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Anticipatory decision-making for cholera in Malawi
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ABSTRACT Climate change raises an old disease to a new level of public health threat.
The causative agent, Vibrio cholerae, native to aquatic ecosystems, is influenced by
climate and weather processes. The risk of cholera is elevated in vulnerable popula-
tions lacking access to safe water and sanitation infrastructure. Predictive intelligence,
employing mathematical algorithms that integrate earth observations and heuristics
derived from microbiological, sociological, and weather data, can provide anticipatory
decision-making capabilities to reduce the burden of cholera and save human lives. An
example offered here is the recent outbreak of cholera in Malawi, predicted in advance
by such algorithms.
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holera remains a deadly waterborne diarrheal disease and is devastating for

populations living in poverty and lacking access to safe water, sanitation, and
hygiene (WASH) infrastructure. Vibrio cholerae, frequently linked to diarrheal illness and a
causative agent of the cholera disease, thrives in regions where environmental, weather/
climate, and societal vulnerabilities intersect. The continent of Africa is particularly
vulnerable to cholera outbreaks, notably where there is a lack of access to WASH
infrastructure and sufficient healthcare facilities. Figure 1 shows major cholera outbreaks
occurring across Africa from 2017 to 2022. Apart from African countries, several other
countries have reported cholera (1), e.g., Haiti (2010) and more recently in Yemen (2016)
(2). Natural (earthquake in Haiti) and anthropogenic (civil unrest in Yemen) disasters have
damaged WASH infrastructure (2, 3), resulting in massive cholera outbreaks.

Cholera is preventable by ensuring access to WASH and adequate medical infrastruc-
ture. Over the past 50 years, several major discoveries have been made, notably that V.
cholerae is native to the aquatic environment where it proliferates when conditions for its
growth are optimal (4-9). Proliferation of V. cholerae and related Vibrio spp. in the
environment was shown to be driven by environmental factors, namely ambient weather
and climatic processes, with coastal waters serving as an ecological niche for several
pathogenic Vibrio spp., including Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio
cholerae ([review provided by Brumfield et al. [10]). Another important finding is that
Vibrio spp. are commensal to copepods, zooplankton comprising a significant compo-
nent of aquatic fauna that feed on phytoplankton in coastal waters (6, 11). In fact,
copepods are a major host of V. cholerae (12). A single copepod can harbor up to 10* V.
cholerae cells (9); hence, ingestion of untreated water containing a small number of
copepods can promote disease (13-15), a sufficiently significant activity for the copepod
to be concluded a vector (16). Studies by Huq et al. and Colwell et al. (14, 15) demonstra-
ted that employing simple sari-cloth filtration prior to consumption of water effectively
removed zooplankton and particulate matter from drinking water and significantly
reduced the number of cholera cases in Bangladesh villages. In total, these findings
demonstrated vibrios in the environment to be strongly associated with ecological and
climate/weather processes (e.g., flooding [17, 18], sea surface temperature [19, 20],
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FIG 1 Cholera outbreaks reported in Africa from 2017 to 2022.

zooplankton blooms [12, 14], and salinity [21]] and regional hydrology (e.g., river flows
[22], coastal plankton ecology [23], ambient temperature [24], and precipitation [25, 26]).

Previous research demonstrated that cholera outbreaks occur in two modes (27-
31): epidemic, which is the sudden occurrence of cholera in a region where societal
disturbance results in a lack of access to safe drinking water and appropriate sanitation,
and endemic, which is a continuous occurrence of cholera cases in human population
with quasi-predictable seasonality. The cholera epidemic mode can evolve to become
endemic if WASH access is not ensured. A cholera outbreak requires distinct trigger and
transmission mechanisms (29, 30, 32), where the trigger is defined as conditions that
initiate an outbreak driven by social and environmental dynamics and transmission as
spreading of infection into human communities. While the origins of the cholera trigger
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have been debated (28, 30), the interaction of humans with an environmental reservoir
of V. cholerae has been linked with outbreaks of cholera (12, 23, 33, 34).

Given the spatial uncertainty of cholera in vulnerable regions with poor WASH
infrastructure, a key challenge is determining when and where to introduce mitiga-
tion action to prevent an outbreak. One solution is anticipatory decision-making, a
framework that uses predictive intelligence based on knowledge derived from field
surveillance and mathematical models (30). A 3-year, near real-time model validation
applied in Yemen yielded 72% accuracy in forecasting the risk of the likelihood of cholera
(30). It was the first study to highlight the use of environmental, climate, and weather
information integrated with microbiological and sociological data to estimate the risk
scores for cholera.

A climate-driven, sociological hypothesis states that if a region experiences above-
average air temperature, followed by heavy precipitation, and considerable damage
to water and sanitation infrastructure, human behavior will change with respect to
consumption of water, rendering the region to high risk of cholera (details of the
model are provided in previously published studies [23, 28, 31, 35]). The potential of
a cholera outbreak will remain low if any of these conditions are not met. A data-driven,
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score-based mathematical algorithm developed over the past decade provides a reliable
lead time of 4 weeks for the risk of cholera (28, 30, 31, 36) (a web hub is currently in beta
phase and is available at https://vibrio-prediction-ufl.hub.arcgis.com/). The algorithm
provides risk values (high, medium, and low) at 1 km X 1 km pixel scale and employs
earth observations, including precipitation, temperature, population density, sociological
factors (e.g., access to drinking water and sanitation), and Vibrio spp. growth parameters.
The output of the algorithm and the validation of the hypothesis have been demonstra-
ted for Zimbabwe (35) and subsequently for Nepal (31) and Haiti (28) and, more recently,
for Yemen (30, 36).

The cholera algorithm, focusing on the trigger mechanism, was implemented in
Malawi in February 2022, in the middle of the rainy season. However, the region recorded
both anomalous conditions of warm temperatures and high precipitation. Heightened
risk of cholera, on a district scale, for the country was predicted (see Fig. 2) with a 4-week
lead time. Medium risk, as shown in Fig. 2, indicates that if conditions became amplified
(in this case, damage and/or lack of access to WASH infrastructure), the region would
experience cholera within 4 weeks of forecast. In fact, the first confirmed case of cholera
was reported in Malawi on 2 March 2022 (37), leading the Ministry of Health to declare
an outbreak the following day. The cholera cases decreased with the onset of dry months
(May to October). Cholera risk, as computed by the algorithm, increased again in October
2022 and peaked in January 2023 (Fig. 3) by which time the outbreak had affected all
districts of the country, with case numbers and case fatality surpassing Malawi’s previous
worst outbreak 20 years earlier. Cholera risk algorithm produce a time series of risk scores
interpreted as a rate of increase (risk value consistently increased over the previous
forecasted risk value) (details in references 30, 36). Figure 3 shows the consistent increase
in cholera risk from October 2022, hence favored increased odds of cholera.

Geophysical processes have only recently been established for deducing and
forecasting the behavior of a pathogen. Therefore, it is crucial to provide a comprehen-
sive, data-driven, and adaptable understanding of an infectious disease that is influenced
by weather and climate to achieve reliable decision-making. It is essential to differentiate
between reactive and anticipatory decision-making. Most decision-making, with respect
to infectious diseases, remain reactive, with intervention and mitigation initiated after
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FIG 3 Boxplot for an entire Malawi cholera risk time series (values greater than 0.34 represent medium risk, in yellow
color; values greater than 0.50 represent a high risk, in red color, of cholera). Line shows probable time when cholera was

acknowledged by the health agencies.
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TABLE 1 Recommended preemptive actions

Preemptive interventions Preference Source
Safe water Sealed and bottled water 1 (40)

Water treatment 2 (41,42)

Boiling water 3 (43)
Safe defecation Limit open defecation 1 (44, 45)

Chemical treatment of fecal matter 2 (46)

No defecation near/in a water body 3 (47)
Hand wash Ensuring proper hand washing principles 1 (48, 49)

Washing hands before and after cooking and 2 (47,49)

eating

Washing hands when treating sick patients 3 (50)
Eating habits Thoroughly cooking and preparing food 1 (49)

Avoiding seafood during disease outbreaks 2 (49)

Encouraging peeled vegetables and fruits 3 (42, 49)
Oral cholera vaccine Before exposure (7-10 days before infection) 1 (51)

an outbreak has begun. Earth observation data, if sociological processes and microbial
processes are included, can provide anticipatory decision-making. Frameworks to guide
anticipatory decision-making should be developed to support Ministries of Health and
other agencies to translate risk data into effective action. This is important in places
such as Malawi which are highly vulnerable to increasingly climate-related public health
shocks yet with limited resources to respond. For Malawi, anticipatory intervention to
limit spread of cholera could have contributed to improving targeted distribution of
water safety kits, stockpiling, and ensuring availability of antibiotics, timely vaccination,
and education of the local population on handling water drawn from ponds and rivers
in conflicted regions. Anticipatory, risk-based intervention in February 2022 could have
contributed to preventing or limiting the spread of the initial outbreak that occurred in
March 2022, as well as made best use of limited vaccine stocks (38) (given the global
shortage) and other interventions by focusing on at risk populations. Thus, country-wide
spread of disease that occurred later in 2022 and led to nearly 60,000 cases and over
1,700 deaths could have been prevented. It could also have been helpful to identify
when the risk was reducing to inform decisions on when and where to scale down
interventions. Internet or data transmission will be effective and helpful in implementing
surveillance systems for reporting cholera cases. Table 1 lists some proactive measures
that can be employed to prevent major outbreaks of cholera, adapted from reference 39.
Reliability of predictive intelligence for infectious diseases generated by mathematical
algorithms that integrate earth observations and geophysical processes into disease
models is a new field with a powerful future.
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