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Abstract 

Here, we provide a historical overview of the simulation of tropical cyclones in climate models, from the 
first attempts in the 1970s to the current state-of-the-art models. We discuss the status of tropical 
cyclone simulation across multiple time scales, from intra-seasonal, seasonal, and decadal, to climate 
change. One of the limitations on the simulation of tropical cyclones in climate models has been, and 
continues to be, balancing the high resolution necessary to accurately simulate tropical cyclones 
themselves with the need to run simulations for many years and using many ensemble members. 
Several approaches to inferring tropical cyclone activity indirectly, rather than relying on the models 
own under-resolved tropical cyclones, are reviewed, including the use of tropical cyclone genesis indices 
based on the large-scale environment and downscaling methods such as the use of regional climate 
models and statistical-dynamical techniques. We also provide an update on the status of climate change 

projections from the current class of models, where it is feasible to directly track the model’s tropical 

cyclones. While there has been great progress in the capability of climate models to simulate tropical 
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cyclones and provide useful forecasts and projections across multiple time scales, there remains much 
work to be done. We list some of the sources of uncertainty and model sensitivity, describe where 
improvements are necessary, and provide a few suggestions for promising research directions.  

 

Introduction 

Hurricanes and typhoons (or more generally, tropical cyclones) are one of the most destructive natural 
phenomena on Earth and are responsible for great social and economic losses. Because of the 
potentially devastating impacts of a tropical cyclone landfall, the question of how these storms will be 
affected by climate change is of vital importance. One of the challenges in studying the effect of climate 
change on tropical cyclones is that the models typically used in climate change simulations have low 
horizontal resolution, so that it is computationally feasible to perform long simulations with multiple 
ensemble members and various future scenarios. However, in order to accurately simulate tropical 
cyclones, it is necessary to run models at much higher resolutions. This conflict has made the study of 
tropical cyclones in climate models a difficult task, and one that has received considerable attention 
over the last several decades.  

Since the 1970s, it has been known that even low-resolution climate models are able to produce 
vortices with characteristics similar to those of tropical cyclones1,2. The first studies of the relationship 
between climate change and tropical cyclones3,4,5 used these low-resolution climate models, in spite of 
the weak intensity of the modeled storms and model biases. In recent years, the exponential 
improvement in computational capacity has enabled various modeling groups to employ high-resolution 
climate models, which has led to a dramatic improvement in our ability to simulate tropical cyclones, 
both in the short term (intra-seasonal variability), medium term (dynamical seasonal forecasting) and 
long term (climate change projections).  

In this review, we will give a historical perspective on the simulation of tropical cyclones in climate 
models; Section I describes the first studies in the 1970s and 1980s while Section II discusses progress 
made in the 1990s. Approaches to inferring tropical cyclone activity in climate models by analyzing the 
large-scale environmental conditions are reviewed in Section III. In Section IV, we describe methods of 
downscaling tropical cyclone activity from climate models. In Section V, we discuss the advent of tropical 
cyclone dynamical seasonal forecasting. We next describe the simulation of tropical cyclones in the 
current state-of-the-art global climate models, including the simulation of intra-seasonal and decadal 
time scales (Section VI) as well as climate change (Section VII). Finally, we provide an overview of model 
sensitivities and limitations in Section VIII before suggesting possible ways of improving the simulation 
of tropical cyclones in climate models and directions for future research in the Conclusion.  
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I. First studies of tropical cyclones in climate models 

The study of the tropical cyclones (TCs) in climate models dates back to Manabe et al.1, who analyzed 
the characteristics of the tropical circulation in a global atmospheric circulation model. They noted the 
occurrence of cyclonic vortices in regions in which tropical cyclones form in observations (Figure 1). The 
vortices were accompanied by low surface pressure values, heavy precipitation, and strong convergence 
of air near the surface and divergence in the upper troposphere. The movement of these vortices was 
also compatible with observed tropical cyclones (Figure 1). Although the structure of the vortices was 
somewhat similar to observed storms, it was clear that the model was unable to sufficiently resolve the 
vortices, and therefore, could not intensify the storms to tropical storm strength. Nevertheless, the 
processes occurring in the vortices, such as the development of a warm core with a deepening of the 
surface pressure and latent and sensible heat fluxes from the ocean surface to the atmosphere in the 
region of the storm, had strong similarities to what was known about tropical cyclones at that time.  

A pioneering study on TCs in global models was that of Bengtsson et al.2, who analyzed hurricane-type 
vortices in a 1 year simulation of the European Centre for Medium-Range Weather Forecasts (ECMWF) 
operational global model with a horizontal resolution of 1.875°. The spatial and temporal pattern of 
occurrence of these vortices was similar to that of observed tropical cyclones; in particular, there was a 
clear maximum in tropical cyclone activity over the western North Pacific. Other characteristics, such as 
lifetime and structure, also fundamentally agreed with the characteristics of observed storms. 
Bengtsson et al.2 also discussed the sensitivity of the vortices to the model environment; in particular, 

sea surface temperature (SST). They found that formation occurred only for SSTs above 28-29ºC and 

under conditions of large-scale divergence in the upper troposphere; these conditions are broadly 
consistent with those favorable for tropical cyclone formation in nature, although TC formation is 
observed at lower values of SST (~ 26°C). 

In the mid to late 1980s, significant progress was achieved in the forecasting of individual tropical 
cyclones6,7,8, which led to a better understanding of the model characteristics that are necessary for 
simulating tropical cyclones. Krishnamurti et al.9 showed that the formation and motion of storms is 
improved when the model has a high horizontal resolution, adequate resolution of surface layer fluxes, 
and includes parameterizations of boundary layer, cumulus convection, and radiative processes. Many 
global models already included these parameterizations and processes, leading to improved simulations 
of TC climatology in global models. Krishnamurti and Oosterhof10 showed that, with the use of a high-
resolution model and a sophisticated data assimilation scheme, it was possible to obtain a good forecast 
of a typhoon lifetime, from tropical depression stage to landfall. This was a very significant result at the 
time, which greatly influenced future work on tropical cyclones in global models.  

II. Progress in the 1990s 
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The idea of using global climate models to examine the influence of climate change on tropical cyclones 
was first proposed by Broccoli and Manabe3. In this study, control simulations of the current climate in 
the GFDL (Geophysical Fluid Dynamics Laboratory) climate model were compared with those in which 
the CO2 concentration was doubled. Tropical cyclone-like vortices were identified in both cases, using 
two different model horizontal resolutions, as well as different cloud treatments (prescribed cloudiness 
or allowing for cloud feedbacks). With prescribed cloudiness, CO2 doubling led to a large increase in the 
number of storm days, while there was a small reduction in the number of storm days in simulations 
that allowed for cloud feedbacks.   Though the results of this study were inconclusive, it launched a new 
way of studying the influence of climate change on tropical cyclones that is still used today. 

The modulation of tropical cyclone activity by the El Niño-Southern Oscillation (ENSO) phenomenon was 
the next topic explored using global climate models in the early 1990s. While the relationship between 
TCs and ENSO has been well known in observations since the pioneering papers of Neville Nicholls, for 
the Australian region11,12,13, and William Gray14, for the North Atlantic. Wu and Lau15 were the first to 
explore whether global climate models were able to reproduce the changes in TC frequency in different 
basins due to ENSO. They forced the GFDL climate model with observed monthly varying SSTs for 15 
years and analyzed how the TC frequency changed in El Niño and La Niña events. Most importantly, they 
were able to use the differences in the model environmental fields between the cold and warm phases 
of ENSO to determine how the modulation of TC activity in the different basins occurred. The 
modulation of tropical cyclone activity by large-scale climatic variability remains an area of active 
research and has led to the development of dynamical tropical cyclone seasonal forecasts, which will be 
discussed in more detail below. 

As computing capability increased in the 1990s and it became possible to run global climate models at 
higher resolutions for many years, there was an increase in the number of studies analyzing the 
characteristics of TCs in different global climate models. Broccoli and Manabe16 were able to produce a 
moderately successful simulation of a TC climatological occurrence distribution. Bengtsson et al.17  

considered the simulation of TCs in two versions of the same model with different horizontal resolutions 
(T42 or ~ 300km and T106 or ~ 150km), forced with climatological monthly SSTs. They showed that there 
are considerable variations in TC frequency from year to year, even without interannual variations in the 
SSTs. Furthermore, they showed that the intensity and structure of the storms was resolution 
dependent, with low-resolution simulations producing weaker and larger storms with a less realistic 
vertical and horizontal structure (Figure 2). 

Using a model with a lower resolution (T42 or ~ 300km), Tsutsui and Kasahara18 analyzed the differences 
in TC frequency in the NCAR CCM2 (National Center for Atmospheric Research Community Climate 
Model 2) model forced with climatological SSTs or with interannually varying SSTs. They found that the 
simulation forced with climatological SSTs produced a significantly larger annual frequency of tropical 
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cyclone-like vortices. Despite this bias in the average frequency, in regions such as the Atlantic where 
interannual variability in observed TC frequency is large, the model forced with observed, interannually 
varying SSTs was able to reproduce these fluctuations. This was another important step towards the 
development of dynamical seasonal TC forecasts.  

The potential for using climate models for dynamical TC seasonal forecasts was further explored by 
Vitart et al.19, who, using a 9-member ensemble, performed a 10-year integration of a climate model 
forced with observed SSTs. The ensemble members differed only in the initial conditions of the 
atmosphere. They showed that the predictability of the frequency of TCs in this model was particularly 
strong in the western and eastern North Pacific, as well as in the North Atlantic. In these regions, the 
simulation skill was exceptionally high, particularly in years of strong ENSO signals. A follow-up study20 
showed that predictability also exists for TC intensity and location of formation, in addition to TC 
frequency. That modeling study also showed that in some regions, TC frequency was not significantly 
correlated to the local SST, which suggested that the remote impact of other regions, communicated by 
the large-scale circulation, was important for the TC-ENSO modulation. This is similar to what occurs in 
observations. This result was particularly encouraging, as in general there is more confidence in the 
large-scale environmental conditions generated by global climate models than in the storms themselves. 

As confidence in the ability of climate models to simulate tropical cyclones increased in the 1990s, two 
papers analyzed the impact of climate change on the simulated TC activity. Haarsma et al.4 used an 
atmospheric model coupled to a mixed layer ocean in two scenarios: a control case and a simulation in 
which the CO2 concentration was doubled. In the doubled CO2 scenario, the number of tropical 
disturbances increased by 50% compared with the control (Figure 3). Furthermore, there was a relative 
increase in the number of intense storms, whose intensity increased ~ 20% (Figure 3). A different 
approach was used by Bengtsson et al.5, who forced a high-resolution atmospheric model with fixed SST. 
For the doubled CO2 scenario, anomalies were added to the monthly SST climatology, which were 
generated by a low-resolution coupled atmosphere-ocean model. In that case, the frequency of TCs was 
reduced in the doubled CO2 scenario, especially in the southern hemisphere, while the intensity of the 
most intense storms increased. The increase in intensity and in the frequency of intense storms 
obtained in both papers agrees with the theoretical estimates by Emanuel21,22. A decrease in overall TC 
frequency and a higher occurrence of intense storms remain robust responses to increased CO2 in the 
current state-of-the art models23.  

III. Large-scale environment and tropical cyclones 

Although the tropical cyclone-like vortices detected and tracked in low-resolution climate models have 
many characteristics similar to observed tropical cyclones, until recently most models had large biases in 
reproducing the observed TC frequency, intensity, and geographical distribution (see e.g. Vitart et al.19 
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and Camargo et al.24).  Therefore, many authors have used an alternative method of studying TC activity 

in climate models – instead of studying the model disturbances per se, they focused on large-scale 

environment conditions that are associated with TC activity. One common way to analyze the 
environmental conditions associated with TC frequency in models is to use genesis potential indices.  An 
example of the correspondence between one particular genesis index and observed TC genesis points is 
shown in Figure 4. 

Gray25 developed the first genesis index as a function of severalenvironmental parameters:  low-level 
(950hPa) vorticity, vertical wind shear (between 950hPa and 200hPa), the Coriolis parameter, ocean 
thermal energy (the temperature excess above 26C integrated from the ocean surface down to the 60m 
depth), moist static stability (the vertical gradient of the equivalent potential temperature between the 
surface and 500hPa), and  average relative humidity (between 500 and 700hPa). However, his index is 
not appropriate to explore TC activity in climate change scenarios, as it uses a fixed SST threshold. After 
the introduction of this first genesis index, many others have appeared in the literature which use 
different environmental variables or different functional dependences of the indices on the 
environmental variables. One of the most commonly used genesis indices is the Emanuel and Nolan 
genesis potential index (GPI)26, in which the potential intensity28,29 replaces SST. The definition of 

Emanuel and Nolan’s GPI is: 

𝐺𝑃𝐼 =  �105𝜂�3/2  �𝐻
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where η is the absolute vorticity at 850hPa, H is the relative humidity at 600hPa, Vpot  is the potential 
intensity, and Vshear is the magnitude of the vertical wind shear between 850hPa and 200hPa. Many 
other genesis indices have been developed since, e.g., Emanuel30, Tippett et al.31, and Bruyère et al32. A 
recent comparison of the performance of genesis indices in the present climate is given in Menkes et 

al.33 As examples of the different functional forms used in genesis indices, we show here  Emanuel’s new 

genesis index30 : 
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where χ is a non-dimensional parameter that is a measure of the moist entropy deficit of the middle 

troposphere; and Tippett et al.’s31 index: 

𝑇𝐶𝐺𝐼 = 𝑒𝑥𝑝�𝑏 + 𝑏𝜂  min (⌈𝜂⌉ × 105, 3.7) + 𝑏𝐻  𝐻 + 𝑏𝑃𝐼 𝑉𝑝𝑜𝑡 + 𝑏𝑉  𝑉𝑠ℎ𝑒𝑎𝑟�, 
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where the parameters b are the coefficients of the Poisson regression between the climatological 
number of genesis events and the large-scale environmental variables.  

The first application of genesis indices to climate models was done by Ryan et al.34, who used Gray’s 

genesis index in the present climate and in a doubled CO2 simulation. In the doubled CO2 scenario, a 
significant increase in the region of tropical cyclogenesis was obtained, due to the linear relationship of 

the index with SST. Gray’s genesis index was then applied to the same model35 to examine the 

differences of the environment during warm and cold ENSO years.  

However, as shown in Camargo et al.,36 in most models and basins, there is only a weak relationship 
between the frequency of model TCs and the mean values of the genesis index in each basin. 
Furthermore, there is a stronger relationship between the model genesis index and the observed TC 
variability than with the model TC variability, since the models have better skill at simulating the 
environmental fields than simulating the TCs themselves. McDonald et al.37, Camargo et al.36 and Walsh 
et al.38 indicated that as model horizontal resolution increases, there is more consistency between 
genesis indices and the mean model TC frequency. The large variations in model TC climatology that 
exist between models suggest that the model TC occurrence is more strongly controlled by the dynamics 
of the model storms than by the model environment for genesis. This is still the case in the current class 
of models, where there is a wide range of mean global TC frequency among the models despite the fact 
that the values and spatial distribution of the Emanuel and Nolan genesis index are very similar39. Some 
authors32,40 argue that to obtain a good relationship between regional TC activity and a regional genesis 
index it is necessary to develop regional genesis indices, or incorporate higher frequency variability 
instead of using global indices based on monthly climatology. While genesis can be initiated by different 
convective disturbance types, (such as equatorial waves, easterly waves, and monsoon lows), and these 
convective disturbances are basin dependent,    the relationship between TC genesis and the large-scale 
environment does not necessarily have such a regional dependency. Therefore, as this is the relationship 
that genesis indices attempt to replicate, a globally derived genesis index seems to be the optimal 
choice. 

Genesis indices continue to be widely applied to study the effect of climate change on TC 
activity37,39,41,42. However, while high-resolution climate models robustly project a global decrease in TC 
activity under warmer conditions, most genesis indices project an increase in TC frequency. The 
projected decrease in TC frequency has been associated with an increase in the saturation deficit of the 
free troposphere with warming. Therefore, genesis indices that include the saturation deficit (such as 

Emanuel’s new GPI30) should be able to reproduce this frequency reduction. However, as shown by 

Emanuel44, even this new GPI projects an increase in TC frequency in a warming climate. An argument 
could be made that the genesis indices, which are based on the models large-scale environment, are 
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correct. However, the projection of a global decrease in TC frequency is so robust among models that 
there would need to be a fundamental problem with climate models for that to be the case. 
Furthermore, there is no guarantee that the specific combination of environmental factors in a genesis 
index derived for the current climate is valid for other climates.  Recently, Camargo et al.45 showed that 
only genesis indices that used a specific combination of environmental parameters (in particular, 
saturation deficit and potential intensity), are able to project the decrease in global TC frequency in a 
warmer climate, at least in the case of one global climate model.  This hypothesis still needs to be tested 
in a wider range of models. 

Another application of genesis indices is to analyze the level of TC activity in different past climates. 
While paleotempestology is a growing field, it is still in its infancy and the amount of data available to 
reconstruct storm activity in past climates is quite restricted46,47. Paleoclimatology studies usually 
involve very long simulations, therefore computational constraints lead to use of low-resolution models. 
Genesis indices can then be used to compare the environmental conditions for TC formation in past (e.g. 
Last Glacial Maximum) and present climates and obtain estimates of the level of TC activity. This 
approach was used by Korty et al. for the Last Glacial Maximum48 and the mid-Holocene49, with the 

caveat that genesis indices obtained for the current climate don’t necessarily work for past climates. 

Therefore, Korty et al. also examined the changes in the individual environmental factors that compose 
the genesis index. 

One of the ways that the environment influences tropical cyclone genesis and intensity is through 
ventilation, the import of cool and dry air into the core of tropical cyclones by vertical wind shear, which 
is quantified by the new ventilation index of Tang and Emanuel50,51. This ventilation index is a 
combination of environmental vertical shear, entropy deficit, and potential intensity, and has many 
applications, from real-time forecasting to climate change projections. The ventilation index can be used 
as a tool to examine changes in the environmental conditions due to climate change, which are relevant 
to TC activity in global climate models, as was done by Tang and Camargo52. They showed that in the 
CMIP5 (Coupled Model Intercomparison Project Phase 5) dataset, there is a general tendency for an 
increase in the seasonal ventilation index in the majority of the tropical cyclone basins. All models 
project an increase in the midlevel entropy deficit in the tropics, which is compensated by an increase in 
the potential intensity and a decrease in vertical wind shear in most basins.   

As mentioned earlier, potential intensity is an important parameter in several genesis indices. The 
potential intensity is the theoretical maximum intensity that a TC can reach under specific 
environmental conditions22. The potential intensity also is closely related to the observed TC 
intensity53,54. Recently, it has been used as a proxy to examine potential changes in TC intensity under 
climate change conditions in climate models55,39. Vecchi and Soden55 showed that long-term changes in 
the potential intensity are closely related to the regional structure of SST warming in future projections, 
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in which regions that warm more than the tropical average are characterized by an increase in potential 
intensity. Therefore, although overall there is a tendency for an increase of potential intensity in the 
tropics, there are some regions in which the potential intensity could decrease. The pattern of potential 
intensity change projected by the CMIP5 multi-model mean39 is extremely similar to that of the Vecchi 
and Soden analysis, which was obtained with CMIP3 (Coupled Model Intercomparison Project Phase 3).  
The potential intensity has also been used  to separate the role of natural and anthropogenic 
environmental changes on North Atlantic TC intensity56,57;the late 20th Century potential intensity trend 
in the North Atlantic was found to be dominated by internal variability and it isonly at the end of the 21st 
century that an anthropogenic potential intensity trend is expected to emerge. . More recently, Polvani 
et al. used potential intensity to examine the potential impact of ozone on TC intensity58 and found that 
the ozone depletion in recent decades has not been a major player in determining the TC intensity 
trends, and neither will ozone recovery in the first half of the 21st century. 

IV. Regional climate models, downscaling and TCs 

Given the high computational costs required to run long, high-resolution climate model simulations that 
can simulate tropical cyclones with hurricane-strength intensity, various alternative strategies have been 
used. One strategy is to select storms from long climate model simulations and redo the simulation of 
those storms using higher resolution, operational hurricane forecast models in order to achieve more 
realistic intensities59,60. Another possibility is to perform simulations of individual idealized TCs in a 
simplified large-scale environment60,61,62. These types of simulations were particularly successful in 
simulating the increase in TC intensity under global warming conditions and also other changes such as 
increased TC precipitation rates with climate warming63. The advantage of this method is that these 
idealized simulations are usually cheap to run, which make it possible to test the sensitivity of the results 
to various model choices, including environmental conditions of the forcing climate model, model 
parameterizations, and the use of fixed SST or a coupled ocean model64.  

A powerful approach that has been used by various modeling groups is the use of regional climate 
models, forced at their boundaries by environmental conditions from global models. It is well known 
that the domain choice has an impact on the climate characteristics of regional climate models65. This is 
also the case for simulation of TCs in regional models, as many TCs are advected through the model 
boundaries. Both grid point and spectral regional climate models66,67 have this sensitivity to the 
boundary condition. Caron and Jones68 showed that in the case of the Atlantic, it is crucial that the 
regional climate model domain include not only the tropical Atlantic, but a large part of northern Africa 
as well, due to the presence of African easterly waves and their relationship with Atlantic hurricane 
genesis. The use of regional climate models for TC dynamical seasonal forecasts has been tested and 
there are indications this type of downscaling can improve the forecast skill of global models in 
predicting TC landfall in East Asia69, for example. 
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Regional climate models have been very successful in reproducing the hurricane activity in the North 
Atlantic in the late 20th century70. In recent years, regional climate models were used to analyze the 
changes in TC frequency and intensity in the North Atlantic and western North Pacific under 21st century 
warming conditions71,72,73,74.  Figure 5 shows an example for the North Atlantic, where there was strong 
agreement between seasonal TC frequency in observations and in the model ensemble, although the 
intensity distribution lacked the strongest storms. Since even a regional climate model with 18 km 
resolution is unable to simulate TCs with intensities of Category 4 and 5 on the Saffir-Simpson Hurricane 
Wind Scale, Bender et al.59 performed a second level of downscaling and used the operational GFDL 
hurricane forecast model to the simulate storms from the regional model. With this method, a realistic 
distribution of the most intense storms for the current climate was obtained. They found that, by the 
end of the 21st century, the frequency of Category 4 and 5 storms in the Atlantic is expected to double 
(Figure 6). Recently, Knutson et al.75 extended this approach to the globe; first, a GFDL high-resolution 
atmospheric model is used to generate TCs globally, then, each of the individual TCs is re-simulated with 
the GFDL hurricane coupled model. The results are in agreement with previous studies, with reduced 
frequency and increased intensity of TCs in the late 21st century. 

Done et al.76 analyzed the sensitivity of simulated tropical cyclones to regional model resolution and 
noted that although higher resolution is required to resolve the small-scale structural characteristics of 
the TCs, this level of detail may not be necessary for climate predictions and therefore may be not the 
optimal use of resources. Furthermore, regional climate simulations can be severely affected by biases 
in the driving global climate model, even when large domains are employed, so it is important to correct 
for these biases.  

An alternative method for downscaling TC activity from climate models was developed by Emanuel77,78. 
This technique involves generating a very large number of synthetic storm tracks with realistic intensity 
based on model or reanalysis environmental fields and can be a very powerful tool for analyzing TC 
landfall risk in regions with few landfalling storms in the historical record79. The first step of this 
technique is to seed storms by a random draw from the space-time probability density function of 
genesis location obtained from observations. The survival of the seeds depends on the large-scale 
environmental conditions and the synthetic tracks are then generated for the surviving storms. This 
technique has been successfully applied to analyze changes in TC characteristics under global warming, 
using the environmental fields from present and future climates to generate the synthetic TC tracks. 
Interestingly, different projections for the global TC frequency at the end of the 21st century were 
obtained when downscaling the CMIP379 and CMIP580 models. When applied to the CMIP3 models, 

Emanuel’s technique projected a decrease in global TC frequency81 (in agreement with most modeling 

studies), but when applied to the CMIP5 models, Emanuel’s technique projected an increase in global TC 

frequency82. The reason for this discrepancy is not clear, as the large-scale fields that are relevant for TC 

This article is protected by copyright. All rights reserved.



formation and intensification are quite similar between the CMIP3 and CMPI5 models, as was shown by 
Camargo39. 

V. Tropical cyclone dynamical seasonal forecasts  

The development of dynamical seasonal forecasts of tropical cyclones played an important role in the 
improvement of the simulation of TCs in climate models. Recent reviews of TC seasonal forecasts 
(statistical and dynamical) appeared in Vitart83 and Camargo et al. 84,85; here we only discuss dynamical 
TC forecasts. As mentioned above, Vitart et al.19,20 first showed that the GFDL global climate model was 
able to reproduce many characteristics of the TC response to ENSO events. A few years later, Vitart and 

Stockdale86 developed the first dynamical seasonal forecast of tropical cyclones using ECMWF’s coupled 

atmosphere-ocean model system. Even though the predicted mean frequency of storms in the 
individual basins was significantly lower than observed, the model produced realistic forecasts of 
interannual variability of tropical cyclone frequency over the North Atlantic and western North Pacific. 
They showed that model skill likely results from its ability to predict SSTs; in particular, the occurrence 
and development of ENSO events and their modulation of TC activity through teleconnections. 

The ability of low-resolution models to simulate the modulation of TC activity by ENSO was further 
explored in a multi-model analysis of models forced with prescribed observed SSTs87. Despite the low-
resolution and model biases, these climate models were shown to have significant skill in predicting 
some properties of TC activity on interannual time scales. This led to the development of the IRI 

(International Research Institute for Climate and Society) TC seasonal forecasts, which use a 2 –tiered 

system. First, the SSTs are predicted using various types of dynamic and statistical models, then the 
atmospheric models are forced with these SSTs and the TCs are tracked in the atmosphere model 
output. This is in contrast to the ECMWF system, in which a coupled atmospheric-ocean model was 
utilized.  The skill of the IRI seasonal prediction system was shown to be competitive with, and in some 
circumstances superior to, statistical models88. 

The success of these early dynamical TC seasonal forecasts led to the development of similar forecasts 
by various modeling groups89,90,91,92, including a multi-model forecast system93,94, and hybrid statistical-
dynamical systems95,96. An example of a dynamical seasonal forecast of Atlantic TCs, using a multi-model 
ensemble, is shown in Figure 7. Most importantly, modeling groups across the globe have started to 
analyze the TC activity in their climate models routinely, which could potentially lead to significant 
improvement in the representation of TCs in climate models.  

Currently, various modeling groups issue dynamical TC seasonal forecasts in various basins with 
significant skill. The skill can be particularly high in the Atlantic basin, due the strong modulation of TC 
activity in that basin by ENSO. The current challenge is to develop skillful forecasts from climate models 
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for quantities more relevant to the society than basin-wide frequency or accumulated cyclone energy 
(ACE, sum of the square of the maximum wind speed of the storms in a basin at all times for which the 
speed is at least 35kt). For instance, skillful forecasts of the probability of occurrence of landfalling 
storms for specific coastal regions would be a huge improvement from basin-wide quantities. In coupled 
models, the simulation of the TC-ENSO relationship can be more challenging, as the model can have 
biases in the representation of the ENSO itself, as well as biases in the environmental response to 
ENSO97. Recent work using a coupled ocean-atmospheric model with flux adjustment to correct 
systematic ocean biases has produced skillful forecasts of seasonal TC activity on spatial scales finer than 
basin-wide months in advance of the TC season98. This is a significant progress towards more societally 
relevant TC seasonal forecasts. 

VI. Current state-of-the-art global climate models: from intra-seasonal to decadal time-scales 

In the last few years, there has been a significant increase in the number of modeling groups investing 
resources in studying TC activity in global climate models. Currently, most modeling groups perform 
analyses of TC activity as a routine part of their model diagnostics. Although most of the resources have 
been concentrated on long time scales, in particular, on the question on how climate change will affect 
TC activity, many groups have been exploring their model skill on other time-scales, from intra-seasonal 
to decadal.  We have already discussed (in Section V) the current ability of climate models to simulate TC 
activity on seasonal time-scales. In this section, we focus on the status of TC prediction on intra-seasonal 
and decadal time-scales.  

The Madden-Julian Oscillation (MJO, Madden and Julian99,100,101) is the main source of predictability in 
the tropics on intra-seasonal time-scales. The MJO modulates TC activity globally102,103,104; when the MJO 
is in the enhanced convective or active phase in a certain region, there is a tendency for a higher TC 
formation in that region. As the MJO propagates eastward, the preferred region for TC genesis also 
shifts eastward. The modulation of TCs by the MJO in various regions is well established in the 
literature105,106,107,108,109.  TC frequency is not the only property affected by the MJO; others, such as the 
rate of occurrence of a specific track type110,111,112, the percentage of storms which reach major 
hurricane intensity113, and even the response of TCs to ENSO114 are as well. 

Until recently, the representation of the MJO in climate models was quite poor115. The quality of the 
MJO simulation in climate models can be improved by modifying the cumulus parameterization used in 
the models. However, these modifications usually create other biases in the climate models, and 
therefore are not routinely implemented116. Because of the difficulty in simulating the MJO, the 
simulation of the modulation of TCs by the MJO has been quite challenging.  It is only recently that a few 
modeling groups have been able to successfully simulate the TC-MJO relationship. The first such 
simulation was performed with the  Japanese high-resolution cloud-resolving model NICAM 
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(Nonhydrostatic ICosahedral Atmospheric Model), which simulated one MJO event and its link to TC 
genesis in the western North Pacific117. The ECMWF modeling system uses a seamless prediction 
approach, in which the same model is used for prediction time scales ranging from synoptic to 
decadal.118 This system has been shown to have skill in simulating the evolution of the MJO and 
teleconnections of the MJO that are consistent with observations119,120. The ECMWF system simulates 
the modulation of TC activity by the MJO quite well, even in the northern hemisphere TC season, when 
the MJO signal is weaker121 (Figure 8).  The performance of the ECMWF system in real time for the for 
the 2008 and 2009 seasons showed that the ECMWF ensemble provided good guidance on TC formation 
and tracks on time scales of 10-30 days122,123. The ECMWF ensemble was also able to predict the 
formation of nearly all the TCs in the 2009 and 2010 seasons, missing only a small number of storms 
(which were generally short lived and weak124). The performance of the model over the Atlantic has a 
somewhat lower skill, though,125 and an analysis of the model predictability showed that the model skill 
is sensitive to the phase and intensity of the MJO and the time of the model initialization126. A 
comparison of the performance of the ECMWF forecast system with a statistical model127 for weekly TC 
activity in the southern hemisphere showed that the dynamical model had a better performance than 
the statistical model in the first two weeks of the forecast128.  

More recently, other modeling groups have been making progress in simulating the MJO modulation of 
TC activity. It has been shown that the GFDL HiRAM (High Resolution Atmospheric Model) global climate 
model is able to reproduce the MJO-TC relationship in the eastern North Pacific129. Furthermore, the 
HiRAM model forecasts on intra-seasonal times-scales for the North Atlantic are showing promising 
results130,131. A comparison of two very high-resolution global climate models for a period of eight boreal 
summers showed how sensitive TC genesis is to the characteristics of the MJO (formation, propagation, 
and strength), and that the TC-MJO modulation is highly model dependent132, as was also seen in 
simulations of the MJO and TC genesis during the DYNAMO field program in the North Indian Ocean133. 
In the case of the GEOS-5  (Goddard Earth Observing System Model, version 5) model, even though the 
model MJO is faster and weaker than the observed MJO, the model is still able to reproduce the 
observed MJO-TC modulation134. Intra-seasonal forecasts of TC activity are a very promising area for 
future work, in particular, the seamless prediction approach, in which the same models are used for 
both weather and climate prediction.  

Decadal prediction focuses on predictions over the 10-30 year timeframe, and is a bridge between 
seasonal predictions and climate-change projections. In the last few years, a significant effort has been 
made by the climate community in this area135,136,137. While skillful seasonal predictions depend on an 
accurate specification on the current state of the climate, initial conditions do not influence climate 
change projections. On decadal time scales, however, the climate is strongly influenced by both natural 
variability and external forcing, so both accurate initial conditions as well as anthropogenic greenhouse 
gas aerosol forcing138 are necessary.  Early work on hindcast experiments using initialized coupled 
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models showed promise in decadal predictions139,140, which has been confirmed in more recent 
studies141,142. 

The decadal variability of TC activity has been discussed in various basins, in particular the North 
Atlantic143 and the western North Pacific144. In the Atlantic, the existence of a natural mode of the 
decadal variability, the Atlantic Multidecadal Variability (AMV, also referred to in the literature as the 
Atlantic Multidecadal Oscillation or AMO) has been challenged by the argument that the fluctuations 
were instead caused by a combination of external forcing, including greenhouse gases and industrial and 
volcanic aerosols145,146. Recently, Caron et al.147 noted that the influence of seasonal climate modes on 
Atlantic TC activity was dependent on the phase of the AMV. In the western North Pacific, the decadal 
variability in typhoon activity has been associated with the Pacific Decadal Oscillation144. 

Smith et al explored the possibility of issuing multi-year forecasts of TC activity in the North Atlantic.148. 
They showed that their decadal prediction system had some skill in predicting 5-year mean North 
Atlantic TC frequency.  Another study, using a different model, found the forecasted 5-year mean 
showed significant correlation when compared with the null hypothesis of a zero correlation149. They 
pointed out, though, that the model skill arises in large part from the persistence of the SST in the 
initialized forecasts (Figure 9), rather than due to the prediction of the system evolution per se. This has 
been debated in the literature150,151. More recently, Caron et al.152 showed that multi-year prediction of 
Atlantic hurricane activity by CMIP5 models in hindcast mode had modest positive skill, even after 
accounting for persistence in the climate shift that occurred in 1994-1995. The potential for predicting 
possible wind damage related to hurricanes along the U.S. coast using a multi-model ensemble of 
initialized global climate models has also been recently demonstrated153. Decadal predictability of TC 
activity is a new field and it is expected that more modeling groups will explore this topic in the next few 
years. 

VII. Current state-of-the-art global climate models: climate change projections 

In the last few years, a large effort has been made towards understanding and making projections of TC 
activity under climate change. This effort was in large part responsible for a significant progress in 
simulating TCs in global climate models. In this section, we focus on the studies that analyze TC activity 
directly from global climate models; we have already discussed the analysis of model large-scale 
environmental quantities and downscaling studies in Sections III and IV, respectively.  A comprehensive 
review of various aspects (theoretical, modeling, observed trends, attribution) of the relationship 
between climate change and TCs can be found in Knutson et al.23, with an update in Walsh et al.154. 
Here, we focus only on the studies of TCs under climate change using global climate models.  

Most of the effort towards the improvement of the simulation of TCs in climate models has been 
directed at the use of high-resolution global climate models, instead of low-resolution ones. Even in the 
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latest round of simulations for the IPCC (CMIP5), most coupled model simulations were still performed 
with low-resolution and still have significant biases in reproducing TC climatology39. In order to achieve 
robust projections from climate model simulations, it is necessary to perform the simulations for many 
years, using large ensembles and multiple scenarios. Therefore, for most modeling groups it remains 
very expensive to run coupled models for this purpose. The most common approach is to use 
atmospheric only models, forced with SSTs (or SST anomalies) obtained from low-resolution coupled 
simulations. The first studies to use this approach used (approximately 125km) horizontal resolution 
models in the late 1990s5 and early 2000s154. This method is employed by most of the studies published 
in the last few years156,157,158,159. An example of global TC tracks in both the current and future climate 
from one of these high-resolution simulations157 is shown in Figure 10. While the TC climatology, 
structure, and intensity is substantially improved by using high horizontal resolution, it is well known 
that the future projections are very sensitive to the specific SST anomaly patterns used156, and in 
particular, regional TC changes are very sensitive to different warming patterns160. Therefore, it is 
essential to have a better understanding of the mechanisms for tropical SST changes161.  

Another important question is regarding the direct contribution of CO2 to future changes in TC activity. 
Inspired by idealized experiments initially designed by Yoshimura and Sugi162 and Held and Zhao163, the 
U.S. CLIVAR Hurricane Working Group (HWG) designed idealized experiments in which high-resolution 
atmospheric climate models were forced with climatological SSTs (present climate or a homogeneous 
SST increase of 2K) and different levels of CO2 concentration (current values or doubled concentration), 
as described in detail in Walsh et al.164 The main objective of the Hurricane Working Group was to obtain 
a better understanding of the relationship between climate forcings and TC occurrence using a multi-
model approach. A few models of the HWG produce a decrease rather than in an increase in the number 
of TCs with a homogeneous 2K increase in SST, while most models show a decrease in TC occurrence 
when forced with a doubled CO2 concentration and no change in SSTs. Detailed analysis of the results of 
these idealized experiments, including many aspects of the response of TC activity to climate forcings, 
can be found in numerous papers from the HWG165,166,167,168,169,170.   

Given the existing issues with high-resolution climate models forced with fixed SST, especially the 
sensitivity of TC activity to the details of SST patterns and lack of oceanic feedback on the TCs, a few 
studies in the last several years have used high-resolution coupled ocean-atmospheric models. Gualdi et 
al.171 found that global TC frequency was reduced in a climate change coupled model simulation, similar 
to the results from models forced with fixed SSTs and other more recent coupled model studies172,173.  A 
similar experiment with the GFDL coupled model and a doubling of CO2 confirmed these results174; there 
was a substantial reduction in global TC frequency and a small increase in TC intensity globally. In 
contrast, Bell et al.175 only obtained an increase in intensity in their coupled experiments with a 
quadrupling of CO2.  Their time-slice, uncoupled experiments with doubled CO2 with the same 
atmospheric model, however, did show an increase in TC intensity. Further work is needed to better 
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understand the difference between projections of TC activity under climate change between coupled 
and uncoupled simulations.  

VIII. Model sensitivities  

Though there has been a huge improvement in the simulation of TCs in climate models in recent years, 
there are many issues that still need to be better understood. The model results are sensitive to details 
both internal and external to the models. In addition to the sensitivity to the SST patterns discussed 
above, Murakami et al.176 showed the importance of taking into account model biases when simulating 
TCs in climate models by doing bias corrections in their analysis. They showed that by calibrating the 

models’ performance in each basin by the model bias in TC frequency in the present climate, they 

obtained more reliable projections of TC frequency in the future. Another approach, already mentioned 
above in Section V, is to use a flux-adjusted version of a global climate model in order to improve the 
simulation of mean climate, leading to improvements in the simulation of TCs and improved regional 
seasonal forecasts98. Another option, used in seamless weather-to-climate predictions, improves the 
initial ocean state by modifying the data assimilation algorithm, maintaining interactions between small-
scale perturbations and the successively corrected large-scale background177. 

As mentioned above, an increase in model horizontal resolution is known to lead to a better 
representation of TCs in models, both for atmospheric models forced with fixed SSTs178,179,166,180,181, as 
well as for coupled models182. However, simply increasing the resolution is not a solution to all of the 
problems in simulating TCs in climate models, as is evidenced by the different performances of models 
with similar or the same resolutions183,39,165. Roberts et al.159 also showed that while some aspects of TC 
simulation are indeed improved by using higher resolution (e.g., simulation of TCs in the Atlantic 
because of a better representation of the easterly waves), others are not improved, such as the weak 
intensity of simulated TCs. Model resolution also continues to be an issue for very long simulations. The 
most common approach to solve this problem is to use regional climate models, but as discussed above, 
there are many unsolved issues with regards to their use, especially related to the domain boundaries 
and domain size. New numerical techniques, such as variable resolution meshes183,184 or the use of a 
spectral element dynamical core185,186,187, show some promise of improving models and their ability to 
simulate small scale phenomenon like tropical cyclones. 

The methods used to track TCs in models are another important issue. For instance, in the case of the 
CMIP5 models, analysis of the TC activity under future climate change has been shown to be dependent 
on the type of tracking routine, as is evident when comparing the results of two CMIP5 studies39,188. A 
comparison of tracking schemes applied to the CLIVAR HWG models168 showed a moderate agreement 
between different tracking methods, with some models and experiments showing a better agreement 
across schemes than others, but there was a dependence on the thresholds used in the tracking 
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routines189. As resolution increases and the models are able to simulate more intense tropical cyclones, 
the difference between tracking algorithms is reduced, as it is easier to identify tropical cyclones. 
However, sensitivity to the detection and tracking algorithm remains an issue for weaker storms, which 
could influence the resulting TC frequencies. It would be ideal to have a standardized detection and 
tracking technique to be used across all models. 

Nearly all tropical atmospheric phenomena, including tropical cyclones, are tightly coupled to clouds and 
convection and are thus strongly sensitive to the details of convective parameterizations. This will likely 
remain an issue until we are able to run global models with high enough resolution such that convective 
parameterizations are not necessary. In the current class of climate models, the mean global frequency 
of TCs is extremely sensitive to the details of the convection scheme. For instance, Kim et al.190  
implemented small changes to the entrainment rate in the convection scheme in the GISS (Goddard 
Institute for Space Studies) model (done to improve the MJO simulation), and obtained a very different 
TC climatology. Vitart et al.191 showed that TC frequency, intensity, structure, and interannual variability 
exhibit significant sensitivities to changes in convective parameterization, in particular, to the 
production of deep convection. Zhao et al.192 identified counterintuitive sensitivities of TC genesis 
frequency in their model to two parameters in the convection scheme: the horizontal cumulus mixing 
rate, which controls the entrainment into convective cores, and the strength of the damping of the 
horizontal flow. They found that as the cumulus mixing rate increases, the model initially has a sharp 
increase in global TC frequency, followed by decrease, while the TC mean intensity rises monotonically. 
As the divergence damping strength increases, the model has a continuous increase of the TC frequency, 
with little change in TC mean intensity. Lim et al. obtained similar results193 using another model. One 
compromise in the interim may be to use super-parameterized models, in which the convective 
parameterization is replaced by a cloud resolving model that is inserted into each model grid box. 
Stan194 showed a significant improvement in the simulation of Atlantic TCs when using a super-
parameterized version of a climate model. However, the convective parameterization is not the only 
factor that influences the simulation of TCs. Another possible way to assess these model uncertainties is 
to perform multi-physics experiments, i.e. multiple simulations of the same model with different physics 
choices, as was done by Murakami et al.195.  

Conclusion 

In the last few years, the climate community has put significant effort into improving the simulation of 
tropical cyclones in climate models. The current state-of-the-art global climate models are much better 
at simulating the TC climatology, interannual variability, and intensity than their predecessors. The 
improvement has been remarkable and extends from forecasting on multiple time scales from intra-
seasonal to decadal and should contribute toward more robust projections about TC activity under 
climate change.  
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As the ability of the models to simulate the MJO, easterly waves and other equatorial waves improves, 
so does the skill in forecasting TCs on the 1-3 week time scale123,196,197. Beyond that, multi-year TC 
forecasts have been performed by various groups in the last few years148,149,152. Increased computer 
power makes the concept of seamless prediction from weather to climate a more realistic 
objective198,199. Efforts towards seamless prediction are ongoing in various modeling groups200, and this 
seems to be the best way to incorporate these advances in modeling TCs on shorter time scales to 
climate models. However, there are still many challenges that need to be addressed, if we want have 
more skillful forecasts and robust projections.  

On intra-seasonal time scales, only a few models are able to simulate a realistic MJO and efforts to 
improve the MJO simulation can lead to other model biases201, so there are still advances to be made. 
On seasonal time scales, efforts should be made to move beyond basin-wide forecasts to more societally 
relevant skillful regional or landfalling forecasts98. On decadal time scales, the big question is how much 
skill there is in forecasting the SST patterns that are necessary for doing multi-year TC forecasts; this 
question is being explored for the Atlantic202, the Pacific203, and the decadal variability of ENSO204. 
Regarding climate change projections, the biggest challenge is to obtain reliable projections of future 
SST changes including their patterns, and to move beyond global TC projections and towards robust 
regional changes.  Model simulations of paleoclimate TC activity are a new field, with only a few existing 
studies48,49,205, but could be extremely helpful in shedding light on future TC projections.  

Efforts on modeling improvements, from convective parameterizations to new numerical methods and 
dynamical cores, also need to continue to occur. But most of all, what is needed is a better theoretical 
understanding of what sets the frequency of tropical cyclones. We could make much more confident 
climate change projections if we had a firmer theoretical expectation of what should happen. Therefore, 
more basic, fundamental research on the sensitivities and environmental controls of the global 
climatology of TCs (such as, for example, aquaplanet simulations206 and idealized studies of convection 
self-aggregation and its link to tropical cyclones207,208) should be encouraged, as part of the effort to 
improve TC forecasts and climate change projections. Additionally, work on comparing the mechanisms 
of tropical cyclone formation in models and to that in observations may also give us more confidence in 
the TC activity simulated by climate models. In summary, despite the recent advances, there is still need 
for a substantial community effort to improve the simulation of tropical cyclones in climate models on 
all timescales.  
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Figure captions 
 

Figure 1: Tracks of tropical cyclones from the points of origin (indicated by an x). Symbols indicate 
positions at 1-day intervals. The simulation is forced with February SSTs. The storms were identified in 

the 40-day period of the simulation. From Manabe et al., 19701, their figure 5.14, Copyright © 1970 

American Meteorological Society. 

Figure 2: 2-dimensional cross section of tangential wind (ms-1), vertical velocity (Pa s-1), and vorticity (10-

5s-1) for the maximum stage of the development of a tropical cyclone in ECHAM3 with resolution T106 
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(left panel) and T42 (right panel). Adapted from Bengtsson et al., 199517, from their Figures 4 and 6, 
under the terms of the Creative Commons Attribution 4.0 International (CC_BY) License. 

Figure 3: Frequency distribution of windspeed for 10 years of NW Pacific storms. Solid columns: control 
simulation. Cross-hatched columns: on doubling CO2. From Haarsma et al., 19934, their Figure 9, with 
kind permission from Springer Science and Business Media. 

Figure 4: Genesis potential index climatology in (a) February and (b) September. The black dots show 
individual genesis events over the period from (a) 1970 to 2004 and (b) 1970 to 2005. From Camargo et 

al., 200727, their Figure 1, Copyright © 2007 American Meteorological Society. 

Figure 5: Model versus observed Atlantic hurricane counts and distributions of maximum tropical 
cyclone wind speeds. (a) Annual (August-October) counts of Atlantic hurricanes in observations and for 
the model using observed SSTs and large-scale nudging of the interior solution towards reanalyses. (b,c) 
Histograms of maximum wind speeds ms-1 (one value per storm) for each Atlantic storm observed or 
simulated by the model for the control 1980-2006 (August-October)  and global warming cases. The 
normalized histogram (c) was obtained by dividing the total number of storms observed or simulated 
during the 27 year period. This controls for differences in storm frequency between experiments or 
between the control and observations. Reprinted by permission from MacMillan Publishers Ltd: Nature 

Geoscience, Knutson et al., 200871, their Figure 1, Copyright © 2008. 

Figure 6: (Left) Tracks for all storms reaching category 4 or 5 intensity, for the control and the warmed 
18-model ensemble conditions, as obtained using the GFDL/NWS hurricane model. (Right) the spatial 
distribution of category 4 and 5 occurrences (scaled by storm counts per decade) for the combined 
control (average of the GFDL and GFDN model versions, top right); the combined CMIP3 18-model 
ensemble warmed climate results (middle right); and the difference between the warmed climate and 
control intense hurricane occurrences (bottom right). From Bender et al., 201059, their Figure 3. 
Reprinted with permission from AAAS. 

Figure 7: Number of North Atlantic tropical storms from July to November predicted by EUROSIP 
(median) starting on 1st June (thick black line) for the period 1993-2006. Retrospective forecasts were 
used for the period 1993-2004, and real-time forecast ensembles (calibrated using the median) were 
used for the period 2005-2006. The dashed grey line represents observations from July to November 
and the vertical lines represent 2 standard deviations within the multi-model ensemble distribution. 

Adapted from Vitart et al., 200794, their Figure 2, Copyright © 2007 American Geophysical Union, made 

available under the Creative Commons Attribution (CC-BY) License. 
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Figure 8: Tropical storm density anomalies (x1000) as a function of MJO phases in (left) observations and 
in the (right) model hindcasts for the period November to April 1989-2008. The MJO phases are defined 
by Wheeler and Hendon212. The anomalies are computed relative to the 1989-2008 climatology. Yellow 
and red colors indicate an increase of tropical cyclone activity. The blue colors indicate a reduction of 

tropical cyclone activity. From Vitart 2009121, their Figure 2, Copyright © 2009 American Geophysical 

Union, made available under the Creative Commons Attribution (CC-BY) License. 

Figure 9: Retrospective and future forecasts of hurricane frequency: (top) retrospective forecasts for 5-
yr-running hurricane frequency and (bottom) 9-yr-running forecasts, showing results from (left) 
uninitialized and (right) initialized experiments. Black lines show the observed 5- and 9-yr hurricane 
counts from the NOAA Hurricane Database (HURDAT; Jarvinen et al., 1984209, McAdie et al., 2009210), 
which includes an adjustment for observing inhomogeneity prior to 1966 described in Vecchi and 
Knutson (2011)211. For the retrospective forecasts, the red line shows the forecasts from the GFDL 
CM2.1 (coupled model version 2.1) system, the blue line shows the UKMO-DePreSys PPE System (United 
Kingdom MetOffice decadal prediction system), and the yellow line shows the two-system ensemble 

mean. From Vecchi et al., 2013149, their Figure 1, Copyright © 2013 American Meteorological Society.  

Figure 10: Global distribution of TC tracks during all seasons from 1979 to 2003 for (a) observations, (b) 
the PD simulation using AGCM20_3.1  - Meteorological Research Institute (MRI) atmospheric general 
circulation model (AGCM) version 3.1, (c) the PD (present day) simulation using AGCM20_3.2 (MRI 
AGCM version 3.2), and (d) the GW projection using AGCM20_3.2. The numbers for each basin show the 
annual mean number of TCs. TC tracks are colored according to the intensities of the TCs as categorized 

by the Saffir–Simpson hurricane wind scale [e.g., tropical depression (TD), tropical storms (TSs), and 

Categories C1–C5]. From Murakami et al., 2012157, their Figure 3, Copyright © 2012 American 

Meteorological Society.  
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