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The cumulative distribution function transform (CDFt) downscaling method has
been used widely to provide local-scale information and bias correction to output
from physical climate models. The CDFt approach is one from the category of sta-
tistical downscaling methods that operates via transformations between statistical
distributions. Although numerous studies have demonstrated that such methods
provide value overall, much less effort has focused on their performance with
regard to values in the tails of distributions. We evaluate the performance of CDFt-
generated tail values based on four distinct approaches, two native to CDFt and
two of our own creation, in the context of a “Perfect Model” setting in which
global climate model output is used as a proxy for both observational and model
data. We find that the native CDFt approaches can have sub-optimal performance
in the tails, particularly with regard to the maximum value. However, our alterna-
tive approaches provide substantial improvement.
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1 | INTRODUCTION

As societal actions to curb the forcing agents responsible for
anthropogenic climate change (ACC) have failed to keep
pace with those generally deemed necessary to limit the
most adverse effects (Nature Editorial, 2018), increasing
attention is being devoted to the development of plans aimed
at adapting to changing climate, both reactively and proac-
tively (Bierbaum et al., 2014). The effects of ACC cut across
diverse sectors such as agriculture, human health, water
resources, transportation, energy, and ecosystems, to name
just a few. While ACC is global in nature, adaptation typi-
cally occurs on much smaller spatial scales. In devising cop-
ing strategies policymakers often rely on specific local
information. Although global climate models (GCMs) are
the most useful resource for projecting the future effects of
ACC, they have limitations in resolving more detailed local

effects. As a result, a wide variety of techniques have been
developed to provide finer details via “downscaling.” In this
paper we examine the performance of one such method in
producing extreme values.

The cumulative distribution function transform (CDFt)
statistical downscaling method (Michelangeli et al., 2009) is
one in a category of approaches based on distributional
transformations and has been utilized in numerous studies
(e.g., Oettli et al., 2011; Colette et al., 2012; Lavaysse et al.,
2012; Tisseuil et al., 2012; Vrac et al., 2012; 2016; Flaounas
et al., 2013; Vautard et al., 2013; Vigaud et al., 2013; Fam-
ien et al., 2017) as well as commercially (https://theclimate-
datafactory.com). The transformations utilized by the
methods in this category typically involve the frequency dis-
tributions of observations in a historical period (Oh), model
values in a historical period (Mh), and sometimes model
values in a future period (Mf). The result is the generation of
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downscaled and bias-corrected values for a future period
(Df). The motivation for applying these methods includes the
reduction of systematic model biases and/or rendering infor-
mation on a smaller spatial scale than provided by physical
models such as GCMs, regional climate models (RCMs), or
reanalysis systems. Attaining the latter goal is more chal-
lenging (Maraun, 2013).

Although downscaling methods in this class have been
found to be broadly useful in an overall sense (Fowler et al.,
2007; Maraun et al., 2010; Gutierrez et al., 2018) far less
attention has been given towards evaluations of the tails of
the distributions (e.g., Kallache et al., 2011; Gutmann et al.,
2014; Cannon et al., 2015). Ironically, much of the focus in
assessing impacts of climate change is focused on extremes,
which in many applications are considered to have a dispro-
portionately large impact on natural systems.

In this paper we assess the tail behaviour of data down-
scaled using the CDFt method. This is part of a broader
ongoing effort by the GFDL (Geophysical Fluid Dynamics
Laboratory) Empirical Statistical Downscaling (ESD) team
(https://www.gfdl.noaa.gov/esd_eval) and collaborators
aimed at the evaluation of statistical downscaling methods.
While this project represents the initiation of efforts aimed at
evaluating the tails of distributions of CDFt downscaled out-
put, the immediate follow-up will consider more than a half
dozen of the commonly used distributional methods. The
reasons for first focusing on the CDFt method are threefold:
(a) in our early applications of the method we visually
noticed a tendency for it to produce outliers, (b) the mechan-
ics of the method overall are in some sense fundamentally
different from the other methods in its category, and (c) one
of CDFt’s options for producing tail values is novel.

Here we expand on some of the unique aspects of the
CDFt method [(b) and (c) above]. Most of the methods in
this category can be considered quantile mapping methods
in which quantiles and their associated inverses (i.e., values
of their cumulative distribution functions [CDFs]) are cross-
evaluated in the distributions of Oh, Mh, and Mf. Thus, a sin-
gle value to be downscaled (Mf) directly yields a downscaled
value (Df) based on a predetermined set of mappings, which
vary from method to method. Illustrations of these mappings
for some of the common methods are found in Pierce et al.
(2015). On the other hand, the CDFt method first empirically
estimates, via transformations, the downscaled CDF and
then evaluates it for the specific set of Mf values to be down-
scaled. The downscaled CDF is estimated by way of a set of
nested transformations, first from Mf to Mh, and then from
this result to Oh. Mathematically this is expressed as
(Michelangeli et al., 2009):

FDf xð Þ ¼ FOh F − 1
Mh

FMf xð Þ� �� �
, ð1Þ

where F represents the CDF and F−1 its inverse.
Another unique aspect of CDFt in its default configura-

tion is the manner in which it generates tail values in some

situations. For some distributional methods there are “out-
of-bounds” (OOB) conditions for which the base algorithm
is unable to produce downscaled values, starting from some
point in the CDF out to the end of the tail. For any given
case this may occur for either, both or neither tails. An
explanation for the CDFt OOB condition is given by Pierce
et al. (2015) and illustrated in their Figure 1c. In such a case
some other approach is used—the most common (Deque,
2007, hereinafter D07) is based on a constant correction—to
which Pierce et al. (2015) provide a cautionary note regard-
ing its utility. In this approach the difference, Df − Mf for the
“last good value,” that is, the value farthest out in the tail for
which the base algorithm is able to perform the downscaling,
is used as a constant correction factor. This difference is
added to each Mf value that has been deemed OOB to pro-
duce a corresponding Df value. Although this simple scheme
can often yield reasonable values, in some cases it can pro-
duce highly erroneous results (Lanzante et al., 2018). How-
ever, as we describe below, the CDFt method has a very
different and unique manner in which to deal with OOB
conditions.

Here we evaluate several alternative schemes for produc-
ing CDFt tail values. While some of the approaches have
been used before, others are our creations. We demonstrate
the superiority of the new methods that we introduce.

2 | DATA AND METHODOLOGY

2.1 | Data

We employ a “Perfect Model” (PM) framework in which
GCM data serve as a proxy for both observations and model.
The advantage is that the PM provides not only data for a
historical period, but also for a future state affected by con-
siderable climate change. As such, the presence of future
observations, which are not available in traditional retrospec-
tive studies, allows for a more rigorous evaluation via poten-
tial violation of the “stationarity assumption” (Dixon et al.,
2016) implicit to all statistical downscaling methods. Recent
work (Lanzante et al., 2018) highlights the value of this
approach by demonstrating that some serious problems that
appear in PM evaluations of future climate cannot be
detected in retrospective studies involving only historical
data. The Perfect Model input data (Oh, Mh, and Mf) along
with the validation data (Of) are available from the GFDL
ftp site as detailed in Appendix A.

Here we only briefly describe our PM data; the interested
reader is referred to Dixon et al. (2016) for more details.
Historical data (Oh and Mh) for daily maximum temperature
(Tmax) correspond to the time period 1979–2008. Future data
(Of and Mf), based on a high-climate-sensitivity model under
a high emissions scenario (RCP8.5), correspond to the time
period 2086–2095 and consist of three ensembles of 10 years
each. We downscale each ensemble separately and average
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verification statistics over the three members. The “observa-
tions” are simply the raw gridpoint values produced by the
GCM whereas the “model data” are the raw values which
have been spatially smoothed, yielding a mismatch in spatial
resolution typical of those found in real-world applications
of downscaling (~25 km vs. ~200 km). The spatial domain
(Figure 2; Dixon et al., 2016) is a rectangular area centred
on the conterminous 48 United States; here we exclude oce-
anic points (Pacific and Atlantic, as well as the Gulf of Mex-
ico). In this paper we generically refer to Oh and Of as
“observations” and Mh and Mf as “model” or “GCM,” which
is appropriate in the PM world, even though all data values
are technically derived from a GCM.

2.2 | Downscaling methodology

Our implementation of CDFt is based on code in the R-
language CRAN repository (https://CRAN.R-project.org/
package=CDFt) which is the source cited in the paper that
introduced CDFt (Michelangeli et al., 2009). One curious
aspect is that the scheme used in the code to handle OOB
conditions is not documented in the paper, or in any other
source that we could find. The scheme is unique in that
instead of a simple ad-hoc correction it involves “slicing
off” the tail of the Oh distribution and appending it to the
end of the Df distribution. The slice point is the value of the
CDF beyond which OOB conditions occur. We note that a
number of subsequent papers by the original authors and col-
laborators cite the use of the more common D07
(i.e., constant correction) approach to handle OOB
conditions.

In this paper we are concerned with evaluation of the
tails of the output from CDFt based on several different tail
treatments: (a) the base CDFt algorithm (i.e., that is used in
the absence of OOB conditions), which we refer to as the
CDFt base algorithm (CBA), (b) the CDFt internal tail
scheme (CIT) based on appending part of the Oh distribution
to the Df distribution, (c) the constant correction approach
(D07) and our own variants of it, which we refer to as simple
tail adjustment (SIM), and (d) our own approach which we
refer to as limited tail adjustment (LIM). Our codes for the
SIM and LIM tail schemes are provided in Supporting Infor-
mation along with some sample inputs and outputs. Given
the complexity of our nomenclature, as an aid to the reader,
the most common shorthand notions introduced to this point
as well as subsequently are detailed in Table 1.

In the case of (c) we have extended the original D07
algorithm via the introduction of a parameter “lastN-points”
(NPT). Instead of using a single value, that is, “the last good
point” to determine the additive correction factor, we allow
for an arbitrary number of points. Thus, a correction factor is
computed individually for each of NPT points and then aver-
aged, to produce the additive offset. The reasoning is that
the average of several values should produce a result that is

more representative of the difference between the Mf and Df

CDFs at the boundary of OOB conditions.
As an example of SIM adjustment suppose that we have

a set of Mf(i) values, sorted from low to high, where i = 1,n
from which we wish to generate a corresponding set of Df(i)
values. Also, suppose that the first k values of Mf(i) have
been deemed as OOB (i.e., less than the minimum Mh value)
so that the corresponding values of Df(i) are undefined.
Given the user selected value of NPT we compute a correc-
tion factor by averaging the differences between correspond-
ing values of Df and Mf:

Δ ¼
X

i¼k+1, k+NPT:

Df ið Þ−Mf ið Þ� �
=NPT, ð2Þ

The downscaled values for i = 1,k are:

Df ið Þ ¼ Mf ið Þ+Δ: ð3Þ
While this example is illustrative for the left tail, the pro-

cedure for the right tail is analogous. Note that in the original
D07 algorithm NPT = 1 always.

Our LIM adjustment borrows one of the aspects of SIM
adjustment in that it utilizes the parameter NPT. But in addi-
tion it introduces a parameter tail-length (TLN) which is a
user-defined tail length. In the case of SIM the values to be
adjusted are determined by the CDFt OOB conditions. If no
values are OOB then SIM cannot be applied. On the other
hand, LIM ignores the OOB conditions and always performs
adjustment to a tail of length TLN—therefore when LIM is
used both tails are always adjusted as specified by the
parameters. For SIM, either or both of the left and right tails
may or may not be adjusted depending on OOB conditions
in each tail. In summary, LIM adjustment is carried out in
the same fashion as SIM adjustment except that instead of
the value of k being determined by the OOB conditions the
user selects the tail length k = TLN.

2.3 | Evaluation approach

Application of downscaling is performed separately for each
gridpoint, each of 12 months, and each of three 10-year
future ensembles. We compute the mean absolute error
(MAE), using the biweight mean (Lanzante, 1996), which is
resistant to outliers, for both a given downscaling treatment
(Df) as well as for the raw GCM (Mf). We average the MAE
over all months and ensembles and then combine the MAE
values for Df and Mf yielding the skill (Wilks, 2006) which
is computed with respect to Mf:

Skill ¼ MAEMf −MAEDf

� �
=MAEMf

� �
×100%: ð4Þ

Finally, we average skill over all non-ocean gridpoints.
We report the area-averaged skill scores separately for

each of nine distributional categories (CAT1–CAT9) and
each treatment. The distributional categories represent por-
tions of the tail of a given distribution (i.e., order statistics).
Specifically, CAT1 (CAT9) corresponds to the lowest
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(highest) value in the sample, CAT2 (CAT8) the second–
third lowest (highest), CAT3 (CAT7) the fourth–sixth lowest
(highest), and CAT4 (CAT6) the seventh–tenth lowest
(highest) values. Although not the focus of this paper, all
values in the sample are included in CAT5 as a point of
interest. Some of our results are presented as averages over
all or most of the categories (weighted by number of values
each category), excluding CAT5.

Our evaluations are geared towards treatments, which we
define as the combination of a particular downscaling
approach (CBA, CIT, SIM, or LIM) and an evaluation crite-
rion (EVAL). Treatments involving SIM or LIM have asso-
ciated parameter values (NPT for SIM; NPT and TLN for
LIM). We have three evaluation criteria designated numeri-
cally by 0 (not OOB), 1 (OOB), and 2 (all). Thus, we can
separately evaluate treatments for instances in which CDFt
did (1) or did not (0) designate some of the tail values as
being OOB, or we can ignore such designations and use all
values (2) regardless of whether they were OOB or not. Note
that because the existence and number of OOB values varies
from case to case, the sample sizes for the different
categories vary.

We adopt a short-hand to designate treatments using an
alphanumeric sequence in which the first character is a letter
(C for CDFt, S for SIM, and L for LIM) and the second an
evaluation criterion (0, 1, or 2). For SIM and LIM, after the

first two characters is an underscore, followed by the two-
digit value of NPT, and for LIM another underscore fol-
lowed by the two-digit value of TLN. For example, C0 for
CBA; C1 for CIT; S1_05 for SIM, with EVAL = 1 and
NPT = 5; L2_10_20 for LIM with EVAL = 2, NPT = 10
and TLN = 20.

We have generated results for values of 1, 3, 5, 10, and
20 for NPT and 1, 10, and 20 for TLN. Economy of presen-
tation is facilitated by the smooth, monotonic and sometimes
slight dependence of skill on these parameters. Additionally,
some combinations are nonsensical (e.g., CBA with
EVAL = 1 and CIT with EVAL = 0 are null sets).

3 | RESULTS

3.1 | Skill by distributional category and treatment

Figure 1 displays the skill as a function of distributional cat-
egory where each curve represents a different treatment; line
patterns indicate downscaling method and colours indicate
evaluation criteria. Ignoring for the moment CAT5 (All) and
CAT9, we see that the poorest results are for CIT (solid red,
labelled C1) with negative or relatively small positive skills.
By comparison, CBA (solid cyan, labelled C0) yields con-
siderably better results. This indicates that the undocumented
“slicing” method performs poorly and perhaps is a reason

TABLE 1 Shorthand notation used in this paper

Shorthand in text Description Portion of distribution applicable to Figure key shorthand

CBA CDFt base algorithm All non-OBB points C0

CIT CDFt internal tail adjustment Only OBB points C1

SIM Simple tail adjustment Only OBB points SIM_{NPT}

LIM Limited tail adjustment TLN number of points in each tail LIM_{NPT}_{TLN}

OOB Out of bounds. Points for which the CDFt method
determines the CBA does not apply, hence a tail scheme
is needed to produce output

NPT “lastN-points” (applicable to SIM and LIM)
The number of “good points” (i.e., those adjacent to the

portion of a tail to be adjusted) averaged to determine the
tail adjustment factor

SIM_{NPT}; LIM_{NPT}_{TLN}

TLN “Tail length” (applicable only to LIM)
Number of tail points to be adjusted regardless of whether

the CDFt method considers them to be OBB or not

LIM_{NPT}_{TLN}

Eval criterion “0” Evaluation computed using only non-OBB points All non-OBB points

Eval criterion “1” Evaluation computed using only OBB points Only OBB points

Eval criterion “2” Evaluation computed using all points (i.e., union of
non-OBB “0” and OBB “1” points)

All points

CAT1 Minimum value at end of left tail Left tail

CAT2 Second and third smallest values Left tail

CAT3 Fourth, fifth, and sixth smallest values Left tail

CAT4 Seventh, eighth, ninth, and tenth smallest values Left tail

CAT5 All points in the distribution All points in the distribution

CAT6 Seventh, eighth, ninth, and tenth highest values Right tail

CAT7 Fourth, fifth, and sixth highest values Right tail

CAT8 Second and third highest values Right tail

CAT9 Maximum value at end of right tail Right tail

2452 LANZANTE ET AL.



why a number of authors employed the D07 approach. The
two dotted red curves correspond to SIM with NPT = 1 and
10, the former of which is the D07 approach. Comparing the
dotted and solid red curves it is apparent that the constant
correction approach is uniformly superior. A further note-
worthy point is that our modification, that is, the introduc-
tion of the NPT parameter, here using a value of 10, also
yields a modest improvement over D07.

The performance of CDFt for CAT9, that is, the maxi-
mum value, is noticeably different from all other results as
very large negative skills are found for both CIT and CBA
(~−289 and ~−387, respectively, not shown). The fact that
this behaviour occurs even when OOB conditions are not
experienced (CBA, solid cyan line) suggests that there is a
problem with the CDFt code specific to the maximum value,
separate from any issues related to the tail scheme. However,
regardless of the root cause the alternative tail schemes, SIM
and LIM, are able to remedy the problem with CAT9 as seen
by the fact that for S1 and L2 skill for CAT9 is comparable
to that for other points in the right tail. Note that for S2
CAT9 skill is depressed because it is based on C0 for non
OOB conditions as well as S1 for OOB conditions.

The solid black curve, based on CDFt for all tail values
(OOB and not OOB; the union of CIT and CBA), is not
much different from the solid cyan curve, based on CDFt
not OOB because the number of OOB cases is generally in
the minority. This can be seen in Table 2, which gives the
frequency of occurrence of the invocation of the tail
schemes. In the more interior categories where OOB is rela-
tively rare, the base algorithm dominates, but at the very
ends of the distribution (CAT1, CAT8, and CAT9) the inter-
nal scheme is invoked much more frequently (and likewise
SIM) due to the dominance of OOB conditions. Neverthe-
less, CDFt overall performs very poorly for the maximum
value (~−288, not shown). In comparison, LIM with TLN =
10 and NPT = 1 (bottom) and 10 (top) dashed black curves
indicate an improvement, moderate for most categories but
very large for the maximum. In addition, SIM evaluated for
all tail values (black dotted curves) lies between CDFt and
LIM, with the biggest advantage over CDFt for the
maximum.

The results for CAT5 (All) must be interpreted with cau-
tion. They represent skill for all values in the distribution
only for the black curves labelled C2 in Figure 1. However,
most of the other treatments for CAT5 have nearly the same
high level of skill, the exception being CIT, which is much
lower. It is noteworthy that skill for tail values for CBA and
especially CIT is considerably less than overall skill
(CAT5). The fact that LIM alone yields skill values for all
categories comparable to that for CAT5 suggests that the
LIM approach is a remedy for the shortcomings of CDFt in
the tails.

3.2 | Frequency distributions of daily errors

Figure 1 clearly demonstrates the serious problem CDFt has
in downscaling the maximum value (CAT9) and that both of
our alternate schemes (SIM and LIM) ameliorate this. In
Figure 2 we show histograms of signed, daily error for some
of the treatments. In so much as skill is a function of the
error of a downscaling scheme as compared to the error from
the GCM (without any downscaling), each panel displays
the errors for both the GCM (black, shaded grey) and a
downscaling approach (red). The top row presents error dis-
tributions for all tail distributional categories excluding
CAT9. While the distributions for downscaling and GCM
are roughly comparable, the degree to which the former dis-
tribution lies inside the latter is indicative of the skill. The
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FIGURE 1 Skill (%) as a function of distributional category for various
downscaling treatments: C0 (solid cyan), C1 (solid red), C2 (solid black),
S1_01/S1_10 (lower/upper dotted red), S2_01/S2_10 (lower/upper dotted
black), and L2_01_10/L2_10_10 (lower/upper dashed black). The abscissa
axis label gives the distributional category number (1–9) along with the
corresponding ordinal point numbers in parentheses on the left/right
indicating the first (1), second–third (2–3), fourth–sixth (4–6), and seventh–
tenth (7–10) lowest/highest values from the sample. The “All” category
includes all available values for the given treatment (i.e., non-OOB values
when EVAL = 0, OOB values when EVAL = 1, and all values when
EVAL = 2). The skill shown is the biweight mean over all non-ocean
gridpoints, three ensembles, and 12 months [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Percentages of tail adjustment type (CBA or CIT) by
distributional category

Category 1 2 3 4 6 7 8 9

Rank 1 2–3 4–6 7–10 7–10 4–6 2–3 1

CBA 38.2 83.2 94.7 97.3 94.1 84.4 53.5 16.2

CIT 61.8 16.8 5.3 2.7 5.9 15.6 46.5 83.8

Note. These occurrences are based on aggregating results over all gridpoints,
three ensembles, and 12 months, for a total of 549,468 cases for each rank.
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results for CAT9 (bottom) indicate that both CDFt tail
schemes (CBA and CIT) produce large errors, almost all
with positive sign, indicating that they systematically overes-
timate the maximum value. By contrast, even the poorest
performing of our alternative schemes (SIM_01) corrects the
problem and produces positive skill (Figure 1).

3.3 | Skill averaged over distributional categories

In examining the more detailed structure of skill by category
in Figure 1 we found that differences between treatments are
in many cases approximately constant across categories, the
largest exception being for the maximum value. To further
summarize results we examine overall differences between
treatments with special emphasis on the effect of varying
parameters NPT and TLN. As such, Figure 3 displays skill
averaged over all categories, excluding in some cases CAT9
(and of course always excluding CAT5).

To aid in the examination of Figure 3 we utilize signifi-
cance levels in Table 3 pertaining to tests of the difference in
the mean skill levels between treatments. The rationale for
and the details of the significance testing procedure are given
in Appendix B with only a brief overview here. One of the
main complications involves the fact that the mean skill
levels in Figures 1 and 3 are derived by averaging the skill
over all locations on skill maps containing up to ~15,000
gridpoints (or less depending on missing values). Since
results at nearby gridpoints are not independent of one
another we face a situation akin to, but more complex than
the field significance issue raised in the seminal paper of
Livezey and Chen (1983), hereafter referred to as LC83.

In order to account for the dependence between gridpoints
we estimate significance via Monte Carlo simulations in
which we treat a much smaller number of blocks of gridpoints
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in each category, as a function of NPT for various downscaling treatments:
C0 (solid cyan), C1 (solid red), C2 (solid black), S1_01/S1_03/S1_05/
S1_10/S1_20 (dotted red and filled circles), S2_01/S2_03/S2_05/S2_10/
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plotted arbitrarily for lastNpts = 0 [Colour figure can be viewed at
wileyonlinelibrary.com]
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as being independent of one another. For each comparison of
treatments in Table 3 there are three significance level esti-
mates based on different numbers of blocks. The first block
size (4 × 2; 8 blocks with 4 [2] divisions in the longitudinal
[latitudinal] direction), which is the same for all comparisons,
is an extremely conservative subjective estimate which we
believe is almost certainly far too small (and thus quite likely
underestimates the significance). The other two estimates are
based on a conservative and more liberal use of Monte Carlo
simulation results. By way of three very different estimates
spanning a fairly wide range of plausible solutions, we are
able to demonstrate the robustness of our results.

We begin examination of Figure 3 with consideration of
the results for CDFt (solid curves) with cyan for CBA, red
for CIT, and black for overall. There are two points for each
curve, the lower based on the weighted average of all eight
distributional categories (excluding CAT5), and the higher
excluding CAT9. We see that the skill level is considerably
higher when we exclude the problematic maximum value.
Note also that CBA has considerably higher skill than CIT
and this difference is highly significant. This result is indi-
cated in Table 3 by locating the appropriate row that lists
treatments C0 (CBA) and C1 (CIT). The categories column
lists 1–4 and 6–8, thus CAT9 has been excluded, so the
results apply to the higher red dot (C1) and higher cyan dot
(C0) in Figure 3. Given that the three values in Table 3 (0.0,
a probability in percent rounded to one post-decimal place)

all indicate a high level of significance demonstrates the
robustness of this conclusion.

We compare the D07 approach (S1_01), represented by
the left-most point on the dotted red curve, with CIT (C1),
the upper dot on the solid red curve. From Table 3 we see
that even excluding CAT9 the difference between these two
treatments is highly significant. Table 3 also shows separate
results for the left (CAT1–CAT4) and right (CAT6–CAT8)
tails, with the former at best marginally significant, but the
latter highly significant. As seen in Figure 3 most of the ben-
efit of S1_01 is in the upper tail.

Next we examine how varying NPT affects SIM. Mov-
ing from left to right along the dotted red curve there is a
monotonic increase in skill, with a proportionately larger
benefit for smaller values of NPT. Examining differences for
SIM with various values of NPT in Table 3 we see that only
the largest differences in NPT are significant. The difference
for NPT 1 versus 10 is likely significant, but for 10 versus
20 the difference is not significant. Based on these results
we consider a value of 10 for NPT to be a reasonable choice
and yielding an improvement over the D07 approach.

If we examine the overall differences in SIM (dotted
black) we see that there is very little variation in skill with
variations in NPT, and in addition there is little difference
between CDFt (upper dot, solid black) and SIM. Thus, the
benefit of SIM over CDFt is mostly for OOB conditions.
One exception to this is regarding CAT9, which when

TABLE 3 Significance level (%) testing the hypothesis that there is no difference in skill (as a weighted average over the specified distributional categories)
for the two specified downscaling treatments

Nblon × Nblat Probability (%) Treatments Categories

4 × 2, 8 × 4, 13 × 7 0.0, 0.0, 0.0 C0 × C1 1–4, 6–8

4 × 2, 9 × 5, 17 × 9
4 × 2, 9 × 5, 16 × 9
4 × 2, 12 × 8, 22 × 12

4.1, 0.0, 0.0
54.9, 21.1, 5.6
0.1, 0.0, 0.0

C1 × S1_01
C1 × S1_01
C1 × S1_01

1–4, 6–8
1–4
6–8

4 × 2, 7 × 5, 14 × 8
4 × 2, 5 × 4, 11 × 7

1.3, 0.0, 0.0
0.0, 0.0, 0.0

C1 × S1_03
C1 × S1_10

1–4, 6–8
1–4, 6–8

4 × 2, 5 × 3, 8 × 5
4 × 2, 6 × 4, 11 × 7

1.6, 0.8, 0.0
64.5, 62.1, 40.4

C2 × S2_01
C2 × S2_01

1–4, 6–9
1–4, 6–8

4 × 2, 9 × 5, 15 × 9
4 × 2, 9 × 5, 15 × 9
4 × 2, 8 × 5, 14 × 9
4 × 2, 7 × 5, 13 × 8
4 × 2, 9 × 6, 18 × 10

61.8, 37.1, 17.6
45.8, 15.4, 2.6
20.6, 3.7, 0.1
8.6, 0.5, 0.0
59.5, 30.8, 10.5

S1_01 × S1_03
S1_01 × S1_05
S1_01 × S1_10
S1_01 × S1_20
S1_10 × S1_20

1–4, 6–9
1–4, 6–9
1–4, 6–9
1–4, 6–9
1–4, 6–9

4 × 2, 5 × 3, 8 × 5 1.6, 0.8, 0.0 C2 × L2_10_10 1–4, 6–8

4 × 2, 6 × 3, 9 × 5
4 × 2, 5 × 3, 9 × 5
4 × 2, 7 × 5, 12 × 8
4 × 2, 9 × 6, 14 × 9
4 × 2, 5 × 2, 10 × 5

3.4, 1.0, 0.0
20.5, 17.4, 1.8
1.5, 0.0, 0.0
5.6, 0.0, 0.0
0.0, 0.0, 0.0

S2_10 × L2_10_10
S2_10 × L2_10_10
S2_10 × L2_10_10
S2_10 × L2_10_10
S2_10 × L2_10_10

1–4, 6–9
1–4
6–9
6–8
9

4 × 2, 8 × 4, 12 × 7
4 × 2, 8 × 4, 11 × 7
4 × 2, 7 × 5, 13 × 8

42.0, 27.1, 9.7
25.0, 9.6, 1.6
69.0, 58.9, 42.7

L2_01_10 × L2_10_10
L2_01_10 × L2_20_10
L2_10_10 × L2_20_10

1–4, 6–9
1–4, 6–9
1–4, 6–9

4 × 2, 6 × 4, 9 × 6 93.4, 97.4, 99.9 L2_01_01 × L2_01_10 1–4, 6–9

Note. For each comparison there are three probabilities (left–right) corresponding to three effective grid sizes. The grid sizes (Nblon × Nblat) are expressed as the num-
ber of blocks in the longitudinal and latitudinal dimensions. The leftmost is a subjectively determined grid dimension and is almost certainly too small. The centre (right)
grid dimensions are based on more conservative (liberal) criteria derived from Monte Carlo analysis (see Appendix B). Abbreviations for treatments as described in the
text and Table 1.
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included results in SIM being much better than CDFt for
both CBA (lower dot, solid cyan), CIT (lower dot, solid
red), and overall (lower dot, solid black).

Finally we examine the performance of LIM, represented
in Figure 3 by the dashed black curve. The black dots repre-
sent results for a TLN of 10. As NPT is increased there is a
slight increase in skill, although almost all of the differences
fail to achieve significance. Only differences in skill for
NPT 1 versus 20 are possibly significant. Varying TLN gen-
erally has little effect; the open squares show cases for which
TLN is 20. Only for a radical reduction in TLN (TLN for
open circle is 1) is there a greater impact, although the differ-
ences are not even close to being significant. Overall, based
on these results a reasonable choice for implementing LIM
is with both NPT and TLN having values of 10.

3.4 | Graphical example of tail schemes

To better understand the tail adjustment schemes a graphical
representation is given for a select case. The data for this case
are provided in Supporting Information. Figure 4 displays a
quantile–quantile (q–q) plot based on September values for a
gridpoint near Douglas, WY. While the abscissa is the GCM
value, the ordinate represents either the observed value (black)
or that from one of several tail schemes (CIT-red, SIM-cyan,
or LIM-blue). Tail scheme values closer to the observations
represent better results. The most outstanding feature is the
poor performance of CIT in the right tail as six points lie far
above the observed set of points. Both SIM and LIM yield
similar, much better results as the “constant correction” para-
digm that they employ results in a linear extension of values

out from the points in the interior of the distribution. Results
for the left tail are less dramatic as there is only a minor
change in values from CIT, although for both SIM and LIM
there is a modest improvement for the minimum value.

3.5 | Example involving extreme value analysis

In this section we provide an example of the type that a prac-
titioner might encounter, which demonstrates the ramifica-
tions of our findings. The data are similar to those used in
the previous section for a gridpoint near Douglas, WY
except that we concatenate the data from all three ensemble
members yielding a sample of 30 years. We perform an
extreme value analysis, an approach which since its intro-
duction to the study of climate change (Kharin and Zwiers,
2000) is now commonly employed.

For our analyses we adopt the block maxima approach in
which we first create a subset of data composed of the larg-
est value in each of the 30 available Septembers. We fit the
generalized extreme value (GEV) distribution to these
30 values using the “extRemes” package in the CRAN
repository (https://cran.r-project.org/web/packages/extRemes
/index.html). Such analyses are performed separately on data
from the observations (OBS), GCM, CDFt, SIM, and LIM.
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The block maxima for each case are plotted in
Figure 5a. As expected, the extremes are systematically under-
estimated by a few percent for the GCM since its data repre-
sent a spatial average of the OBS. On the other hand CDFt
often overestimates the extremes by as much as about 25%.
However, both of our tail schemes (SIM and LIM) produce
extremes that are typically close to the OBS with only a very
slight tendency for overestimation. The return levels shown in
Figure 5b reflect the tendencies reflected by the block max-
ima. The GCM consistently underestimates return levels for
the OBS by a few percent whereas CDFt shows a bias that
increases with the period, from negligible at the lowest period
(2 years) to about 25% at the highest (30 years). Our tail
schemes perform the best having a typical bias of 1% or less.

4 | CONCLUSIONS

We have examined the performance of CDFt in downscaling
values from the tails of the distribution. CDFt performs consid-
erably worse in the tails than for the rest of the distribution.
The default scheme for handling OOB conditions (CIT) does
particularly poorly across distributional categories. Although
much better than CIT, the scheme for non-OOB conditions
(CBA) is still noticeably worse in the tails than two alterna-
tives. The “constant correction” scheme (SIM), as used exten-
sively in the literature, is a significant improvement over CBA.
But we can improve upon it through our modification which
employs more values (~10 vs. 1) to compute the correction
factor. The best results come from our LIM method, which
operates much like SIM, except that it ignores the OOB condi-
tions and is applied to a user selected number of points (~10)
in the tail. Given the shortcomings identified in CDFt, and the
improvements by way of our tail adjustment schemes, in a
follow-up study we intend to apply our methodology to a num-
ber of other popular distributional-type downscaling methods.

An attempt was made to diagnose the tail behaviour of
CDFt. For a limited number of cases, at a few select grid-
points, perturbation analyses were performed in which some
of the input data were systematically, incrementally altered
over a range of values. Unfortunately, this exercise did not
uncover consistent responses and we are not able to shed
much light on the possible causes of the aberrant behaviour of
CDFt for the tails. However, we note that in some European-
based community-wide evaluations (Maraun et al., 2017;
Gutierrez et al., 2018) CDFt’s poor performance for some
selected metrics does stand out as an outlier compared to a
large number of other downscaling methods, although it is
unclear to what extent that might be related to our findings.
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APPENDIX A: PERFECT MODEL DATA FILES

The data used as input (Oh, Mh, and Mf) as well as that used
in validation (Of) are the Perfect Model data created by
Dixon et al. (2016). The files (a single ensemble member for
historical and three members for the future) are self-
documented in the NetCDF format and can be accessed as
follows:

Oh

ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFDL
-HIRAM-C360/amip/r1i1p1/tasmax/tasmax_day_GFDL-HI
RAM-C360_amip_r1i1p1_US48_19790101-20081231.nc

Mh

ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFD
L-HIRAM-C360-COARSENED/amip/r1i1p1/tasmax/tasma
x_day_GFDL-HIRAM-C360-COARSENED_amip_r1i1p1
_US48_19790101-20081231.nc
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ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFDL
-HIRAM-C360/sst2090/r1i1p2/tasmax/tasmax_day_GFDL-
HIRAM-C360_sst2090_r1i1p2_US48_20860101-20951231
.nc

ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFD
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L-HIRAM-C360_sst2090_r2i1p2_US48_20860101-20951
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Mf

ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFDL
-HIRAM-C360-COARSENED/sst2090/r1i1p2/tasmax/tasma
x_day_GFDL-HIRAM-C360-COARSENED_sst2090_r1i1p
2_US48_20860101-20951231.nc

ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFDL
-HIRAM-C360-COARSENED/sst2090/r2i1p2/tasmax/tasma
x_day_GFDL-HIRAM-C360-COARSENED_sst2090_r2i1p
2_US48_20860101-20951231.nc

ftp://ftp.gfdl.noaa.gov/perm/Oar.Gfdl.Esd/PMdata/GFDL
-HIRAM-C360-COARSENED/sst2090/r3i1p2/tasmax/tasma
x_day_GFDL-HIRAM-C360-COARSENED_sst2090_r3i1p
2_US48_20860101-20951231.nc

APPENDIX B: SIGNIFICANCE ASSESSMENT
PROCEDURE

B1 | OVERVIEW OF THE SIGNIFICANCE
ASSESSMENT PROCEDURE

Our procedure consists of two steps, the first of which is to
estimate an effective block size embedded within our grid
which we use in the second step to estimate significance.
For each assessment we have a pair of skill maps corre-
sponding to two different treatments. We wish to estimate
the significance of the difference in mean skill over the two
treatments (i.e., maps).

Following Livezey and Chen (1983), hereafter referred
to as LC83, the collection of skill values on a given map are
not independent metrics. As a simplification we can seek an
effective number of gridpoints in the same vein that Thie-
baux and Zwiers (1984) sought an effective (temporal) sam-
ple size. Our blocking procedure is also inspired by the
block bootstrap introduced by Kunsch (1989). That approach
resamples blocks of consecutive values in time series in
order to retain the essential temporal coherence. We resam-
ple blocks of adjacent gridpoints, as inspired by Hall (1985),
in order to retain the essential spatial coherence. In LC83
they equated the distribution of results from Monte Carlo tri-
als to the binomial distribution in order to infer an effective

sample size. Analogously we infer an effective sample size
by equating the distribution of our results with that from the
theoretical distribution of the Spearman correlation.

We convert an effective spatial sample size to an effec-
tive set of blocks (latitude × longitude spacing) by rounding
to the nearest integer longitude and latitude increments that
best retain the aspect ratio of the original full grid (194 ×
longitudes × 114 latitudes). The actual assignment of grid-
points to blocks is done in such a fashion so as to have
nearly the same number of gridpoints in each block.

Finally, given the approximate nature of our procedure we
subjectively estimated a minimum possible spatial sample size
through a survey of the literature. We surveyed Harnack and
Lanzante (1984), Harnack et al. (1986), Fraedrich et al. (1995),
Huang et al. (1996), Bretherton et al. (1999), Wang and Shen
(1999), and Perlwitz and Graf (2001). Because none of their
grids were the same as ours we used scaling arguments via
ratios of grid sizes. In addition, none of these works dealt with
extremes and some used monthly or seasonal rather than daily
data. Spatial scales of time-averaged data will be greater than
daily data. Furthermore, spatial scales associated with our lim-
ited sample of extreme values taken from the tails will be smal-
ler than the scales associated with data from the full distribution
as extremes may be more influenced by unique, rarer or more
isolated local factors. In using our judgement when given
choices, we erred on the side of smaller estimates. We were
very conservative in our estimate (4 × longitudes × 2 latitudes)
and consider this to be almost certainly too few blocks.

B2 | DETERMINATION OF EFFECTIVE
BLOCK SIZE

The starting point is a pair of skill maps corresponding to
two treatments. Since maps may have missing values we
first fill these (but not ocean points that have been masked
out) via bivariate interpolation (IDSFFT) obtained as Fortran
code in the NCAR graphics package contained in the NCAR
Command Language (NCAR, 2017).

Each trial utilizes three uniform random numbers vary-
ing between 0 and 1. Two are used to generate random trans-
lations/shifts (i.e., a fraction of the total grid dimension) in
the longitudinal and latitudinal dimensions. As needed we
wrap values around the edges and only shift between interior
land points (i.e., ignore ocean points). The other random
number is used to assign a random algebraic sign. In sum-
mary, in this step we translate the original maps semi-rigidly,
preserving the essential patterns and attendant spatial scales,
yet randomizing the phase (i.e., position).

The next step is to compute the Spearman pattern corre-
lation (r) between the original pair of maps and the shifted
pair. These correlations are based on the same set of valid
(i.e., non-missing) gridpoints as in the original pair of maps.
We perform 1,000 trials and accumulate the correlations as
well as their Fisher-z transforms (F):
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F ¼ 0:5× ln 1+ rð Þ= 1− rð Þ½ �: ðB1Þ
We compute (a) the variance of the correlations and

(b) the average of the values that place 2.5% of the distribu-
tion in the lower and upper tails. For (a) we invert the for-
mula for the standard error of the Spearman correlation (σ):

σ ¼ 0:6325=√ n− 1ð Þ, ðB2Þ
and for (b) we invert the formula for the z-score used in
assessing the Fisher’s z of the Spearman correlation:

z ¼ F ×√ n− 3ð Þ=1:06½ � ðB3Þ
(https://en.wikipedia.org/wiki/Spearman%27s_rank_correla

tion_coefficient). The inversion processes yields two sample
sizes (n) for which method (a) tends to yield smaller estimates
than that of (b).

B3 | PERMUTATION TEST FOR
SIGNIFICANCE

For each of the three block sizes (two quantitative and
one subjective) we can derive estimates of significance

employing a Monte Carlo procedure based on a pool per-
mutation procedure (Preisendorfer and Barnett, 1983). For
each trial we construct pseudo-maps corresponding to
each of the two treatments. These are constructed by ran-
domly assigning each block of gridpoint values to one of
the maps. This assumes that there is no difference between
the two maps (the null hypothesis) so that the values are
interchangeable. By reassigning blocks rather than individ-
ual gridpoints we attempt to retain the essential coherence
between gridpoints. Since not all blocks have the same
number of gridpoints it may be necessary to split a block
in order for the number of gridpoints on each pseudo-map
to equal those from the original maps.

After all blocks have been reassigned the mean skill over
each is computed and the absolute value of the difference in
skill is saved. After 1,000 trials the absolute value of the dif-
ference in mean skill between the two original treatment
maps is referenced in the distribution from the trials to deter-
mine a significance level.
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