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Core Ideas 

 USDA crop condition ratings are a statistically significant covariate for yield and can 

be used in practice. 

 Crop conditions tend to deteriorate as the season progresses while historically 

variability increases.  

 Crop conditions were poorest on average and had the highest interannual variability in 

the southern Great Plains. 

 Since 1986, crop conditions in the Great Plains have deteriorated significantly while 

variability has increased. 

 The southwestern and southeastern U.S. significantly improved in crop conditions, 

while variability decreased. 

 

United States Crop Conditions: 1986–2022 

Abbreviations: CCIndex, Crop Condition Index 

ABSTRACT 

USDA National Agricultural Statistics Service general crop condition data are used to 

quantify the relationship between crop conditions and yield, condition tendencies during the 

growing season, how conditions vary across the U.S., and how conditions have trended for 

the 1986–2022 period for a variety of crops: barley (Hordeum vulgare L.), corn (Zea mays 

L.), cotton (Gossypium hirsutum L.), oats (Avena sativa L.), peanuts (Arachis hypogaea L.), 

rice (Oryza sativa L.), sorghum (Sorghum bicolor L.), soybeans (Glycine max L.), and spring 

and winter wheat (Triticum aestivum L.). Crop conditions are a statistically significant 
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covariate (90% significance level) for yield and can be used in practice on a weekly basis. 

This becomes increasingly important as, historically, crop conditions not only deteriorated on 

average, but became more variable throughout the growing season. Spatial differences in 

conditions, variability, and trends in condition ratings and variability are caused by crop 

selection, regional climate, and management practices such as irrigation. Crop conditions 

were poorest and had the highest interannual variability across the southern Great Plains 

region. Since 1986, crop conditions in the Great Plains region have deteriorated significantly, 

while variability has increased. Meanwhile, crop conditions across the southwestern and 

southeastern U.S. have significantly improved, while interannual variability in conditions 

experienced robust declines. Given climatic and hydrologic trends, to maintain a positive 

trend in yield, continued advancements in production management and technology are 

required. Critical decisions regarding real-time or future management can be supplemented 

by using crop condition risk assessment information along with actively monitoring weekly 

conditions. 

1 INTRODUCTION 

Agriculture across the U.S. is vast and diverse, promoting global food security, 

economic growth, nationwide development, and environmental sustainability. Significant 

increases in agricultural productivity over the past century unequivocally make the U.S. 

enterprise a global leader in product export, supplying commodities to markets across the 

globe to keep pace with population growth and resource use (International Trade 

Administration, 2012; Jung et al., 2021). Therefore, ensuring a resilient agricultural system 

requires advancements in technology, management, and hybrids, especially within the 

context of an evolving climate leading to more frequent weather extremes that will 
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consequently amplify the risk of crop production losses (Nicholls, 1996; Milly et al., 2002; 

Schmidhuber & Tubiello, 2007; Delgado et al., 2013; Ray et al., 2013; Walthall et al., 2013; 

Wheeler & Von Braun, 2013; Pryor et al., 2014; Lesk et al., 2016; Mase et al., 2017; Bundy 

et al., 2022). These frequent weather extremes include observed and future projected 

increases in drought severity and occurrences (Strzepek et al., 2010; Wehner et al., 2017; Jin 

et al., 2017; Martin et al. 2020), extreme precipitation episodes (Min et al., 2011; Westra et 

al., 2013; Zhang et al., 2013; Bindoff et al., 2013; Feng et al., 2016; Easterling et al., 2017; 

Changnon & Gensini, 2019), warmer than normal temperatures (Dittus et al., 2015; Vose et 

al., 2017; Angel et al., 2018), and an increased number of severe thunderstorms leading to 

increased regional wind and hail damage in the U.S. (Gensini et al., 2014; Gensini & Mote, 

2015; Brimelow et al., 2017; Gensini & Brooks, 2018; Tang et al., 2019; Gensini, 2021; 

Ashley et al., 2023; Kaminski, 2023). Moreover, changes in climate amplify the risk of other 

nontrivial agricultural facets that ultimately affect crop production, which include changes in 

phenological stage timing (Hartfield et al., 2011, 2015), soil integrity (Rosenzweig et al., 

2002; Pruski & Nearing, 2002; Delgado et al., 2013), nutrient requirements (Takle et al., 

2006; Cai et al., 2015), weed competition (Wolfe et al., 2008; Clements & Ditommaso, 2011; 

Jinger et al., 2017; Ramesh et al., 2017), and other pest and disease pressures (Munkvold & 

Yang, 1995; Anderson et al., 2004; Wu et al., 2011; Bebber et al., 2013; Hurburgh, 2016; 

Wienhold et al., 2017; Angel et al., 2018). 

 Given the importance that climate has on agricultural production, it is critical to 

continuously monitor crop conditions from early stages of growth through harvest. By 

frequently examining crop health, quality, and productivity through the growing season, 

agricultural stakeholders gain insight on crop production and make decisions in situ to 

maximize yield potential (Lehecka, 2014; Khaki et al., 2021). Satellites and other remote-
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sensing mechanisms that derive the normalized difference vegetation index, temperature 

condition index, enhanced vegetation index, leaf area index, and others monitor crops 

globally throughout their growth cycle (Anastasiou et al., 2018; da Silva et al., 2017). 

Agrometeorological models and machine learning approaches are also widely used to 

monitor conditions and estimate yield (Geipel et al., 2014; Khaki et al., 2021). The weekly 

release of the USDA National Agricultural Statistics Service (NASS) Crop Progress and 

Condition (CPC) report is one of the most widely used resources and the most requested 

publication distributed by NASS (Lehecka, 2014). These reports provide subjective estimates 

of crop progress and condition ratings, which are crucial in the agricultural market (Bain & 

Fortenbery, 2013; Lehecka, 2014). Previous literature has noted that, given the size of 

farming operations, these manual field surveys are not as efficient as other mechanisms such 

as remote sensing (Van Wart et al., 2013). Despite this claim, it is argued the NASS CPC 

report can capture the complexities of assessing the conditions of a crop better than any 

agrometeorological model or remote sensing product since the elaborate network of “people 

as sensors” contains expert knowledge from thousands of surveyors (Begueria & Maneta, 

2020). Not only are these data crucial for speculators in agriculture future markets, but they 

are also commonly used as a first-look for in-season yield predictions (Fackler & Norwood, 

1999; Kruse & Smith, 1994; Irwin & Good, 2017a, 2017b; Irwin & Hubbs, 2018; Begueria & 

Maneta, 2020) and for overall risk assessment of intergrowing season trends and variability in 

crop conditions over the historical record (Bundy & Gensini, 2022). More recently, there 

have been efforts to analyze the response of crop conditions to extreme weather perils such as 

tropical cyclones (Bundy et al., 2023). Yet, no study has examined all crops in the CPC report 

to verify the relationship between conditions and yield, quantify condition tendencies during 
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the growing season, or quantify crop condition trends over the historical record for all 

qualifying crops. 

 This research expands on Bundy & Gensini (2022), which examined corn conditions 

throughout the Midwest U.S., to encompass all crops with a sufficient historical dataset and 

expand analyses for the entire conterminous U.S. USDA NASS general crop condition data 

are used to 1) quantify the relationship between crop conditions and yield to justify using 

these data in research and for risk assessment, 2) quantify the spatiotemporal climatology of 

conditions, and 3) quantify spatiotemporal trends in conditions across ten different major 

field crops: barley (Hordeum vulgare L.), corn (Zea mays L.), cotton (Gossypium hirsutum 

L.), oats (Avena sativa L.), peanuts (Arachis hypogaea L.), rice (Oryza sativa L.), sorghum 

(Sorghum bicolor L.), soybeans (Glycine max L.), and spring and winter wheat (Triticum 

aestivum L.). Collectively, these crops contribute nearly 90% of total U.S. cropland 

production, with over 240 million acres harvested annually (USDA, 2023a). Thus, 

recognizing seasonal patterns of crop conditions and how they have trended during the 

general crop condition historical record (1986–2022) is useful for market speculators, 

policymakers, insurers, farmers, and other stakeholders involved in agricultural or applied 

sciences. This research is novel in that, for the first time, it quantifies vital spatiotemporal 

condition tendencies and trends for a multitude of U.S. crops to support key decision-making 

processes for farming strategies. The results are to serve as the baseline condition climatology 

for each state-crop combination and be utilized in future investigations pertaining to 

agricultural sustainability. Stakeholders may use these results to implement effective 

management strategies to maximize resilience against an evolving climate, maximize 

productivity and economic well-being, and ensure a sustainable agricultural future. 
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2 MATERIALS AND METHODS 

2.1 USDA NASS data procedures 

Approximately 3,600 survey respondents, primarily consisting of extension agents 

and Farm Service Agency staff, are asked to report subjective estimates of crop progress and 

conditions based on standard definitions for the entire week ending on Sunday (USDA, 

2023b). These reported data are reviewed for reasonableness and consistency by comparing 

them with data from previous weeks, historical averages, and data from surrounding counties. 

USDA Field Offices summarize these raw data to state levels while weighting each county’s 

reported data by NASS county acreage estimates. Although data are collected at county level, 

the weekly USDA NASS CPC survey is designed to provide national and state estimates in 

part to protect the confidentiality of growers whose operations may cover much of the 

production in a county (Rosales, 2021). State estimates are submitted to the Agricultural 

Statistics Board, where they are compared with those of surrounding states and assembled 

into a national aggregated summary by weighting each state by its respective acreage 

estimates. 

For the general crop conditions portion of the report, reporters are asked to estimate the 

percent of their crop in excellent, good, fair, poor, or very poor condition. General crop 

condition categories defined by the USDA are as follows (USDA, 2016): 

 Excellent: Yield prospects are above normal. Crops are experiencing little or no stress. 

Disease, insect damage, and weed pressures are insignificant. 

 Good: Yield prospects are normal. Moisture levels are adequate, and disease, insect 

damage, and weed pressures are minor. 
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 Fair: Less-than-normal crop condition. Yield loss is a possibility, but the extent is 

unknown. 

 Poor: Heavy degree of loss to yield potential, which can be caused by excess soil 

moisture, drought, disease, etc. 

 Very Poor: Extreme degree of loss to yield potential; complete or near crop failure. 

The USDA-defined Crop Condition Index (CCIndex) was calculated for each report through 

the following (Rosales, 2021): 

     CCIndex = (5 ∗ %Ex𝑐𝑒𝑙𝑙𝑒𝑛𝑡 + 4 ∗ %G𝑜𝑜𝑑 + 3 ∗ %F𝑎𝑖𝑟 + 2 ∗ %P𝑜𝑜𝑟 + %Very Poor) / 100          

(1) 

This weighted index provides a rating summarizing the current state of weekly conditions for 

the five crop conditions. The CCIndex ranges from [1, 5], with an index rating of 5 

corresponding to 100% of the surveyed crop being reported in excellent condition and an 

index rating of 1 corresponding to 100% of the crop being reported in very poor condition. 

Since excellent and good conditions are more conducive to normal to above-normal yields, an 

increase in these two ratings results in an increase in the CCIndex (Supplemental Figure S1). 

Fair conditions, while a less than normal crop condition, lower the CCIndex, and poor and 

very poor conditions lower the CCIndex as well with higher explanatory power. There are 

other approaches to using the USDA general crop condition information, including adding 

the percent of crops rated excellent or good (Irwin & Good, 2017a, 2017b; Irwin & Hubbs, 

2018). Though, it has been argued that only using good and excellent rating information is a 

disadvantage since the bottom three categories (fair, poor, and very poor) are not considered 

in weekly analyses (Bain & Fortenbery, 2016). Other approaches used an index that 

combines all condition categories and ranges from [0, 100] to assess market responses to crop 
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condition changes (Bain & Fortenbery, 2016), yield responses to crop condition changes 

(Fackler and Norwood, 1999; Jorgensen, 2014; Jorgensen & Diersen, 2014; Bundy & 

Gensini, 2022), and weather peril impacts on crop condition changes (Bundy et al., 2023). 

The decision to use the USDA version of a crop condition index (Rosales, 2021) attempts to 

attain consistency across future research endeavors using these state-level data and to stay 

consistent with the newer gridded crop condition dataset that dates to 2015 (Rosales, 2021). 

The breakdown of results for each condition category (excellent, good, fair, poor, very poor) 

for each crop and state may also be appealing to a wide range of stakeholders and may be 

found in the Supplemental Material for this research (Supplemental Figure S1–S5, 

Supplemental Table (S1–S4).  

While these data have been proven reliable in a peer-reviewed research setting, there 

are still limitations worth noting. Limitations include: 1) the USDA NASS crop condition 

data are subjective estimates, meaning human error and biased interpretation are a possibility 

(Begueria & Maneta, 2020); though, the quality control process performed by the USDA 

helps to limit error; 2) state-level aggregation, which is a limitation for particularly larger 

states (e.g., Texas) that may have considerable condition variability within the state; 3) these 

data do not account for double-cropping, which may impact timing of planting dates, growth 

cycle, and, in turn, variability in crop conditions; 4) these data do not account for irrigation, 

thus rainfed and irrigated crops are not separated; 5) it has been speculated there may have 

been changes to the methodology of estimating crop conditions or changes in the make-up of 

crop observers over time (Irwin & Good, 2017b), which could impact these data and the 

subsequent results. Nonetheless, results of this research will still appeal to those in the 

industry, as any insight on seasonal condition tendencies and trends adds value to what could 

perhaps be critical decisions needing to be made in future agricultural management. 
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2.2 Data collection 

General crop condition data were collected from the USDA NASS for barley, corn, 

cotton, oats, peanuts, rice, sorghum, soybeans, winter wheat, and spring wheat (USDA, 

2023a). These ten crops were selected due to their complete historical record. All other crops 

in the USDA NASS database have historical condition data dating to 2014, and not all have 

national aggregated data. Weekly condition data were available at national level aggregation 

for the 1986–2022 period (37 years) for all crops except oats, peanuts, and rice, which were 

available for the 1996–2022 period (27 years). Crop condition data at the state level were also 

gathered over the same epochs for each crop but varied temporally as not all states had the 

same number of years of data for each crop (Table 1). Each state needed to have at least 90% 

of the 37-year data (barely, corn, cotton, sorghum, soybeans, spring wheat, and winter wheat) 

or 27-year data (oats, peanuts, and rice) for each week in their respective growing seasons to 

be used for this analysis. While not every crop-producing state was used in this analysis, 

states that were used combined for a high percentage of the total U.S. production. 

Specifically, these states accounted for the following average U.S. yields of the following 

crops during this period: barley, 77%; corn, 92%; cotton, 98%; oats, 68%; peanuts, 97%; rice, 

95%; sorghum, 98%; soybeans, 93%; spring wheat, 98%; winter wheat, 89%. 

 

Table 1. Number of years of crop condition data by state and crop, and percent of U.S. 

production of the crop in each state (1986–2022). Top three producing states are bolded for 

each respective crop. 

State Barley Corn Cotton Oats Peanuts Rice Sorghum Soybean S Wheat W Wheat 

Alabama     9 0.2% 37 3.7% 0 0.7% 27 11.7%     0 0.2% 23 0.3%     9 0.4% 

Arizona 9 1.3% 0 0.0% 35 4.0%             1 0.2%         3 0.1% 

Arkansas     9 0.5% 37 8.0% 0 0.8% 8 3.4% 37 45.4% 34 2.9% 37 3.9%     37 2.0% 

California 0 2.5% 0 0.2% 36 10.3% 0 1.3%     36 20.4% 1 0.2%         37 1.7% 
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Colorado 9 3.2% 37 1.3% 1 0.0% 0 0.9%         33 1.8%     5 0.5% 37 5.0% 

Connecticut     9 0.0%                               

Delaware 9 0.7% 9 0.2%                     9 0.2%     9 0.3% 

Florida     0 0.1% 6 0.7%     27 8.4%                 0 0.1% 

Georgia     23 0.4% 37 10.3% 9 1.2% 27 45.9%     4 0.3% 23 0.3%     23 0.8% 

Idaho 27 19.3% 9 0.1%     8 1.1%                 37 7.1% 37 3.9% 

Illinois     37 16.0%     4 3.0%         33 1.7% 37 15.4%     37 3.4% 

Indiana     37 7.5%     0 1.3%             37 8.2%     37 1.9% 

Iowa     37 18.2%     27 8.9%             37 15.2%     0 0.1% 

Kansas 0 0.3% 37 3.9% 18 0.4% 0 2.1%         37 42.8% 37 3.5%     37 23.1% 

Kentucky 0 0.3% 37 1.5%     0 0.3%           0.3% 37 1.9%     9 1.6% 

Louisiana     9 0.5% 37 4.5%         37 14.2% 34 2.1% 37 1.3%     9 0.5% 

Maine 7 0.4% 9 0.0%     9 1.3%                       

Maryland 9 1.2% 9 0.5%     0 0.4%         0 0.1% 9 0.6%     9 0.8% 

Massachusetts     9 0.0%                               

Michigan 7 0.3% 37 2.5%     13 3.6%             37 2.4%     37 2.4% 

Minnesota 27 6.2% 37 9.6%     27 12.0%             37 9.1% 37 15.7% 0 0.1% 

Mississippi     9 0.6% 37 9.0%     10 2.1% 37 7.0% 20 1.0% 37 2.3%     9 0.6% 

Missouri     37 3.3% 37 3.5% 0 0.9%     21 5.3% 33 5.0% 37 6.4%     37 2.9% 

Montana 27 16.8% 9 0.0%     9 1.7%             1 0.0% 37 15.6% 37 4.7% 

Nebraska 0 0.3% 37 11.8%     27 3.6%         37 9.4% 37 6.8%     37 4.3% 

Nevada 0 0.2% 1 0.0%                         1 0.1% 1 0.0% 

New 

Hampshire 
    9 0.0%                               

New Jersey   0.1% 9 0.1%     0 0.2%             9 0.1%     9 0.1% 

New Mexico   0.2% 9 0.1% 23 0.6%     9 0.8%     29 1.0%         13 0.4% 

New York 9 0.2% 9 0.6%     9 3.2%             9 0.4%     9 0.4% 

North 

Carolina 
9 0.5% 37 0.8% 37 4.7% 9 1.1% 27 8.2%     9 0.2% 37 1.5%     37 1.7% 

North Dakota 27 28.4% 23 1.7%     27 11.3%             23 3.3% 37 45.7% 9 0.5% 

Ohio 0 0.1% 37 4.3%     27 3.8%         1   37 6.5%     37 3.5% 

Oklahoma 0 0.2% 9 0.3% 37 1.9% 9 0.7% 27 2.9%     37 3.0% 9 0.3%     37 8.4% 

Oregon 9 2.1% 8 0.1%     8 1.8%                 9 1.0% 37 3.1% 

Pennsylvania 8 1.4% 37 1.1%     27 4.8%         0 0.1% 9 0.6%     9 0.6% 

Rhode Island     9 0.0%                               

South 

Carolina 
0 0.1% 9 0.3% 37 1.9% 5 0.9% 21 3.4%       0.1% 23 0.4%     9 0.6% 

South Dakota 8 2.5% 37 4.4%     27 11.7%         37 2.1% 37 4.6% 37 9.7% 37 3.3% 

Tennessee     23 0.8% 37 4.1%             4 0.5% 37 1.6%     9 1.2% 

Texas 0 0.2% 37 2.0% 37 31.6% 18 3.3% 27 13.6% 37 7.7% 37 27.4% 9 0.2%     37 5.9% 

Utah 9 1.7% 9 0.0%     5 0.4%                 5 0.2% 9 0.4% 

Vermont     9 0.0%                               

Virginia 9 1.3% 9 0.4% 23 0.7% 4 0.2% 27 3.4%         9 0.6%     9 0.8% 

Washington 27 6.3% 9 0.2%     7 0.7%                 23 4.6% 37 7.6% 

West Virginia     9 0.0%     0 0.2%             9 0.0%     9 0.0% 

Wisconsin 0 0.8% 37 3.8%     27 12.0%             23 2.0% 0 0.1% 9 0.8% 

Wyoming 9 2.6% 9 0.1%     5 0.8%                 5 0.1% 9 0.3% 

 

Annual national yield data were gathered from the USDA QuickStats portal for each 

crop used in this analysis and summarized for each growing season in the study period 

(USDA, 2023a). A linear trend adjustment was applied to national annual yield data to 

eliminate long-term increasing or decreasing crop yield trend biases. The linear trend 

adjustment equation used is as follows (Irwin & Good, 2017a; Bundy & Gensini, 2022):  
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𝑌𝑎𝑑𝑗  =  𝑌 +  [ 𝛽1( 𝑥𝑖  −  𝑥𝑛)]                                                       (2) 

where Y is the respective year’s crop yield, β1 is the rate of change in the 37-year or 27-year 

yield data, 𝑥𝑖 is the total number of years used, and 𝑥𝑛 is the year number. Crop production 

data were also gathered by state and aggregated nationally from the USDA QuickStats portal 

(USDA, 2023a). Data were converted to kg and used to compute growing season crop 

production means over the study period and compared with the national mean to compute the 

percent of each state’s crop that contributes to national production (Table 1). 

2.3 Methods 

An exploratory correlation analysis was first conducted to understand the relationship 

between weekly and annual average crop condition ratings and yield. Pearson’s correlation 

coefficient was computed between weekly national CCIndex ratings and national yield for 

each crop during the study period. Standardized anomalies were computed for national 

detrended crop yield numbers and correlated against each crop’s annual CCIndex average. 

Standardized anomalies were computed as: 

𝑧 =  
𝑥 – 𝜇

𝜎
                                                                             (3) 

where z represents the number of standard deviations the yield is above or below the mean, χ 

is the detrended yield for the specific year, μ is the yield mean, and σ is the yield standard 

deviation. Next, a crop condition spatiotemporal analysis was generated using weekly 

CCIndex ratings and annual CCIndex averages from national and state perspectives. To 

characterize conditions during the entire growing season as opposed to just one week or 

month, annual CCIndex averages were analyzed for each state and crop. Evaluating crop 

condition variability was a key component of performing a risk assessment of crop conditions 

across the nation. Interannual standard deviations were examined using year-to-year average 
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CCIndex ratings for each state. Standard deviations were calculated using the 1986–1987 

CCIndex, then 1987–1988, and so on through the 2021–2022 CCIndex ratings for each crop 

and state. Trends were calculated at state and national levels using Theil-Sen’s slope analysis 

due to its efficient computation and insensitivity to outliers (Wilcox, 2010). Statistical 

significance of Theil-Sen’s slope was assessed using Kendall’s τ statistic at a 90% 

significance level (p-value <0.10). For simplification, a final analysis aggregated all crops by 

state to compute the annual CCIndex. State-crop-weighted averages, variability, and trends 

were computed as follows: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶𝐶𝐼𝑛𝑑𝑒𝑥 = ∑ (𝐶𝐶𝐼𝑛𝑑𝑒𝑥 ∗ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)
𝑛

𝑛= 1
                       (4) 

where n is the total number of crops by state. States with no crops were disregarded. The 

CCIndex rating for a crop was multiplied by the percent of production that crop has in the 

state (Table 1). The result of the multiplied values for each crop was then summed together 

to attain the weighted CCIndex rating for each respective state. This same procedure was 

replicated for trends, standard deviations, and p-values for each state.  

 

3 RESULTS AND DISCUSSION 

3.1 Exploratory correlation 

Historically, as the growing season progressed, the correlation coefficient between 

U.S. crop conditions (CCIndex) and crop yield generally increased, meaning the 

predictability of yield prospects using USDA NASS general crop condition data was apparent 

(Fig. 1). For corn, which is the most widely produced crop in the U.S. (Economic Research 

Service, 2020), the increasingly positive relationship occurred from late May into mid-July, 
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as the correlation coefficient peaked at 0.87 during week 29. After which, the correlation 

remained significant and steady between 0.84 and 0.87 for the remainder of the growing 

season. Other crops such as barley, sorghum, soybeans, and spring wheat started their shorter 

growing seasons with a medium-to-large correlation (Cohen, 1988) between CCIndex and 

yield ranging from 0.46–0.57 and finished their seasons with a large correlation above 0.80. 

Oats and peanuts are two crops that also finished their seasons with large correlation 

coefficients of 0.50 and 0.57, respectively. Meanwhile, cotton and rice held a steadily small 

correlation through July, then, in general, increased linearly from August through September 

before ending with a medium correlation at 0.40 and 0.35, respectively. Notably, these were 

the only two crops to end the growing season with only a medium correlation (>0.30, <0.50). 

 

Figure 1. Pearson correlation coefficient between weekly CCIndex ratings and annual 

detrended yield for each crop examined over the study period (1986–2022). 

 

However, this does not disregard using cotton and rice condition data for yield prospect 

analysis, as the relationship through September was still statistically significant at the 90% 
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significance level. For winter wheat, which was the only crop in this analysis with a boreal 

winter growing season, correlations between CCIndex ratings and yield in the beginning 

portion of the growing season (November) were small (ranging from 0.15–0.23). When 

general crop condition reporting resumed in April, this positive relationship improved from 

0.58 to 0.71 by the end of June. Overall, an increasing correlation between crop conditions 

and yield was present for each crop examined, which may arise from potential difficulties in 

early-season assessments during vegetative crop stages. Lower early-season correlations are 

also attributed to the effects of weather and other variables having relatively small influences 

on yield when compared to more weather-sensitive stages such as pollination (Wescott & 

Jewison, 2013). It was typically during critical early reproduction periods in the growing 

cycle when crop condition ratings adjusted to information on growing conditions, and, as a 

result, correlations between crop condition ratings and yield were larger (Irwin & Good, 

2017a; Bundy & Gensini, 2022). Additionally, management practices may also impact the 

correlation between crop conditions and yield. For example, rice and cotton receive the most 

irrigation of any other crop in this research—all of rice is produced in irrigated fields, and 

over one-third of cotton production is also irrigated (USDA, 2019; USDA, 2023a; USDA, 

2023c), and this may impact the subjective assessment of crop conditions, resulting in lower 

predictability between crop conditions and yield. For crops such as corn, soybeans, sorghum, 

and spring and winter wheat, less than 15% of the national production for each of these crops 

receives irrigation (USDA, 2019; USDA, 2023a). Therefore, using the general crop condition 

data for dryland or rainfed crops is perhaps more useful for the entire growing season (i.e., 

for each week) than heavily irrigated crops. 

 Despite the subjectivity of the general crop condition survey, the average annual 

national CCIndex was a statistically significant covariate for yield for each crop except rice 
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and cotton (Fig. 2). The statistically significant (90% significance level) explanatory power 

suggests annual average CCIndex ratings can be used to predict yield prospects not only for 

Midwest corn (Bundy & Gensini 2022), but also for national barley, corn, oats, peanuts, 

sorghum, soybeans, spring wheat, and winter wheat (Figs. 2a, 2b, 2d, 2e, 2g, 2h, 2i, 2j). As 

the CCIndex increases (as crop conditions improve), in general, yield prospects will also 

increase, and vice versa. It should be noted that the best predictor for yield when using 

general crop condition data was the final week CCIndex (Fig. 1), especially for cotton and 

rice. Though, using the annual average CCIndex incorporates the entire growing season’s 

crop conditions and can be efficiently evaluated from year to year. In addition, even when 

averaging CCIndex ratings to annual levels for each crop, over 50% of the variation in barley, 

corn, sorghum, soybean, and spring wheat yield could be explained by the respective annual 

average CCIndex. To a lesser explanatory power (15–40%), variation in oats, peanuts, and 

winter wheat yield could also be explained by the annual average CCIndex. 
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Figure 2. U.S. annual average CCIndex ratings plotted against detrended yield standardized 

anomalies for each crop and growing season (1986–2022). Regression r2 and p values are 

listed for each crop. 

 

Therefore, the existing relationship between weekly and annual CCIndex ratings with yield 

provides additional merit to exploring spatiotemporal patterns and trends in crop conditions 

across the U.S. The consideration of multiple influences on crop conditions, such as 

advancements in technology and hybrids, weather variability, soil variability, pest and disease 

pressure, genetic variability, and aforementioned management practices (e.g., irrigation), are 

also contributing factors to the variation between crop conditions and yield. Nonetheless, the 
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relationship between crop conditions and yield was still significant and may be used in 

practice with accuracy. 

3.2 Climatology 

3.2.1 Temporal climatology 

Given the positive linear relationship between CCIndex and crop yield, the trend of 

crop conditions on a weekly basis through the growing season has important implications for 

yield prospects. On average, crop conditions throughout the growing season tended to either 

1) remain steady, then decline at a certain point before stabilizing or slightly improving, 2) 

remain steady before declining for the rest of the season, or 3) improve for much of the 

season before stabilizing in the final weeks (Fig. 3). Crops that remained steady, transitioned 

to a decline, and then stabilized toward the end of the season include corn, which transitioned 

to a decline by weeks 26 and 27 (early July) and then stabilized by week 36 (early 

September), and cotton and peanuts, which both decreased later in the growing season by 

weeks 31 and 32 (early to mid-August) before stabilizing by the end of September (Figs. 3b, 

3c, 3e). The major difference between these crops was their seasonal CCIndex averages, as 

corn was the highest among these three crops at 3.64, peanuts at 3.62, and cotton at 3.39. To 

an extent, soybeans and sorghum followed a similar seasonal pattern to corn, though the later 

start to their respective growing seasons resulted in a steady decrease generally in mid-June 

before stabilizing in mid-September (Figs. 3g, 3h). Both soybeans and sorghum were in the 

bottom half of seasonal CCIndex averages across all crops at 3.55 and 3.49, respectively. 

Barley, oats, and spring wheat conditions tended to start steady within the first few weeks 

after emergence before deteriorating for the remainder of their growing seasons through 

August (Figs. 3a, 3d, 3i). These three crops also had considerable differences in their 
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seasonal CCIndex averages, as barley was the highest at 3.68, spring wheat at 3.60, and oats 

at 3.58. Winter wheat conditions generally started steady in weeks 44–47 (November) before 

subtly declining to the lowest CCIndex on average of any crop at 3.25 in June (Fig. 3j). 

Winter wheat possessed the lowest seasonal condition of any crop in the U.S. on average, 

with a seasonal CCIndex average of 3.36.  

For most crops, total CCIndex rating declines from the start of the growing season to 

the end were from -0.10 to -0.25 on average; i.e., the total area of crops more favorable for 

normal or above-normal yield decreased as the growing season progressed.  
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Figure 3. Box and whisker plots of weekly CCIndex ratings by crop over the 1986–2022 

study period. Each box and whisker present a seven-number summary: white circles represent 

outliers; whiskers represent the 1.5 multiple of the inner-quartile range; boxes represent first 

quartile (25th percentile) and third quartile (75th percentile) values; black horizontal line 

within boxes represent the median value; white squares represent the mean value. Gray-

shaded and white areas represent monthly intervals. 

 

Of the 37 growing seasons examined (27 total for barley, oats, and peanuts), at least 70% of 

these seasons exhibited a negative slope between the first week’s CCIndex and the final 

week’s rating for each crop (except rice). Deteriorating conditions were especially 

noteworthy around critical reproduction periods, which are particularly weather-sensitive 

periods for U.S. crops. Overall, crop condition depletion during the growing season can be 

caused by water stress, nutrient depletion, disease, pests, weed pressure, soil structure, crop 

management practices (or lack thereof), and severe weather events (e.g., August 2020 Corn 

Belt derecho; Hosseini et al., 2020). Previous research has quantified the correlation between 

weather and climatic variables with crop conditions and observed increasingly higher 

correlation coefficients (r > 0.50) between Palmer Drought indices and precipitation 

accumulation with crop conditions throughout the growing season (Bundy & Gensini, 2022). 

Therefore, the high degree of explanatory power between weather and climate variables with 

weekly crop conditions inherently requires close monitoring of weather throughout the 

growing season.  

Rice was an exception to these overall deteriorating conditions, as, on average, 

CCIndex ratings increased subtly by 0.12 from the end of May through the beginning of 

September (Fig. 3f). This increasing slope from the end of emergence to the start of harvest 
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occurred in 29 of the 37 rice-growing seasons (78%). Rice also had the highest-rated crop 

conditions, with a seasonal CCIndex average of 3.78. In large part, this was due to rice 

having maintained the lowest weekly CCIndex variability and being the only crop to decrease 

in condition variability as the growing season progressed (a decrease in CCIndex standard 

deviation between the first and last growing season weeks of -0.05), which can be explained 

by all U.S. rice being produced in irrigated fields (USDA, 2023c). All other crops examined 

increased in CCIndex variability as the growing season progressed. While there were 

fluctuations throughout the season, the CCIndex standard deviation difference between the 

first couple weeks of the growing season and final weeks was between 0.07 and 0.17 for all 

crops. In total, there were eleven seasons that had at least one week for at least one crop with 

a CCIndex rating outlier, and all these years were driven by some degree of drought 

conditions (e.g., 2012; Rippey, 2012). This lends additional credence to previous findings 

that indicate drought is the leading peril for crop loss across the U.S. (Perry et al., 2020; 

Bundy & Gensini, 2022). Condition coverage by category (excellent, good, fair, poor, very 

poor) provides additional perspective on condition exposure and vulnerability to change, 

which can be examined from Supplemental Figures S2 and S3. 

3.2.2 Spatial climatology 

When examining crop conditions across the U.S., a discernible spatial pattern in 

annual CCIndex averages and annual variability can be recognized across all crops (Figs. 4, 

5). 



 

 

 

This article is protected by copyright. All rights reserved. 

 

 

Figure 4. Annual average CCIndex ratings by state over the 1986–2022 study period for each 

crop. 
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Figure 5. Annual average CCIndex standard deviations by state over the 1986–2022 study 

period for each crop. 
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Annual averages and variability for each condition and each state-crop combination are 

provided in Supplemental Tables S1 and S2. States with crops in better condition (higher 

CCIndex average) generally retained lower interannual variability (correlation coefficient of -

0.55) and were, therefore, at less risk for interannual crop condition fluctuations. Spatial 

variability in crop conditions among states can be explained by large-scale factors such as 

regional climate (Li et al., 2019), soil suitability and water requirements (Trnka et al., 2014), 

and agricultural practices including crop selection, harvest area, technology, hybrids, and 

irrigation (Li et al., 2019). Starting with northern-tier crops, barley and spring wheat 

conditions exhibited analogous spatial patterns, as Idaho held the highest annual CCIndex 

average of 3.92 and 3.85, respectively, both of which were in the top ten highest ratings for 

any state-crop combination (Figs. 4a, 4i). Idaho also exhibited the lowest condition 

variability, with an annual CCIndex average standard deviation for both barley and spring 

wheat of < 0.10 (Figs. 5a, 5i). Spatially, eastern barley and spring wheat growing areas 

(North Dakota and Minnesota) maintained slightly better crop conditions compared to 

western growing areas (Washington and Montana). For oats, which is another crop generally 

grown across the northern U.S., conditions were marginally better in central portions of oat 

acreage than elsewhere—including Minnesota, Wisconsin, and Iowa (Fig. 4d). Oat crop 

variability displayed a distinct spatial pattern, with the northern Great Plains acreage 

possessing a higher CCIndex standard deviation (σ difference over 0.25) when compared to 

states east of the Missouri and Red Rivers (Fig. 5d). Additionally, five oat states with 

exceedingly low CCIndex variability (σ < 0.18) were in the bottom ten lowest for all state-

crop combinations. 

For crops with core acreage in the Midwest (corn and soybeans), conditions were 

lowest on average generally in southern U.S. states—including Texas, Kansas, Missouri, 
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North Carolina for corn, and Missouri, Arkansas, and Louisiana for soybeans (Figs. 4b, 4h). 

Missouri displayed the worst corn and soybean conditions, with annual CCIndex averages 

below the national average of just 3.39 and 3.32, respectively. Corn Belt states—Illinois, 

Indiana, Iowa, Minnesota, and Nebraska—that collectively consist of over 60% of U.S. corn 

and soybean production, occupied above-normal corn and soybean conditions with CCIndex 

ratings above national averages (except Indiana). Meanwhile, the central and southern Great 

Plains had the highest condition variability, with annual CCIndex standard deviations 

exceeding 0.40 (Figs. 5b, 5h). Sorghum also had particularly variable conditional averages 

across the Great Plains. Texas and Kansas, which consist of 70% of U.S. sorghum 

production, retained an annual CCIndex average of 3.38 (lowest of sorghum states) and 3.55 

(second highest of sorghum states), respectively (Fig. 4g). Also, variability for sorghum 

conditions was high, as standard deviation values in seven of the ten sorghum-growing states 

were exceedingly higher than the national annual CCIndex standard deviation average of 0.32 

(Fig. 5g).  

Southern U.S. dominant crops such as cotton, peanuts, and rice vary amongst each 

other for their respective crop conditions. For cotton, Texas maintained the second lowest 

annual CCIndex average of any state-crop combination at 3.17, which was 0.37 below the 

national cotton CCIndex average (Fig. 4c). Furthermore, Texas was the only state to have a 

higher percent coverage of fair-conditioned cotton crops than good-conditioned ones 

(Supplemental Table S1), and notably, Texas produces over one-third of U.S. cotton. These 

below-normal cotton conditions extended throughout the southern Great Plains and into 

Missouri. Meanwhile, southwestern U.S. states—Arizona and California—displayed the best 

conditions among cotton states with CCIndex ratings of 3.90 and 4.08, respectively. Both 

cotton condition ratings were in the top ten for any state-crop combination. California rice 
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was also in the top ten for highest CCIndex averages at 3.90, and further, each rice state was 

at least 0.10 higher than the national CCIndex average of 3.59 (Fig. 4f). Condition variability 

for all rice and peanut states (except Alabama) was generally low, with standard deviations 

below the national average (Figs. 5e, 5f). Alabama and Texas held the poorest conditions of 

all peanut states, with improving conditions northward through the mid-Atlantic region (Fig. 

4e). Winter wheat also displayed a distinct spatial pattern, as below-normal conditions were 

prevalent across the southern Great Plains while conditions improved through eastern and 

western winter wheat acreage (Fig. 4j). Texas, Oklahoma, and Kansas winter wheat CCIndex 

averages were in the bottom 10 lowest ratings across all state-crop combinations, with the 

Texas rating of 2.99 being the lowest of any state-crop combination. Texas is the only state to 

have a higher percentage of winter wheat crops in fair condition than in good condition for 

any state-crop combination (Supplemental Table S1). Conversely, winter wheat in California 

held the highest annual CCIndex average of any state-crop combination at 4.14. Seasonal 

predictability of winter wheat conditions was difficult in the Great Plains with observed 

higher variability (standard deviation exceeding 0.40 with three states being in the top ten of 

any state-crop combination), but was generally lower in year-to-year fluctuations across 

eastern and western wheat acreage (Fig. 5j). 

When aggregating all qualifying crops together (and weighting each state by their 

respective production averages), a comprehensive overview of U.S. crop conditions reveals 

distinguished spatial variances (Fig. 6). 
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Figure 6. Annual average production weighted CCIndex a) ratings and b) standard deviations 

for each state. 

 

Overall, three general assessments were made: 1) crop conditions across portions of the 

western U.S. (Arizona, California, and Idaho) were better on average, with annual CCIndex 

ratings above 3.80; 2) much of the southern Great Plains experienced the worst crop 

conditions, with annual CCIndex ratings below 3.40; and 3) crop conditions across the 

northern Great Plains, Midwest, and Southeast U.S. regions were generally near-normal on 
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average, deviating only slightly from the national CCIndex average of 3.60 (Fig. 6a). From 

worst to fifth-worst—Oklahoma, Wisconsin, Missouri, Texas, and Alabama were the bottom 

five states in terms of crop conditions; crop conditions in California, Arizona, Idaho, 

Virginia, and Nebraska were the top five (from best to fifth-best). Notably, each of these top-

conditioned states is heavily irrigated, except Virginia (Ruess et al., 2023). The western U.S. 

also generally held the lowest interannual condition variability, with average CCIndex 

standard deviations below 0.30 (Fig. 6b). Low crop condition variability was also prevalent 

across the Mississippi Delta region. Meanwhile, neighboring states in the southern Great 

Plains (Oklahoma and Texas, in particular) maintained high crop condition variability, with 

annual CCIndex standard deviations above 0.45. The southern Great Plains is a region where 

notable crop expansion occurred, particularly during the 2008–2016 period (Lark et al., 

2020). This expansion has not necessarily led to a positive yield differential for corn, 

soybeans, and wheat in the region, and the examination of crop conditions confirm that these 

croplands occupy areas with marginal biophysical characteristics such as nutrient or moisture 

deficiencies and/or climatic stress (Scanlon et al., 2012; Xie et al., 2019). 

3.3 Trends 

3.3.1 Temporal trends 

At the national level, barley and peanuts were the only two crops to have 

distinguished improvements in conditions in most weeks (Fig. 7). Increases were especially 

noteworthy and statistically significant from August onward, with CCIndex increases 

exceeding 0.010 · yr-1. Moreover, ten of the sixteen weeks with an increasing trend in peanut 

conditions were statistically significant at the 90% significance level. Increasing peanut 
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condition trends from weeks 35–40 were the most robust of any weekly trends for all crops, 

with a max CCIndex increase of 0.018 · yr-1 (week 37). 

 

 

Figure 7. Theil-Sen slope results of interweekly trends in U.S. CCIndex ratings by crop 

(1986–2022). Slope units are rating increases or decreases in CCIndex per year. Hatching 

signifies statistical significance at the 90% confidence level using Kendall’s Tau statistic. 

 

Crops with practically no trend in conditions at the national level include rice, soybeans, and 

spring wheat, with most weeks exhibiting a statistically insignificant subtle CCIndex increase 

of less than 0.005 · yr-1. Crops with predominantly a decreasing trend in conditions over most 

weeks include corn, cotton, oats, sorghum, and winter wheat. For corn, the first few weeks of 

the growing cycle from the end of May into early June (weeks 22–24) have subtly improved 

in conditions before changing to a subtle decline from late June (week 26) onward. The most 

robust decreasing corn condition trends occurred in September, with CCIndex trends lower 

than -0.005 · yr-1, though only two of the fourteen weeks with a decreasing trend were 

statistically significant. For cotton, each growing season week experienced a deterioration in 
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conditions, with eleven of the seventeen weeks with statistically significant declining trends 

in CCIndex ratings. Cotton has the longest weekly streak of any crop with a statistically 

significant deteriorating trend, which was nine weeks in a row from July through August. The 

most distinct decreasing trends in conditions were with oat crops, as six of the eleven 

growing seasons underwent statistically significant declines in the CCIndex lower than -0.008 

· yr-1. Each week during the winter wheat growing season has experienced a decline in 

conditions since 1986. Winter wheat also experienced a long streak (eight weeks in a row) of 

decreasing statistically significant condition trends starting at the end of October, continuing 

into November, and then into April of the following calendar year within its respective 

growing season. CCIndex trends ranged from -0.009 to -0.010 · yr-1 for winter wheat 

throughout the season. Despite deteriorating condition trends at the national level for some 

crops, yield for each crop has experienced a general linear increase since the start of the study 

period (USDA, 2023a). The contradicting trends between conditions and yield reflect 

advancements in yield-enhancing technology, new hybrids, crop genetics, nitrogen 

management and timing, other pest and nutrient management, and precision planting that 

result in higher per-hectare plant populations (Gehl et al., 2005; Schmidt et al., 2002; Kant et 

al., 2012; Wescott & Jewison, 2013; Hartfield & Walthall, 2015; Watson et al., 2018). 

3.3.2 Spatial trends 

 Consistent with state-level averages and variability, distinct spatial trends were also 

observed for both CCIndex rating and variability trends (Figs. 8, 9). General condition rating 

and variability trends, along with specific state-crop categorical results, can be examined in 

Supplemental Figures S4, S5, and Supplemental Tables S3, S4. Barley and spring wheat, 

which are comparable in growing area and displayed related patterns in conditions, also 

displayed similar spatiotemporal trends in conditions to an extent (Figs. 8a, 8i). Noteworthy 
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trends include barley in Montana with a statistically significant CCIndex increase of 0.015 · 

yr-1; spring wheat and barley in Minnesota with CCIndex increases exceeding 0.012 · yr-1; 

and CCIndex trends for both crops in Idaho of less than -0.006 · yr-1. Annual trends in 

condition variability for barley and spring wheat were mostly insignificant across growing 

areas (Figs. 9a, 9i). Further east for oat crops, conditions across most states were mostly 

increasing, except for the Great Plains, where the most robust CCIndex decrease (-0.012 · yr-

1) occurred in South Dakota (Fig. 8d). While decreasing condition trends for oats in Nebraska 

were insignificant, the decreasing trend in annual variability was significant with a CCIndex 

trend of -0.015· yr-1 (Fig. 9d). Improvements in oat conditions in the northern Midwest were 

also generally insignificant (Ohio is the exception, with the highest increase in conditions at 

0.0054 · yr-1).  

Midwest and Great Plains dominant crops such as corn, soybeans, and sorghum 

displayed similar spatiotemporal patterns in condition trends over time. These three crops 

underwent some of the most robust trends in both improving and deteriorating directions at 

the state level. Across primary Corn Belt acreage, condition trends were mostly insignificant 

for corn and soybeans. Though, trends throughout much of the Great Plains have degraded 

significantly for corn, soybeans, and sorghum, with CCIndex decreases worse than -0.0083 · 

yr-1 (Figs. 8b, 8g, 8h). 
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Figure 8. Theil-Sen slope results for annual trends in CCIndex ratings by U.S. state for each 

crop (1986–2022). Slope units are rating increases or decreases in CCIndex per year. 

Hatching signifies statistical significance at the 90% confidence level using Kendall’s Tau 

statistic. 
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Figure 9. Theil-Sen slope results for trends in CCIndex annual-averaged standard deviations 

by U.S. state for each crop (1986–2022). Slope units are standard deviation increases or 

decreases per year. Hatching signifies statistical significance at the 90% confidence level 

using Kendall’s Tau statistic. 
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In fact, both corn and soybeans in Kansas have experienced the two most robust declines in 

conditions (CCIndex decreases below -0.017 · yr-1) of any state-crop combination. Sorghum 

in Kansas also experienced a significant deterioration of conditions (tenth worst trend of any 

state-crop), with CCIndex trends of -0.014 · yr-1. In the Mississippi Delta and southeastern 

U.S. regions, conditions have increased significantly, especially for soybeans, with CCIndex 

increases greater than 0.010· yr-1. Mississippi soybeans experienced a top-ten increasing 

trend with CCIndex increases of 0.018· yr-1. When examining variability trends for these 

three crops, trends were generally opposite to condition rating trends (Figs. 9b, 9g, 9h). 

Condition variability has decreased in various states throughout the Midwest, while 

variability increases were observed in the southern Great Plains, where conditions have 

deteriorated throughout the historical record. Though for corn and soybeans in Kansas, which 

displayed robust decreases in conditions, variability has also decreased over time. Decreasing 

trends in soybean condition fluctuations were especially notable, with the most states with a 

statistically significant decreasing trend in interannual CCIndex variability (six states total).  

Southern U.S. dominant crops such as cotton, peanuts, and rice displayed similar 

spatial trends in conditions as, in general, the southern Great Plains (Texas in particular) 

experienced significant declines while the southwestern and southeastern U.S. experienced 

significant improvements in conditions (Figs. 8c, 8e, 8f). Texas cotton experienced a top-ten 

deterioration of conditions with a CCIndex trend of -0.014 · yr-1. Peanut crops in South 

Carolina and Alabama, along with cotton crops in Arkansas, South Carolina, and Alabama, 

were in the top ten for improving condition trends (CCIndex increases exceeding 0.015 · yr-

1). For condition variability, trends were most distinct in the southeastern U.S., with cotton 

and peanut conditions decreasing (Figs. 9c, 9e), while rice variability trends were nonexistent 

(Fig. 9f). For winter wheat, conditions have decreased significantly in the Great Plains while 
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only increasing statistically significantly in California (Fig. 8j). Winter wheat in Colorado, 

Kansas, and Texas was in the top ten for most robust declines in conditions of any state-crop 

combination. Meanwhile, variability in winter wheat conditions has subtly increased in the 

southern Great Plains and for much of the southern half of the U.S. (Fig. 9j). Notably, 

variability has decreased significantly in Kansas, and this, coupled with a decline in 

conditions over time, increases confidence in year-to-year deteriorating conditions. 

When aggregating all crops together and weighting each state by production, distinct 

trends in crop conditions have been observed (Fig. 10a). Overall, rating trends in general 

were not statistically significant across the northern half of the U.S., except for South Dakota. 

Across the Great Plains, a substantial degradation in crop conditions was noted, with 

CCIndex decreases exceeding -0.010 · yr-1, particularly in Kansas, Texas, and Colorado, 

which were driven by declining conditions in corn, cotton, rice, sorghum, soybeans, and 

winter wheat. The southwestern U.S. experienced a statistically significant increase in 

conditions, which were driven by improvements in cotton, rice, and winter wheat conditions. 

Also, the southeastern U.S. also experienced substantial increases in the CCIndex, with trends 

exceeding 0.010 · yr-1—largely driven by improvements in cotton, peanuts, rice, and 

soybeans. Increasing condition trends in the southeastern and southwestern U.S. are highly 

influenced by higher irrigated acreage when compared to other agricultural regions (Ruess et 

al., 2023). This is especially true for the Mississippi Delta and southeastern U.S., where 

irrigation for agriculture has significantly increased since 1997 (Hrozencik, 2021), and these 

changes are reflected in the increase in crop condition ratings and decrease in rating 

variability. 
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Figure 10. Theil-Sen slope results for a) production-weighted annual CCIndex rating trends 

in crop conditions by state and b) production-weighted trends in annual-averaged CCIndex 

standard deviation (1986–2022). Slope units are increases or decreases in a) CCIndex rating 

and b) standard deviation per year. Hatching signifies statistical significance at the 90% 

confidence level using Kendall’s Tau statistic. 

 

South Carolina, Alabama, Mississippi, Tennessee, and Georgia are the top five states with the 

most robust improvements in crop conditions since 1986. For variability trends, the only 

significant trends were on the decreasing side and were for Iowa, Pennsylvania, Alabama, 
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and Georgia (Fig. 10b). Overall, the area with the poorest crop conditions on average and the 

highest annual variability was also where the most robust declines in conditions and increases 

in variability were located, which was the southern Great Plains. This is a region where the 

overall deteriorating trends and lower-than-normal crop conditions can be traced to increases 

in average and extreme temperatures (Vose et al., 2017), vulnerability to drought (Kloesel et 

al., 2018), and significant declines in irrigated acreage due to increasing scarcity in 

groundwater resources in the Ogallala Aquifer (McGuire, 2017; Hrozencik, 2021). Since crop 

expansion in the region has resulted in only marginal yield differentials, and as crop 

conditions continue to decline, it needs to be considered whether the return on crop 

production is worth the costs to wildlife and other natural habitats (Lark et al., 2020).  

4 CONCLUSIONS 

USDA NASS general crop condition ratings within weekly CPC reports are critical 

for monitoring near-real-time conditions and gaining insight on yield prospects. As the 

correlation coefficient between condition ratings and yield for barley, corn, cotton, oats, 

peanuts, rice, sorghum, soybeans, spring wheat, and winter wheat increases during the 

growing season, weekly monitoring of these ratings becomes increasingly important and is a 

respectable approach for forecasting yield. The correlation between crop condition ratings 

and yield was notably higher during critical reproduction phenological stages in the growing 

cycle, which was when weekly crop condition declines became more apparent for most crops 

on average. Spatial differences in conditions, variability, and trends in condition ratings and 

variability are highly impacted by crop selection, regional climate, and management practices 

such as irrigation. The highest risk for lower-than-normal annual crop conditions, along with 

where crop condition declines were observed over the historical record (1986–2022), was in 
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the Great Plains. Therefore, the total coverage for corn, cotton, rice, sorghum, soybean, and 

winter wheat crop conditions that are more favorable for some degree of yield loss has 

increased significantly in the region. This is especially concerning given observed climatic 

and hydrological trends as well as future projections across the Great Plains, including 

increasing temperatures, increasing occurrences of drought, and depleting groundwater 

levels. Meanwhile, crop conditions across the southwestern and southeastern U.S., which are 

driven by cotton, peanuts, rice, and soybeans, have improved significantly, while interannual 

variability in conditions has decreased. Overall, advancements in management, technology, 

and hybrids need to continue under a changing climate to reverse declining crop condition 

trends and maintain stabilized or improving trends in the U.S. Despite these data being 

subjective estimates of crop conditions, they have proven to provide value in research and 

practical settings. These findings, along with using weekly USDA NASS crop condition 

ratings across all crops, can provide essential risk assessment information for producers and 

other stakeholders. Future crop condition analyses should also continue to further our 

understanding of state-crop risk on a weekly and annual basis, potential future changes in 

yield, and responses to both optimal and adverse weather conditions. Additionally, each state-

crop condition result should be investigated further to understand why conditions have 

trended and how to sustain or improve them. Such efforts will increase the overall 

understanding of the U.S. agricultural landscape and ensure a sustainable future for 

generations to come.  

SUPPLEMENTAL MATERIAL 

Supplemental material provides specific crop condition percentages for each general 

condition category (excellent, good, fair, poor, very poor). 
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