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ABSTRACT: As climate change accelerates, societies and climate-sensitive socioeconomic sectors
cannot continue to rely on the past as a guide to possible future climate hazards. Operational
decadal predictions offer the potential to inform current adaptation and increase resilience
by filling the important gap between seasonal forecasts and climate projections. The World
Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead
Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which
annually provides a large multimodel ensemble of predictions covering the next 5 years. This
international collaboration produces a prediction that is more skillful and useful than any single
center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal
Climate Update (GADCU), a consensus forecast based on these predictions. This update includes
maps showing key variables, discussion on forecast skill, and predictions of climate indices such as
the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates
the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at
least 1 year in the next 5 years, which helps policy-makers understand how closely the world is
approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU,
introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital
climate information for society now and in the future.
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s Earth’s climate changes rapidly due to anthropogenic activity, predictive climate
information has become increasingly crucial to help society prepare for these changes

and attendant worsening of weather and climate extremes. Such information has been
available from internationally coordinated sources in the form of seasonal to multiseasonal
predictions issued monthly, and long-term climate projections to 2100 and beyond. The latter
encompass the current epoch but do not constrain the timing of naturally occurring climate
variability. Lacking until recently has been an authoritative source of predictive climate
information for intermediate time scales from a year to a decade that considers near-term
climate predictability, especially one that is updated more frequently than the approximately
7-yr interval between Intergovernmental Panel on Climate Change (IPCC) Assessment Reports.
Decadal predictions were developed to fill the gap between the time scales of seasonal
forecasts and climate change projections in order to predict climate over the next few years,
out to 10 years (and sometimes longer). On these time scales initial conditions (mainly those
in the ocean) are important as well as external climate forcings, including greenhouse gases,
solar variability, tropical volcanoes, and anthropogenic aerosol (Kushnir et al. 2019). Hence
initialized climate predictions are designed to provide climate information for the coming
decade, while climate projections are designed for longer time scales (Meehl et al. 2014;
Smith et al. 2019). Decadal predictions are able to skillfully predict many aspects of climate
including global temperature (Doblas-Reyes et al. 2013; Smith et al. 2018), Atlantic variability
(Hermanson et al. 2014; Yeager and Robson 2017), Atlantic hurricane frequency (Smith et al.
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2010; Caron et al. 2018), Sahel drought (Sheen et al. 2017), Arctic sea ice extent (Yeager et al.
2015), and wildfire in North America (Chikamoto et al. 2017).

Such demonstrations of the skill of decadal predictions provided strong motivation for
developing operational predictions for the time range between operational seasonal predic-
tions and climate projections. A strong impetus for international coordination was provided
by prior demonstrations that multimodel ensemble forecasts are generally more skillful and
reliable in predicting past climate than such forecasts from a single model (Hagedorn et al.
2005; Kirtman et al. 2014; Choudhury et al. 2017). Experience from seasonal and decadal
predictions also shows that the current generation of models underestimate important climate
signals (Eade et al. 2014; Scaife and Smith 2018; Smith et al. 2020). Large ensembles are
needed to capture the predictable signal in such cases, although the signal will still be too
small in amplitude. As a step toward creating an operational multimodel decadal prediction
ensemble, an informal exchange of decadal predictions among modeling centers around the
world was started at the Met Office in 2010 (Smith et al. 2013) to produce a large multimodel
ensemble of real-time decadal forecasts.

Building on this informal exchange, the World Meteorological Organization (WMO)
established the operational Lead Centre for Annual to Decadal Climate Predictions
(LC-ADCP) in 2017 (WMO 2019). The LC-ADCP issues annually updated predictions out to
5 years ahead that are based on a large multimodel ensemble (more than 100 members) and
are published on its website (www.wmolc-adcp.org, accessed November 2021). As a means to
encapsulate and disseminate these predictions, the World Climate Research Programme’s
Grand Challenge on Near Term Climate Prediction (www.wcrp-climate.org/gc-near-term-climate-
prediction, accessed November 2021) recommended the initiation of an annually issued
decadal climate outlook along the lines of the WMO’s Global Seasonal Climate Update
(https://public.wmo.int/en/our-mandate/climate/global-seasonal-climate-update, accessed November
2021). Following this recommendation, the LC-ADCP in 2020, and again in 2021, released
a Global Annual to Decadal Climate Update (GADCU) which summarizes its predictions
issued in those years. The GADCU provides an Executive Summary, a description of the
observed climate of the last 5 years to provide context, and maps showing predictions for
key climate variables together with explanatory text highlighting important aspects of
the predictions and noting where they are skillful. In addition, predictions of key climate
indices such as the global mean near-surface temperature and Atlantic multidecadal
variability are provided.

An additional function of the GADCU is to frame the predicted evolution of annual mean
global temperature over the coming 5 years in relation to the 1.5°C threshold of warming from
preindustrial levels (reference period 1850-1900) that is a focus under the Paris Agreement.
This is achieved by providing an annually updated probability that at least one of the next
5 years will exceed the threshold, emphasizing that such exceedances are expected, initially
at least, to be temporary as a consequence of interannual variability superimposed on the
warming trend. The increase of these probabilities from year to year provide a warning that
1.5°C warming of the mean climate is being approached.

The broader importance of the GADCU and operational decadal predictions in general
stems from the vulnerability of societies and ecosystems especially in less developed regions
to negative aspects of climate variability and change, which include increased drought fre-
quency, heatwave intensity, wildfires, floods, epidemics, and agricultural pests, as well as
energy demand and risk of conflict. Decadal predictions are highly relevant for planners
and policy-makers to develop strategies for adaptation and increased resilience (Kushnir
etal. 2019), for supporting the UN Sustainable Development Goals by giving advance warning
of potential climate hazards, and for developing climate services that can be used to reduce
exposure to natural hazards and increase prosperity (Hewitt et al. 2020).
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In this paper, we, the authors who developed the GADCU and provide the forecasts that
inform it, highlight the key outputs from the GADCU (which is available on the LC-ADCP
website) as a source of annually updated decadal prediction information for societal appli-
cations. Predictions for the 5-yr period 2021-25 are first described, emphasizing historical
skill and hence confidence levels of the forecasts. We next evaluate a past real-time forecast
for 2016-20 produced using similar methodologies to forecasts in the GADCU. Finally, we
summarize the prospects for the GADCU and how it can inform decision making and climate
research in the years to come.

Initialized climate predictions

The data used at the WMO LC-ADCP and for the GADCU come from the Global Producing
Centres (GPCs) and the Contributing Centres. The GPCs are approved by the WMO and con-
tribute a forecast every year. These are currently Barcelona Supercomputing Center, Canadian
Centre for Climate Modelling and Analysis, Commonwealth Science and Industrial Research
Organisation, Deutscher Wetterdienst, and Met Office. The Contributing Centres contribute
data to the multimodel ensemble when priorities and funding allow. For the forecast
shown here these were Bjerknes Centre for Climate Research, Centro Euro-Mediterraneo sui
Cambiamenti Climatici, Danish Meteorological Institute partnered with Swedish Meteoro-
logical and Hydrological Institute, Geophysical Fluid Dynamics Laboratory, Japan Agency
for Marine-Earth Science and Technology partnered with the University of Tokyo/National
Institute for Environmental Studies, Meteorological Research Institute, and Naval Research
Laboratory. This gives an ensemble size of well over 100 members. All centers, except the
Naval Research Laboratory, have also provided retrospective forecasts (hindcasts) for skill
evaluation. The predictions were initialized and started at the end of 2020 and the forecast
anomalies shown are from a climatology covering the years 1981-2010. Biases are reduced
by calculating the anomalies from a lead-time-dependent climatology calculated separately
for each model (see appendix E of Boer et al. 2016).

We start by presenting predictions for two important climate indices included in the GADCU.
The first is annual global mean near-surface temperature, which is closely monitored by
the WMO as it is the primary indicator of climate change. The prediction shown in Fig. 1a
indicates that the annual global mean near-surface temperature is likely to be at least 0.3°C
above the 1981-2010 average in each of the coming 5 years, which is about 1°C warmer
than preindustrial levels (defined as the average over the period 1850-1900). On the right of
Fig. 1a we show skill scores for global mean near-surface temperature ensemble mean (top
panel, calculated as in Goddard et al. 2013) and the contingency table for the probabilistic
forecast (bottom panel). Our confidence in forecasts of global mean temperature is high since
hindcasts show high skill in all measures.

The histogram inset in Fig. 1a, which refers to the brown right-hand axis shows that
there is approximately a 40% chance that at least 1 of the next 5 years will be more than
1.5°C warmer than preindustrial levels. Furthermore, it shows that this chance is increas-
ing with time. The preindustrial conditions are estimated to be 0.68°C cooler than the
1981-2010 reference. This offset is nevertheless uncertain and varies between 0.61° and
0.75°C depending on the observational datasets used so that the chance of 1 year exceed-
ing 1.5°C above preindustrial levels is between 25% and 65%, with 40% being the current
best estimate.

The chance of at least 1 year exceeding the current warmest year, 2016, in the next
5 years is 90% and the chance of the 5-yr mean for 2021-25 being higher than the last 5 years
is 80%. These exceedance probabilities are better constrained as they refer to recent years
when observations are of higher quality, greater coverage, and increased spatial resolution
as compared to earlier historical periods.
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Fig. 1. Multiannual predictions of annual mean (a) global mean near-surface temperature and (b) Atlantic multidecadal
variability (AMV) relative to 1981-2010. Annual mean observations are in black, the forecast is in blue, hindcasts are in
green, and uninitialized simulations are in gray. The shading indicates the 90% confidence range. The probability for
above average (compared to 1981-2010) in the 5-yr mean of the forecast is written at the bottom of the main panel (in
parentheses the probability for above average in the next year). Hindcast skill scores are shown in the top-right panel,
with the square and the cross showing the correlation skill and mean square skill score (MSSS) for 5-yr means, respectively.
Significant correlation skill (at the 5% confidence level) is indicated by solid circles and square. The contingency table for
the prediction of above average 5-yr means is shown in the bottom-right panel (in parentheses values for above average
in the next year). For (a), inset in the main panel, referring to the right-hand axis, is the probability of global temperature
exceeding 1.5°C above preindustrial levels for at least 1 year during the 5 years starting in the year indicated (brown bars).
This probability is calculated as in Smith et al. (2018) by counting the proportion of ensemble members that predict at
least 1 year above 1.5°C. Observed temperature is an average of three observational datasets: HadCRUT5 (Morice et al.
2021, updated), NASA GISS (Hansen et al. 2010, updated), and NCDC (Karl et al. 2015, updated). The AMV in (b) is the dif-
ference between two regions: 45°-60°N, 60°W-0° minus 45°5-0°, 30°W-10°E, closely related to the index used in Roberts
et al. (2013), but adapted to not cover land areas, as we use near-surface temperature (since we do not have sea surface
temperature data).

The second index we consider is the Atlantic multidecadal variability (AMV), which mea-
sures interdecadal changes of basin-wide warming and cooling in the North Atlantic (Sutton
et al. 2018). This variability has impacts on temperature and rainfall over land surrounding
the North Atlantic Ocean, particularly in summer, and modulates the number of hurricanes
(Trenberth and Shea 2006; Sutton and Dong 2012; Martin and Thorncroft 2014; O’Reilly
etal. 2017). Predictions in Fig. 1b indicate a 77% probability that AMV will be positive (relative
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to the 1981-2010 climatology) when averaged over the next 5 years. However, AMV is likely
to be lower than recent peak values seen in the 2000s. As can be seen on the right side of
Fig. 1b, skill for the AMV is lower than that of global mean near-surface temperature, but is
still high both for single years and the 5-yr mean with a high hit rate for the probabilistic
forecast of above average. We therefore have medium to high confidence in this prediction.
An important part of the GADCU are maps of predicted fields, which are useful for under-
standing the features of regional climate. In Fig. 2 we show predictions for 2021 regional
temperature, mean sea level pressure, and precipitation, the ensemble mean prediction in
the left column and the probability of exceeding the 1981-2010 average in the right column.
Deterministic skill of the multimodel ensemble mean is assessed in the left column of Fig. 3
using the Pearson correlation. In the right column, the skill of the probabilistic forecast for
above-average conditions is assessed using the area under the receiver operating characteristic
curve (ROC). For both measures, red shows areas of high skill and pale or blue areas have

Ensemble mean forecast for 2021 Probability of above average
surface temperature surface temperature

-3 -1 0.0 1 3 0.0 0.2 0.4 0.6 0.8 1.0
Anomalies from 1981-2010 (°C)

sea-level pressure
5 %

-2 -0.5 0.0 0.5 2 0.0 0.2 0.4 0.6 0.8 1.0
Anomalies from 1981-2010 (hPa)

precipitation

-1.0 -0.2 -0.05 0.05 0.2 1.0

-1.5 05 0.1 00 01 05 15 0.0 0.2 0.4 0.6 0.8 1.0
Anomalies from 1981-2010 (mm/day)

Fig. 2. Annual mean anomaly predictions for 2021 relative to 1981-2010. (left) Ensemble mean for
temperature (top, °C), sea level pressure (middle, hPa), and precipitation (bottom, mm day-") and
(right) probability of above average for the same three variables. As this is a two-category fore-
cast, the probability for below average is one minus the probability shown in the right column.
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Pearson correlation ROC score
surface temperature surface temperature

Pearson correlation ROC score
sea-level pressure sea-level pressure

Pearson correlation ROC score
precipitation precipitation

-0.8-0.6-0.4-0.2 0.0 0.2 04 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Prediction skill of annual mean hindcasts. (left) Pearson correlation and (right) ROC score
(the area under the ROC) for predictions of above-average conditions. For correlation, stippling
shows where skill is not significant (at the 5% level) using the beta function to give a two-sided
p value. The hindcast skill was evaluated over the period for which we had hindcasts with all
models, 1961-2018, using the same surface temperature dataset as in Fig. 1, sea level pressure
using HadSLP2r (Allan and Ansell 2006), and precipitation using GPCP (Adler et al. 2003).

low or no skill. Note that using past predictions to assess the skill of a forecast can only ever
be an estimate as the forecast may encounter previously unseen climate states. We find that
skill is very similar to that found in large ensembles and other multimodel ensembles and in
many cases the sources of skill are known (Yeager et al. 2018; Smith et al. 2019).
Temperatures in 2021 are predicted to be higher than the 1981-2010 average in almost all
regions except parts of the Southern Ocean and the tropical and southeast Pacific. Temperature
has high skill for both the deterministic and probabilistic prediction in most regions for
near-surface temperature, so we estimate medium to high confidence in this prediction. Sea
level pressure predictions suggest anomalous low pressure over the Arctic and high pres-
sure over the Pacific and Atlantic consistent with stronger winds between these regions.
Skill is moderate but significant for sea level pressure in both measures, giving us medium
confidence in the prediction. Predicted precipitation patterns suggest an increased chance
of drier conditions over southwestern Europe and southwestern North America and wetter
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conditions in northern Europe, the Sahel, and Australia. There
is moderate skill in both types of prediction for Europe, parts
. . .. fied against observations. A side-by-side compari-

of North America, Australia, and the Sahel, giving us low to - .

. - . : son of predictions and observations can be found
medium confidence for these rEglonS-l on the LC-ADCP website: www.wmolc-adcp.org.

The GADCU also gives regional climate predictions averaged

over the 5-yr period 2021-25; these are shown in Fig. 4. The predictions are for enhanced
warming at high northern latitudes and over land compared to ocean, consistent with what
is expected from climate change. The Arctic (north of 60°N) anomaly is more than twice as
large as the global mean anomaly. As deterministic skill for near surface temperature, which

! These predictions are for 2021 and can now be veri-

Ensemble mean forecast for 2021-2025 Probability of above average
surface temperature surface temperature

-3 -1 0.0 1 3 0.0 0.2 0.4 0.6 0.8 1.0
Anomalies from 1981-2010 (°C)

sea-level pressure

-1 -0.3
2 05 00 05 2 00 02 04 06 08 10
Anomalies from 1981-2010 (hPa)

precipitation precipitation

. r

0.4 -0.1 -0.02 0.02 0.1 0.4
I

i — dENN 03— T

-0.7 -0.2 -0.05 0.0 0.05 0.2 0.7 0.0 0.2 0.4 0.6 0.8 1.0
Anomalies from 1981-2010 (mm/day)

Fig. 4. Predictions for 2021-25 anomalies relative to 1981-2010. (left) Ensemble mean for (top)
temperature (°C), (middle) sea level pressure (hPa), and (bottom) precipitation (mm day-') and
(right) probability of above average for the same three variables. As this is a two-category fore-
cast, the probability for below average is one minus the probability shown in the right column.
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Pearson correlation ROC score
surface temperature surface temperature

Pearson correlation ROC score
sea-level pressure sea-level pressure

Pearson correlation ROC score
precipitation precipitation
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Fig. 5. Prediction skill of 5-yr means from hindcasts. (left) Pearson correlation and (right) ROC
score for predictions of above-average conditions. For correlation, stippling shows where skill is
not significantly positive (at the 5% level) using the beta function to give a two-sided p value.
The hindcast skill was evaluated over the period for which we had hindcasts with all models,
1961-2018, using the same datasets as in Fig. 3.

is shown in Fig. 5, is high in all regions apart from the eastern Pacific and the Southern Ocean,
we have high confidence in this prediction.

Both the ensemble mean and the probabilistic prediction indicate that sea level pres-
sure is likely to be below average over both poles and above average in the midlatitudes.
Such a pressure gradient indicates stronger westerly winds in the regions between these
two anomalies. Skill is good over the southern polar region, but is low to moderate over
the northern polar region and the midlatitudes. This means we have low to medium con-
fidence in our prediction. In the northern North Atlantic the sea level pressure prediction
shows an increased north—south pressure gradient, which means there is an increased
chance of extratropical storms and rainfall, especially for parts of northern Europe and
eastern North America. Skill for pressure in the relevant regions is moderate, so we have
low to medium confidence.

The predictions show above-average precipitation over the Sahel and across northern
Europe and Eurasia. There is moderate but significant skill for the ensemble mean over the
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Sahel and across northern Europe and Eurasia, giving us medium confidence in the forecast
for an increased chance of higher precipitation in these regions.

The predictions for the tropical Atlantic show above-average temperatures, below-average
sea level pressure, and above-average precipitation, which together with a northward-shifted
intertropical convergence zone indicates that the number of tropical cyclones could be higher
than normal (Caron et al. 2018). This is also indicated by the predicted positive AMV index
discussed above. The skill for temperature is high, but the skill for sea level pressure is mod-
erate, so we have medium confidence in this prediction.

Evaluation of a past forecast

The skill of predictions is assessed from hindcasts (retrospective forecasts), but the
strongest test of a prediction system is how well its predictions perform. Unfortunately
for decadal prediction, few forecasts can be verified as forecasts with no knowledge of
the future have only been made since the early 2000s. Instead, in the GADCU we make a
simple evaluation, which gives an indication of performance. The WMO Lead Centre website
(www.wmolc-adcp.org, accessed November 2021) displays past real-time predictions and
one of them is evaluated here.

Figure 6 shows a prediction made in late 2015 for 2016-20 using the models available at
that time. The left column shows the ensemble mean prediction and the right-hand column
shows the corresponding observations. The observed pattern including very warm conditions
over the Arctic and Eurasia, and anomalously cool conditions in the Southern Ocean, northern
North Atlantic, and tropical Pacific are reproduced by the forecast. However, the anomalies
are often smaller than observed and stippling indicates where the observations are outside
the ensemble 90% range. Observed cooler conditions in parts of North America and eastern
Indian Ocean were not predicted and polar temperatures were higher than predicted despite
high skill in the region. The predicted pattern of sea level pressure anomalies is good where
skill is high (Fig. 5), but the forecast signals are small and observations are outside the forecast
range in many regions even when the ensemble mean shows the correct sign. Precipitation
patterns show reasonable agreement with observations, including wetter conditions across
much of Eurasia and central Africa, and drier conditions in southern North America, west
Asia, northeast Brazil, and southern Africa. Dry conditions in western Canada, Australia,
and western Europe were not predicted.

Outlook

Operational decadal climate predictions fill an important gap between seasonal predictions
and climate projections and provide policy relevant information with substantial lead time.
The WMO Global Annual to Decadal Climate Update (GADCU) is an important step in provid-
ing science-based real-time climate predictions for the next 5 years, a time scale important
for governments and many social and economic sectors (Vera et al. 2010). There are already
examples of climate services based on decadal predictions being explored in the water sector
(Towler et al. 2018) and the agricultural sector (Solaraju-Murali et al. 2019).

The GADCU was issued for the second time in 2021 and will continue to be issued annually
in early May on the Lead Centre website: www.wmolc-adcp.org. The core of this service are the
five Global Producing Centres, who have committed to providing forecasts at the beginning of
each year. The forecasts from the Contributing Centres are important to increase the ensemble
size and with it the skill. Changes in priorities and funding mean that these can be different
each year, pointing to the need for a secure source of funding to ensure these contributions
can continue. There has been an increase in the number of contributors in the last few years
and this reflects the growing importance of decadal predictions and its prominence in World
Climate Research Programme (WCRP) research plans.

AMERICAN METEOROLOGICAI’BrSOOLJ%L%T% you by NOAE%Mn%raI Library | Unauthenticated ﬁp%bhwgooagd%d %3)3@/24 03:51 PM UTC


http://www.wmolc-adcp.org
http://www.wmolc-adcp.org

Ensemble mean forecast Observations 2016-2020

surface temperature surface temperature

~ : ] ] g

| | | |
-0.7 -0.4 -0.2 -0.1 -0.05-0.02 0.0 002 005 01 02 04 0.7
mm/day

Fig. 6. Evaluation of the 5-yr forecast for 2016-20 relative to 1971-2000. (left) Ensemble mean
forecast and (right) observed anomalies. Stippling shows where the observations fall outside of
the 90% range of the forecast ensemble. Observations are as in Fig. 3.

The WCRP has programs to organize its work toward key priorities, so-called lighthouse
activities, which will lead to improvements of the GADCU. The “Explaining and Predicting
Earth System Change” activity will provide an improved understanding of the drivers of
decadal variability, thereby improving the confidence in the predictions. The “My Climate
Risk” activity will explore methodologies to provide better regional information to support
the development of climate services.

The WMO Lead Centre for Annual to Decadal Prediction publishes prediction skill in-
formation on its website as well as in the GADCU. It is important that model performance
is monitored and the information is fed back to model developers so that model problems
relevant to decadal prediction, such as the signal-to-noise paradox (Eade et al. 2014;
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Scaife and Smith 2018), are prioritized. At the moment, only annual means are used in the
figures for the Lead Centre and the GADCU. The capability to use seasonal means is cur-
rently being developed which will lead to even more relevant predictions, including for
El Nifio—Southern Oscillation and seasonal rainfall, including monsoons. There are also plans
to expand the predictions to give more detailed regional information.

The WMO Lead Centre data contribute to an important core function of the Climate Services
Information System, a foundational pillar of the Global Framework for Climate Services. WMO
Regional Climate Centres, already active users of seasonal forecasts in support of National
Meteorological and Hydrological Services to provide early warnings to reduce the impact of
climate hazards, are considering decadal predictions as part of their highly recommended
functions. As the use of climate prediction information increases and applications are devel-
oped, the WMO Lead Centre for Annual to Decadal Climate Prediction multimodel ensemble
will benefit many people and communities.
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