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Abstract

The Lofoten Vortex (LV), a quasi-permanent anticyclonic eddy in the Lofoten Basin of the

Norwegian Sea, is investigated with an eddy-permitting primitive equation model nested into
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the ECCO2 ocean state estimate. The LV, as simulated by the model, extends from the sea
surface to the ocean bottom at about 3000 m and has the subsurface core between 50 m and
1100 m depths. Above and below the vortex core the relative vorticity signal decreases in
amplitude while the radius increases by as much as 25-30% relative to the values in the core.
Analyzing the model run, we show that the vertical structure of the LV can be casted into four
standard configurations, each of which forms a distinct cluster in the parameter space of
potential vorticity anomalies in and above the LV core. The stability of the LV for each of the
configurations is then studied with three-layer and a two-layer (in winter) quasi-geostrophic
(QG) models over a flat bottom as well as over a realistic topography. The QG results show a
number of common features with those of the primitive equation model. Thus, among the
azimuthal modes dominating the LV instability, both the QG model and the primitive equation
model show a major role the 2" and 3™ modes. In the QG model simulations the LV is the
subject of a rather strong dynamic instability, penetrating deep into the core. The results predict
50-95% volume loss from the vortex within 4-5 months. Such a drastic effect is not observed in
the primitive equation model, where, for the same intensity of perturbations, only 10-30%
volume loss during the same period is detected. Taking into account the gently sloping
topography of the central part of the Lofoten basin and the mean flow in the QG model, brings
the rate of developpmet of instability close to that in the primitive equation model. Some
remaining differences in the two models are discussed. Overall, the LV decay rate obtained in
the models is slow enough for eddy mergers and convection to restore the thermodynamic
properties of the LV, primarily re-building its potential energy anomaly. This justifies the

quasi-permanent presence of the LV in the Lofoten Basin.

Keywords: Lofoten vortex, vertical structure, vortex stability, primitive equation model, QG

model.

1. Introduction

The Lofoten Basin is a bowl-shape depression in the bottom topography of the Norwegian Sea
(68 - 72 °N and 2 °W - 10 °E) with a maximum depth of about 3250 m. It is located between
the Mohn Ridge (about 2000 m deep) to the northwest and the Scandinavian Peninsula to the
east, and is limited in the south by the Jan-Mayen Fracture zone (about 2000 m deep) and the

north-western flank of the Voring plateau (Fig. 1).
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Fig. 1. Topographic map of the Lofoten Basin (depth in m) with the major flows overlaid. One
minute GEBCO topography is used. Gray dashed contours mark 3000 m, gray solid contours —
3200 m and solid black contours — 3250 m depth. Surface and deep currents are sketched with
dark red and blue lines, respectively. The magenta dot in the center of the LB is the most
frequent position of the Lofoten Vortex (LV). The magenta line around the dot limits the area
where the LV center is observed 80% of time for the 15 years of simulations with MIT GCM.
NwASC is the Norwegian Atlantic Slope Current, NwCC is the Norwegian Atlantic Coastal

Current.

Warm and salty Atlantic Water (AW) occupies the upper 800-1000 m of the Lofoten Basin.
The AW overlies denser waters of both lower temperatures and salinities (Blindheim and Rey,
2004; Nilsen and Nilsen, 2007). In the AW layer, temperature and salinity both increase
towards the center of the basin (Boyer et al., 2005), while the density surfaces at mid-depths are
bent down as much as 300 m over the center of the Lofoten Basin and towards the Lofoten
Islands relative to the northwestern and the southwestern basin boundaries (Rossby et al., 2009).
Being the major heat reservoir in the Nordic Seas, this is a region of strong atmosphere—ocean
interactions. It is also a region of intense mesoscale dynamics which impacts the net warm
water flux to the Arctic, making it a sub-Arctic “hot spot” of ocean variability (Volkov et al.,

2013).
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The Norwegian Atlantic Current (NWAC) dominates the near-surface circulation along the
eastern rim of the Norwegian Sea and brings the warm and salty AW north at an average
velocity of 20-30 cm s' (Blindheim and Rey, 2004, Koszalka et al., 2011, Lumpkin and
Johnson, 2013; Volkov et al., 2015). The NwAC consists of a topographically controlled near-
barotropic current flowing along the shelf break of the Scandinavian Peninsula and a strongly
baroclinic jet that follows 2000-2500 m isobaths, the Norwegian Atlantic Slope Current
(NwASC) (Koszalka et al., 2011; Volkov et al., 2015). Instability of the NwAC is considered to
be the main source of the intense mesoscale variability in the Lofoten Basin. Results of a two-
layer model (Orvik, 2004) and further observations (Blindheim and Rey, 2004, Gascard and
Mork, 2008, Koszalka et al., 2011, Lumpkin and Johnson, 2013) also revealed a northward
surface current along the Mohn Ridge, at the western edge of the Lofoten Basin, with a mean

velocity of 10-15 cm s™.

At depth, an overall bottom-intensified cyclonic gyre around the Lofoten Basin was detected in
a diagnostic regional circulation model (Ngst and Isachsen, 2003) and in analyses of Argo float
trajectories (Poulain et al., 1996; Jakobsen et al., 2003; Orvik, 2004). The velocity, estimated
from ARGO float trajectories is 5-10 cm s (Gascard and Mork, 2008). It has been suggested
that the cyclonic gyre is a bottom-trapped branch of the deeper fractions of the NwASC,
maintained by eddy transport of the warm and salty AW into the Lofoten Basin and its further
downwards penetration by vertical diffusion (Ivanov and Korablev, 1995a,b; Pereskokov, 1999;

Orvik, 2004).

Russian hydrographic surveys in the 1970s and 1980s discovered a quasi-permanent
anticyclonic vortex in center of the Lofoten Basin, named the Lofoten Vortex (hereafter LV,
Ivanov and Korablev, 1995a,b). The vortex is located at around 70°N, 2° E, has a diameter of
about 60-80 km, and is characterized by positive temperature and salinity anomalies between
400 and 2000 m depths (Fig. 2, see also Alexeev et al., 1991; Pereskokov, 1999) with the
strongest signal found at around 800 m (Alexeev et al., 1991; Romantcev, 1991). The existence
of the LV was later confirmed by trajectories of neutrally-buoyant floats and surface drifters
(Sgiland et al., 2008; Koszalka et al., 2011). Ivanov and Korablev (1995b) suggested that the
LV stays at approximately the same position in the center of the Lofoten Basin due to its
interaction with the mean bottom-intensified cyclonic gyre or, since the LV extends throughout

the entire water column, with the bowl-shaped topography itself (Raj et al., 2015).

Repeated oceanographic surveys from 1985 to 1991 (Ivanov and Korablev, 1995a) show that

the LV thermohaline anomalies strengthen in winter and spring. This is accompanied by a
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reduction of the LV radius and a strengthening of its maximum anticyclonic rotation velocity.
Based on these observations, Ivanov and Korablev (1995a) suggested that the LV regenerates
periodically due to anomalously strong convective mixing over its core in winter. The
seasonality itself has later been confirmed in eddy-resolving primitive equation simulations and
in altimetric observations by Kohl (2007) and Raj et al. (2015). However, these authors
attributed the regeneration not primarily to winter convection but rather to the merger of the LV
with other anticyclones in the basin. In fact, drifter trajectories and satellite altimetry have
confirmed a higher level of eddy activity in the Lofoten Basin in winter and spring (K6hl, 2007;
Sgiland et al., 2008; Koszalka et al., 2011). Both cyclones and anticyclones appear to originate
from instability of the Norwegian current near the Lofoten Islands (Seiland et al., 2008;
Koszalka et al., 2011). Thus, Isachsen (2015) used time-averaged fields of an eddy-resolving
numerical ocean simulation to calculate linear growth rates and corresponding length scales
based on linear quasi-geostrophic (QG) vertical mode equations. The fastest unstable growth
was found along the steepest part of the continental slope off the Lofoten-Vesteraalen islands.
The current flowing the Mohn Ridge was also found to be unstable, but with lower growth rates.
Steered by the bowl-shaped topography of the Lofoten Basin, some of the anticyclones

generated in the boundary currents eventually approach and merge with the LV.

So both eddy mergers and winter convection appear to strengthen this vortex. But the observed
quasi-permanent state of the LV must ultimately reflect a long-term balance between re-
generation and dissipation (or break-up) processes. As outlined above, the first process has
been studied to some degree. The second process, decay of the LV, has not received similar

attention and is therefore the main focus of this paper.

Mesoscale vortices, like the LV, can in principle decay due to small-scale turbulent diffusion
and to instability triggered by external perturbations. However, since such vortices are typically
surrounded by strong potential vorticity (PV) gradients (Hua et al., 2013; Bashmachnikov et al.,
2015), turbulent diffusion is suppressed. In the case of the LV a decay time due to the effect of
turbulent diffusion has been estimated to be dozens of years (Sgiland and Rossby, 2013). In
contrast, hydrodynamic instability of the vortex itself could be an efficient decay mechanism

(Smeed, 1988b; Rishardson et al., 2000; Bashmachnikov et al., 2015).

A baroclinic vortex is subject to four main types of instability (Ripa, 1992; Cushman-Roisin and
Beckers, 2011): baroclinic instability (due to coupling of Rossby waves), hybrid and Sakai
instabilities (due to coupling of Rossby waves with frontally-trapped inertia-gravity waves),

Kelvin-Helmholtz instability (due to coupling between inertia-gravity waves) and barotropic
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instability (Rossby waves are sustained by a horizontal shear of the mean flow). Kelvin-
Helmholtz and Sakai instabilities are developed only at much higher Rossby numbers ( Ro ) than
observed in the LV. For low Rossby numbers and low ratio of vortex-core thickness to water
depth, hybrid and baroclinic instabilities may be generated. As the ratio of vortex-core thickness
to water depth decreases the instabilities develop at a progressively slower rate (Ripa, 1992;

Cohen et al., 2015a).

In two-dimensional incompressible and inviscid fluids, a circular vortex with uniform relative
vorticity (a Rankine vortex), which is a stationary solution of the Euler equations, is stable to
small-amplitude perturbations on its contour (Lamb, 1885). This result also holds for a two-
dimensional vortex with uniform PV in a rotating environment, but it does not hold for a
baroclinic vortex in the ocean. Quite simply, in a two-layer fluid (the simplest approximation of
a baroclinic system) the Rankine vortex may become unstable if the sign of the PV changes
from one layer to another (Pedlosky, 1985; Kozlov et al., 1986; Flierl, 1988; Helfrich and Send,
1988). The instability theory for two-layer vortices was further developed, in particular, in the
works by Sokolovskiy (1988), Paldor and Nof (1990), Ripa (1992), Mesquita and Prahalad
(1999), Sokolovskiy and Verron (2000), Benilov (2000, 2001, 2003, 2004, 2005a, 2005b),
Thivolle-Cazat et al (2005), Reinaud and Carton (2009), Sokolovskiy et al (2010), Carton et al.
(2010a,b), Makarov et al. (2012), Cohen et al. (2015), Cohen et al. (2016).

Similar arguments apply in the three-layer model (Holmboe, 1968; Davey, 1977; Wright, 1980;
Smeed, 1988a, 1988b; Sokolovskiy, 1991; Ikeda, 1993). A sufficient condition for instability is
achieved when at least one of the stratification parameters, y, or y, (inversely proportional to
the first and the second Rossby radii of deformation, respectively, - see Appendix A), reach a
certain threshold value (Sokolovskiy, 1997a, 1997b). Smeed (1988a, 1988b) has shown that for

typical upper ocean conditions, when the density jump across the lower interface ( 4dp, -
between layers 2 and 3) is much less than that across the upper interface ( 4p, - between layers

1 and 2), the instability develops as long waves generated at the sloping isopycnal above the
eddy core (the interface between layers 1 and 2), and short waves generated at the sloping
isopycnal below the eddy core (the interface between layers 2 and 3). This result was
theoretically and numerically confirmed by Sokolovskiy (1997a, 1997b) for a “cylindrical”
vortex in a three-layer fluid, as well as for a “‘cone-shaped” three-layer vortex (i.e. when the

initially circular vortex patches have different radii in different layers).

Thus, stability analyses of circular geostrophic vortices give evidence that the nonlinear

evolution of such vortices can lead to a break-down of an initially monopolar vortex into
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multiple structures (Pedlosky, 1985; Kozlov et al., 1986; Flierl, 1988; Helfrich and Send, 1988;
Sokolovskiy, 1988, Carton and McWilliams, 1988; Carton and Corréard, 1999). Applications
of the theoretical results to real ocean data suggest that most vortices should be unstable (e.g.,
Ikeda 1981; Flierl, 1988; Helfrich and Send, 1988; Carton and McWilliams 1989; Ripa 1992;
Killworth et al., 1997; Benilov et al., 1998; Baey and Carton, 2002; Benilov, 2003; Katsman et
al., 2003). Observations, in contrast, indicate that ocean vortices often persist for years (e.g.,
Lai and Richardson, 1977; Bashmachnikov et al., 2015). A promising attempt to solve this
apparent contradiction was made by Dewar and Killworth (1995), who considered a Gaussian
vortex in the upper layer and a relatively weak co-rotating circulation in the lower layer in a
two-layer shallow-water model. It was found that the deep flow can stabilize the eddy or, at
least, weaken its instability considerably. This idea was further developed by Benilov (2004),
who demonstrated that the deep flow, corresponding to a uniform PV in the lower layer,
stabilizes all types of vortices, not only the Gaussian one. Benilov (2004) thus argued that non-

zero deep flows are a common feature for long-lived oceanic eddies.

The Lofoten Vortex is long-lived vortex; this is an observational fact. A first explanation of its
dynamic stability was offered by Kohl (2007). Building his results on a 2-layer study by
Benilov (2005a), the author argued that the LV may be stabilized by a 100-m bowl-shaped
depression of the bottom topography. This explanation is questionable since it would only
apply for a first baroclinic Rossby radius of deformation in the Lofoten Basin being several
times larger than actually observed. Also, as is shown in Fig.1 and Fig.2, most of the time the
LV center is situated not over a bottom depression, but is rather surrounded by a set of small
depressions, while high-gradient bowl-shape basin boundaries are separated from the L'V center

by a distance of several vortex radii.

It is more likely that PV gradients between the LV core and the surrounding ocean determine
its stability characteristics. Thus, the LV decay has to be studied in terms of barotropic or
baroclinic instability. For such investigation a detailed knowledge of the horizontal and vertical
structure of the LV is critical. Previous studies of remote sensing and model data have given a
relatively good picture of the horizontal structure of the LV near the surface and its time
variability (Kohl, 2007; Soiland and Rossby, 2013; Volkov et al., 2015). The vertical structure
of the vortex, studied so far only from scattered in-situ observations (Ivanov and Korablev,
1995a,b; Blindheim and Rey, 2004; Gascard and Mork, 2008; Soiland and Rossby, 2013; Raj et
al., 2015), is less well known. As outlined above, knowledge of this vertical structure, however,
is key for an understanding of the vortex stability. A closer look at the vertical structure of the

LV is, therefore, also a focus of this study.
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The paper is structured as follows. An overview of data and methods is given in Section 2. The
following section begins by describing the vertical structure of the LV, as obtained in eddy-

permitting primitive equation simulations nested into the global ECCO?2 state estimate. This

includes a discussion of the time evolution of the main vortex parameters and a classification of

the LV PV states in selected vertical layers (Sections 3.1-3.3). These results are then used to
study the stability of the LV in a 3-layer QG model, both in the linear and nonlinear regimes
(Section 3.4), and also including the effects bottom slope and a background current (Section
3.5). Finally, temporal variability of the LV in the primitive equation model is diagnosed and
compared with the predictions of the stability calculations (Section 3.6). In Section 4 we

summarize and discuss the results.

2. Data and Methods:
2.1 Primitive equation model

Eddy-permitting numerical experiments of the Lofoten Basin and surrounding ocean regions
(see Fig. 1) have been performed with the Massachusetts Institute of Technology primitive
equation model (MIT GCM, Marshall et al., 1997) nested into the ECCO2 (Estimating the
Circulation and Climate of the Ocean, Phase 2; http://ecco2.jpl.nasa.gov) ocean state estimate

of the North Atlantic and the Arctic Ocean (Nguyen et al, 2011). ECCO?2 is an accurate,

physically consistent, time-evolving synthesis of the ocean circulation by a least square fit of

full-depth ocean and sea ice dynamics to selected satellite and in situ data. The eddy-permitting
regional model used for this study adopts the parameter set (surface heat and momentum fluxes
vertical mixing coefficients, etc.) obtained in the optimized ECCO2 model. The nested model
run is integrated using a finite volume discretization with C-grid staggering of the prognostic
variables and has a horizontal mesh-size of around 4x4 km in the Lofoten Basin. Given a first
baroclinic Rossby radius of deformation of 7-8 km (Nurser and Bacon, 2014) in the region and
a radius of the LV itself of about 30 km, the nested model is hence eddy-permitting. The model
has 50 vertical z-levels, their mean thickness ranging from 10 m in the upper ocean to 456 m

below 2000 m.

The General Bathymetric Charts of the Oceans (GEBCO) with one arc-minute grid (Smith and
Sandwell, 1997) is used as bottom topography. The partial cell formulation (Adcroft et al.,
1997) allows for an accurate representation of the bathymetry in the model. The computations

were started from rest, using climatological temperature and salinity from the World Ocean

9
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Atlas 2009 (WOAO09) (Locarnini et al., 2010; Antonov et al., 2010). Over the 1992-2013 period,
the simulations were forced with a 6-hourly atmospheric state obtained from the 25-year Re-
Analysis of the Japan Meteorological Agency (JRA25-JMA) with the original 1.25x1.25 degree
spatial resolution. Lateral boundary conditions are taken from ECCO2 simulations. Time-mean
fields used in this paper are taken from the 1995-2010 time period, leaving the first years for
model spin-up. Further details on the model description and set-up are given in Losch et al.

(2010), Nguyen et al. (2011) and Volkov et al. (2015).

Analysis of variations of the LV near-surface mean relative vorticity in the MIT GCM and
satellite altimetry observations (Ray et al., 2015; Volkov et al., 2015) showed that the model
adequately describes seasonal and interannual variations in the LV dynamics at the sea-surface.
The model was also shown to adequately reproduce other details of large-scale and mesoscale
dynamics in the Lofoten Basin, as reported by a number of observational studies (see, for
example, Blindheim and Rey, 2004, Gascard and Mork, 2008, Koszalka et al., 2011, Lumpkin
and Johnson, 2013).

2.2 Algorithm for obtaining characteristics of the LV

Our study is based on weekly 3D fields of the primitive equation model temperature, salinity
and velocity. The LV is identified at the centre of the Lofoten Basin by the deep penetration of
its temperature and salinity anomalies (Fig. 2), as well as its relative vorticity signature. The
analyses are done in a reference frame following the vortex, so consecutive positions of the LV
were tracked using the peak negative relative vorticity at 700 m depth. The level chosen assures
higher stability of the tracking algorithm, as the peak relative vorticity anomaly of the LV core
at this level nearly always exceeds the corresponding anomalies of surface-intensified
anticyclonic eddies propagating into the basin from the NwAC. Specifically, every new
position of the LV was defined from the minimum of relative vorticity within a 40-km large
disk (slightly larger than the typical LV radius defined by Kohl, 2007), from the vortex position
at the previous step. To cope with the situations where the LV centre has drifted by more than
one LV radius after a week, the algorithm undergoes three iterations for every time step, each
one starting with the newly defined position of the minimum of relative vorticity. This
“creeping” technique allows fixing the LV centre, separated by up to three LV radii from its
previous position (this covers the possibility of LV translation at unrealistic velocities of 20 cm
s'1). The procedure simultaneously avoids unwanted jumps of the LV position to the centre of a

neighboring anticyclone, which happens to have a stronger instantaneous relative vorticity
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anomaly. The robustness of the algorithm was verified by visual inspection of subsequent

vorticity fields. The results show that the main LV core forms the strongest relative vorticity

anomaly even when secondary vortices are separated from its skirt.
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Fig. 2. A section of salinity (a) and of temperature (°C, b) across the center of the Lofoten

Vortex (69.7°N) at 24.08.2005 in the MIT GCM simulations. Thin isolines mark potential

density surfaces referenced to 500 m depth. The LV position and the mean depths of the 3

layers used for stability analysis are marked with dashed rectangles. GEBCO topography,

interpolated to the model grid, limit the data distribution from below (blue line). Magenta lines

mark the frequency of observation of the LV center along this section (out of scale, the line

edges mark zero number of observations).

With the LV position identified, the vortex extent was deduced from its relative vorticity field.

Relative vorticity profiles were derived along rays, originating from the LV centre and

10



289  covering an ellipse with 10° increments (Fig. 3). Along each profile, the LV dynamic radius
290  was defined using two complementary algorithms. In the first algorithm, the radius was defined
291  as the minimum distance along each ray at which either 1) the relative vorticity profile crosses
292 zero, or 2) the relative vorticity has a local maximum, or else 3) the rate of decrease of the
293  relative vorticity slows down significantly (below 25% of its maximum rate along the ray). The
294 latter two criteria help to avoid situations when the LV core extends across connected filaments.
295 In the second algorithm only the first criterion was used. At times, special vorticity
296  configurations were the LV center is fully circled by two nested rings of higher and then lower
297  relative vorticity were identified (Fig. 3c). Those situations usually take place immediately
298  after a full or partial merger of a surface anticyclone with the LV. In these cases the LV radius

299  was defined using the second algorithm.

300 Having collected the points of the LV boundary, the position of the LV centre was refined
301  (from the first guess given by the tracking algorithm) as the algebraic mean of the boundary
302  coordinates. The LV mean radius was further defined as the mean distance from the refined
303  centre of the LV and the LV boundary points. The maximum and minimum radii were obtained

304  via arobust least-square fit of the boundary points to an ellipse (Fig. 3).
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Fig. 3. Upper panels: relative vorticity distribution at 100 m depth (x10” s™). Red and magenta
lines connect the LV centre and the LV boundaries in radial directions. Lower panel: sampled
profiles of relative vorticity for the distributions above, running from the LV center northwards.
(a) — 10.02.1993; (b) — 08.09.1993; (c) — 11.11.1998. Red ellipse (upper plots) and empty
circles (lower plots) mark the LV boundary defined with the first algorithm (as described in the
text); dashed magenta ellipse (upper plots) and grey stars (lower plots) mark the boundary

defined with the second algorithm (as described in the text).

2.3 Constructing a 3-layer isopycnal model

To study the vertical structure of the vortex in an isopycnal framework, potential density

surfaces referenced to 500 m (o, ) were computed with an increment of 0.02 kg m™. The bulk

of the analysis to follow assumes a 3-layer structure of the vortex. Further, in Section 3.2, it
will be shown that the L'V represents an S-vortex in the classification of Morel and McWilliams
(1997). For such vortices, negative potential vorticity anomalies of the vortex core are
vertically constrained with positive potential vorticity anomalies above and below the core,
resulting from compression of isopycnals (see Figs. 4 and 5). Having this in mind, the
isopycnals that separate the water column into three layers (with the second layer constituting
the vortex core) were defined using two other sets of reference isopycnals. The first set was
taken as the two isopycnals that show the maximum deflection above and below the LV center
from their mean position outside the vortex. Those isopycnals are thus within the weakly-
stratified core of the LV. The second set was taken from the isopycnals that experience the
strongest squeezing above and below the core, i.e. the two isopycnals that have the smallest
ratio of the distances to the neighboring isopycnals over the LV center to the mean distances
between the same isopycnals. Finally, the two isopycnals limiting the core from above and

from below were selected as those at mid-distance between the two sets defined above.

With the two isopycnals separating the three layers identified, mean isopycnal depths were
calculated. Deflections of the isopycnals in the LV (#, and 7, ) were then computed as the

differences between the isopycnal depth in the LV center and the mean depth of the same

isopycnal in an extended region around the LV.

3. Results
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3.1 The vertical structure of the LV

Figure 4 shows typical horizontal maps and vertical sections of relative vorticity across the LV.
The relative vorticity anomaly shows up as a columnar pattern which reaches the ocean bottom.
However, the vorticity intensity sharply decreases and the vortex radius increases below 1000

m depth.
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Fig. 4. Horizontal maps at 100 m depth (left-hand panels) and vertical profiles (middle and
right-hand panels) of relative vorticity (x107 s7) in the Lofoten Basin: a- 24.08.2005; b-
13.09.2009. In the horizontal maps horizontal velocity vectors are overlaid; black and grey
lines mark the position of vertical section along the LV semi-major and semi-minor axes of the
approximating ellipse, respectively. The vertical sections show cuts along the semi-major axis
(middle panels) and semi-minor axis (right-hand panels) of the vortex. In the vertical sections

solid black isolines are o, and vertical white dotted and dashed lines mark the LV axis and

boundaries (dynamic radii), respectively.
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Time-averaged vertical profiles of selected geometric and dynamic characteristics of the LV are
presented in Figure 5. The LV azimuthal velocity, the relative vorticity and the dynamic radius
reach their peak values at 500-600 m, 700-800 m and 800-900 m, respectively. The 200-800 m
layer is also characterized by the strongest temperature-salinity anomaly (see also Fig. 2), as

well as by the peak negative Ertel PV anomaly. Ertel PV is defined as /7, = NZ( f+ a))/ g,
where N is the buoyancy frequency, f is Coriolis parameter, w is the mean relative vorticity
of the LV core at a depth level and g is the gravitational acceleration. Ertel PV anomaly is

defined as the difference between Ertel PV in the LV center and in the surrounding ocean.

Figure 5 (as well as Figs. 2 and 4) shows that the LV core is intensified below the sea-surface.
This suggests that the LV vertical structure can be split in 3 layers. The upper layer (layer 1),
above the LV core, extends on average from the sea-surface to 50-200 m. In this layer, the LV
radius (R ) increases with depth. The core layer (layer 2) extends from 50-200 m to 900-1100
m and is characterized by overall peak dynamic properties, as described above. In particular,
the peak relative vorticity anomaly is between -2x107 and -3x10°s™\. R in the layer decreases
with depth down to a minimum of about 25 km at around 900 m. The lower layer (layer 3),
from 900-1100 m to the ocean bottom, is characterized by a more than a five-fold decrease of

relative vorticity (as compared to its peak value in layer 2) and by a larger R of around 35 km.
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Fig. 5. Vertical profiles of selected time-mean characteristics of the LV (from 1998 to 2012):

black lines with circles are dynamic radii (km) — the mean radius (solid line - R ), the lengths
of the semi-minor axis (dashed line - R_, ) and of the semi-major (dotted line - R__ ) axis;
thick grey lines with crosses are relative vorticity profiles (10° s!) — the peak (solid line - aw,. )

and averaged in the disk with the radius R, /2 (dashed line - @, ), thick gray line with

squares is the maximum azimuthal velocity (V , cm s!); black dash-dot line is profile of Ertel
potential vorticity anomaly in the LV center (Mg, 10" s!). Gray horizontal bands present

approximate positions of the time mean upper and lower boundaries of the LV core.

3.2 Time evolution of the LV parameters

In this section, the time evolution of the vertical structure and of the horizontal geometry of the
LV, in a 3-layer isopycnal framework (Section 2.3), is considered. The time evolution of the

mean layer thicknesses outside the LV, the layer thicknesses in the LV itself and layer
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deflections at the L'V center (#, and #, ) are presented in Fig. 6. The strong variability of the

depth of the upper layer has both seasonal and interannual pattern. During some years winter
convection penetrates into the LV core, and layers 1 and 2 merge for a couple of months, until
the late spring re-stratification of the upper ocean restores the 3-layer structure of the LV.
Figure 7 shows the evolution of the layer-averaged temperatures and potential densities

referenced to 500 m depth (0,5 ) in the LV. Seasonal fluctuations reach layer 2 although

strongly reduced in amplitude. Both Figs. 6 and 7 show that the first simulation years are
characterized by a noticeable evolution of the LV parameters, from which we conclude that the
LV structure is not fully developed in the model until about 1998. Our further analyses the LV
dynamics will therefore be based on the period from 1998 to 2012.
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Fig. 6. a - time evolution of the mean layer thicknesses (m) outside the LV: layer 1 (4, , thick
solid red line) and layer 2 (h, , thick dotted magenta line); time evolution of the LV core

thickness (m), - separation between upper and lower interfaces of layer 2 at the LV center

(h,y , thin solid blue line). b - time evolution thickness (m) of layer 1 in the LV center (A, ,
thin solid blue line), and elevation of isopycnals over the LV (m): thick solid red line is 7, ,

thick dotted magenta line is |7, |-
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Fig. 7. a- time evolution of layer-mean temperature (°C), b - time evolution of layer-mean
density o, (kg m?) in the LV. Red line represents layer 1, magenta line - layer 2; blue line —

layer 3.

Figure 8 shows LV radii, velocities and vorticities. The layer-mean radii (Fig. 8a) of the LV in

layers 1 and 3 are somewhat larger than in layer 2: the ratios R,/R, and R,/R, are on

average 0.98 and 0.93, respectively. The ratio of semi-minor to semi-major axes at all depths is
on average 0.82 and decreases below 0.70 only for 10% of the time. These results will be taken
as justification for using a simple model of a circular columnar LV (see also Fig. 3) in the

analysis that follows.

The maximum azimuthal velocity (V,, ) in layer 1 (Vaz1 ) on average reaches 90% of that in
layer 2 (V. ), while in layer 3 V. is about 30% of V.~ (Fig. 8b). Given the small variations

of the LV radii with depth, the relative vorticity varies with depth accordingly (w, Fig. 8c). In
idealized 2-layer vortex models, a co-rotating deep flow of 5-10% is already sufficient for
stabilizing a vortex (Dewar and Killworth, 1995). Further (Section 3.4) we will show that in a
3-layer QG-model the LV is a subject of a weak vortex instability, while in the primitive
equations model with external forcing (Section 3.6) development of perturbations in the LV is

restricted to the vortex skirt.
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Fig. 9. (a) - time evolution of the layer-mean QG PV (Eq. (1), s!) inthe LV (r < R, j =1,2,3
is the layer number). (b) - time evolution of the layer-mean QG PV (s!) around the LV

(R; =r<2R ;). Red line represents layer 1, magenta line - layer 2; blue line — layer 3. Note

that y-scale of panel (a) is in 10 s™!, while of panel (b) is in 107 s,

QG PV for layers 1-3 is estimated as:

Il =w, + fn/h
II, =w, = fn/h, + fn,/h,. (1)
II; = w5 = f n,/h;

Here h; is the thickness, @, is the relative vorticity and 77, is isopycnal deflection in the LV

from their mean positions in the surrounding ocean, for layers j =1, 2,3. I, is negative in the

LV core, while above and below [I,; are positive (Fig. 9a). I, outside the LV core

(R <r <2R) is also negative on average (Fig. 9b), but its absolute value is more than an order
of magnitude smaller than |H 2| in the core (r < R). The positive PV poles above and below the
LV core are formed by squeezing of isopycnals. This suggests that the LV represents a
vertically-shielded S-vortex structure (Morel and McWillams, 1997). As the LV is weakly

horizontally shielded, its interactions with the mesoscale structures around is expected to be

stronger than for an unshielded vortex (Carton 1992; Carton et al., 2002).

3.3. Identification of typical LV PV structures

Figures 6-9 reveal that the overall LV structure remains quite stable in time, except for short
periods of deep winter convection, penetrating the LV core. Time-mean parameters of the LV
are presented in Table 1. At the same time, a notable time variability of LV parameters exists
on seasonal and shorter time scales. In this section we investigate whether much of this
variability falls within a smaller subset of typical configurations of the vortex. Typical
configurations were identified using K-means cluster analysis performed in the (17 I 172)
parameter space. This parameter space was chosen since layer PVs have a direct influence on

vortex stability and since 1/, and /7, show the strongest variations in time (see Section 3.2).
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The spread of the LV PV configurations in the (17 I 2) space is shown in Figure 10. The

density distribution of the data-points (Fig. 10) shows concentration around 4 distinct centers,
marked at the plot as A, B, C and D. Objective selection criteria, like Partition Index and
Separation Index decrease slower as the number of clusters exceeds 5, while the Xie and Beni’s
Index becomes leveled at number of clusters over 3. For example, the Partition Index (the ratio
of the sum of compactness to separation distance between the clusters) decreases by 2.9, 2.3,
2.1, 0.2, with an increase of the number of clusters from 2 to 3, from 3 to 4, from 4 to 5 and
from 5 to 6, respectively. Therefore, 5 clusters were selected as the optimum number. In the

cluster analysis, distances along each of the axes in the (17 1 2) space were normalized by the

corresponding ranges of PV values. After such normalization, PV points that lie within a non-
dimensional distance of 0.3 from the center of a given cluster were used to estimate the
characteristic properties of that cluster (Fig. 10). This avoids transitional states. In total, the
four main clusters (A, B, C and D, listed in Table 2) cover over 60% of the model run duration
(470 out of 784 model outputs). The mean vertical distribution of isopycnals for each of the

clusters are shown in Figure 11. The results are discussed in detail below.
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Fig. 10 — The state of the LV in (I7,, I7,) space (10* s™) and the results of K-mean cluster
analysis. (a) Black dots show data points and grey shading indicate their concentration (darker
shading indicates higher density). The thicker red, magenta, blue, cyan and green dots represent
the (17 /s 2) points identified as belonging to clusters A, B, B1, C, and D, respectively. (b)
Number of observations of different states as a function of season over the period of

simulations in MIT GCM.
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479  Fig. 11. Mean isopycnal depths (blue lines) across the LV for the four main clusters in Fig. 10.
480  (a) - configuration A, which is the most typical for autumn and early winter, (b) - configuration
481 B, occurring in late winter or early spring, (c) - configuration C, the most typical for late spring,
482  (d) - configuration D, the most typical for summer. Red stars mark the LV limits. Magenta and
483  red lines represent isopycnals, marking the upper and the lower boundaries of the LV core,

484  respectively.
485

486  Configuration A (Fig. 10b, 11a) is characterized by small deflections of isopycnals above the
487 LV core (7, ) compared to the mean thickness of layer 1 (4 ), and a comparatively large
488  thickness of layer 2 (4, ). The frequency of such a configuration grows from summer to autumn,

489  slightly decreases in winter and is very rare in spring. In late autumn and winter the upper

490  mixed layer deepens due to convection, gradually eroding the upper boundary of the LV.

491  Configuration B (Fig. 10b, 11b) is a result of deep convective mixing during the cold season,

492  when the upper layer disappears and a 2-layer approximation of the LV becomes valid: A, =0
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and 7, =0; h, is anomalously large. This configuration occurs only in early spring. A similar

configuration is B1 (not shown in Fig. 11), for which the upper layer exists but the limiting
isopycnal over the LV lies much below 200 m, the depth of the upper mixed layer.
Configuration B1 is episodically observed from late autumn to early spring, being the most

frequent in winter.

Configuration C (Figs. 10b, 11c) is characterized by anomalously large #, compared to A, ,
while A, is small. This configuration can be observed during any season, but it is most frequent

in late spring and early summer, i.e. during the restoration of the seasonal pycnocline. Its

frequency decreases through summer and autumn and reaches its minimum in winter.

Configuration D (Figs. 10b, 11d) is intermediate between A and C. This most frequent

configuration is the most often observed in summer.

For the study period from 1998 to 2012, from 470 points, used for obtaining the characteristic
parameters of each of the configurations (see above), there are 98 points characterized by A-
cluster (around 21%), 79 points — by B and Bl-clusters (around 17%), 139 points — by C-
cluster (around 29%) and 155 points — by D-cluster (around 33%). The rest of the points, not
used for construction of the panels of Fig 11, mostly belong to either cluster D or to cluster A.

The key vortex parameters for each of the four clusters are listed in Table 2.

Although the sequence A-B(B1)-C-D largely follows the seasonal cycle, interannual variations
in the upper ocean stratification under varying atmospheric forcing result in some
configurations having overlapping maxima (Fig. 10b). Thus, we may observe configurations A,
C or D during summer. During mild and calm winters configurations B (and B1) may not

develop (Fig. 9a).

Table 1. Time-mean statistics of dynamic parameters of the LV.

Parameter Layer 1/interface | Layer 2/interface | Layer 3/bottom
1 2

Interface depth (z, m) 250 655 3000

Layer thickness (4, m) | 250 405 2345

Interface deflection at | 135 500 0

the LV center (7, m)

23



517

518

R, km 30.5 30.0 32.0

V. ,cms?! -34 -37 -11

w,s! -1.13 107 -1.32107 -0.38 10?
oal< ko, % 97% : 100%
I71%104, 5! 0.75 -2.35 0.25

11 +std 4.6x1.9 -13.245.6 1.4+0.1
o0 (500m), kg m 30.11 30.29 30.54

Table 2. Statistics of dynamic parameters of the LV for each of the clusters (Figs. 10-12).

Parameter Layer 1/interface | Layer 2/interface | Layer 3/bottom
1 2

configuration A, 21%,

h£std (m), 190465 475465 2345

n %std (m) 70+30 -510425

R +std (km) 3143 3042 3242

75 std (kg/m?) 30.00+0.12 30.27+0.05 30.54:0.00

IT +std (104 s 0.36+0.05 -1.85+0.14 0.26+0.01

IT +std 2.0+0.7 -10.5£2.0 1.5£0.1

configuration B, 17%,

h £std (m), 660+30 2340

n+std (m) -490+30

R +std (km) 3142 33+3

0,5 +std (kg/m’) 30.1520.11 30.55+0.00

17 +std (107 s7) -1.3320.14 0.25+0.01

1T +std -6.4+0.6 1.40.1

configuration C, 29%,

h +std (m), 340+50 310435 2350

7 +std (m) 270450 -485+35

R *std (km) 20+ 28+1 3142

7,5 *std (kg/m’) 30.180.06 30.330.03 30.54+0.00

I7 +std (10% s
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17 +std 0.98+0.05 -3.3720.22 0.27+0.01
5.6+0.5 -19.7+2.7 1.440.1

configuration D, 33%,

h %std (m), 220+50 425450 2355

n*std (m) 160+40 -485+40

R #£std (km) 3143 3041 3242

0y std (kg/m’) 30.0120.14 30.250.05 30.55+0.00

I1+std (107 s™) 0.86+0.05 -2.22+0.16 0.24+0.01

IT +std 4.8+0.54 -12.7+1.8 1.4+0.1

519

520 3.4 Instability analysis in a QG model

521  The findings in sections 3.2 and 3.3 suggest that during the whole period of observations the
522 sign of PV in the LV core is opposite to the signs of PV in the layers above and below. Thus,
523  the necessary integral condition for vortex instability is satisfied (Sokolovskiy, 1997b;
524  Cushman-Roisin and Beckers, 2011). The range of the vortex Rossby numbers suggests that
525  baroclinic or hybrid types of instability can be expected (Ripa, 1992). For the LV the second
526  derivative of azimuthal velocity in radial direction exceeds variation of Coriolis parameter with
527 latitude, and the necessary condition for barotropic instability is also satisfied (Cushman-Roisin
528 and Beckers, 2011). The possible role of baroclinic, barotropic or mixed instability will be the
529  focus of following sections. We start by studying the stability properties of the LV in a two and
530 three layer QG models.

531  For a 2/3-layer QG model of the LV, the LV is approximated as stacked cylinders (see Figs. 8-
532 9 and Tables 1-2), with PV anomalies constant in each of the layers (Eq. A6 in Appendix 1).
533  The non-dimensional vortex PV anomalies in each of the layers, used in the QG model, are

534  computed as:

ﬁl =, +n,/h
535 II, =w, —-n,/h, +1,/h, , (2)
73 = @, _ﬁz/@

536 where @, =, /(‘;j, 7,=n,/(RotH), h,=h,/H (j=123), H is water depth and Ro is

537  the Rossby number. The mean LV parameters in layer 2 (Table 1) were taken as the reference
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scales. This gives V =37 cm s™!, R=30 km (see Table 1), H=3000 m and f= 1.36 10* s,
Hence, the relative vorticity normalization scale is V/R=1.23 107 s™! and the Rossby number
is Ro=V /(R )=0.09. Averaging N> over the LV core thickness (1000-1200 m, Fig. 10) and
N’H?
TR
~0.05-0.10. The ratio of Ro/Bu ~1 is relatively high, but we may still expect the QG

over the full H (10° s and 107 s, respectively), the vortex Burgers number Bu =

approximation to capture the major features of the LV dynamics (Boss et al., 1996). F,=3.2

and F,=29.

For the mean dimensional characteristics of the LV (Table 1), and with the scaling parameters

as above, the following set of dimensionless parameters is taken for numerical experiments:
R =1.033, R» =1.000, Rs =1.067,

h, =0.0833, h, =0.1383, h, =0.7784, (3)

I, =4.6, I1, =-13.2, IT,=1.4,

We first examine the stability of the various clusters for the linearized problem of small
perturbation amplitudes. The analytic solution, which can be framed in terms of an eigenvalue
problem for a set azimuthal modes m, is presented in Appendix A. It allows us to identify, for
each mode m , stable and unstable domains that are separated by neutral surfaces in the space

of PV (Hj, 11, 173). Figure 12 shows sections of these hyper-surfaces by a (Hj, HZ) plane at a
fixed value of 17,=0.25 10 s”! (see Table 2) for configurations A, C and D, and by a (H 5 173)

plane at a fixed value of I7,=0 s for configuration B (when no upper layer exists).

Calculations of a set of instability modes for each of the clusters A-D are done for the sets of
dynamic parameters presented in Tables 1-2. The area of instability for an azimuthal mode m
lie to the right of the neutral stability curve, marked by the corresponding mode number (Fig.
12 a, c, d) or in-between the two neutral stability curves of the same mode number (Fig. 12 b).
For each of the cluster configurations (Figs. 10-12), the following azimuthal modes are
unstable: configuration A — m =2-3, configuration B — all m, configuration C — m =2-6 and

configuration D — m =2-4.

The growth rate for an azimuthal mode m is defined by the imaginary part of the complex

frequency m & (Appendix A). For the mean vortex parameters (Table 1, the thick grey circle in
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Fig. 124d) we get linear growth rates 2|Im 0, | = 0.0839,
imé,_,|=0.5364, 4|imo,_,|=03316 , ie. 3|md, _,|4lms,_,|>2lims,_,| . Therefore,
theoretically, the 3™ and the 4" azimuthal modes are growing much faster than the 2™ mode.
The 1% azimuthal mode has zero growth rate. These results are applicable for the most frequent
configuration D. The numerical experiments for three other configurations (A, B and C, Table
2) indicate that, the 3" azimuthal mode dominate the instability also in configurations A and B,
and the 5™ azimuthal mode — in configuration C. In all the configurations, the most unstable

perturbations have a e -folding time scale of order of 60 days.

In a 2-layer model, all modes develop slower, but the lower modes finally are more efficient in

decay of the vortex (Table 3).

1,=025'10" s™!

eqnd -1
le 107, s

m,=02510% 57!

m=5

11.*10%, ¢!
2

Fig. 12. Same as in Fig. 10 but now with the addition of neutral stability curves based on QG
calculations for each of cluster configurations. Colour circles at each of the plates mark the
central set of the corresponding cluster (as in Fig. 10), the dots of the same colour — the rest of

the points, belonging to the corresponding cluster. The yellow, red, black and blue are lines of
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neutral stability curves for azimuthal modes m =2, m =3, m =4 and m =5, respectively. (a) the
LV PV anomalies (10* s in (/7,, I7,) parameter space for configuration A; (b) the LV PV
anomalies (10* s™) in (17 » 1l 3) parameter space for configuration B; (¢) the LV PV anomalies
(10* s in (17 1l 2) parameter space for configuration C; (d) the LV PV anomalies (10 s!)
in (17 1 2) parameter space for configuration D. The unstable domains of the azimuthal
modes are located to the right of the lines with the corresponding labels (in-between the lines of

the same mode for (b)). The gray circle in plate (d) marks the PV anomalies of the reference

vortex, used for the QG non-linear simulations.

In the numerical non-linear QG study below we will present the non-linear development of
instability for azimuthal modes m = 2, 3 and 4 for the most typical 3-layer configuration of the
LV characteristics (Table 1) and for the 2-layer configuration B (Table 2). Under the
assumption of a piecewise-constant potential vorticity distribution, simulating the vortex patch,
the so-called Contour Dynamic Method (Zabusky et al, 1979) can be applied to a three-layer
quasi-geostrophic model (Sokolovskiy 1991, Sokolovskiy and Verron, 2014). The horizontal
along-contour resolution in the Lagrangian model has 240 nodes for a circle contour of a unit
radius. The number of points increase proportional to the growth of a contour length to keep the
original along-contour resolution. In the following experiments (Figs. 13-18) the vortex is
immersed in a motionless fluid over a flat bottom. An experiment with a background mean

flow and variable bottom topography is presented in Appendix B.

The non-linear QG model is formulated for each of the layers j as:

=0, “)

where the layer PVs are defined as in Eq. (2) and di is the full derivative.
t

Two sets of runs were made, one with small-amplitude initial perturbations, &; = 0.02 and
another with larger perturbations, ¢, = 0.2 (see Appendix A, Eq. A.8), In the first case the

amplitude of the perturbation displacements of the vortex boundary are small compared to the
mean dynamic radius of the LV, in the second case they are comparable to the mean dynamic

radius.
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For small-amplitude initial perturbations (Figs. 13-15) the predictions of the linearized theory
are largely confirmed. In the 3-layer model, for a perturbation with m = 2, the main core
undergoes a strong elliptical deformation, but keeps its integrity for months (Fig. 13). Two
secondary eddies eventually separate from the main core after 6-7 months, but a fairly
significant volume of the vortex patch remains in the central part at the end of the 8-months
simulation period (Table 3). This demonstrates a significant stability of the vortex to such
perturbations: the percentage of volume left in the vortex core at the end of the 5-month
simulation period is the largest of all modes (Table 3). Azimuthal mode 3 develops faster and
secondary eddies separate from the main core already within 4-5 months (Fig. 14). Mode 4
instability develops nearly as fast, especially in the top layer (Fig. 15). Still, development of
secondary eddies of mode 4 is generally limited to the periphery of the vortex, in particular for
layers 2 and 3. In these layers the core volume of the main vortex practically does not change
after 5-months of development of the instability (Table 3). This suggests a relatively low

efficiency of mode 4 in the LV decay for small-amplitude perturbations.

A
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£=11 t=12 t=13 t=14
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=15 L=16 =17 t=18 @ £=19 @ t=20 m

Fig. 13. Evolution of instability in the numerical QG model for small-amplitude

s
R LR

(¢;,=0.02, j=1,2,3) mode-2 (m=2) initial perturbations (see Eq. A.8, Appendix A). The

most typical parameter state (Table 1, within configuration D) is used for the model set-up.
Each frame shows vortex patches in the upper (red upper contour plots in a plate), middle
(magenta middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers

as function of non-dimensional time. The dimensionless time unit corresponds to 12 days.
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633  Fig. 14. The same as Fig. 13 but for m= 3.
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636  Fig. 15. The same as Fig. 13 but for m= 4.
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Table 3. A measure of vortex instability: the volume of the central part of the vortex after 5

months for ¢ i = 0.02 and for ¢ = 0.2, in percent of its initial volume. In some cases for
¢; =0.02 the volume ratio at the end of the 5-month period is 100%. For those cases the ratio

at the end of the 8-month simulation period is also presented in parentheses.

Perturbation ¢=0.02 e=0.20
intensity:
Azimuthal mode: m=2 m=3 m=4 m=2 m=3 m=

3-layer configuration (D)

Layer 1 100% 15% 46% 31% 5% 36%
number (j) (37%)
2 100% 27% 89% 44% 20% 46%
(37%)
3 100% 16% 99% 0% 6% 15%
(17%)

2-layer configuration (B)

Layer 2 100% 100% 100% 71% 51% 52%
number (j) (59%) (45%) (54%)
3 100% 100% 100% 100% 26% 17%
(36%) (20%) (165)

Increasing the amplitude of the initial perturbations by an order of magnitude leads to rather
significant changes in the development of the instabilities (Figs. 16-18). In this case, the linear
stability analysis provides less reliable predictions. For all azimuthal modes allowed for the
most typical LV vertical structure (2-4), secondary vortex patches are formed within 3-4
months, and after 5 months the main vortex core in the upper and lower layers have decreased
significantly in size (Table 3). In the middle layer, the instability with m = 3 (Fig. 17) is the
most efficient in breaking up the vortex in the 3-layer case (Table 3). In the 2-layer winter
configuration B the 2" mode develops much slower than the 3™ and the 4" ones in the case of
finite-amplitude perturbations. The instability with m = 4 initially develops nearly as fast as
that with m = 3 in the LV core (Table 3). Still, for £ =0.20, further development of the
instability modes (not shown) suggests a stronger decrease of the LV volume due to the

instability with m = 3 at the end of the 8-month period.
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16. Evolution of instability in the numerical QG model for finite-amplitude

(¢;,=0.2, j=1,2,3) mode-2 (m = 2) initial perturbations (see Eq. A.8, Appendix A). The most

typical parameter state (Table 1, within configuration D) is used for the model set-up. Each

frame shows vortex patches in the upper (red upper contour plots in a plate), middle (magenta

middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as

function of non-dimensional time. The dimensionless time unit corresponds to 12 days.
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Fig. 18. The same as Fig. 16 but for m=4.

The results of this Section may be summarized as follows. For a realistic set of parameters,

both the linear analytical and nonlinear numerical QG models suggest that the LV is weakly

33



672
673
674
675
676
677
678
679
680
681
682

683

684

685
686
687
688
689
690
691

692

693

694
695
696
697
698
699
700

701
702

unstable. The LV core keeps its integrity at least over 4-5 months, but its volume decreases. For
finite-amplitude disturbances, the instability develops somewhat faster and the LV loses more
than 50% of its initial volume within the above-mentioned period of time. In the 2-layer case
perturbations develop at a noticeably slower rate, which suggests a higher stability of the LV in
winter (configuration B). Perturbations with the azimuthal mode 3 appear to be overall more
efficient in facilitating vortex break-up than other modes. This distinction is more pronounced
for small-amplitude initial disturbances. In many cases the rates of development of 2" or 4"
modes are close to that of the 3™ one. In these cases, other modes than the 3" one may become
dominant in the course of non-linear interactions between the modes in the full complexity of
the realistic LV dynamics. For stronger deflection of isopycnals (configuration C, Fig. 10)

higher azimuthal modes may start dominating the instability.

3.5 Instability analysis in a QG model with sloping topography

In the previous sections stability of the Lofoten vortex in the 3-layer QG model is done under
assumption of the flat bottom and the surrounding fluid at rest. Meanwhile, observations and
model results (Sections 1 and 2.1) show that the bottom of Lofoten Basin is gently sloping
southwestwards down from 3000 to 3250 m over 250 km, and then sharply rise to 2000-2500 m
at the ridge following Jan Mayen Fracture Zone and to 1500-2000 m at the Vorming plato over
less than 70 km distance. The Lofoten vortex (Fig. 1) is positioned over the gentle slope in the

central part of the basin. In this case the scaling factor of the planetary [ -effect,

-12 -1_-1
£ 8600 7" m s =0.60007 m™ , is several times less than the topographic A -effect,

f 1.3%107*s™
D}f . 3240 —3301(())(())m)/250km ~3.1007m™ . Incorporation of planetary or topographic [ -
m

effect increases stability to the mean flow (Cushman-Roisin and Beckers, 2011; Hetland, 2017),
but for an axisymmetric vortex the stabilization by a gently sloping bottom of the Lofoten Basin
is not obvious, as PV now varies along the circular particle path. The cyclonic circulation along
the inner part of the Lofoten Basin boundaries (Poulain et al., 1996; Gascard and Mork, 2008)
increases horizontal shear gradients at the LV boundary. The current and topography impose
perturbations to the vortex, so instability here is generated within the system and is not

artificially imposed as in the previous section.

With a barotropic north-easterly mean flow, the so defined “background” state are taken into

account by adding new time-independent terms to the right-hand side of equation (A.7):
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p,,(x,y)==U, y+V,x=> oT,, i=1..8j=1273; (5)

i=1

where

. g S qi38
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T, = S13V12 S13/2 i=1...8 =123
I#In(r;)” 42523 Il(lel-)Ko(J/lr,-)—Lzs23 L (V2R )Ko (yar;). 2Ry,
4 s1341 5132

Here p,, is an analytically estimated pressure perturbation in each layer j, which is added to the

pressure perturbations by the vortex (A.7), to make the total pressure (streamfunction) field.

U,,V, are current velocity components at infinity, o; is the bottom elevations over 3000 m

(negative for a depression) normalized for the area of the circular topographic forms with

X’

coordinates of the centers (c;,,c;,), and 7, :\/ (x—cix )2 + (y —c,-y)2 ; Up and V) are the scales of

the zonal and the meridional components of the mean barotropic flow. Other notations are

presented in Appendix A.

As the first step, an effect of a relatively small localized bottom depression on the LV stability
(Ko6hl, 2007) is numerically verified (Appendix B). Although it was previously shown that the
LV, most of the time, is not situated over any of the 50-m bottom depressions in the center of
the Lofoten Basin (Figs. 1-2), episodically it is observed over one or another depression. Non-
linear QG simulations show that, as in Section 3.4, instability filaments are formed 2-3 months
after the beginning of the simulations, triggered by interaction of the LV with the topography
and the mean flow. Topographically induced deformations of the vortex are especially
pronounced in the lower layer (Fig. B1). During 2-3 months, we observe over 50% reduction of
the volume of the LV main core in the upper 2 layers, while the LV is totally destroyed within
5 months (Fig. B1). Thus, the decay rate is close to that of the flat-bottom case, when finite-
amplitude perturbations are imposed (Section 3.4). Thus, localized bottom depressions and the

background current alone may lead to a relatively fast decay of the LV in the QG model.

Another interesting result of Appendix B is that all the filaments and submesoscale eddies,
formed as a result of the LV instability, remain inside the Lofoten Basin for at least 6 months of
the simulations. This may have implications for mechanisms of maintenance of the observed
anomalously thick layer of Atlantic water in the Lofoten Basin (Bjork et al., 2001; Sgiland and
Rossby, 2013).
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As the second step, we neglect the effects of relatively small depressions around the mean
position of the Lofoten vortex (Fig. 1), but take into account the large-scale effect of the gently
sloping bottom topography in the central part of the basin. For this, we approximate the realistic
topography of the central part of the Lofoten Basin with 8 circular non-concentric cylinders with
radii of 175, 147, 125, 105, 80, 60, 45, 30 km and depths of the plains equal to those of the outer
rings of 3000, 3100, 3150, 3200, 3225, 3230, 3235 and 3240 m, respectively (Fig. 19).

Figure 19 presents configurations of the streamlines for the background initial conditions, when

the mean flow at infinity is Ug =10 cm s and V,; =4U|. Specifically, the bottom elevation

between 3000 and 2000m and the background velocity field forms open streamlines, cyclonically
skirting the eastern part of the basin, while along its western boundary the strait northwards
current is formed (Fig. 19). This simulates the mean upper ocean circulation in the Lofoten Basin
(Fig. 1). At this point, we note that in the results below all moving vortex patches remain within
the 3000 m circle, and the topography outside the 2000-m contour does not directly affect the LV.
We also note that in the southwestern part of the deep Lofoten Basin, a pattern with closed

streamlines is formed, separated with a separatrix streamline (the thick black line in Figure 19).

This area disappears for higher velocity of the background flow (U, > 50 cm s™!, not shown).
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Fig. 19. The initial state of the QG model with varying topography and the mean flow. The
topography presents a set of nested non-concentric cylinders with different depths and radii
(marked alternatively with yellow and blue, see text for details). The dashed blue contour
presents the 2000 m isobath; with radius of 600 km, it marks the boundary of the Lofoten Basin
in the model. Gray contours are the streamlines. Black line marks the separatrix, which limits the

area, where particles are not advected out of the simulation region by the mean flow.

Numerical experiments for the configuration above (Fig. 19) provide the evolution of the LV in
the presence of a gently sloping topography and the background flow of are presented in Figures
20 and 21. As in Appendix B, the initially circular vortex patch is not artificially perturbed, as
the background deformation flow field itself generates sufficiently strong non-linear instability

perturbations at the vortex boundary.

The evolution of the LV suggests the fundamental role of existence of the separatrix in the mean
current field in evolution of the vortex patches in the area. In particular, Figures 20 and 21 differ
only by the initial position of the vortex in the area: inside the central area of the closed

streamlines of the mean flow: the vortex center initially coincides with the stationary elliptic
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point (Fig. 20), or the vortex initial position is moved towards the hyperbolic point of the
separatrix (Fig. 21). This leads to quite different evolutions of the initially circular vortex patches,

as well as to different vortex decay times.
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Fig. 20. Simulations of the LV evolution in a QG model, when a barotropic background flow and
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varying bottom topography is approximated with 8 circular non-concentric cylinders with
varying plain-depth and radii, and the northeasterly mean flow is added (see Fig. 19 and text for
details). The LV is initially centered at the elliptic point of the mean background velocity field.
As before, the LV set-up is presented by its most typical parameter state (Table 1, within
configuration D). Each frame shows vortex patches in the upper (red upper contour plots in a
plate), middle (magenta middle contour plots in a plate) and lower (blue lower contour plots in a
plate) layers as function of non-dimensional time. The unperturbed (initial) position of the

separatrix is given for reference. The dimensionless time unit corresponds to 12 days.

Positioned in the central part of the basin (Fig. 20), even 7 months after the beginning of
simulations (#=18), the vortex keeps the nearly circular shape. This radically differs from the

flat-bottom case with no mean flow (Figs. 14-18), or from the results of Appendix B (Fig. B1).
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The separation of the vorticity patches starts only about a 1 year after the beginning of
simulations (#=24-30). As in Appendix B, the during the vortex decay topography efficiently
traps the vorticity patches, which stay within the loop of the separatrix during all the period of

simulations.
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Fig. 21. As in Fig. 20, but the initial position of the LV is shifted southwestwards, towards the

hyperbolic point.

Positioning the vortex closer to the hyperbolic point, leads to its much faster decay (Fig. 21).
Deformed by the current shear, the vortex becomes strongly elliptic already 1-2 months after the
beginning of the simulations. However, it takes 6-8 months (7 =15—-21) before the vortex
breaks into separate vorticity patches. At the end of the modelled evolution, a significant fraction

of the vorticity patches remain within the region, surrounded by the separatrix.
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At the limit, when the vortex is positioned in the hyperbolic point (not shown), the main vorticity
patch stretches along the separatrix faster than in Fig. 21. Still, separation of vorticity patches
from the main vortex body is observed only 5-7 months after the beginning of the simulations. In

this case, nearly all vorticity patches drift out of the central region.

To summarize the results of this paragraph, in a more realistic case of slowly varying topography
and with the effect of the mean current, as in of the Lofoten Basin, in the 3-layer QG model
demonstrates a significantly slower decay of the vortex, especially when the vortex is entered in

the ellyptic point of the background velocity field.

3.6 Disturbances at the L.V dynamic boundary in the primitive equation model

Looking for clean evidence of instability in the full-complexity and forced primitive equation
simulations is not trivial. Nevertheless, we set out to look for such evidence by diagnosing the
relative strength of various PV azimuthal modes near the LV dynamic boundary in the MIT
GCM model. The development of the modes will be related to variations in the LV volume and
relative vorticity field — to see whether signatures of the QG predictions can be found. We
also investigate whether time variability of the LV dynamic parameters are related to the
intensity of perturbations at its boundary. The near-surface level (200 m) was chosen since the
linear QG model predicts the perturbation amplitudes to be largest in the upper layer. In fact,
the primitive equation model shows that azimuthal perturbations in the LV core and in lower

levels have 5-10 times smaller magnitudes than those in upper levels.

Could the higher intensity of perturbations at the selected level in MIT GCM partly be
attributed to the atmospheric forcing, in fact, the selected level is most of the time below the
seasonal pycnocline (Fig. 11) and, thus, not directly affected by the atmosphere (except for the
short phases of deep convection — configuration B). Furthermore, the azimuthal perturbations
grow by an order of magnitude within the time scales of 3-7 months (Fig. 22). This growth
cannot be directly forced by high-frequency atmospheric motions (typical synoptic time scales
are of order of a week), but can be attributed to a development of eddy dynamic instability, as

observed in the QG model.

The intensities of the perturbations were estimated in three circular rings around the vortex
center. The inner ring is positioned at the edge of the LV core, at a distance of R, *dr
(R,, =R, is the dynamic radii, where relative vorticity vanishes). The second ring covers the

avl = Ttav
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inner skirt of the LV, at R,, *dr (R,, is the mean distance from the LV center, where

relative vorticity reaches its first local maximum). The third ring covers the outer skirt of the

LV,at R, ,*dr (R,; =R,, +2dr is in the outer part of the eddy, where the rotation velocity

av3 av?
of the vortex decreases to 10% of its maximum value). The distance dr above is selected as the

half distance between R, andR_,. All three rings lie inside the LV, defined as the region of

av2 *
anticyclonic rotation. Within each ring, the PV (I, = N2( f +w)/ g ) around the LV is

averaged in the radial direction to form 3 circular distributions with 10° azimuthal increment.
In order to make the results comparable with the QG model estimates (Section 3.4), the circular
distributions are transformed into deviations of PV contours from the radial shape
11’

——£ — where [T£(r) is the mean value of I7¢ at a fixed radial distance from the

1
(8:_—
R, oIl /0r

LV center and I1,'=II, —[1, is the deviation, R, is the time mean LV radius). The

variability within those circular distributions is further decomposed into sets of azimuthal
modes by wavelet techniques using Morlet mother wavelets for the periodic circular domain

(Torrence and Compo, 1998).

The wavelet coefficients of relative vorticity peak at the 1% (antisymmetric) azimuthal mode
(period = 360°), the 2™ mode (period = 180°), the 3¢ mode (period = 120°), the 4™ mode
(period = 90°) and the 5" mode (period = 60°). Assuming a near-sinusoidal shape of the
wavelet coefficients for each of the wavelengths of interest, the intensity of each mode is
estimated to be 1.4 times the standard deviation of its wavelet coefficients. The intensities of
the 1% and the 5" modes are always significantly less than those of modes 2-4 (as also observed

in Carton et al., 2014).

Temporal distributions of the intensity of the dominating 2™ to 4" azimuthal modes are
presented in Figure 22. The elliptic mode (m = 2) is the dominating one, while the energy of

higher modes decreases with the mode number. The modes show a considerable amount of co-
variability. The median deformations of the circular vortex structure by the 2", 3¢ and 4"

modes represent 12%, 5% and 3% of the dynamic radius at R ,, 16%, 11% and 7% at R

avl ° av2

and 25%, 20% and 16% at R_. . The presence of the 2™ (elliptic) mode, especially pronounced

av3

at R ., is a result of eccentricity of the LV core which is observed most of the time. The

avl ?

relative intensities of the higher modes increase with the distance from the LV center (R, to

R, ,): on average from 50% to 80% for the 3" mode and from 25% to 65% for the 4™ mode—
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856  relative to the intensity of the 2" mode. In the radial direction the perturbations of the 2" mode
857  are less correlated than those of the higher modes. For the 2" mode the correlation coefficients

858 at R, with the same mode at R , and R, are 0.70 and 0.50, respectively, while for the

avl

859  higher modes the same coefficients are 0.90 and 0.75, respectively.

860  The typical time scale for growth of the perturbation in the MIT GCM model ranges from 3 to
861 7 months (Fig. 22). This is close to the period of development of baroclinic instability in the
862 idealized QG model of the LV. As the perturbations develop the LV dynamic radius (also
863  shown in Fig. 22) typically stays rather stable. Only after the perturbations reach high

864  amplitudes at R, and R_, , a notable decrease of the LV radius is seen. Thus, during the most

avl
865  dramatic events in mid-2000 and in mid-2005 the LV radius decreases by about 5 km over 3-4
866  months. This forms about 15% of the initial LV radius. Assuming a circular shape of the LV,
867  this means about 70% of the LV volume is maintained within the dynamic core. The
868  normalized perturbation intensity in the MIT GCM model (¢ in Eq. A.8) reach 0.1-0.2.
869  According to QG model calculations, for such values of ¢, the LV instability should decrease
870  the LV volume by at least 50% within 4-5 months (Figs. 15-17 and Table 3). The primitive
871  equation model shows considerably smaller LV volume decay. After separation of a part of the

872 LV skirt, the LV volume (limited by its dynamic radius) is restored in 1-2 months.

873  Growth of the perturbation intensity typically goes in parallel with a decrease of the LV
874  rotation rate. The magnitude of the relative vorticity of the vortex core (mean relative vorticity
875  within 0.5 R) presents significant negative correlations with the intensity of the perturbations at
876  the LV boundary (Fig. 22a). The correlation coefficients are about -0.5 for all the modes and
877  for each of the 3 selected distances from the LV center. With a 1-year sliding average, the
878  correlation coefficients range from -0.7 to -0.8. Cross-correlations with the azimuthal mode
879  coefficients show that, on average, the absolute values of the core relative vorticity reach a
880 minimum 1-2 weeks after the perturbation disturbances have reached their maximum. The
881  overall rate of the decrease is small. During a period when no merger of LV with other
882  anticyclones is registered (2004-2005), the monthly rate of the decrease of the magnitude of the
883 LV relative vorticity is estimated to 2-3.5%. This suggests a decrease of the LV rotation by 10
884  to 18% during the 5 months period.

885  The angular momentum, being a product of the relative vorticity and the squared radius,
886  accounts for relative vorticity distribution in the radial direction. Contrary to the core relative
887  vorticity, the absolute value of the integral angular momentum of the LV core positively

888  correlate with the intensity of perturbations (Fig. 22b). The correlation coefficients are not high,
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but significant: 0.25 to 0.40. This may stand for a redistribution of the relative vorticity from

the LV center to the LV boundary with the growth of the perturbations (Fig. 22a,b).

The intensity of the perturbations in the LV core negatively correlate with the strain around the
core (Fig. 22c). The correlation coefficients are significant and range from -0.20 to -0.40,
depending on the distance from the LV center and on the azimuthal mode. We consider this to
be a sign of the external strain favoring concentration of instability in the vortex skirt, further

detached from the LV as isolated filaments.

In Fig. 22d we present potential and kinetic energy anomalies, integrated over the LV volume.
The internal volume was taken over the cylinder with the radius 1.6R (where the dynamic

radius R is a function of depth and time). The integral kinetic energy is computed as

KE :O.SJ-.U,OVdedy dz , the integral barotropic potential energy anomaly as

PE =0.5 g” P, SLA2 dxdy , and the integral baroclinic potential energy anomaly as

e, =05¢[[[0

the gravity acceleration, p and p, are water density (subscript s stands for the sea-surface),

6£ dxdydz (Oort et al., 1989). Here V is the azimuthal velocity, g is

0z

SLA is the sea-level anomaly over the LV, Ap is water density anomaly in the LV relative to

the background, and (c?)p is the background pressure gradient. For computation of anomalies of
F4

potential energy in the LV core, the reference state was taken as the mean at distances [2R: 4R]
from the LV center. The anomalies relative to the basic state are estimated in each point of the
LV core. PE; is dominating the total energy, while KE is several times less, and PE_ is 4
orders of magnitude less than PE,. Fig. 22d demonstrates that PE. and KE have a very
immediate reaction on the eddy merger events, while PE; increase can be delayed after a
merger. In most cases merger occurs during the periods of the deep winter convection, and it is
difficult to distinguish between the two mechanisms of the LV regeneration. Closer look in
Fig.22d suggests that both mechanisms are responsible for the LV re-generation, maintaining
the LV integrity against dissipation, previously suggested by Ivanov and Korablev (1995a,b),
Kohl (2007), Volkov et al. (2015). In particular, several peaks in PE_, PE, and KE occur
during summer mergers (2001, 2003, 2009), as well as during winters with no mergers (2000,
2004, 2005, 2010), but no significant peaks are apparent, when none of these events take place.

During winter convection events, an increase in PE_ and PE, is observed, while KE often

does not increase (as during convection periods of 2004, 2005 and 2012). This explains why
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919  Volkov et al. (2015), using relative vorticity as a measure of the LV strength, did not find

920  winter convection to have an effect on the LV.
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922 Fig. 22. LV variability in the MIT GCM model at 200 m depth (a-c). In panels (a-c), black,
923  blue and red lines show the variability of perturbations with azimuthal modes 2, 3 and 4,
924  respectively. Panel (a) depicts the normalized perturbations in ring 1 (centered at R, ), panel (b)
925 - inring 2 (centered at 1.5R, ) and panel (c) — in ring 3 (centered at 2R ). The perturbation
926 intensities are normalized as: v = (v—v4av )/ Vyu » Where v, ~—and v, , are time-mean and
927  standard deviation of the perturbation intensity (v ) of azimuthal mode 4 in ring 1. Variability
928  of the normalized LV dynamic radius (R, ) are shown with green lines. In panels (a-c) LV
929  radius and other parameters below are normalized as: v = (v -V, )/ V.., where v and v , re

930 time-mean and standard deviation of the corresponding variable. In addition, the following
931  dynamic characteristics of the LV core are shown with cyan lines (for better visibility the lines

932  are centered at y-value 5): panel (a) — normalized absolute value of the relative vorticity of the
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LV core (a, averaged within 0.5 R, from the LV center); panel (b) —normalized absolute

value of the integral angular momentum (/AM, integrated within the circle R ); panel (c) —

av

normalized strain around the LV core (STR, mean in the ring R, < r < 2R, ). In panel (d) time

variations of barotropic potential energy anomaly (PEj), baroclinic potential energy anomaly
(PE:)) and kinetic energy (KE), integrated over the LV core volume. The time series are
normalized and vertically displaced for better visibility. The LV mergers with other
anticyclones are marked with black solid vertical lines. Shaded areas are winter periods of deep

mixing.

In summary, the LV instabilities, developing in the primitive equation model share a number of
features of the vortex instability predicted by the non-linear QG model. However, instabilities
appear to mostly develop in the LV outer skirt and do not penetrate deep into the LV core (see
also Mahdinia et al.,, 2016). Our interpretation of the observations above is that a frontal
geostrophic dynamic model may be more appropriate for re-producing the observed features
(Cushman-Roisin, 1986). External strain also favors concentration of instabilities in the skirt
and formation of filaments at the LV boundary. Separation of the filaments from the LV
removes angular momentum, slowing down its rotation, rather than eddy volume. The
migration of the energy of the perturbations towards the skirt prevents from further penetration

of the perturbations in the core, and allows the core to persist during longer periods of time.

We also note that the correlation of the relative vorticity of the LV core with the perturbation
intensity (0.7 to 0.8) is much larger than correlation of the relative vorticity of the LV core with

a number of mergers (0.3). Sliding averages with a 1-year window size are used in both cases.

4. Summary and discussion

In this paper we have presented a study of the vertical structure and stability of the semi-
permanent anticyclonic Lofoten vortex (LV). The results are based on eddy-permitting

numerical simulations with the MIT GCM and on idealized 3-layer QG model calculations.

The MIT GCM fields demonstrated that the LV is a columnar vortex, extending from the sea-
surface to the bottom, with a dynamic radius R of about 30 km (Fig. 4, Table 1). The first

baroclinic Rossby radius of deformation R, in the Lofoten Basin is about 7 km (Nurser and
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Bacon, 2014; also obtained from the MIT GCM results), so R ~ 4R, . The vertical structure of

the LV contains a noticeable baroclinic component. The vortex core is found between 50-200
m and 900-1100 m and is associated with a maximum in azimuthal velocity and relative
vorticity as well as a minimum in dynamic radius. The core is characterized by a weaker
stratification, giving rise to a pronounced negative PV anomaly with respect to the surrounding

ocean conditions.

The vertical structure of the LV varies in time, demonstrating seasonal and intra-seasonal
changes. A large part of this variability falls within four-five distinct clusters in the phase space
of layer-mean QG PV of layers 1 and 2 (Fig. 10). Each cluster is characterized by a certain
configuration of isopycnals, mostly differing by depth of the isopycnals at the top of the vortex
core relative to their depths in the surrounding ocean (Fig. 11). The LV states in the PV space
are mostly concentrated near the centers of one of these clusters. This means that the transitions
between the states are rather rapid. The transitions between the states are formed by variation of
the upper ocean stratification over the LV core, which is a function of atmospheric forcing. A
3-layer vertical structure, with the core in the middle layer, is found to be an adequate
representation of the vortex most of the time (clusters A, C and D). The 2-layer configuration
(clusters B and B1) is observed 17% of time. It occurs during some late winters or early springs,

when deep convective mixing erodes the upper ocean stratification over the LV and reaches the

LV core.

In-situ observations (Ivanov and Korablev, 1995a,b; Raj et al., 2015) are too few to allow a
detail classification of all LV vertical states. Still the observations confirm the existence of at
least the two limiting states derived from the MIT GCM: a summer-autumn configuration (A, C,
D) and a winter configuration (B, B1). Observations also confirm differences in the amplitude
of seasonal variation of the thickness of the upper layer over and outside the L'V presented in
MIT GCM. Specifically, the observed summer to winter mean variation of the mixed layer
depth in the Lofoten Basin is from 50 to 200-400 m (Nilsen and Falck, 2006, Rossby et al.,
2009), while over the LV itself is reaches 500-600 m (Alekseev, 1991; Nilsen and Falck, 2006).
The difference is also indirectly confirmed by an observed two-fold amplitude difference of
seasonal variation of the depth of the upper ocean isopycnals: in the center of the Lofoten Basin

(where the LV is situated) as compared to that along the basin boundaries (Rossby et al., 2009).

Observations and MIT GCM data suggest moderate variations of dynamic characteristics of the
LV, episodically re-generated during merger or winter convection events. A gradual decrease of

the LV dynamic parameters by about 3% per month in-between the regeneration events, detected
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in MIT GCM results, suggests a decay time of order of 2-3 years. Calculations presented by
Segiland and Rossby (2013) indicate that small-scale turbulent diffusion gives characteristic
decay times of dozens of years. In this paper we investigated the alternative mechanism of vortex
dynamic instability, often considered to be one of the principal mechanisms for decay of
mesoscale eddies (Carton, 2001; Cushman-Roisin and Beckers, 2011). In Section 3.4 it was
noted that the LV vertical and horizontal structure satisfies the necessary condition for vortex
dynamic instability (Sokolovskiy, 1997b; Cushman-Roisin and Beckers, 2011), and the observed
range of Ro (0.03-0.15) and Bu (0.05-0.1) numbers suggest that baroclinic or mixed instability
can efficiently develop (Ripa, 1992, Carton et al., 2014; Cohen et al., 2015).

An example of development and propagation of the LV perturbations of the 2" azimuthal mode,
observed in the MIT GCM is presented in Fig. 23. The period of rotation of the perturbation is
around 20 days and the phase speed of the perturbation is around 12 cm s™'. This is about 3 times
less than the maximum azimuthal velocity (40 cm s™!) of the vortex. This ratio corresponds well
to that of a baroclinically-unstable azimuthal mode-2 propagating around an anticyclonic eddy

(Paldor, 1999).

In the realistic MIT GCM model the LV, most of the time, keeps away from the steep basin
boundaries, which may deform and force stripping of the vortex. The LV, though, often
interacts with other finite-amplitude eddies, both cyclones and anticyclones. However, the
direct effect of stripping of a part of the LV skirt by the current shear due to presence of other
eddies is not observed during such interactions. Following model results (for example, Ciani et
al., 2016), we consider the LV to be affected by another eddy after the distance between their
centers becomes less than 3 LV radii. Then, the typical time of contact of the LV with other
eddies is of order of 2-4 weeks, while the instability develops over 5-8 months, a much longer
time scale. The perturbations at the LV boundary continue developing even when there is no
direct contact with other eddies. For example, in Fig. 23, rotation of perturbations around the
LV occur while eddies around keep relatively stationary positions or move away from the LV.
Therefore, we assume that relatively slowly developing dynamic instability to be the main
reason for gradual decay of the LV in-between the re-generation events. Contact with other

eddies may trigger instability of the LV which then develops further, fed by the LV energy.
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Fig. 23. Relative vorticity (x107 s°!, left panels) and vertical velocity (x102 cm s, right panels)
at 513 m depth for four consecutive moments of time (a, b, ¢, d) with the time interval between
panel sets of 3 days. White star marks the LV center, grey circle marks the LV dynamic radius,
and grey segment starting at the LV center — the position of maximum of vertical velocity of
perturbations of the second azimuthal mode. Black point with white circle and white point with

black circle mark a cyclone and an anticyclone in the vicinity of the LV.

To observe how the dynamic instability develops in the LV, a detailed analysis of the LV
stability properties has been done with linear and non-linear QG models. In these models we
used a simplified LV structure, based on the analysis of MIT GCM results in Sections 3.1-3.2:
the 3-layer ocean, where the LV is approximated by patches of constant PV. Series of
experiments with an artificially perturbed vortex with the predefined perturbations intensity and
the motionless flat-bottom ocean (Section 3.4), and with an initially unperturbed vortex and the
realistic mean flow and varying bottom topography (Section 3.5) are conducted. The first series
of experiments show that the LV is baroclinically unstable, and that baroclinic instability can
split the original vortex into parts within 4-8 months (Section 3.4). Even in relative simplicity
of the QG model, the development of perturbations in the LV fairly well agrees with the MIT
GCM realistic simulations on several key features. As in the primitive equation model, the QG
models (Section 3.4) predict relatively slow development of the instability in the LV - of order
of several months. The slightly higher rates of LV decay are observed in the upper and the

lower layers, compared to the middle (core) layer. This can be explained by a much stronger

48



1047
1048
1049
1050

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065
1066
1067

1068
1069
1070
1071
1072

1073
1074
1075
1076
1077
1078
1079

radial PV gradient at the core levels, which forms a barrier for the particle exchange between
the LV core and the surrounding fluid. Also, similar to the primitive equations model, the QG
models suggest a dominance of the azimuthal modes m =2, 3, 4 for the most typical

configurations of the vertical PV structure in the LV.

However, important differences are also observed. A notable discrepancy between the QG
models over a flat bottom and the primitive equation model is a difference in the LV volume
loss as a result of the development of perturbations. In the small-amplitude linear and the finite-
amplitude non-linear flat-bottom QG simulations, over half of the initial LV volume is
expected to be dispersed by the instabilities within 4-8 months (Section 3.4). For large-
amplitude mode-3 initial perturbations, the LV in the upper layer breaks up into 4 eddies
(including the remains of the LV core) of nearly equal size already within about 3 months, and
the vortex completely disintegrates within 5 months. The overall rate of the core decay is thus
20-30% per month. The MIT GCM simulations, only the strongest instability events lead to a
notable volume loss from the LV core, and this loss does not exceed 10-20% of its initial

volume (Fig. 22).

Differences in development of instability between the full-complexity primitive equation model
and the linear QG model are not surprising since perturbations experienced by the LV cannot
be considered small-amplitude. But the differences between the primitive equation model and
the non-linear QG model are less obvious and demand more investigation. As mentioned in the
introduction, at low Rossby numbers (0.1 in the LV) and low vortex-core thickness ratio to

water depth (v =h,,, /H =0.20-0.25 in the LV) the hybrid (Rossby-Kelvin wave) and the

baroclinic (Rossby wave) instabilities may arise (Ripa, 1992), as well as the barotropic
instability. The first type can exist in the primitive equation model, but not in the QG model,
while the second and the third types may be generated in both models. And yet, instability in
the primitive equation model appears to develop much slower and never results in a significant

decrease of the vortex core volume.

There may be several reasons for this. An obvious one is the difference in the vertical PV
structure in and around the vortex in the 3-layer QG model and in the 50-layer MIT-GCM. In
particular, when the PV gradient is zero in a layer, this layer does not support development of
Rossby waves. Therefore baroclinic, hybrid and Sakai instabilities cannot develop intensive
perturbations in this layer. In the limiting case of the 2-layer QG model, the vortex then
becomes stable to any external perturbations, independent of weather it is a sea-surface or a

mid-depth intensified vortex (Dewar and Killworth, 1995; Benilov, 2004; Cohen et al., 2015a;
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Sutyrin, 2015; Cohen et al., 2016). In the 3-layer QG model used in Section 3, a small radial
PV gradient in the lower layer (on average only 5% of that at the level of the LV core) is still
sufficient for supporting Rossby wave instabilities, as it is shown by the numerical experiments.
In a realistic vortex, such a ‘compensation’ layer can be formed below or above the vortex core,
where the anticyclonic rotation is balanced by compression of isopycnals. In the 50-layer MIT
GCM the radial PV gradient changes sign above and below the LV, and isopycnic layers with a
very weak or zero PV gradients do exist. Inside these comparatively thin layers the amplitudes
of Rossby waves decrease exponentially from the layer boundaries, reducing coupling between
the layers (Sutyrin, 2015). Therefore, one could argue, the simplified 3-layer PV structure in
the QG model is able to support overall higher rates of development of baroclinic instability, as

compared to MIT GCM.

Furthermore, it has been numerically observed that, under certain conditions, non-linear effects
may stabilize linearly-growing perturbations even though sufficient instability conditions are
met (Sutyrin, 2015). Thus, for vortex instability in a QG model, a non-linear saturation of
growing finite-amplitude perturbations on elliptical vortices have been observe (Flierl, 1988;
Ripa, 1992). Even being present in the non-linear QG and in the primitive equation models,
details of the non-linear evolution may differ between both models (Boss et al., 1996). For
example, it is expected that frictional effects and the turbulent environment result in a faster

damping of perturbations in the primitive equation model, as compared with the QG model.

A QG experiment with more realistic background conditions (Section 3.5) showed, that adding
the large-scale gently sloping topography (around 1 m km™) and the barotropic mean flow (of
10 cm s7!), as observed in the Lofoten Basin, reduce the LV decay rate, brining it closer to that
in the MIT GCM. The time for instability to penetrate into the vortex core and to break it into
separate vorticity patches in the QG model now increases to 1 year (Fig. 20). Sloping
topography is particularly important, as an experiment with the mean flow and a localized
topographic depression (Appendix B) rather show a decrease in the LV decay time (2-5 months,
Fig. B1), as compared to the motionless flat-bottom background case. Overall, steep
topographic features are known to trigger instability in oceanic vortices, and even their
breakdown (Thierry and Morel, 1999; Van Geffen and Davies, 2000; Richardson et al., 2000;
Bashmachnikov et al., 2009), and the increase in the time of the eddy decay over a sloping
bottom has not been expected. A possible reason is that the PV variations due to topography
forces mode 1 in the vortex perturbation (Fig. 20), which decays at a lower rate extracting
energy from the faster decaying modes 2-4. Further experiments are required to study this

phenomenon.

50



1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
1146

A difference in the area of concentration of the perturbation energy is also noted. In contrast to
the nonlinear QG model (Section 3.4), where instability penetrates deep into the LV core and
splits up the vortex of nearly equal size within a few months, instability in MIT GCM typically
develops only within the skirt of the vortex. It results in separation of elongated filaments and
small (submsoscale) relative vorticity patches (Section 3.6). The latter is consistent with the
development of baroclinic instability observed in a primitive equation model of eddies with low
Burger numbers (Mahdinia, et al., 2016). Stripping of the skirt of an oceanic mesoscale vortex,
as a result of baroclinic instability, has also been observed in the ocean and supported by
numerical model studies (Ménesguen et al., 2012). The general effect of stripping of an eddy
skirt in an external strain field has also been observed in some model studies (Maximenko and

Orlov, 1991; Mariotti et al., 1994).

In the MIT GCM weak background current and other eddies yield the main source of strong
localized velocity shear around the LV. Such interactions can suppress development of
instabilities in the vortex core (Dewar and Killworth, 1995). In fact, in Section 3.6 we noted
that the intensity of the external strain (strongly intensified as the LV interacts with other
eddies) is negatively correlated with the intensity of the perturbations at the LV boundary. It
can be speculated that external strain formed at the vortex boundary is responsible for
concentration of energy of the developing instabilities at the outer part of the vortex patches,
and remove the energy of growing perturbations before they penetrate deep into the core.
Further wrapping of these filaments around the vortex may prevent the core from breaking into

larger fragments.

In our MIT GCM simulations, during the in most of the events of filamentation, the volume of
the LV core does not vary as a result of development of instability. This is not the case for the
kinetic energy and angular momentum of the LV core, clearly affected by the development of
the perturbations in this model. Thus, in the present study, a significant negative correlation (-
0.7 to -0.8) between the intensity of the azimuthal disturbances and the mean relative vorticity
of the core is detected (for annual sliding means). Therefore, after the filaments separate from
the skirt, removing angular momentum, the original radial momentum distribution is restored
via translation of the angular momentum outwards from the core. These variations in
redistribution of dynamic properties within the LV core are not reproduced in the QG models,

considering dynamics of patches of homogenous PV.

Another discrepancy between the QG models (section 3.4) and the primitive equation model

(Section 3.6) is the structure of the perturbation of the LV. In the QG models the rate of
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development of the first four azimuthal perturbation modes are rather close, but the 3™ mode is
predicted to be the most unstable (Table 3). In contrast, the 2" azimuthal mode is dominating
the LV perturbations in the MIT GCM, although the 3™ and the 4™ modes are also pronounced.
This development of the perturbations in the LV in MIT GCM ends in ejection of mostly two
instability filaments, while three instability filaments are ejected during only a few events. For
a vortex structure similar to that of the LV, the dominance of the 2™ azimuthal mode, during
development of the baroclinic and the mixed instabilities in a primitive equation model, was

also obtained in Mahdinia, et al. (2016).

A possible reason may be the single-mode predictions of the QG model experiments, which do
not capture possible non-linear energy exchange between a set of different equally strong
modes during the initial stages of their development. With the observed close rate of
development of the first four azimuthal modes in MIT GCM, interactions between different
modes may lead to a faster growth of one mode at the expense of others. The difference
between the models may also result from the simplification of the LV vertical structure in the
QG models. Thus, in a study of mid-depth anticyclonic eddies with a 5-layer linear QG model,

Carton et al. (2014) showed that for large eddies (R on order of 2-5 R, , as in the case of the

LV) the 3" azimuthal mode is the most unstable one. However, experiments with a
continuously stratified QG model (Nguyen et al., 2012) have also shown that the 3™ or the 4"
azimuthal modes start dominating over the 2™ mode only as the eddy Burger number falls
below 0.07-0.08. As the LV Bu ~0.05-0.10, in the more realistic continuous-stratification
conditions, either the 2" or the 3™ azimuthal modes are expected to dominate (see also Baey

and Carton, 2002).

Finally, in the full-complexity of MIT GCM model, interactions with other eddies are observed
to primarily force elliptic deformations (the 2" azimuthal mode) in the LV. The interaction
with cyclones can also force perturbation of the 1% azimuthal mode (Carton et al., 2014).
Although the latter is not observed to develop to large amplitudes in the LV, it can have
indirect effects on the neighboring modes in the MIT GCM: (a) the forced mode can alter the
radial distribution of intensity of the LV perturbations, driving them away from the most
unstable normal mode and slowing down their growth; (b) the nonlinear wave-wave
interactions of mode 1 with mode 3 may force Additionally, Volkov et al. (2013) identified
dipole and quadrupole wave patterns in the Lofoten Basin as 1% and 2"! modes of topographic
Rossby waves in a bottom depression. Interaction of the LV with the instantaneous circulation
structures, formed by the Rossby waves, can trigger the development of the corresponding

azimuthal modes in the LV.
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We have noted a range of differences between the LV decay in QG and primitive equation
calculations. A common and key finding is that that perturbations at the LV boundary do not
develop to penetrate deep into the LV core to cause the vortex breakdown, contrary to what
was observed in QG simulations with the motionless flat-bottom background. Adding a
realistic background current and single a step-like bottom depression show a similar or even
faster decay rate. Adding a realistic background current and a gently sloping bottom
topography decrease the LV decay rate, bringing the QG simulations closer to those of MIT
GCM. However, either the development of the baroclinic instability in Section 3.4 or a mixed
baroclinic-barotropic instability in Section 3.5 result in a relatively long decay time of the LV,
over 5-12 months, for external forcing, notably eddy mergers or deep convection in the core
region, to interrupt the development of the instability and re-build the LV. Further experiments

will be conducted to deeper investigate the mechanisms governing the LV decay.

Volkov et al. (2015) analyzed components of the relative vorticity balance for the same MIT
GCM model fields. The authors found that time variations of the relative vorticity of the LV
core are principally correlated with the intensity of eddy fluxes of relative vorticity through the
LV boundaries, and suggested that winter convection should be of minor importance in
restoring the LV. In this study it is demonstrated that the LV barotropic and the baroclinic
potential energy anomalies clearly intensify, both during mergers and winter convection events,
while the LV integral kinetic energy is not always affected. We also observe that the LV
relative vorticity does not always increase after a merger (the LV-integrated angular
momentum typically does). Meanwhile, it was demonstrated that, on the annual time scale, the
LV relative vorticity and its volume strongly correlate with the intensity of the detected wave-
like perturbations, rather than with the number merges per year. It is also noted that the LV
volume/intensity are restored a few months after the minimum relative vorticity of the core is
reached, even when no merger or deep winter-spring convection are detected. The detailed

mechanisms governing the LV re-generation thus remain to be further investigated.

Appendix A

Under the QG approximation without external forcing, the conservation of PV (1) hold true

within each layer (Pedlosky 1987).

d,N,/dt=0,
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where d;/dt =0/0t+u;0/0x+v;0/0y.

The three-dimensional potential vortex /7 is related to the hydrodynamic pressure perturbation

relative to the hydrostatic-equilibrium pressure ( p ) by the linear differential operator:

N=0°p+Tp, (A.1)
R
I, Dy 1 1
F F +F F
Ial:I_IZ’ ﬁ_pz, Tzfl—lz—z’
h2 hZ hZ
" P o 2 P
h3 h3

where 0° =% /0x> +8°/0y*, F,=(fL)’/g,H and F, =(fL)’/g,H are Froude numbers,
g, =8, =P Py, g, =8(ps—P,) P,); f is the constant Coriolis parameter, g is the
acceleration due to gravity, g is the mean density value, L is the horizontal scale and H is the
vertical scale, such that the depth of ocean equals to H(hy + hy + hy), where hy,hy,hy are the

non-dimensional depths of the upper, the middle end the lower layers, respectively

(h +h,+h, =1).

A diagonalization method, described in detail in (Kamenkovich et al., 1982), transforms Eq.

(A.1) to:

W =0%w+Uw, (A.2)
where W=SN, p=0w, U =AE,
Q=(q‘” g® q”“)):

1 hy A, _ F,

o s : (A3)
=1 1[h2/13 +F2J —[ F, +1J
A=A, h, A,
1 ! h2,13+i+/12+F1(h1+h2) | F +1+h72 A3+M
/13 _/12 hz hIAz h1A3 F2 hl/]z
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h, h, h,
= , (A.4)
_h72 /]3+F1(h1+h2) hfz /1%+F1(h1+h2)+F2h1 -1
F, h,h, F, | hyh,
1 Fi(h+m)] 1 F (b + 1)+ F,y 1 F
A=A hh, A=A A, A=A, h,
2 1 hz 3 hl h2 h3 h1h2h3

. . - - _ =(j) . .
Here A, are the eigenvalues of the spectral equation 7g +Ag =0 and ¢ (j =1,2,3) are its

eigenvectors, E is an identity matrix. The model is solved under the rigid-lid condition.

Therefore, the eigenvalue of the barotropic mode ( j=1) is zero. In any point (x,y) the

components w; of the auxiliary vector w from the right-hand part of equation (A.1) can be

determined with the use of Green function G i

e . Iny'r, j=1,
w;(x,y) = [ [W,G(ndxdy, G = -K,(yir) j=2, (A.5)
h _Ko(yzr)’ J=3

where r =x/(x—x')2 +(y-y), Vi, =+/—A,; and K(z) is the modified Bessel function of

order O (hereinafter, without a special mention, we shall also use the modified Bessel functions

of ordern K, (z) and /,(z2)).

Let us suppose, that the potential vorticities W, are piecewise-constant functions of the type

o ( ) B 1 insideaj
W, =1, x\o;) x;=

b j = 1’ 2’3’
0 outside o, J

(A.6)

where /7 j are constant and areas O initially represent the circles with the radii R; .

Following Sokolovskiy (1991), we can then write the expressions for the pressure in the layers:
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3 3
Py, )=, {MINdv, +Yq, > M5, (M, (INdv,, j=123 (A7)
k=2

C; () m=1 C, ()

Here, as before, r = J (x - x')2 + (y - y')2 , but now x' and y' are the coordinates of the points

of integration located on the contours C; of initially circular vortex patches 0 ;; v ;(x',y') is a

parameter ~ continuously ~ varying  counterclockwise along the contour C; ;
M@r)y=r*(nr-1/2)/4m : M, () =y, rK,(y,n-1)/2y,, (n=12) :
N = [(x'—x)(@y'/avj)—(y'—y)(ax'/a v, )]/r2 and ¢q ji, s ji are the elements of matrices Q, S

from (A.3) and (A.4).

The equations (Eq. A.7) form a theoretical basis for the so-called Contour Dynamic Method
(Zabusky et al, 1979) and demonstrate that, for the assumptions made, perturbations of pressure

(streamfunction) in each of the fluid layer j are fully determined by an evolving configuration
of the boundaries of the vortex patch C ;. This equation set can be solved numerically with a
three-layer version of the Contour Dynamics Method (Sokolovskiy 1991, Sokolovskiy and

Verron, 2014).

It is easy to obtain from (Eq. A.7) that the appropriate distributions of azimuth velocities have

the form:

3 3
V() =>q, > s, H (), j=123,
k=1 =1

where
; 1|r/R,, r<R,
H,(r)=— [=1,2,3,
2R/ /r, >R,
K R)I r), r<R
H,i(r)=1{ L RIL G, ' on=12 1=1,2,3.
2 |\ K,(y,r)I,(y,R), r>R,

The general scheme of stability analysis for an axisymmetric three-layer vortex with relatively
small azimuthal perturbations in the shape of the vortex patches forming the vortex is presented

below. Following (Sokolovskiy 1997a, 1997b) let us represent the contours C ;, which are the

lines of constant potential vorticities in polar coordinates (r, 9), in the parametric form:

56



1268

1269

1270

1271
1272

1273

1274
1275
1276

1277
1278
1279

1280

1281

1282

1283

1284
1285

1286

1287

1288
1289
1290

1291

1292

f,@.:R) =R, |1+€ explim(@-0n)], € <<1, j=12,3. (A.8)

Here, PV perturbations of amplitude /7 ; (see Eq. A.6) of an azimuthal mode number m 21 are
superimposed on the unperturbed state in the area R; * £;. The imaginary part of the complex

number O defines time evolution of the amplitude of the azimuthal mode m . The total

differentiation of (Eq. A.8) with the respect to time gives us the set of equations:

[0V fio=V]7 f; =0, j=123, (A.9)

where V](H) and V}r) are the azimuthal and the radial components of velocities in the j

layer, and the subscripts ¢ and & denote partial differentiation with the respect to the

appropriate variables.

Taking into account Eq. (A.8), we perform a linearization of Eq. (A.9) and obtain a system of
linear algebraic equations for the small amplitude perturbations (see details in Sokolovskiy,

1997a, 1997b). The system reduces to the set of characteristic equations:
\B-0E =0 (A.10)
Here matrix B contains terms:

3 _ m .
bnj = Zskn anTn(kk Y _Anj FUk—l (R]) ’ n’] = 1’ 2’3
k=1 j

J
Here 4,; is Kronecker delta-symbol; 7,” =1/2, T,'* =ml, (yLsz )Kn (yLsz ), (n=1,2,3) .

Note that coefficients of the system of equations (Eq. A.10) depend on all external parameters,

as they contain the terms from matrices (Eq. A.3) and (Eq. A.4). Expressions for the variables
U; and Trf,g at n# k depend on the shape of the vortex under study and have a lengthy form.

For the case R = R, = R3, these expressions are presented in (Sokolovskiy 1997a, 1997b).

From (A.8) it follows that the instability condition for a mode number m is determined by the
inequality Im & > 0, which occurs only if exists a single real root of the cubic equation for 0 in

Eq. (A.9).

Appendix B
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In section 3.4 the LV was simulated as an idealized vortex over flat topography and with zero

background flow. Here we will study the vortex in more realistic conditions.

The general shape of the bottom of Lofoten Basin, deepening to southwest, is simulated with 2
not-concentered circular bottom depressions of 3040 m (yellow filled circle in Fig. B1) and
3080 m (green filled circle in Fig. B1) depths with the diameters of 200 and 90 km,
respectively. A northeasterly barotropic mean flow with the initial velocity of 52 cm s is
imposed to simulate the western and eastern branches of the NwWAC (Fig. 1). Observations
(Skagseth et al. 2008) and the MIT GCM model results (not shown) suggest that the NwAC

reaches ocean bottom, having a pronounced barotropic component.

A barotropic north-easterly mean flow (taken U, =V, =52 cm s at infinity) and normalized
bottom elevations over 3000 m, negative for a depression (0;, i =1, 2) added, new terms

appear on the right-hand side of (A.7), described by equation (5). As in Appendix A, evolution

of the contours, limiting the areas of constant PV in each of the layers (I1;), is estimated by

numerical evaluation of displacements of its nodes for the total pressure field, defined above.

The upper left panel in Figure B1 shows the background and initial conditions. Specifically, the
mean flow forms closed isolines of cyclonic circulations (inside the thick black drop-like
structure), roughly reminding what is observed in the Lofoten Basin (Fig. 1). The LV is
immersed in the flow inside the green contour (Fig. B1, upper left panel). In this case, contrary
to Appendix 1, the instability of the LV is not imposed, but is generated by the external

combination of the topographic and the mean-flow.

The remaining panels show the evolution of instability. There is clear sign of topographic
trapping of both the vortex and the filaments emerging from instability. A significant distortion
of the main core with a further loss of the LV to eddies and filaments occur after model time 5-
8, e.g. 2-3 months after the beginning of the simulations. By the fifth month of the simulations
(t=12.5), the LV core nearly totally destroyed, except for the middle layer, where it is spilt in
several smaller structures. This study, even if simplified, demonstrates that the even if LV is
over one of topographic depressions of the central part of the Lofoten Basin, it cannot stabilize

the LV.
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Fig. B1. Simulations of the LV evolution in a QG model, when a barotropic background flow
and varying bottom topography are included. Water depth in the white area is 3000 m, yellow
area — 3040 m (the diameter of the circle area is 200 km) and green area — 3080 m (the diameter
of the circle area is 90 km). Gray contours are the streamlines of the zonal and the meridional
components of current velocity. Black line marks the separatrix at each time step. This limits
the area, where particles are not advected out of the simulation region. The LV is initially
centered in the elliptic point of the mean flow configuration. The dimensionless time unit in
each of the 3-panel column corresponds to 12 days. Each frame shows vortex patches in the
upper (red upper contour plots in a plate), middle (magenta middle contour plots in a plate) and

lower (blue lower contour plots in a plate) layers as function of non-dimensional time.
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Figure captions

Fig. 1. Topographic map of the Lofoten Basin (depth in m) with the major flows overlaid. One
minute GEBCO topography is used. Gray dashed contours mark 3000 m, gray solid contours —
3200 m and solid black contours — 3250 m depth. Surface and deep currents are sketched with
dark red and blue lines, respectively. The magenta dot in the center of the LB is the most

frequent position of the Lofoten Vortex (LV). The magenta line around the dot limits the area
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where the LV center is observed 80% of time for the 15 years of simulations with MIT GCM.
NwASC is the Norwegian Atlantic Slope Current, NwCC is the Norwegian Atlantic Coastal

Current.

Fig. 2. A section of salinity (a) and of temperature (°C, b) across the center of the Lofoten Vortex
(69.7°N) at 24.08.2005 in the MIT GCM simulations. Thin isolines mark potential density
surfaces referenced to 500 m depth. The LV position and the mean depths of the 3 layers used
for stability analysis are marked with dashed rectangles. GEBCO topography, interpolated to the
model grid, limit the data distribution from below (blue line). Magenta lines mark the frequency

of observation of the LV center along this section (out of scale).

Fig. 3. Upper panels: relative vorticity distribution at 100 m depth (x10° s). Red and magenta
lines connect the LV centre and the LV boundaries in radial directions. Lower panel: sampled
profiles of relative vorticity for the distributions above, running from the LV center northwards.
(a) — 10.02.1993; (b) — 08.09.1993; (c) — 11.11.1998. Red ellipse (upper plots) and empty circles
(lower plots) mark the LV boundary defined with the first algorithm (as described in the text);
dashed magenta ellipse (upper plots) and grey stars (lower plots) mark the boundary defined with

the second algorithm (as described in the text).

Fig. 4. Horizontal maps at 100 m depth (left-hand panels) and vertical profiles (middle and right-
hand panels) of relative vorticity (x10” s!) in the Lofoten Basin: a- 24.08.2005; b- 13.09.2009.
In the horizontal maps horizontal velocity vectors are overlaid; black and grey lines mark the
position of vertical section along the LV semi-major and semi-minor axes of the approximating
ellipse, respectively. The vertical sections show cuts along the semi-major axis (middle panels)
and semi-minor axis (right-hand panels) of the vortex. In the vertical sections solid black isolines

are 0,5 and vertical white dotted and dashed lines mark the L'V axis and boundaries (dynamic

radii), respectively.

Fig. 5. Vertical profiles of selected time-mean characteristics of the LV (from 1998 to 2012):

black lines with circles are dynamic radii (km) — the mean radius (solid line - R, ), the lengths

of the semi-minor axis (dashed line - R_, ) and of the semi-major (dotted line - R ) axis; thick

max

grey lines with crosses are relative vorticity profiles (10° s) — the peak (solid line - @ . ) and

averaged in the disk with the radius R, /2 (dashed line - @, ), thick gray line with squares is
the maximum azimuthal velocity (V , cm s!); black dash-dot line is profile of Ertel potential

vorticity anomaly in the LV center (Mg, 10" s'). Gray horizontal bands present approximate

positions of the time mean upper and lower boundaries of the LV core.
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Fig. 6. a - time evolution of the mean layer thicknesses (m) outside the LV: layer 1 (A, , thick
solid red line) and layer 2 (h, , thick dotted magenta line); time evolution of the LV core
thickness (m), - separation between upper and lower interfaces of layer 2 at the LV center (4, ,
thin solid blue line). b - time evolution thickness (m) of layer 1 in the LV center (4, , thin solid
blue line), and elevation of isopycnals over the LV (m): thick solid red line is #,, thick dotted

magenta line is |7, |-

Fig. 7. a- time evolution of layer-mean temperature (°C), b - time evolution of layer-mean

density o, (kg m?) in the LV. Red line represents layer 1, magenta line - layer 2; blue line —

layer 3.

Fig. 8. (a)- time evolution of layer-mean LV radius (km). (b) - time evolution of maximum
azimuthal velocity (cm s™). (c) - time evolution of the mean relative vorticity within the circle

r< R, /2 around the LV center (s1). Red line represents layer 1, magenta line - layer 2; blue

line — layer 3.
Fig. 9. (a) - time evolution of the layer-mean QG PV (Eq. (1), s') inthe LV (r < R, j=123is

the layer number). (b) - time evolution of the layer-mean QG PV (s!) around the LV

(R; =r<2R ). Red line represents layer 1, magenta line - layer 2; blue line — layer 3. Note that

y-scale of panel (a) is in 10 s, while of panel (b) is in 107 s\,

Fig. 10 — The state of the LV in (H 1l 2) space (10* s) and the results of K-mean cluster
analysis. (a) Black dots show data points and grey shading indicate their concentration (darker
shading indicates higher density). The thicker red, magenta, blue, cyan and green dots represent
the (17 I 172) points identified as belonging to clusters A, B, B1, C, and D, respectively. (b)

Number of observations of different states as a function of season over the period of simulations

in MIT GCM.

Fig. 11. Mean isopycnal depths (blue lines) across the LV for the four main clusters in Fig. 10. (a)
- configuration A, which is the most typical for autumn and early winter, (b) - configuration B,
occurring in late winter or early spring, (c) - configuration C, the most typical for late spring, (d)
- configuration D, the most typical for summer. Red stars mark the LV limits. Magenta and red
lines represent isopycnals, marking the upper and the lower boundaries of the LV core,

respectively.

Fig. 12. Same as in Fig. 10 but now with the addition of neutral stability curves based on QG

calculations for each of cluster configurations. Colour circles at each of the plates mark the
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central set of the corresponding cluster (as in Fig. 10), the dots of the same colour — the rest of
the points, belonging to the corresponding cluster. The yellow, red, black and blue are lines of
neutral stability curves for azimuthal modes m =2, m =3, m =4 and m =5, respectively. (a) the
LV PV anomalies (10* s!) in (H 1l 2) parameter space for configuration A; (b) the LV PV
anomalies (10 s™) in (/7,, I7,) parameter space for configuration B; (c) the LV PV anomalies
(10* s in (17 11 2) parameter space for configuration C; (d) the LV PV anomalies (10 s!') in
(17 11 2) parameter space for configuration D. The unstable domains of the azimuthal modes are
located to the right of the lines with the corresponding labels (in-between the lines of the same

mode for (b)). The gray circle in plate (d) marks the PV anomalies of the reference vortex, used

for the QG non-linear simulations.

Fig. 13. Evolution of instability in the numerical QG model for small-amplitude

(¢;,=0.02, j=1,2,3) mode-2 (m = 2) initial perturbations (see Eq. A.8, Appendix A). The most

typical parameter state (Table 1, within configuration D) is used for the model set-up. Each
frame shows vortex patches in the upper (red upper contour plots in a plate), middle (magenta
middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as function

of non-dimensional time. A dimensionless time unit corresponds to 12 days.
Fig. 14. The same as Fig. 13 but for m=3.
Fig. 15. The same as Fig. 13 but for m=4.

Fig. 16. Evolution of instability in the numerical QG model for finite-amplitude

(¢;,=0.2, j=1,2,3) mode-2 (m=2) initial perturbations (see Eq. A.8, Appendix A). The most

typical parameter state (Table 1, within configuration D) is used for the model set-up. Each
frame shows vortex patches in the upper (red upper contour plots in a plate), middle (magenta
middle contour plots in a plate) and lower (blue lower contour plots in a plate) layers as function

of non-dimensional time. A dimensionless time unit corresponds to 12 days.
Fig. 17. The same as Fig. 16 but for m = 3.
Fig. 18. The same as Fig. 16 but for m = 4.

Fig. 19. The initial state of the QG model with varying topography and the mean flow. The
topography presents a set of nested non-concentric cylinders with different depths and radii
(marked alternatively with yellow and blue, see text for details). The dashed blue contour
presents the 2000 m isobath; with radius of 600 km, it marks the boundary of the Lofoten Basin
in the model. Gray contours are the streamlines. Black line marks the separatrix, which limits the

area, where particles are not advected out of the simulation region by the mean flow.
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Fig. 20. Simulations of the LV evolution in a QG model, when a barotropic background flow and
varying bottom topography is approximated with 8 circular non-concentric cylinders with
varying plain-depth and radii, and the northeasterly mean flow is added (see Fig. 19 and text for
details). The LV is initially centered at the elliptic point of the mean background velocity field.
As before, the LV set-up is presented by its most typical parameter state (Table 1, within
configuration D). Each frame shows vortex patches in the upper (red upper contour plots in a
plate), middle (magenta middle contour plots in a plate) and lower (blue lower contour plots in a
plate) layers as function of non-dimensional time. The unperturbed (initial) position of the

separatrix is given for reference. The dimensionless time unit corresponds to 12 days.

Fig. 21. As in Fig. 20, but the initial position of the LV is shifted southwestwards, towards the

hyperbolic point.

Fig. 22. LV variability in the MIT GCM model at 200 m depth (a-c). In panels (a-c), black, blue
and red lines show the variability of perturbations with azimuthal modes 2, 3 and 4, respectively.

Panel (a) depicts the normalized perturbations in ring 1 (centered at R ), panel (b) — in ring 2

(centered at 1.5 R ) and panel (c) —in ring 3 (centered at 2R, ). The perturbation intensities are

av

normalized as: v = (v ~Vuu )/ V,..» Where v, ~and v, , are time-mean and standard deviation of

the perturbation intensity (v ) of azimuthal mode 4 in ring 1. Variability of the normalized LV

dynamic radius (R, ) are shown with green lines. In panels (a-c) LV radius and other parameters
below are normalized as: v = (v -V, )/ v, where v, and v, re time-mean and standard

deviation of the corresponding variable. In addition, the following dynamic characteristics of the
LV core are shown with cyan lines (for better visibility the lines are centered at y-value 5): panel
(a) — normalized absolute value of the relative vorticity of the LV core (@, averaged within 0.5

R, from the LV center); panel (b) —normalized absolute value of the integral angular

av

momentum (/AM, integrated within the circle R ); panel (c) — normalized strain around the LV

av

core (STR, mean in the ring R, < r <2R_ ). In panel (d) time variations of barotropic potential

energy anomaly (PE;), baroclinic potential energy anomaly (PE;) and kinetic energy (KE),
integrated over the LV core volume. The time series are normalized and vertically displaced for
better visibility. The LV mergers with other anticyclones are marked with black solid vertical

lines. Shaded areas are winter periods of deep mixing.

Fig. 23. Relative vorticity (x107 s°!, left panels) and vertical velocity (x102 cm s, right panels)
at 513 m depth for four consecutive moments of time (a, b, ¢, d) with the time interval between

panel sets of 3 days. White star marks the LV center, grey circle marks the LV dynamic radius,
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1727  and grey segment starting at the LV center — the position of maximum of vertical velocity of
1728  perturbations of the second azimuthal mode. Black point with white circle and white point with

1729  black circle mark a cyclone and an anticyclone in the vicinity of the LV.

1730
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