1 (not shown in Fig. 11), for which the upper layer exists but the limiting 494 

isopycnal over the LV lies much below 200 m, the depth of the upper mixed layer. 495 

Configuration B1 is episodically observed from late autumn to early spring, being the most 496 

frequent in winter. 497 

Configuration C (Figs. 10b, 11c) is characterized by anomalously large 1η  compared to 1h , 498 

while 2h  is small. This configuration can be observed during any season, but it is most frequent 499 

in late spring and early summer, i.e. during the restoration of the seasonal pycnocline. Its 500 

frequency decreases through summer and autumn and reaches its minimum in winter.  501 

Configuration D (Figs. 10b, 11d) is intermediate between A and C. This most frequent 502 

configuration is the most often observed in summer.  503 

For the study period from 1998 to 2012, from 470 points, used for obtaining the characteristic 504 

parameters of each of the configurations (see above), there are 98 points characterized by A-505 

cluster (around 21%), 79 points – by B and B1-clusters (around 17%), 139 points – by C-506 

cluster (around 29%) and 155 points – by D-cluster (around 33%). The rest of the points, not 507 

used for construction of the panels of Fig 11, mostly belong to either cluster D or to cluster A. 508 

The key vortex parameters for each of the four clusters are listed in Table 2. 509 

Although the sequence A-B(B1)-C-D largely follows the seasonal cycle, interannual variations 510 

in the upper ocean stratification under varying atmospheric forcing result in some 511 

configurations having overlapping maxima (Fig. 10b). Thus, we may observe configurations A, 512 

C or D during summer. During mild and calm winters configurations B (and B1) may not 513 

develop (Fig. 9a).  514 

 515 

Table 1. Time-mean statistics of dynamic parameters of the LV. 516 

Parameter Layer 1/interface 

1 

Layer 2/interface 

2 

Layer 3/bottom 

Interface depth ( z , m) 250 655 3000 

Layer thickness ( h , m) 250 405 2345 

Interface deflection at 

the LV center ( η , m) 

135 500 0 
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R , km 30.5 30.0 32.0 

azV , cm s-1 -34 -37 -11 

ω , s-1 -1.13 10-5 -1.32 10-5 -0.38 10-5 

| | | |21,3 ωω ≤ , % 97% - 100% 

Π *10-4, s-1 0.75 -2.35 0.25 

Π ±std 4.6±1.9 -13.2±5.6 1.4±0.1 

0.5σ (500m), kg m-3 30.11 30.29 30.54 

 517 

Table 2. Statistics of dynamic parameters of the LV for each of the clusters (Figs. 10-12). 518 

Parameter Layer 1/interface 

1 

Layer 2/interface 

2 

Layer 3/bottom 

configuration A, 21%, 

h ±std (m), 

η ±std (m) 

R ±std (km) 

0.5σ ±std (kg/m3) 

Π ±std (10-4 s-1) 

Π ±std 

 

190±65 

70±30 

31±3 

30.00±0.12 

0.36±0.05 

2.0±0.7 

 

475±65 

-510±25 

30±2 

30.27±0.05 

-1.85±0.14 

-10.5±2.0 

 

2345 

 

32±2 

30.54±0.00 

0.26±0.01 

1.5±0.1 

configuration B, 17%, 

h ±std (m), 

η ±std (m) 

R ±std (km) 

0.5σ ±std (kg/m3) 

Π ±std (10-4 s-1) 

Π ±std 

  

660±30 

-490±30 

31±2 

30.15±0.11 

-1.33±0.14 

-6.4±0.6 

 

2340 

 

33±3 

30.55±0.00 

0.25±0.01 

1.4±0.1 

configuration C, 29%, 

h ±std (m), 

η ±std (m) 

R ±std (km) 

0.5σ ±std (kg/m3) 

Π ±std (10-4 s-1) 

 

340±50 

270±50 

29±2 

30.18±0.06 

 

310±35 

-485±35 

28±1 

30.33±0.03 

 

2350 

 

31±2 

30.54±0.00 
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Π ±std 0.98±0.05 

5.6±0.5 

-3.37±0.22 

-19.7±2.7 

0.27±0.01 

1.4±0.1 

configuration D, 33%, 

h ±std (m), 

η ±std (m) 

R ±std (km) 

0.5σ ±std (kg/m3) 

Π ±std (10-4 s-1) 

Π ±std 

 

220±50 

160±40 

31±3 

30.01±0.14 

0.86±0.05 

4.8±0.54 

 

425±50 

-485±40 

30±1 

30.25±0.05 

-2.22±0.16 

-12.7±1.8 

 

2355 

 

32±2 

30.55±0.00 

0.24±0.01 

1.4±0.1 

 519 

3.4 Instability analysis in a QG model 520 

The findings in sections 3.2 and 3.3 suggest that during the whole period of observations the 521 

sign of PV in the LV core is opposite to the signs of PV in the layers above and below. Thus, 522 

the necessary integral condition for vortex instability is satisfied (Sokolovskiy, 1997b; 523 

Cushman-Roisin and Beckers, 2011). The range of the vortex Rossby numbers suggests that 524 

baroclinic or hybrid types of instability can be expected (Ripa, 1992). For the LV the second 525 

derivative of azimuthal velocity in radial direction exceeds variation of Coriolis parameter with 526 

latitude, and the necessary condition for barotropic instability is also satisfied (Cushman-Roisin 527 

and Beckers, 2011). The possible role of baroclinic, barotropic or mixed instability will be the 528 

focus of following sections. We start by studying the stability properties of the LV in a two and 529 

three layer QG models. 530 

For a 2/3-layer QG model of the LV, the LV is approximated as stacked cylinders (see Figs. 8-531 

9 and Tables 1-2), with PV anomalies constant in each of the layers (Eq. A6 in Appendix 1). 532 

The non-dimensional vortex PV anomalies in each of the layers, used in the QG model, are 533 

computed as: 534 
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where 








R

V
ω=ω jj / , ( )HRoη=η jj ⋅/ , Hh=h jj /  ( 3,2,1=j ), H  is water depth and Ro  is 536 

the Rossby number. The mean LV parameters in layer 2 (Table 1) were taken as the reference 537 
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scales. This gives V =37 cm s-1, R =30 km (see Table 1), H =3000 m and f = 1.36 10-4 s-1. 538 

Hence, the relative vorticity normalization scale is RV / = 1.23 10-5 s-1 and the Rossby number 539 

is f)(RV=Ro / =0.09. Averaging 2
N  over the LV core thickness (1000-1200 m, Fig. 10) and 540 

over the full H  (10-6 s-2 and 10-7 s-2, respectively), the vortex Burgers number 
22

22

Rf

HN
=Bu  541 

~0.05-0.10. The ratio of BuRo / ~1 is relatively high, but we may still expect the QG 542 

approximation to capture the major features of the LV dynamics (Boss et al., 1996). 1F =3.2 543 

and 2F = 2.9. 544 

For the mean dimensional characteristics of the LV (Table 1), and with the scaling parameters 545 

as above, the following set of dimensionless parameters is taken for numerical experiments: 546 

1R  =1.033, 2R  =1.000, 3R  =1.067,  547 

1h  =0.0833, 2h  =0.1383, 3h  =0.7784,        (3) 548 

1Π  =4.6, 2Π  = -13.2, 3Π =1.4, 549 

We first examine the stability of the various clusters for the linearized problem of small 550 

perturbation amplitudes. The analytic solution, which can be framed in terms of an eigenvalue 551 

problem for a set azimuthal modes m, is presented in Appendix A. It allows us to identify, for 552 

each mode m , stable and unstable domains that are separated by neutral surfaces in the space 553 

of PV ( )3Π,Π,Π 21 . Figure 12 shows sections of these hyper-surfaces by a ( )21 Π,Π  plane at a 554 

fixed value of 3Π =0.25 10-4 s-1 (see Table 2) for configurations A, C and D, and by a ( )32 Π,Π  555 

plane at a fixed value of 1Π =0 s-1 for configuration B (when no upper layer exists). 556 

Calculations of a set of instability modes for each of the clusters A-D are done for the sets of 557 

dynamic parameters presented in Tables 1-2. The area of instability for an azimuthal mode m  558 

lie to the right of the neutral stability curve, marked by the corresponding mode number (Fig. 559 

12 a, c, d) or in-between the two neutral stability curves of the same mode number (Fig. 12 b). 560 

For each of the cluster configurations (Figs. 10-12), the following azimuthal modes are 561 

unstable: configuration A – m =2-3, configuration B – all m , configuration C – m =2-6 and 562 

configuration D – m =2-4.  563 

The growth rate for an azimuthal mode m  is defined by the imaginary part of the complex 564 

frequency δm  (Appendix A). For the mean vortex parameters (Table 1, the thick grey circle in 565 
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Fig. 12d) we get linear growth rates | | ,=δIm2 2m 0.0839=  566 

| | ,=δIm3 3m 0.5364= | | 0.3316=δIm4 4m= , i.e. | | | | | |2m4m3m δIm>2δIm>4δIm3 === . Therefore, 567 

theoretically, the 3rd and the 4th azimuthal modes are growing much faster than the 2nd mode. 568 

The 1st azimuthal mode has zero growth rate. These results are applicable for the most frequent 569 

configuration D. The numerical experiments for three other configurations (A, B and C, Table 570 

2) indicate that, the 3rd azimuthal mode dominate the instability also in configurations A and B, 571 

and the 5th azimuthal mode – in configuration C. In all the configurations, the most unstable 572 

perturbations have a e -folding time scale of order of 60 days.  573 

In a 2-layer model, all modes develop slower, but the lower modes finally are more efficient in 574 

decay of the vortex (Table 3). 575 

 576 

 577 

Fig. 12. Same as in Fig. 10 but now with the addition of neutral stability curves based on QG 578 

calculations for each of cluster configurations. Colour circles at each of the plates mark the 579 

central set of the corresponding cluster (as in Fig. 10), the dots of the same colour – the rest of 580 

the points, belonging to the corresponding cluster. The yellow, red, black and blue are lines of 581 
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neutral stability curves for azimuthal modes m =2, m =3, m =4 and m =5, respectively. (a) the 582 

LV PV anomalies (10-4 s-1) in ( )21 Π,Π  parameter space for configuration A; (b) the LV PV 583 

anomalies (10-4 s-1) in ( )32 Π,Π  parameter space for configuration B; (c) the LV PV anomalies 584 

(10-4 s-1) in ( )21 Π,Π  parameter space for configuration C; (d) the LV PV anomalies (10-4 s-1) 585 

in ( )21 Π,Π  parameter space for configuration D. The unstable domains of the azimuthal 586 

modes are located to the right of the lines with the corresponding labels (in-between the lines of 587 

the same mode for (b)). The gray circle in plate (d) marks the PV anomalies of the reference 588 

vortex, used for the QG non-linear simulations. 589 

 590 

In the numerical non-linear QG study below we will present the non-linear development of 591 

instability for azimuthal modes m = 2, 3 and 4 for the most typical 3-layer configuration of the 592 

LV characteristics (Table 1) and for the 2-layer configuration B (Table 2). Under the 593 

assumption of a piecewise-constant potential vorticity distribution, simulating the vortex patch, 594 

the so-called Contour Dynamic Method (Zabusky et al, 1979) can be applied to a three-layer 595 

quasi-geostrophic model (Sokolovskiy 1991, Sokolovskiy and Verron, 2014). The horizontal 596 

along-contour resolution in the Lagrangian model has 240 nodes for a circle contour of a unit 597 

radius. The number of points increase proportional to the growth of a contour length to keep the 598 

original along-contour resolution. In the following experiments (Figs. 13-18) the vortex is 599 

immersed in a motionless fluid over a flat bottom. An experiment with a background mean 600 

flow and variable bottom topography is presented in Appendix B. 601 

The non-linear QG model is formulated for each of the layers j  as:  602 

0
j =

dt

Πd
,          (4) 603 

where the layer PVs are defined as in Eq. (2) and 
dt

d
 is the full derivative.  604 

Two sets of runs were made, one with small-amplitude initial perturbations, 0.02=ε j  and 605 

another with larger perturbations, 0.2=ε j  (see Appendix A, Eq. A.8), In the first case the 606 

amplitude of the perturbation displacements of the vortex boundary are small compared to the 607 

mean dynamic radius of the LV, in the second case they are comparable to the mean dynamic 608 

radius. 609 
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For small-amplitude initial perturbations (Figs. 13-15) the predictions of the linearized theory 610 

are largely confirmed. In the 3-layer model, for a perturbation with m = 2, the main core 611 

undergoes a strong elliptical deformation, but keeps its integrity for months (Fig. 13). Two 612 

secondary eddies eventually separate from the main core after 6-7 months, but a fairly 613 

significant volume of the vortex patch remains in the central part at the end of the 8-months 614 

simulation period (Table 3). This demonstrates a significant stability of the vortex to such 615 

perturbations: the percentage of volume left in the vortex core at the end of the 5-month 616 

simulation period is the largest of all modes (Table 3). Azimuthal mode 3 develops faster and 617 

secondary eddies separate from the main core already within 4-5 months (Fig. 14). Mode 4 618 

instability develops nearly as fast, especially in the top layer (Fig. 15). Still, development of 619 

secondary eddies of mode 4 is generally limited to the periphery of the vortex, in particular for 620 

layers 2 and 3. In these layers the core volume of the main vortex practically does not change 621 

after 5-months of development of the instability (Table 3). This suggests a relatively low 622 

efficiency of mode 4 in the LV decay for small-amplitude perturbations.  623 

 624 

Fig. 13. Evolution of instability in the numerical QG model for small-amplitude 625 

)1,2,30.02( =j,=ε j  mode-2 )2( =m  initial perturbations (see Eq. A.8, Appendix A). The 626 

most typical parameter state (Table 1, within configuration D) is used for the model set-up. 627 

Each frame shows vortex patches in the upper (red upper contour plots in a plate), middle 628 

(magenta middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers 629 

as function of non-dimensional time. The dimensionless time unit corresponds to 12 days. 630 

 631 
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 632 

Fig. 14. The same as Fig. 13 but for 3=m . 633 

 634 

 635 

Fig. 15. The same as Fig. 13 but for 4=m . 636 

 637 
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Table 3. A measure of vortex instability: the volume of the central part of the vortex after 5 638 

months for 0.02=ε j  and for 0.2=ε j , in percent of its initial volume. In some cases for 639 

0.02=ε j  the volume ratio at the end of the 5-month period is 100%. For those cases the ratio 640 

at the end of the 8-month simulation period is also presented in parentheses. 641 

Perturbation 

intensity: 

0.02=ε  0.20=ε  

Azimuthal mode: m=2 m=3 m=4 m=2 m=3 m=4 

3-layer configuration (D) 

Layer 

number (j)  

1 100% 

(37%) 

15% 46% 31% 5% 36% 

2 100% 

(37%) 

27% 89% 44% 20% 46% 

3 100% 

(17%) 

16% 99% 0% 6% 15% 

2-layer configuration (B) 

Layer 

number (j)  

2 100% 

(59%) 

100% 

(45%) 

100% 

(54%) 

71% 51% 52% 

3 100% 

(36%) 

100% 

(20%) 

100% 

(165) 

100% 26% 17% 

 642 

 643 

Increasing the amplitude of the initial perturbations by an order of magnitude leads to rather 644 

significant changes in the development of the instabilities (Figs. 16-18). In this case, the linear 645 

stability analysis provides less reliable predictions. For all azimuthal modes allowed for the 646 

most typical LV vertical structure (2-4), secondary vortex patches are formed within 3-4 647 

months, and after 5 months the main vortex core in the upper and lower layers have decreased 648 

significantly in size (Table 3). In the middle layer, the instability with m  = 3 (Fig. 17) is the 649 

most efficient in breaking up the vortex in the 3-layer case (Table 3). In the 2-layer winter 650 

configuration B the 2nd mode develops much slower than the 3rd and the 4th ones in the case of 651 

finite-amplitude perturbations. The instability with m = 4 initially develops nearly as fast as 652 

that with m  = 3 in the LV core (Table 3). Still, for 0.20=ε , further development of the 653 

instability modes (not shown) suggests a stronger decrease of the LV volume due to the 654 

instability with m = 3 at the end of the 8-month period.  655 
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 656 

 657 

Fig. 16. Evolution of instability in the numerical QG model for finite-amplitude 658 

)1,2,30.2( =j,=ε j  mode-2 )2( =m  initial perturbations (see Eq. A.8, Appendix A). The most 659 

typical parameter state (Table 1, within configuration D) is used for the model set-up. Each 660 

frame shows vortex patches in the upper (red upper contour plots in a plate), middle (magenta 661 

middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as 662 

function of non-dimensional time. The dimensionless time unit corresponds to 12 days. 663 

 664 
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 665 

Fig. 17. The same as Fig. 16 but for 3=m . 666 

 667 

Fig. 18. The same as Fig. 16 but for 4=m . 668 

 669 

The results of this Section may be summarized as follows. For a realistic set of parameters, 670 

both the linear analytical and nonlinear numerical QG models suggest that the LV is weakly 671 
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unstable. The LV core keeps its integrity at least over 4-5 months, but its volume decreases. For 672 

finite-amplitude disturbances, the instability develops somewhat faster and the LV loses more 673 

than 50% of its initial volume within the above-mentioned period of time. In the 2-layer case 674 

perturbations develop at a noticeably slower rate, which suggests a higher stability of the LV in 675 

winter (configuration B). Perturbations with the azimuthal mode 3 appear to be overall more 676 

efficient in facilitating vortex break-up than other modes. This distinction is more pronounced 677 

for small-amplitude initial disturbances. In many cases the rates of development of 2nd or 4th 678 

modes are close to that of the 3rd one. In these cases, other modes than the 3rd one may become 679 

dominant in the course of non-linear interactions between the modes in the full complexity of 680 

the realistic LV dynamics. For stronger deflection of isopycnals (configuration C, Fig. 10) 681 

higher azimuthal modes may start dominating the instability. 682 

 683 

3.5 Instability analysis in a QG model with sloping topography 684 

In the previous sections stability of the Lofoten vortex in the 3-layer QG model is done under 685 

assumption of the flat bottom and the surrounding fluid at rest. Meanwhile, observations and 686 

model results (Sections 1 and 2.1) show that the bottom of Lofoten Basin is gently sloping 687 

southwestwards down from 3000 to 3250 m over 250 km, and then sharply rise to 2000-2500 m 688 

at the ridge following Jan Mayen Fracture Zone and to 1500-2000 m at the Vorming plato over 689 

less than 70 km distance. The Lofoten vortex (Fig. 1) is positioned over the gentle slope in the 690 

central part of the basin. In this case the scaling factor of the planetary β -effect, 691 
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. Incorporation of planetary or topographic β -693 

effect increases stability to the mean flow (Cushman-Roisin and Beckers, 2011; Hetland, 2017), 694 

but for an axisymmetric vortex the stabilization by a gently sloping bottom of the Lofoten Basin 695 

is not  obvious, as PV now varies along the circular particle path. The cyclonic circulation along 696 

the inner part of the Lofoten Basin boundaries (Poulain et al., 1996; Gascard and Mork, 2008) 697 

increases horizontal shear gradients at the LV boundary. The current and topography impose 698 

perturbations to the vortex, so instability here is generated within the system and is not 699 

artificially imposed as in the previous section.  700 

With a barotropic north-easterly mean flow, the so defined “background” state are taken into 701 

account by adding new time-independent terms to the right-hand side of equation (A.7):  702 
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Here 
j

p
0

 is an analytically estimated pressure perturbation in each layer j , which is added to the 706 

pressure perturbations by the vortex (A.7), to make the total pressure (streamfunction) field. 707 

00 ,VU are current velocity components at infinity, iσ  is the bottom elevations over 3000 m 708 

(negative for a depression) normalized for the area of the circular topographic forms with 709 

coordinates of the centers ),( iyix cc , and ( ) ( )22
iyixi cycxr −+−= ; 0U  and 0V  are the scales of 710 

the zonal and the meridional components of the mean barotropic flow. Other notations are 711 

presented in Appendix A. 712 

As the first step, an effect of a relatively small localized bottom depression on the LV stability 713 

(Köhl, 2007) is numerically verified (Appendix B). Although it was previously shown that the 714 

LV, most of the time, is not situated over any of the 50-m bottom depressions in the center of 715 

the Lofoten Basin (Figs. 1-2), episodically it is observed over one or another depression. Non-716 

linear QG simulations show that, as in Section 3.4, instability filaments are formed 2-3 months 717 

after the beginning of the simulations, triggered by interaction of the LV with the topography 718 

and the mean flow. Topographically induced deformations of the vortex are especially 719 

pronounced in the lower layer (Fig. B1). During 2-3 months, we observe over 50% reduction of 720 

the volume of the LV main core in the upper 2 layers, while the LV is totally destroyed within 721 

5 months (Fig. B1). Thus, the decay rate is close to that of the flat-bottom case, when finite-722 

amplitude perturbations are imposed (Section 3.4). Thus, localized bottom depressions and the 723 

background current alone may lead to a relatively fast decay of the LV in the QG model. 724 

Another interesting result of Appendix B is that all the filaments and submesoscale eddies, 725 

formed as a result of the LV instability, remain inside the Lofoten Basin for at least 6 months of 726 

the simulations. This may have implications for mechanisms of maintenance of the observed 727 

anomalously thick layer of Atlantic water in the Lofoten Basin (Björk et al., 2001; Søiland and 728 

Rossby, 2013). 729 
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As the second step, we neglect the effects of relatively small depressions around the mean 730 

position of the Lofoten vortex (Fig. 1), but take into account the large-scale effect of the gently 731 

sloping bottom topography in the central part of the basin. For this, we approximate the realistic 732 

topography of the central part of the Lofoten Basin with 8 circular non-concentric cylinders with 733 

radii of 175, 147, 125, 105, 80, 60, 45, 30 km and depths of the plains equal to those of the outer 734 

rings of 3000, 3100, 3150, 3200, 3225, 3230, 3235 and 3240 m, respectively (Fig. 19). 735 

Figure 19 presents configurations of the streamlines for the background initial conditions, when 736 

the mean flow at infinity is 100 =U  cm s-1 and 00 4UV = . Specifically, the bottom elevation 737 

between 3000 and 2000m and the background velocity field forms open streamlines, cyclonically 738 

skirting the eastern part of the basin, while along its western boundary the strait northwards 739 

current is formed (Fig. 19). This simulates the mean upper ocean circulation in the Lofoten Basin 740 

(Fig. 1). At this point, we note that in the results below all moving vortex patches remain within 741 

the 3000 m circle, and the topography outside the 2000-m contour does not directly affect the LV. 742 

We also note that in the southwestern part of the deep Lofoten Basin, a pattern with closed 743 

streamlines is formed, separated with a separatrix streamline (the thick black line in Figure 19). 744 

This area disappears for higher velocity of the background flow ( 0U  > 50 cm s-1, not shown).  745 

 746 
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 747 

Fig. 19. The initial state of the QG model with varying topography and the mean flow. The 748 

topography presents a set of nested non-concentric cylinders with different depths and radii 749 

(marked alternatively with yellow and blue, see text for details). The dashed blue contour 750 

presents the 2000 m isobath; with radius of 600 km, it marks the boundary of the Lofoten Basin 751 

in the model. Gray contours are the streamlines. Black line marks the separatrix, which limits the 752 

area, where particles are not advected out of the simulation region by the mean flow.  753 

 754 

Numerical experiments for the configuration above (Fig. 19) provide the evolution of the LV in 755 

the presence of a gently sloping topography and the background flow of are presented in Figures 756 

20 and 21. As in Appendix B, the initially circular vortex patch is not artificially perturbed, as 757 

the background deformation flow field itself generates sufficiently strong non-linear instability 758 

perturbations at the vortex boundary.  759 

The evolution of the LV suggests the fundamental role of existence of the separatrix in the mean 760 

current field in evolution of the vortex patches in the area. In particular, Figures 20 and 21 differ 761 

only by the initial position of the vortex in the area: inside the central area of the closed 762 

streamlines of the mean flow: the vortex center initially coincides with the stationary elliptic 763 



38 

point (Fig. 20), or the vortex initial position is moved towards the hyperbolic point of the 764 

separatrix (Fig. 21). This leads to quite different evolutions of the initially circular vortex patches, 765 

as well as to different vortex decay times.  766 

 767 

Fig. 20. Simulations of the LV evolution in a QG model, when a barotropic background flow and 768 

varying bottom topography is approximated with 8 circular non-concentric cylinders with 769 

varying plain-depth and radii, and the northeasterly mean flow is added (see Fig. 19 and text for 770 

details). The LV is initially centered at the elliptic point of the mean background velocity field. 771 

As before, the LV set-up is presented by its most typical parameter state (Table 1, within 772 

configuration D). Each frame shows vortex patches in the upper (red upper contour plots in a 773 

plate), middle (magenta middle contour plots in a plate) and lower (blue lower contour plots in a 774 

plate) layers as function of non-dimensional time. The unperturbed (initial) position of the 775 

separatrix is given for reference. The dimensionless time unit corresponds to 12 days. 776 

 777 

Positioned in the central part of the basin (Fig. 20), even 7 months after the beginning of 778 

simulations ( t =18), the vortex keeps the nearly circular shape. This radically differs from the 779 

flat-bottom case with no mean flow (Figs. 14-18), or from the results of Appendix B (Fig. B1). 780 
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The separation of the vorticity patches starts only about a 1 year after the beginning of 781 

simulations ( t =24-30). As in Appendix B, the during the vortex decay topography efficiently 782 

traps the vorticity patches, which stay within the loop of the separatrix during all the period of 783 

simulations. 784 

 785 

 786 

Fig. 21. As in Fig. 20, but the initial position of the LV is shifted southwestwards, towards the 787 

hyperbolic point. 788 

 789 

Positioning the vortex closer to the hyperbolic point, leads to its much faster decay (Fig. 21). 790 

Deformed by the current shear, the vortex becomes strongly elliptic already 1-2 months after the 791 

beginning of the simulations. However, it takes 6-8 months ( 2115 −=t ) before the vortex 792 

breaks into separate vorticity patches. At the end of the modelled evolution, a significant fraction 793 

of the vorticity patches remain within the region, surrounded by the separatrix.  794 



40 

At the limit, when the vortex is positioned in the hyperbolic point (not shown), the main vorticity 795 

patch stretches along the separatrix faster than in Fig. 21. Still, separation of vorticity patches 796 

from the main vortex body is observed only 5-7 months after the beginning of the simulations. In 797 

this case, nearly all vorticity patches drift out of the central region.   798 

To summarize the results of this paragraph, in a more realistic case of slowly varying topography 799 

and with the effect of the mean current, as in of the Lofoten Basin, in the 3-layer QG model 800 

demonstrates a significantly slower decay of the vortex, especially when the vortex is entered in 801 

the ellyptic point of the background velocity field. 802 

 803 

3.6 Disturbances at the LV dynamic boundary in the primitive equation model 804 

Looking for clean evidence of instability in the full-complexity and forced primitive equation 805 

simulations is not trivial. Nevertheless, we set out to look for such evidence by diagnosing the 806 

relative strength of various PV azimuthal modes near the LV dynamic boundary in the MIT 807 

GCM model. The development of the modes will be related to variations in the LV volume and 808 

relative vorticity field — to see whether signatures of the QG predictions can be found. We 809 

also investigate whether time variability of the LV dynamic parameters are related to the 810 

intensity of perturbations at its boundary. The near-surface level (200 m) was chosen since the 811 

linear QG model predicts the perturbation amplitudes to be largest in the upper layer. In fact, 812 

the primitive equation model shows that azimuthal perturbations in the LV core and in lower 813 

levels have 5-10 times smaller magnitudes than those in upper levels.  814 

Could the higher intensity of perturbations at the selected level in MIT GCM partly be 815 

attributed to the atmospheric forcing, in fact, the selected level is most of the time below the 816 

seasonal pycnocline (Fig. 11) and, thus, not directly affected by the atmosphere (except for the 817 

short phases of deep convection – configuration B). Furthermore, the azimuthal perturbations 818 

grow by an order of magnitude within the time scales of 3-7 months (Fig. 22). This growth 819 

cannot be directly forced by high-frequency atmospheric motions (typical synoptic time scales 820 

are of order of a week), but can be attributed to a development of eddy dynamic instability, as 821 

observed in the QG model. 822 

The intensities of the perturbations were estimated in three circular rings around the vortex 823 

center. The inner ring is positioned at the edge of the LV core, at a distance of drRav ±1  824 

( avav R=R 1  is the dynamic radii, where relative vorticity vanishes). The second ring covers the 825 
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inner skirt of the LV, at drRav ±2  ( 2avR  is the mean distance from the LV center, where 826 

relative vorticity reaches its first local maximum). The third ring covers the outer skirt of the 827 

LV, at drRav ±3  ( drRR avav 223 +=  is in the outer part of the eddy, where the rotation velocity 828 

of the vortex decreases to 10% of its maximum value). The distance dr  above is selected as the 829 

half distance between 1avR  and 2avR . All three rings lie inside the LV, defined as the region of 830 

anticyclonic rotation. Within each ring, the PV ( ( ) gω+fN²=ΠE / ) around the LV is 831 

averaged in the radial direction to form 3 circular distributions with 10° azimuthal increment. 832 

In order to make the results comparable with the QG model estimates (Section 3.4), the circular 833 

distributions are transformed into deviations of PV contours from the radial shape 834 

(
rΠ

'Π

R
=ε

E

E

av ∂∂ /
~

1
, where )(~

rΠ E  is the mean value of EΠ  at a fixed radial distance from the 835 

LV center and 
EEE ΠΠ='Π

~−  is the deviation, avR  is the time mean LV radius). The 836 

variability within those circular distributions is further decomposed into sets of azimuthal 837 

modes by wavelet techniques using Morlet mother wavelets for the periodic circular domain 838 

(Torrence and Compo, 1998). 839 

The wavelet coefficients of relative vorticity peak at the 1st (antisymmetric) azimuthal mode 840 

(period = 360°), the 2nd mode (period = 180°), the 3d mode (period = 120°), the 4th mode 841 

(period = 90°) and the 5th mode (period = 60°). Assuming a near-sinusoidal shape of the 842 

wavelet coefficients for each of the wavelengths of interest, the intensity of each mode is 843 

estimated to be 1.4 times the standard deviation of its wavelet coefficients. The intensities of 844 

the 1st and the 5th modes are always significantly less than those of modes 2-4 (as also observed 845 

in Carton et al., 2014). 846 

Temporal distributions of the intensity of the dominating 2nd to 4th azimuthal modes are 847 

presented in Figure 22. The elliptic mode )2( =m  is the dominating one, while the energy of 848 

higher modes decreases with the mode number. The modes show a considerable amount of co-849 

variability. The median deformations of the circular vortex structure by the 2nd, 3rd and  4th 850 

modes represent 12%, 5% and 3% of the dynamic radius at 1avR , 16%, 11% and 7% at 2avR , 851 

and 25%, 20% and 16% at 3avR . The presence of the 2nd (elliptic) mode, especially pronounced 852 

at 1avR , is a result of eccentricity of the LV core which is observed most of the time. The 853 

relative intensities of the higher modes increase with the distance from the LV center ( 1avR  to 854 

3avR ): on average from 50% to 80% for the 3rd mode and from 25% to 65% for the 4th mode—855 
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relative to the intensity of the 2nd mode. In the radial direction the perturbations of the 2nd mode 856 

are less correlated than those of the higher modes. For the 2nd mode the correlation coefficients 857 

at 1avR  with the same mode at 2avR  and 3avR  are 0.70 and 0.50, respectively, while for the 858 

higher modes the same coefficients are 0.90 and 0.75, respectively. 859 

The typical time scale for growth of the perturbation in the MIT GCM model ranges from 3 to 860 

7 months (Fig. 22). This is close to the period of development of baroclinic instability in the 861 

idealized QG model of the LV. As the perturbations develop the LV dynamic radius (also 862 

shown in Fig. 22) typically stays rather stable. Only after the perturbations reach high 863 

amplitudes at 1avR  and 2avR , a notable decrease of the LV radius is seen. Thus, during the most 864 

dramatic events in mid-2000 and in mid-2005 the LV radius decreases by about 5 km over 3-4 865 

months. This forms about 15% of the initial LV radius. Assuming a circular shape of the LV, 866 

this means about 70% of the LV volume is maintained within the dynamic core. The 867 

normalized perturbation intensity in the MIT GCM model ( ε  in Eq. A.8) reach 0.1-0.2. 868 

According to QG model calculations, for such values of ε , the LV instability should decrease 869 

the LV volume by at least 50% within 4-5 months (Figs. 15-17 and Table 3). The primitive 870 

equation model shows considerably smaller LV volume decay. After separation of a part of the 871 

LV skirt, the LV volume (limited by its dynamic radius) is restored in 1-2 months.  872 

Growth of the perturbation intensity typically goes in parallel with a decrease of the LV 873 

rotation rate. The magnitude of the relative vorticity of the vortex core (mean relative vorticity 874 

within 0.5 R ) presents significant negative correlations with the intensity of the perturbations at 875 

the LV boundary (Fig. 22a). The correlation coefficients are about -0.5 for all the modes and 876 

for each of the 3 selected distances from the LV center. With a 1-year sliding average, the 877 

correlation coefficients range from -0.7 to -0.8. Cross-correlations with the azimuthal mode 878 

coefficients show that, on average, the absolute values of the core relative vorticity reach a 879 

minimum 1-2 weeks after the perturbation disturbances have reached their maximum. The 880 

overall rate of the decrease is small. During a period when no merger of LV with other 881 

anticyclones is registered (2004-2005), the monthly rate of the decrease of the magnitude of the 882 

LV relative vorticity is estimated to 2-3.5%. This suggests a decrease of the LV rotation by 10 883 

to 18% during the 5 months period.  884 

The angular momentum, being a product of the relative vorticity and the squared radius, 885 

accounts for relative vorticity distribution in the radial direction. Contrary to the core relative 886 

vorticity, the absolute value of the integral angular momentum of the LV core positively 887 

correlate with the intensity of perturbations (Fig. 22b). The correlation coefficients are not high, 888 
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but significant: 0.25 to 0.40. This may stand for a redistribution of the relative vorticity from 889 

the LV center to the LV boundary with the growth of the perturbations (Fig. 22a,b).  890 

The intensity of the perturbations in the LV core negatively correlate with the strain around the 891 

core (Fig. 22c). The correlation coefficients are significant and range from -0.20 to -0.40, 892 

depending on the distance from the LV center and on the azimuthal mode. We consider this to 893 

be a sign of the external strain favoring concentration of instability in the vortex skirt, further 894 

detached from the LV as isolated filaments. 895 

In Fig. 22d we present potential and kinetic energy anomalies, integrated over the LV volume. 896 

The internal volume was taken over the cylinder with the radius R6.1  (where the dynamic 897 

radius R  is a function of depth and time). The integral kinetic energy is computed as 898 

dzdydxVKE ∫∫∫= 25.0 ρ , the integral barotropic potential energy anomaly as 899 

dydxSLAgPE ss

2

5.0 ∫∫= ρ , and the integral baroclinic potential energy anomaly as 900 

dzdydx
z

gPEi ∫∫∫ ∂
∂∆= ρρ 25.0  (Oort et al., 1989). Here V  is the azimuthal velocity, g  is 901 

the gravity acceleration, ρ  and sρ  are water density (subscript s  stands for the sea-surface), 902 

SLA  is the sea-level anomaly over the LV, ρ∆  is water density anomaly in the LV relative to 903 

the background, and 
z∂

∂ρ
 is the background pressure gradient. For computation of anomalies of 904 

potential energy in the LV core, the reference state was taken as the mean at distances [ ]RR 4:2  905 

from the LV center. The anomalies relative to the basic state are estimated in each point of the 906 

LV core. iPE  is dominating the total energy, while KE  is several times less, and sPE  is 4 907 

orders of magnitude less than iPE . Fig. 22d demonstrates that sPE  and KE  have a very 908 

immediate reaction on the eddy merger events, while iPE  increase can be delayed after a 909 

merger. In most cases merger occurs during the periods of the deep winter convection, and it is 910 

difficult to distinguish between the two mechanisms of the LV regeneration. Closer look in 911 

Fig.22d suggests that both mechanisms are responsible for the LV re-generation, maintaining 912 

the LV integrity against dissipation, previously suggested by Ivanov and Korablev (1995a,b), 913 

Köhl (2007), Volkov et al. (2015). In particular, several peaks in sPE , iPE  and KE  occur 914 

during summer mergers (2001, 2003, 2009), as well as during winters with no mergers (2000, 915 

2004, 2005, 2010), but no significant peaks are apparent, when none of these events take place. 916 

During winter convection events, an increase in sPE  and iPE  is observed, while KE  often 917 

does not increase (as during convection periods of 2004, 2005 and 2012). This explains why 918 
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Volkov et al. (2015), using relative vorticity as a measure of the LV strength, did not find 919 

winter convection to have an effect on the LV.  920 

 921 

Fig. 22. LV variability in the MIT GCM model at 200 m depth (a-c). In panels (a-c), black, 922 

blue and red lines show the variability of perturbations with azimuthal modes 2, 3 and 4, 923 

respectively. Panel (a) depicts the normalized perturbations in ring 1 (centered at avR ), panel (b) 924 

– in ring 2 (centered at 1.5 avR ) and panel (c) – in ring 3 (centered at 2 avR ). The perturbation 925 

intensities are normalized as: ( ) stdav vvvv 44 /−= , where avv4  and stdv4  are time-mean and 926 

standard deviation of the perturbation intensity ( v ) of azimuthal mode 4 in ring 1. Variability 927 

of the normalized LV dynamic radius ( avR ) are shown with green lines. In panels (a-c) LV 928 

radius and other parameters below are normalized as: ( ) stdav vvvv /−= , where avv  and stdv  re 929 

time-mean and standard deviation of the corresponding variable. In addition, the following 930 

dynamic characteristics of the LV core are shown with cyan lines (for better visibility the lines 931 

are centered at y-value 5): panel (a) – normalized absolute value of the relative vorticity of the 932 
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LV core (ω , averaged within 0.5 avR  from the LV center); panel (b) –normalized absolute 933 

value of the integral angular momentum (IAM, integrated within the circle avR ); panel (c) – 934 

normalized strain around the LV core (STR, mean in the ring avav RrR 2≤≤ ). In panel (d) time 935 

variations of barotropic potential energy anomaly (PEs), baroclinic potential energy anomaly 936 

(PEi) and kinetic energy (KE), integrated over the LV core volume. The time series are 937 

normalized and vertically displaced for better visibility. The LV mergers with other 938 

anticyclones are marked with black solid vertical lines. Shaded areas are winter periods of deep 939 

mixing.  940 

 941 

In summary, the LV instabilities, developing in the primitive equation model share a number of 942 

features of the vortex instability predicted by the non-linear QG model. However, instabilities 943 

appear to mostly develop in the LV outer skirt and do not penetrate deep into the LV core (see 944 

also Mahdinia et al., 2016). Our interpretation of the observations above is that a frontal 945 

geostrophic dynamic model may be more appropriate for re-producing the observed features 946 

(Cushman-Roisin, 1986). External strain also favors concentration of instabilities in the skirt 947 

and formation of filaments at the LV boundary. Separation of the filaments from the LV 948 

removes angular momentum, slowing down its rotation, rather than eddy volume. The 949 

migration of the energy of the perturbations towards the skirt prevents from further penetration 950 

of the perturbations in the core, and allows the core to persist during longer periods of time.  951 

We also note that the correlation of the relative vorticity of the LV core with the perturbation 952 

intensity (0.7 to 0.8) is much larger than correlation of the relative vorticity of the LV core with 953 

a number of mergers (0.3). Sliding averages with a 1-year window size are used in both cases.  954 

 955 

4. Summary and discussion 956 

In this paper we have presented a study of the vertical structure and stability of the semi-957 

permanent anticyclonic Lofoten vortex (LV). The results are based on eddy-permitting 958 

numerical simulations with the MIT GCM and on idealized 3-layer QG model calculations. 959 

The MIT GCM fields demonstrated that the LV is a columnar vortex, extending from the sea-960 

surface to the bottom, with a dynamic radius R  of about 30 km (Fig. 4, Table 1). The first 961 

baroclinic Rossby radius of deformation dR  in the Lofoten Basin is about 7 km (Nurser and 962 
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Bacon, 2014; also obtained from the MIT GCM results), so dR 4R~ . The vertical structure of 963 

the LV contains a noticeable baroclinic component. The vortex core is found between 50-200 964 

m and 900-1100 m and is associated with a maximum in azimuthal velocity and relative 965 

vorticity as well as a minimum in dynamic radius. The core is characterized by a weaker 966 

stratification, giving rise to a pronounced negative PV anomaly with respect to the surrounding 967 

ocean conditions.   968 

The vertical structure of the LV varies in time, demonstrating seasonal and intra-seasonal 969 

changes. A large part of this variability falls within four-five distinct clusters in the phase space 970 

of layer-mean QG PV of layers 1 and 2 (Fig. 10). Each cluster is characterized by a certain 971 

configuration of isopycnals, mostly differing by depth of the isopycnals at the top of the vortex 972 

core relative to their depths in the surrounding ocean (Fig. 11). The LV states in the PV space 973 

are mostly concentrated near the centers of one of these clusters. This means that the transitions 974 

between the states are rather rapid. The transitions between the states are formed by variation of 975 

the upper ocean stratification over the LV core, which is a function of atmospheric forcing. A 976 

3-layer vertical structure, with the core in the middle layer, is found to be an adequate 977 

representation of the vortex most of the time (clusters A, C and D). The 2-layer configuration 978 

(clusters B and B1) is observed 17% of time. It occurs during some late winters or early springs, 979 

when deep convective mixing erodes the upper ocean stratification over the LV and reaches the 980 

LV core.  981 

In-situ observations (Ivanov and Korablev, 1995a,b; Raj et al., 2015) are too few to allow a 982 

detail classification of all LV vertical states. Still the observations confirm the existence of at 983 

least the two limiting states derived from the MIT GCM: a summer-autumn configuration (A, C, 984 

D) and a winter configuration (B, B1). Observations also confirm differences in the amplitude 985 

of seasonal variation of the thickness of the upper layer over and outside the LV presented in 986 

MIT GCM. Specifically, the observed summer to winter mean variation of the mixed layer 987 

depth in the Lofoten Basin is from 50 to 200-400 m (Nilsen and Falck, 2006, Rossby et al., 988 

2009), while over the LV itself is reaches 500-600 m (Alekseev, 1991; Nilsen and Falck, 2006). 989 

The difference is also indirectly confirmed by an observed two-fold amplitude difference of 990 

seasonal variation of the depth of the upper ocean isopycnals: in the center of the Lofoten Basin 991 

(where the LV is situated) as compared to that along the basin boundaries (Rossby et al., 2009). 992 

Observations and MIT GCM data suggest moderate variations of dynamic characteristics of the 993 

LV, episodically re-generated during merger or winter convection events. A gradual decrease of 994 

the LV dynamic parameters by about 3% per month in-between the regeneration events, detected 995 
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in MIT GCM results, suggests a decay time of order of 2-3 years. Calculations presented by 996 

Søiland and Rossby (2013) indicate that small-scale turbulent diffusion gives characteristic 997 

decay times of dozens of years. In this paper we investigated the alternative mechanism of vortex 998 

dynamic instability, often considered to be one of the principal mechanisms for decay of 999 

mesoscale eddies (Carton, 2001; Cushman-Roisin and Beckers, 2011). In Section 3.4 it was 1000 

noted that the LV vertical and horizontal structure satisfies the necessary condition for vortex 1001 

dynamic instability (Sokolovskiy, 1997b; Cushman-Roisin and Beckers, 2011), and the observed 1002 

range of oR  (0.03-0.15) and Bu  (0.05-0.1) numbers suggest that baroclinic or mixed instability 1003 

can efficiently develop (Ripa, 1992, Carton et al., 2014; Cohen et al., 2015).  1004 

An example of development and propagation of the LV perturbations of the 2nd azimuthal mode, 1005 

observed in the MIT GCM is presented in Fig. 23. The period of rotation of the perturbation is 1006 

around 20 days and the phase speed of the perturbation is around 12 cm s-1. This is about 3 times 1007 

less than the maximum azimuthal velocity (40 cm s-1) of the vortex. This ratio corresponds well 1008 

to that of a baroclinically-unstable azimuthal mode-2 propagating around an anticyclonic eddy 1009 

(Paldor, 1999).  1010 

In the realistic MIT GCM model the LV, most of the time, keeps away from the steep basin 1011 

boundaries, which may deform and force stripping of the vortex. The LV, though, often 1012 

interacts with other finite-amplitude eddies, both cyclones and anticyclones. However, the 1013 

direct effect of stripping of a part of the LV skirt by the current shear due to presence of other 1014 

eddies is not observed during such interactions. Following model results (for example, Ciani et 1015 

al., 2016), we consider the LV to be affected by another eddy after the distance between their 1016 

centers becomes less than 3 LV radii. Then, the typical time of contact of the LV with other 1017 

eddies is of order of 2-4 weeks, while the instability develops over 5-8 months, a much longer 1018 

time scale. The perturbations at the LV boundary continue developing even when there is no 1019 

direct contact with other eddies. For example, in Fig. 23, rotation of perturbations around the 1020 

LV occur while eddies around keep relatively stationary positions or move away from the LV. 1021 

Therefore, we assume that relatively slowly developing dynamic instability to be the main 1022 

reason for gradual decay of the LV in-between the re-generation events. Contact with other 1023 

eddies may trigger instability of the LV which then develops further, fed by the LV energy. 1024 
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 1025 
Fig. 23. Relative vorticity (x10-5 s-1, left panels) and vertical velocity (x10-2 cm s-1, right panels) 1026 

at 513 m depth for four consecutive moments of time (a, b, c, d) with the time interval between 1027 

panel sets of 3 days. White star marks the LV center, grey circle marks the LV dynamic radius, 1028 

and grey segment starting at the LV center – the position of maximum of vertical velocity of 1029 

perturbations of the second azimuthal mode. Black point with white circle and white point with 1030 

black circle mark a cyclone and an anticyclone in the vicinity of the LV.  1031 

 1032 

To observe how the dynamic instability develops in the LV, a detailed analysis of the LV 1033 

stability properties has been done with linear and non-linear QG models. In these models we 1034 

used a simplified LV structure, based on the analysis of MIT GCM results in Sections 3.1-3.2: 1035 

the 3-layer ocean, where the LV is approximated by patches of constant PV. Series of 1036 

experiments with an artificially perturbed vortex with the predefined perturbations intensity and 1037 

the motionless flat-bottom ocean (Section 3.4), and with an initially unperturbed vortex and the 1038 

realistic mean flow and varying bottom topography (Section 3.5) are conducted. The first series 1039 

of experiments show that the LV is baroclinically unstable, and that baroclinic instability can 1040 

split the original vortex into parts within 4-8 months (Section 3.4). Even in relative simplicity 1041 

of the QG model, the development of perturbations in the LV fairly well agrees with the MIT 1042 

GCM realistic simulations on several key features. As in the primitive equation model, the QG 1043 

models (Section 3.4) predict relatively slow development of the instability in the LV - of order 1044 

of several months. The slightly higher rates of LV decay are observed in the upper and the 1045 

lower layers, compared to the middle (core) layer. This can be explained by a much stronger 1046 
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radial PV gradient at the core levels, which forms a barrier for the particle exchange between 1047 

the LV core and the surrounding fluid. Also, similar to the primitive equations model, the QG 1048 

models suggest a dominance of the azimuthal modes =m 2, 3, 4 for the most typical 1049 

configurations of the vertical PV structure in the LV.  1050 

However, important differences are also observed. A notable discrepancy between the QG 1051 

models over a flat bottom and the primitive equation model is a difference in the LV volume 1052 

loss as a result of the development of perturbations. In the small-amplitude linear and the finite-1053 

amplitude non-linear flat-bottom QG simulations, over half of the initial LV volume is 1054 

expected to be dispersed by the instabilities within 4-8 months (Section 3.4). For large-1055 

amplitude mode-3 initial perturbations, the LV in the upper layer breaks up into 4 eddies 1056 

(including the remains of the LV core) of nearly equal size already within about 3 months, and 1057 

the vortex completely disintegrates within 5 months. The overall rate of the core decay is thus 1058 

20-30% per month. The MIT GCM simulations, only the strongest instability events lead to a 1059 

notable volume loss from the LV core, and this loss does not exceed 10-20% of its initial 1060 

volume (Fig. 22).  1061 

Differences in development of instability between the full-complexity primitive equation model 1062 

and the linear QG model are not surprising since perturbations experienced by the LV cannot 1063 

be considered small-amplitude. But the differences between the primitive equation model and 1064 

the non-linear QG model are less obvious and demand more investigation.  As mentioned in the 1065 

introduction, at low Rossby numbers (0.1 in the LV) and low vortex-core thickness ratio to 1066 

water depth ( Hh LV /,2=ν =0.20-0.25 in the LV) the hybrid (Rossby-Kelvin wave) and the 1067 

baroclinic (Rossby wave) instabilities may arise (Ripa, 1992), as well as the barotropic 1068 

instability. The first type can exist in the primitive equation model, but not in the QG model, 1069 

while the second and the third types may be generated in both models. And yet, instability in 1070 

the primitive equation model appears to develop much slower and never results in a significant 1071 

decrease of the vortex core volume.  1072 

There may be several reasons for this. An obvious one is the difference in the vertical PV 1073 

structure in and around the vortex in the 3-layer QG model and in the 50-layer MIT-GCM. In 1074 

particular, when the PV gradient is zero in a layer, this layer does not support development of 1075 

Rossby waves. Therefore baroclinic, hybrid and Sakai instabilities cannot develop intensive 1076 

perturbations in this layer. In the limiting case of the 2-layer QG model, the vortex then 1077 

becomes stable to any external perturbations, independent of weather it is a sea-surface or a 1078 

mid-depth intensified vortex (Dewar and Killworth, 1995; Benilov, 2004; Cohen et al., 2015a; 1079 
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Sutyrin, 2015; Cohen et al., 2016). In the 3-layer QG model used in Section 3, a small radial 1080 

PV gradient in the lower layer (on average only 5% of that at the level of the LV core) is still 1081 

sufficient for supporting Rossby wave instabilities, as it is shown by the numerical experiments. 1082 

In a realistic vortex, such a ‘compensation’ layer can be formed below or above the vortex core, 1083 

where the anticyclonic rotation is balanced by compression of isopycnals. In the 50-layer MIT 1084 

GCM the radial PV gradient changes sign above and below the LV, and isopycnic layers with a 1085 

very weak or zero PV gradients do exist. Inside these comparatively thin layers the amplitudes 1086 

of Rossby waves decrease exponentially from the layer boundaries, reducing coupling between 1087 

the layers (Sutyrin, 2015). Therefore, one could argue, the simplified 3-layer PV structure in 1088 

the QG model is able to support overall higher rates of development of baroclinic instability, as 1089 

compared to MIT GCM. 1090 

Furthermore, it has been numerically observed that, under certain conditions, non-linear effects 1091 

may stabilize linearly-growing perturbations even though sufficient instability conditions are 1092 

met (Sutyrin, 2015). Thus, for vortex instability in a QG model, a non-linear saturation of 1093 

growing finite-amplitude perturbations on elliptical vortices have been observe (Flierl, 1988; 1094 

Ripa, 1992). Even being present in the non-linear QG and in the primitive equation models, 1095 

details of the non-linear evolution may differ between both models (Boss et al., 1996). For 1096 

example, it is expected that frictional effects and the turbulent environment result in a faster 1097 

damping of perturbations in the primitive equation model, as compared with the QG model.  1098 

A QG experiment with more realistic background conditions (Section 3.5) showed, that adding 1099 

the large-scale gently sloping topography (around 1 m km-1) and the barotropic mean flow (of 1100 

10 cm s-1), as observed in the Lofoten Basin, reduce the LV decay rate, brining it closer to that 1101 

in the MIT GCM. The time for instability to penetrate into the vortex core and to break it into 1102 

separate vorticity patches in the QG model now increases to 1 year (Fig. 20). Sloping 1103 

topography is particularly important, as an experiment with the mean flow and a localized 1104 

topographic depression (Appendix B) rather show a decrease in the LV decay time (2-5 months, 1105 

Fig. B1), as compared to the motionless flat-bottom background case. Overall, steep 1106 

topographic features are known to trigger instability in oceanic vortices, and even their 1107 

breakdown (Thierry and Morel, 1999; Van Geffen and Davies, 2000; Richardson et al., 2000; 1108 

Bashmachnikov et al., 2009), and the increase in the time of the eddy decay over a sloping 1109 

bottom has not been expected. A possible reason is that the PV variations due to topography 1110 

forces mode 1 in the vortex perturbation (Fig. 20), which decays at a lower rate extracting 1111 

energy from the faster decaying modes 2-4. Further experiments are required to study this 1112 

phenomenon.  1113 
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A difference in the area of concentration of the perturbation energy is also noted. In contrast to 1114 

the nonlinear QG model (Section 3.4), where instability penetrates deep into the LV core and 1115 

splits up the vortex of nearly equal size within a few months, instability in MIT GCM typically 1116 

develops only within the skirt of the vortex. It results in separation of elongated filaments and 1117 

small (submsoscale) relative vorticity patches (Section 3.6). The latter is consistent with the 1118 

development of baroclinic instability observed in a primitive equation model of eddies with low 1119 

Burger numbers (Mahdinia, et al., 2016). Stripping of the skirt of an oceanic mesoscale vortex, 1120 

as a result of baroclinic instability, has also been observed in the ocean and supported by 1121 

numerical model studies (Ménesguen et al., 2012). The general effect of stripping of an eddy 1122 

skirt in an external strain field has also been observed in some model studies (Maximenko and 1123 

Orlov, 1991; Mariotti et al., 1994).  1124 

In the MIT GCM weak background current and other eddies yield the main source of strong 1125 

localized velocity shear around the LV. Such interactions can suppress development of 1126 

instabilities in the vortex core (Dewar and Killworth, 1995). In fact, in Section 3.6 we noted 1127 

that the intensity of the external strain (strongly intensified as the LV interacts with other 1128 

eddies) is negatively correlated with the intensity of the perturbations at the LV boundary. It 1129 

can be speculated that external strain formed at the vortex boundary is responsible for 1130 

concentration of energy of the developing instabilities at the outer part of the vortex patches, 1131 

and remove the energy of growing perturbations before they penetrate deep into the core. 1132 

Further wrapping of these filaments around the vortex may prevent the core from breaking into 1133 

larger fragments.  1134 

In our MIT GCM simulations, during the in most of the events of filamentation, the volume of 1135 

the LV core does not vary as a result of development of instability. This is not the case for the 1136 

kinetic energy and angular momentum of the LV core, clearly affected by the development of 1137 

the perturbations in this model. Thus, in the present study, a significant negative correlation (-1138 

0.7 to -0.8) between the intensity of the azimuthal disturbances and the mean relative vorticity 1139 

of the core is detected (for annual sliding means). Therefore, after the filaments separate from 1140 

the skirt, removing angular momentum, the original radial momentum distribution is restored 1141 

via translation of the angular momentum outwards from the core. These variations in 1142 

redistribution of dynamic properties within the LV core are not reproduced in the QG models, 1143 

considering dynamics of patches of homogenous PV.  1144 

Another discrepancy between the QG models (section 3.4) and the primitive equation model 1145 

(Section 3.6) is the structure of the perturbation of the LV. In the QG models the rate of 1146 
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development of the first four azimuthal perturbation modes are rather close, but the 3rd mode is 1147 

predicted to be the most unstable (Table 3). In contrast, the 2nd azimuthal mode is dominating 1148 

the LV perturbations in the MIT GCM, although the 3rd and the 4th modes are also pronounced. 1149 

This development of the perturbations in the LV in MIT GCM ends in ejection of mostly two 1150 

instability filaments, while three instability filaments are ejected during only a few events. For 1151 

a vortex structure similar to that of the LV, the dominance of the 2nd azimuthal mode, during 1152 

development of the baroclinic and the mixed instabilities in a primitive equation model, was 1153 

also obtained in Mahdinia, et al. (2016).  1154 

A possible reason may be the single-mode predictions of the QG model experiments, which do 1155 

not capture possible non-linear energy exchange between a set of different equally strong 1156 

modes during the initial stages of their development. With the observed close rate of 1157 

development of the first four azimuthal modes in MIT GCM, interactions between different 1158 

modes may lead to a faster growth of one mode at the expense of others. The difference 1159 

between the models may also result from the simplification of the LV vertical structure in the 1160 

QG models. Thus, in a study of mid-depth anticyclonic eddies with a 5-layer linear QG model, 1161 

Carton et al. (2014) showed that for large eddies ( R  on order of 2-5 dR , as in the case of the 1162 

LV) the 3rd azimuthal mode is the most unstable one. However, experiments with a 1163 

continuously stratified QG model (Nguyen et al., 2012) have also shown that the 3rd or the 4th 1164 

azimuthal modes start dominating over the 2nd mode only as the eddy Burger number falls 1165 

below 0.07-0.08. As the LV Bu ~0.05-0.10, in the more realistic continuous-stratification 1166 

conditions, either the 2nd or the 3rd azimuthal modes are expected to dominate (see also Baey 1167 

and Carton, 2002).  1168 

Finally, in the full-complexity of MIT GCM model, interactions with other eddies are observed 1169 

to primarily force elliptic deformations (the 2nd azimuthal mode) in the LV. The interaction 1170 

with cyclones can also force perturbation of the 1st azimuthal mode (Carton et al., 2014). 1171 

Although the latter is not observed to develop to large amplitudes in the LV, it can have 1172 

indirect effects on the neighboring modes in the MIT GCM: (a) the forced mode can alter the 1173 

radial distribution of intensity of the LV perturbations, driving them away from the most 1174 

unstable normal mode and slowing down their growth; (b) the nonlinear wave-wave 1175 

interactions of mode 1 with mode 3 may force Additionally, Volkov et al. (2013) identified 1176 

dipole and quadrupole wave patterns in the Lofoten Basin as 1st and 2nd modes of topographic 1177 

Rossby waves in a bottom depression. Interaction of the LV with the instantaneous circulation 1178 

structures, formed by the Rossby waves, can trigger the development of the corresponding 1179 

azimuthal modes in the LV.  1180 
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We have noted a range of differences between the LV decay in QG and primitive equation 1181 

calculations. A common and key finding is that that perturbations at the LV boundary do not 1182 

develop to penetrate deep into the LV core to cause the vortex breakdown, contrary to what 1183 

was observed in QG simulations with the motionless flat-bottom background. Adding a 1184 

realistic background current and single a step-like bottom depression show a similar or even 1185 

faster decay rate. Adding a realistic background current and a gently sloping bottom 1186 

topography decrease the LV decay rate, bringing the QG simulations closer to those of MIT 1187 

GCM. However, either the development of the baroclinic instability in Section 3.4 or a mixed 1188 

baroclinic-barotropic instability in Section 3.5 result in a relatively long decay time of the LV, 1189 

over 5-12 months, for external forcing, notably eddy mergers or deep convection in the core 1190 

region, to interrupt the development of the instability and re-build the LV. Further experiments 1191 

will be conducted to deeper investigate the mechanisms governing the LV decay. 1192 

Volkov et al. (2015) analyzed components of the relative vorticity balance for the same MIT 1193 

GCM model fields. The authors found that time variations of the relative vorticity of the LV 1194 

core are principally correlated with the intensity of eddy fluxes of relative vorticity through the 1195 

LV boundaries, and suggested that winter convection should be of minor importance in 1196 

restoring the LV. In this study it is demonstrated that the LV barotropic and the baroclinic 1197 

potential energy anomalies clearly intensify, both during mergers and winter convection events, 1198 

while the LV integral kinetic energy is not always affected. We also observe that the LV 1199 

relative vorticity does not always increase after a merger (the LV-integrated angular 1200 

momentum typically does). Meanwhile, it was demonstrated that, on the annual time scale, the 1201 

LV relative vorticity and its volume strongly correlate with the intensity of the detected wave-1202 

like perturbations, rather than with the number merges per year. It is also noted that the LV 1203 

volume/intensity are restored a few months after the minimum relative vorticity of the core is 1204 

reached, even when no merger or deep winter-spring convection are detected. The detailed 1205 

mechanisms governing the LV re-generation thus remain to be further investigated. 1206 

 1207 

Appendix A 1208 

Under the QG approximation without external forcing, the conservation of PV ( Π ) hold true 1209 

within each layer (Pedlosky 1987). 1210 

0,/ =dtd jjΠ  1211 
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where yvxutdtd jjj ∂∂+∂∂+∂∂= //// . 1212 

The three-dimensional potential vortex Π
r

 is related to the hydrodynamic pressure perturbation 1213 

relative to the hydrostatic-equilibrium pressure ( p
r

) by the linear differential operator:  1214 
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2 /)(=  are Froude numbers, 1217 

012
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1 /)( ρρρ −= gg , 023

'
2 /)( ρρρ −= gg ); f  is the constant Coriolis parameter, g  is the 1218 

acceleration due to gravity, 0ρ  is the mean density value, L is the horizontal scale and H is the 1219 

vertical scale, such that the depth of ocean equals to )( 321 hhhH ++ , where 321 ,, hhh  are the 1220 

non-dimensional depths of the upper, the middle end the lower layers, respectively 1221 

( 1321 =++ hhh ). 1222 

A diagonalization method, described in detail in (Kamenkovich et al., 1982), transforms Eq. 1223 

(A.1) to:  1224 
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Here jλ  are the eigenvalues of the spectral equation 0=+ qqT
rr λ  and )( jq

r
 )3,2,1( =j are its 1231 

eigenvectors, E  is an identity matrix. The model is solved under the rigid-lid condition. 1232 

Therefore, the eigenvalue of the barotropic mode ( 1=j ) is zero. In any point ( )yx,  the 1233 

components jw  of the auxiliary vector w
r

 from the right-hand part of equation (A.1) can be 1234 

determined with the use of Green function jG : 1235 
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where ( ) ( )22
'' yyxxr −+−= , 3,22,1 λγ −=  and )(0 zK  is the modified Bessel function of 1237 

order 0 (hereinafter, without a special mention, we shall also use the modified Bessel functions 1238 

of order n )(zKn  and )(zI n ). 1239 
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Let us suppose, that the potential vorticities jW  are piecewise-constant functions of the type 1241 

( ) 3,2,1,
0

1
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W

j

j

jjjj σ
σ

χσχ ,  (A.6) 1242 

where jΠ  are constant and areas jσ  initially represent the circles with the radii jR . 1243 

Following Sokolovskiy (1991), we can then write the expressions for the pressure in the layers:  1244 
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Here, as before, ( ) ( )22
'' yyxxr −+−= , but now 'x  and 'y  are the coordinates of the points 1246 

of integration located on the contours jC  of initially circular vortex patches jσ ; )','( yxjν  is a 1247 

parameter continuously varying counterclockwise along the contour jC ; 1248 

( ) π4/2/1ln)( 2 −= rrrM , ( ) )2,1(,2/1)()( 1 =−= nrKrrM nnnn γγγ , 1249 

[ ] 2/)/')('()/')('( rxyyyxxN jj νν ∂∂−−∂∂−=  and jkq , jks  are the elements of matrices Q , S  1250 

from (A.3) and (A.4).  1251 

 The equations (Eq. A.7) form a theoretical basis for the so-called Contour Dynamic Method 1252 

(Zabusky et al, 1979) and demonstrate that, for the assumptions made, perturbations of pressure 1253 

(streamfunction) in each of the fluid layer j  are fully determined by an evolving configuration 1254 

of the boundaries of the vortex patch jC . This equation set can be solved numerically with a 1255 

three-layer version of the Contour Dynamics Method (Sokolovskiy 1991, Sokolovskiy and 1256 

Verron, 2014). 1257 

It is easy to obtain from (Eq. A.7) that the appropriate distributions of azimuth velocities have 1258 

the form: 1259 

,3,2,1),()( )(
1

3

1

3

1

=Π= −
==
∑∑ jrHsqrV

l

k

l

kll

k

jkj  1260 

where  1261 

,3,2,1
,/

,/

2

1
)(0 =





>
≤

= l
RrrR

RrRr
rH

ll

lll  1262 

.3,2,1;2,1,
),()(

),()(

2

1
)(

11

11 ==




>
≤

= ln
RrRIrK

RrrIRK
rH

llnn

lnlnl

n γγ
γγ

 1263 

The general scheme of stability analysis for an axisymmetric three-layer vortex with relatively 1264 

small azimuthal perturbations in the shape of the vortex patches forming the vortex is presented 1265 

below. Following (Sokolovskiy 1997a, 1997b) let us represent the contours jC , which are the 1266 

lines of constant potential vorticities in polar coordinates ( )θ,r , in the parametric form:  1267 
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[ ][ ] .3,2,1,1,)(exp1);,( =<<−+= jtmiRRtf jjjjj εδθεθ    (A.8) 1268 

Here, PV perturbations of amplitude jΠ  (see Eq. A.6) of an azimuthal mode number 1≥m  are 1269 

superimposed on the unperturbed state in the area jjR ε± . The imaginary part of the complex 1270 

number δ  defines time evolution of the amplitude of the azimuthal mode m . The total 1271 

differentiation of (Eq. A.8) with the respect to time gives us the set of equations: 1272 

,3,2,1,0)()( ==−+ jfVfVff j

r

jjjjtj θ
θ       (A.9) 1273 

where )(θ
jV  and )(r

jV  are the azimuthal and the radial components of velocities in the j th 1274 

layer, and the subscripts t  and θ  denote partial differentiation with the respect to the 1275 

appropriate variables. 1276 

Taking into account Eq. (A.8), we perform a linearization of Eq. (A.9) and obtain a system of 1277 

linear algebraic equations for the small amplitude perturbations (see details in Sokolovskiy, 1278 

1997a, 1997b). The system reduces to the set of characteristic equations:  1279 

0=− EB δ            (A.10) 1280 

Here matrix B  contains terms:  1281 
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Here nj∆  is Kronecker delta-symbol; 2/1)0( =nnT , ( ) ( ) )3,2,1(,2,12,1
)2,1( == nRKRImT jnjnnn γγ . 1283 

Note that coefficients of the system of equations (Eq. A.10) depend on all external parameters, 1284 

as they contain the terms from matrices (Eq. A.3) and (Eq. A.4). Expressions for the variables 1285 

jU  and 
)( j

nk
T  at kn ≠  depend on the shape of the vortex under study and have a lengthy form. 1286 

For the case 321 RRR ≥≥ , these expressions are presented in (Sokolovskiy 1997a, 1997b). 1287 

From (A.8) it follows that the instability condition for a mode number m  is determined by the 1288 

inequality 0Im >δ , which occurs only if exists a single real root of the cubic equation for δ  in 1289 

Eq. (A.9). 1290 

 1291 

Appendix B 1292 
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 In section 3.4 the LV was simulated as an idealized vortex over flat topography and with zero 1293 

background flow. Here we will study the vortex in more realistic conditions.  1294 

The general shape of the bottom of Lofoten Basin, deepening to southwest, is simulated with 2 1295 

not-concentered circular bottom depressions of 3040 m (yellow filled circle in Fig. B1) and 1296 

3080 m (green filled circle in Fig. B1) depths with the diameters of 200 and 90 km, 1297 

respectively. A northeasterly barotropic mean flow with the initial velocity of 52 cm s-1 is 1298 

imposed to simulate the western and eastern branches of the NwAC (Fig. 1). Observations 1299 

(Skagseth et al. 2008) and the MIT GCM model results (not shown) suggest that the NwAC 1300 

reaches ocean bottom, having a pronounced barotropic component.  1301 

A barotropic north-easterly mean flow (taken 00 V=U = 52 cm s-1 at infinity) and normalized 1302 

bottom elevations over 3000 m, negative for a depression ( iσ , i =1, 2) added, new terms 1303 

appear on the right-hand side of (A.7), described by equation (5). As in Appendix A, evolution 1304 

of the contours, limiting the areas of constant PV in each of the layers ( jΠ ), is estimated by 1305 

numerical evaluation of displacements of its nodes for the total pressure field, defined above. 1306 

The upper left panel in Figure B1 shows the background and initial conditions. Specifically, the 1307 

mean flow forms closed isolines of cyclonic circulations (inside the thick black drop-like 1308 

structure), roughly reminding what is observed in the Lofoten Basin (Fig. 1). The LV is 1309 

immersed in the flow inside the green contour (Fig. B1, upper left panel). In this case, contrary 1310 

to Appendix 1, the instability of the LV is not imposed, but is generated by the external 1311 

combination of the topographic and the mean-flow. 1312 

The remaining panels show the evolution of instability. There is clear sign of topographic 1313 

trapping of both the vortex and the filaments emerging from instability. A significant distortion 1314 

of the main core with a further loss of the LV to eddies and filaments occur after model time 5-1315 

8, e.g. 2-3 months after the beginning of the simulations. By the fifth month of the simulations 1316 

(t=12.5), the LV core nearly totally destroyed, except for the middle layer, where it is spilt in 1317 

several smaller structures. This study, even if simplified, demonstrates that the even if LV is 1318 

over one of topographic depressions of the central part of the Lofoten Basin, it cannot stabilize 1319 

the LV. 1320 

 1321 
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 1322 

 Fig. B1. Simulations of the LV evolution in a QG model, when a barotropic background flow 1323 

and varying bottom topography are included. Water depth in the white area is 3000 m, yellow 1324 

area – 3040 m (the diameter of the circle area is 200 km) and green area – 3080 m (the diameter 1325 

of the circle area is 90 km). Gray contours are the streamlines of the zonal and the meridional 1326 

components of current velocity. Black line marks the separatrix at each time step. This limits 1327 

the area, where particles are not advected out of the simulation region. The LV is initially 1328 

centered in the elliptic point of the mean flow configuration. The dimensionless time unit in 1329 

each of the 3-panel column corresponds to 12 days. Each frame shows vortex patches in the 1330 

upper (red upper contour plots in a plate), middle (magenta middle contour plots in a plate) and 1331 

lower (blue lower contour plots in a plate) layers as function of non-dimensional time. 1332 
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 1593 

Figure captions 1594 

Fig. 1. Topographic map of the Lofoten Basin (depth in m) with the major flows overlaid. One 1595 

minute GEBCO topography is used. Gray dashed contours mark 3000 m, gray solid contours – 1596 

3200 m and solid black contours – 3250 m depth. Surface and deep currents are sketched with 1597 

dark red and blue lines, respectively. The magenta dot in the center of the LB is the most 1598 

frequent position of the Lofoten Vortex (LV). The magenta line around the dot limits the area 1599 
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where the LV center is observed 80% of time for the 15 years of simulations with MIT GCM. 1600 

NwASC is the Norwegian Atlantic Slope Current, NwCC is the Norwegian Atlantic Coastal 1601 

Current. 1602 

Fig. 2. A section of salinity (a) and of temperature (°C, b) across the center of the Lofoten Vortex 1603 

(69.7°N) at 24.08.2005 in the MIT GCM simulations. Thin isolines mark potential density 1604 

surfaces referenced to 500 m depth. The LV position and the mean depths of the 3 layers used 1605 

for stability analysis are marked with dashed rectangles. GEBCO topography, interpolated to the 1606 

model grid, limit the data distribution from below (blue line). Magenta lines mark the frequency 1607 

of observation of the LV center along this section (out of scale). 1608 

Fig. 3. Upper panels: relative vorticity distribution at 100 m depth (x10-5 s-1). Red and magenta 1609 

lines connect the LV centre and the LV boundaries in radial directions. Lower panel: sampled 1610 

profiles of relative vorticity for the distributions above, running from the LV center northwards. 1611 

(a) – 10.02.1993; (b) – 08.09.1993; (c) – 11.11.1998. Red ellipse (upper plots) and empty circles 1612 

(lower plots) mark the LV boundary defined with the first algorithm (as described in the text); 1613 

dashed magenta ellipse (upper plots) and grey stars (lower plots) mark the boundary defined with 1614 

the second algorithm (as described in the text). 1615 

Fig. 4. Horizontal maps at 100 m depth (left-hand panels) and vertical profiles (middle and right-1616 

hand panels) of relative vorticity (x10-5 s-1) in the Lofoten Basin: a- 24.08.2005; b- 13.09.2009. 1617 

In the horizontal maps horizontal velocity vectors are overlaid; black and grey lines mark the 1618 

position of vertical section along the LV semi-major and semi-minor axes of the approximating 1619 

ellipse, respectively. The vertical sections show cuts along the semi-major axis (middle panels) 1620 

and semi-minor axis (right-hand panels) of the vortex. In the vertical sections solid black isolines 1621 

are 0.5σ  and vertical white dotted and dashed lines mark the LV axis and boundaries (dynamic 1622 

radii), respectively. 1623 

Fig. 5. Vertical profiles of selected time-mean characteristics of the LV (from 1998 to 2012): 1624 

black lines with circles are dynamic radii (km) – the mean radius (solid line - avR ), the lengths 1625 

of the semi-minor axis (dashed line - minR ) and of the semi-major (dotted line - maxR ) axis; thick 1626 

grey lines with crosses are relative vorticity profiles (106 s-1) – the peak (solid line - minω ) and 1627 

averaged in the disk with the radius 2/avR  (dashed line - avω ), thick gray line with squares is 1628 

the maximum azimuthal velocity (V , cm s-1); black dash-dot line is profile of Ertel potential 1629 

vorticity anomaly in the LV center ( EΠ , 1011 s-1). Gray horizontal bands present approximate 1630 

positions of the time mean upper and lower boundaries of the LV core. 1631 
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Fig. 6. a - time evolution of the mean layer thicknesses (m) outside the LV: layer 1 ( 1h , thick 1632 

solid red line) and layer 2 ( 2h , thick dotted magenta line); time evolution of the LV core 1633 

thickness (m), - separation between upper and lower interfaces of layer 2 at the LV center ( 2LVh , 1634 

thin solid blue line). b - time evolution thickness (m) of layer 1 in the LV center ( 1LVh , thin solid 1635 

blue line), and elevation of isopycnals over the LV (m): thick solid red line is 1η , thick dotted 1636 

magenta line is | 2η |. 1637 

Fig. 7. a- time evolution of layer-mean temperature (°C), b - time evolution of layer-mean 1638 

density 0.5σ  (kg m-3) in the LV. Red line represents layer 1, magenta line - layer 2; blue line – 1639 

layer 3. 1640 

Fig. 8. (a)- time evolution of layer-mean LV radius (km). (b) - time evolution of maximum 1641 

azimuthal velocity (cm s-1). (c) - time evolution of the mean relative vorticity within the circle 1642 

2/jRr ≤  around the LV center (s-1). Red line represents layer 1, magenta line - layer 2; blue 1643 

line – layer 3. 1644 

Fig. 9. (a) - time evolution of the layer-mean QG PV (Eq. (1), s-1) in the LV ( jRr ≤ , j  =1,2,3 is 1645 

the layer number). (b) - time evolution of the layer-mean QG PV (s-1) around the LV 1646 

( jj rR 2R≤≤ ). Red line represents layer 1, magenta line - layer 2; blue line – layer 3. Note that 1647 

y-scale of panel (a) is in 10-4 s-1, while of panel (b) is in 10-5 s-1. 1648 

Fig. 10 – The state of the LV in ( )21 Π,Π  space (10-4 s-1) and the results of K-mean cluster 1649 

analysis. (a) Black dots show data points and grey shading indicate their concentration (darker 1650 

shading indicates higher density). The thicker red, magenta, blue, cyan and green dots represent 1651 

the ( )21 Π,Π  points identified as belonging to clusters A, B, B1, C, and D, respectively. (b) 1652 

Number of observations of different states as a function of season over the period of simulations 1653 

in MIT GCM. 1654 

Fig. 11. Mean isopycnal depths (blue lines) across the LV for the four main clusters in Fig. 10. (a) 1655 

- configuration A, which is the most typical for autumn and early winter, (b) - configuration B, 1656 

occurring in late winter or early spring, (c) - configuration C, the most typical for late spring, (d) 1657 

- configuration D, the most typical for summer. Red stars mark the LV limits. Magenta and red 1658 

lines represent isopycnals, marking the upper and the lower boundaries of the LV core, 1659 

respectively. 1660 

Fig. 12. Same as in Fig. 10 but now with the addition of neutral stability curves based on QG 1661 

calculations for each of cluster configurations. Colour circles at each of the plates mark the 1662 
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central set of the corresponding cluster (as in Fig. 10), the dots of the same colour – the rest of 1663 

the points, belonging to the corresponding cluster. The yellow, red, black and blue are lines of 1664 

neutral stability curves for azimuthal modes m =2, m =3, m =4 and m =5, respectively. (a) the 1665 

LV PV anomalies (10-4 s-1) in ( )21 Π,Π  parameter space for configuration A; (b) the LV PV 1666 

anomalies (10-4 s-1) in ( )32 Π,Π  parameter space for configuration B; (c) the LV PV anomalies 1667 

(10-4 s-1) in ( )21 Π,Π  parameter space for configuration C; (d) the LV PV anomalies (10-4 s-1) in 1668 

( )21 Π,Π  parameter space for configuration D. The unstable domains of the azimuthal modes are 1669 

located to the right of the lines with the corresponding labels (in-between the lines of the same 1670 

mode for (b)). The gray circle in plate (d) marks the PV anomalies of the reference vortex, used 1671 

for the QG non-linear simulations. 1672 

Fig. 13. Evolution of instability in the numerical QG model for small-amplitude 1673 

)1,2,30.02( =j,=ε j  mode-2 )2( =m  initial perturbations (see Eq. A.8, Appendix A). The most 1674 

typical parameter state (Table 1, within configuration D) is used for the model set-up. Each 1675 

frame shows vortex patches in the upper (red upper contour plots in a plate), middle (magenta 1676 

middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as function 1677 

of non-dimensional time. A dimensionless time unit corresponds to 12 days. 1678 

Fig. 14. The same as Fig. 13 but for 3=m . 1679 

Fig. 15. The same as Fig. 13 but for 4=m . 1680 

Fig. 16. Evolution of instability in the numerical QG model for finite-amplitude 1681 

)1,2,30.2( =j,=ε j  mode-2 )2( =m  initial perturbations (see Eq. A.8, Appendix A). The most 1682 

typical parameter state (Table 1, within configuration D) is used for the model set-up. Each 1683 

frame shows vortex patches in the upper (red upper contour plots in a plate), middle (magenta 1684 

middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as function 1685 

of non-dimensional time. A dimensionless time unit corresponds to 12 days. 1686 

Fig. 17. The same as Fig. 16 but for 3=m . 1687 

Fig. 18. The same as Fig. 16 but for 4=m . 1688 

Fig. 19. The initial state of the QG model with varying topography and the mean flow. The 1689 

topography presents a set of nested non-concentric cylinders with different depths and radii 1690 

(marked alternatively with yellow and blue, see text for details). The dashed blue contour 1691 

presents the 2000 m isobath; with radius of 600 km, it marks the boundary of the Lofoten Basin 1692 

in the model. Gray contours are the streamlines. Black line marks the separatrix, which limits the 1693 

area, where particles are not advected out of the simulation region by the mean flow.  1694 
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Fig. 20. Simulations of the LV evolution in a QG model, when a barotropic background flow and 1695 

varying bottom topography is approximated with 8 circular non-concentric cylinders with 1696 

varying plain-depth and radii, and the northeasterly mean flow is added (see Fig. 19 and text for 1697 

details). The LV is initially centered at the elliptic point of the mean background velocity field. 1698 

As before, the LV set-up is presented by its most typical parameter state (Table 1, within 1699 

configuration D). Each frame shows vortex patches in the upper (red upper contour plots in a 1700 

plate), middle (magenta middle contour plots in a plate) and lower (blue lower contour plots in a 1701 

plate) layers as function of non-dimensional time. The unperturbed (initial) position of the 1702 

separatrix is given for reference. The dimensionless time unit corresponds to 12 days. 1703 

Fig. 21. As in Fig. 20, but the initial position of the LV is shifted southwestwards, towards the 1704 

hyperbolic point. 1705 

Fig. 22. LV variability in the MIT GCM model at 200 m depth (a-c). In panels (a-c), black, blue 1706 

and red lines show the variability of perturbations with azimuthal modes 2, 3 and 4, respectively. 1707 

Panel (a) depicts the normalized perturbations in ring 1 (centered at avR ), panel (b) – in ring 2 1708 

(centered at 1.5 avR ) and panel (c) – in ring 3 (centered at 2 avR ). The perturbation intensities are 1709 

normalized as: ( ) stdav vvvv 44 /−= , where avv4  and stdv4  are time-mean and standard deviation of 1710 

the perturbation intensity ( v ) of azimuthal mode 4 in ring 1. Variability of the normalized LV 1711 

dynamic radius ( avR ) are shown with green lines. In panels (a-c) LV radius and other parameters 1712 

below are normalized as: ( ) stdav vvvv /−= , where avv  and stdv  re time-mean and standard 1713 

deviation of the corresponding variable. In addition, the following dynamic characteristics of the 1714 

LV core are shown with cyan lines (for better visibility the lines are centered at y-value 5): panel 1715 

(a) – normalized absolute value of the relative vorticity of the LV core (ω , averaged within 0.5 1716 

avR  from the LV center); panel (b) –normalized absolute value of the integral angular 1717 

momentum (IAM, integrated within the circle avR ); panel (c) – normalized strain around the LV 1718 

core (STR, mean in the ring avav RrR 2≤≤ ). In panel (d) time variations of barotropic potential 1719 

energy anomaly (PEs), baroclinic potential energy anomaly (PEi) and kinetic energy (KE), 1720 

integrated over the LV core volume. The time series are normalized and vertically displaced for 1721 

better visibility. The LV mergers with other anticyclones are marked with black solid vertical 1722 

lines. Shaded areas are winter periods of deep mixing. 1723 

Fig. 23. Relative vorticity (x10-5 s-1, left panels) and vertical velocity (x10-2 cm s-1, right panels) 1724 

at 513 m depth for four consecutive moments of time (a, b, c, d) with the time interval between 1725 

panel sets of 3 days. White star marks the LV center, grey circle marks the LV dynamic radius, 1726 
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and grey segment starting at the LV center – the position of maximum of vertical velocity of 1727 

perturbations of the second azimuthal mode. Black point with white circle and white point with 1728 

black circle mark a cyclone and an anticyclone in the vicinity of the LV. 1729 
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