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ABSTRACT: During a 6-day intensive observing period in January 2021, Atmospheric River Reconnaissance (AR Recon)
aircraft sampled a series of atmospheric rivers (ARs) over the northeastern Pacific that caused heavy precipitation over
coastal California and the Sierra Nevada. Using these observations, data denial experiments were conducted with a regional
modeling and data assimilation system to explore the impacts of research flight frequency and spatial resolution of dropsondes
on model analyses and forecasts. Results indicate that dropsondes significantly improve the representation of ARs in the
model analyses and positively impact the forecast skill of ARs and quantitative precipitation forecasts (QPF), particularly for
lead times . 1 day. Both reduced mission frequency and reduced dropsonde horizontal resolution degrade forecast skill. On
the other hand, experiments that assimilated only G-IV data and experiments that assimilated both G-IV and C-130 data
show better forecast skill than experiments that only assimilated C-130 data, suggesting that the additional information pro-
vided by G-IV data is necessary for improving forecast skill. Although this is a case study, the 6-day period studied encom-
passed multiple AR events that are representative of typical AR behavior. Therefore, the results indicate that future
operational AR Recon missions incorporate daily mission or back-to-back flights, maintain current dropsonde spacing, sup-
port high-resolution data transfer capacity on the C-130s, and utilize G-IV aircraft in addition to C-130s.
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1. Introduction

Weather reconnaissance aims to collect accurate meteoro-
logical observations in data-sparse areas, improve numerical
weather forecasts of high-impact weather events, and advance
the understanding of certain weather phenomenon (e.g., Burpee
et al. 1996; Langland et al. 1999; Aberson 2010; Weisman et al.
2015; Ralph et al. 2020; Wick et al. 2020; McMurdie et al. 2022).
Observations collected during weather reconnaissance campaigns
are often referred to as “targeted observations” [see Majumdar
(2016) for an overview of these observations].

Data from operational campaigns are typically assimilated into
operational numerical weather prediction (NWP) models to im-
prove the forecast accuracy of a specific high-impact weather type
and to mitigate the associated social and economic impacts. One
such impactful weather type is atmospheric rivers (ARs), a global
weather phenomenon that can transport large amounts of water
vapor from the tropics to mid- and high latitudes (Zhu and Newell

1998; Waliser and Guan 2017). In recent years, ARs have been in-
creasingly recognized as key drivers of high-impact weather and
hydrological events in many regions of the world (Waliser and
Guan 2017; Zhang et al. 2019; Payne et al. 2020; Zhang and Ralph
2021). Landfalling ARs contribute up to 50% of the annual pre-
cipitation over states along the U.S. West Coast (Guan et al. 2010;
Dettinger et al. 2011; Rutz et al. 2014). This can be beneficial as a
solution to water sparsity (Dettinger 2013) but can also be hazard-
ous as a cause of major flooding events (Ralph et al. 2006; Ralph
and Dettinger 2011; Henn et al. 2020). To better observe ARs
and to improve the forecast skill over the U.S. West, Atmospheric
River Reconnaissance (AR Recon) campaigns have been con-
ducted to collect observations, including dropsondes from 1 to 3
aircraft (Ralph et al. 2020), extra drifting buoys relative to the ex-
isting network of ocean buoys (Reynolds et al. 2023), additional
radiosonde launches (Ralph et al. 2021; Cobb et al. 2024), and air-
borne GPS radio occultation (Haase et al. 2021). These collabora-
tive efforts are led by the Center for Western Weather andWater
Extremes (CW3E) of Scripps Institution of Oceanography at Uni-
versity of California San Diego in collaboration with NOAA and
the Air Force (Ralph et al. 2020). AR Recon has been included
in the National Winter Season Operations Plan [NWSOP; Office
of the Federal Coordinator for Meteorology (OFCM); OFCM 2019,
2022] since 2019. More details about this collaborative cam-
paign can be found in Ralph et al. (2020).
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The impacts of observations (e.g., dropsonde data), col-
lected from historical reconnaissance missions, on the NWP
forecast skill have been extensively investigated, with varying
results. Several studies have shown an overall positive impact
of targeted observations on forecast skill, including for hurri-
canes (e.g., Burpee et al. 1996; Pu et al. 2008; Weissmann et al.
2011; Majumdar et al. 2013; Feng andWang 2019), winter storms
(e.g., Langland et al. 1999; Szunyogh et al. 2000; Schindler et al.
2020), and mesoscale weather (e.g., Romine et al. 2016), though
some studies have reported neutral (e.g., Hamill et al. 2013) or
negative impacts (e.g., Aberson 2008; Keclik et al. 2017) from tar-
geted observations. The inconsistent findings across studies result
from a complex array of factors, including sample size, phenome-
nology, observational deployment strategy (e.g., Majumdar et al.
2002a,b), and possibly the data assimilation methods (e.g., Bergot
2001) and numerical model characteristics. Zheng et al. (2021a)
demonstrated the vital role of AR Recon observations in filling
observational spatial gaps from near surface to the middle tropo-
sphere within and around ARs in the northeast Pacific Ocean.
Zheng et al. (2021b) showed that the assimilation of dropsondes
with the Weather Research and Forecasting (WRF; Skamarock
et al. 2019) model and the hybrid four-dimensional ensemble-
variational (4DEnVar; Wang and Lei 2014; Kleist and Ide 2015)
method improves the forecast of water vapor transport out to a
lead time of three days, and improves precipitation forecast in
the targeted time window (nominally a lead time of 12–36 h).
Other studies demonstrate a greater positive dropsonde impact,
on a per-observation basis, relative to the North American radio-
sonde network (Stone et al. 2020), and a comparable positive im-
pact with that from microwave satellite radiance types (Sun et al.
2022). Recent research conducted by Lord et al. (2023a,b) dem-
onstrated enhanced forecast accuracy for U.S. West Coast precip-
itation in the medium range and for dynamical fields in the short
range, utilizing the Global Forecast System (GFS) at the National
Centers for Environmental Prediction (NCEP).

While many studies investigated the impact from all reconnais-
sance observations, very few have investigated the sensitivity of
forecast skill to different sampling strategies by subsampling ob-
servations in space and/or time. Kren et al. (2020) found that
different flight paths can change the downstream forecast uncer-
tainty by up to 8% under the framework of the observing system
simulation experiment (OSSE). They suggested that field mis-
sions should take the uncertainty in flight path design, including
the orientation, pattern, sensitivity regions, and meteorological
features, into consideration. To date, there are still fundamental
questions regarding the sampling strategy that remain unanswered,
such as determining the optimal temporal spacing between aircraft
missions and spatial resolution for dropsondes. Answering these
questions will allow us to maximize the potential benefits to the
forecast and demonstrate the need for appropriate resources.

Over the past couple of years, the AR Recon team has con-
tinued to expand the sample size with an increasing number
of intensive observation periods (IOPs), due to demonstrated
need for this information (e.g., Zheng et al. 2021a) and positive
impacts on precipitation forecasts (e.g., Lord et al. 2023a). This
expansion has included a focus on flight sequences, that is, a se-
ries of missions flown on consecutive days (e.g., Cobb et al.
2024). These missions have allowed for the design of a variety

of full data denial experiments (e.g., Masutani et al. 2013) using
subsets of dropsondes to represent different flight scenarios. As
a result, improved strategies could be identified by comparing
the overall skill of different experiments.

The main objective of this study is to explore the impact of
different temporal sampling, spatial sampling (horizontal and
vertical), and aircraft used on the forecast skill of an AR-related
heavy precipitation event that was sampled over a 6-day se-
quence of IOPs during AR Recon 2021.

Specifically, we are focused on the following research and
operational questions:

(i) How does the time frequency of flights and the number
of flights impact the forecast skill of landfalling ARs and
the associated precipitation?

(ii) How does the spatial resolution of dropsondes influence
the forecast skill of landfalling ARs and the associated
precipitation?

(iii) What are the added benefits of using high-vertical-resolution
observations compared with the operational practice of in-
cluding only mandatory and significant-level data?

These questions will be explored in this paper.

2. Methodology

a. Experiment design

1) PREDICTION SYSTEM CONFIGURATION

(i) Forecasting model

The model configuration employed for this study is based on
West-WRF (Martin et al. 2018; Zheng et al. 2021b), using
WRFv4.0 (Skamarock et al. 2019) with a focus on performing data
impact studies and improving forecast skills over the western
United States. Themodel had a domain extended to the central Pa-
cific Ocean and the East Coast of the United States. (Fig. 1a). A to-
tal of 80 levels are configured with a model top at 10 hPa (Fig. 1b).
The vertical resolution is enhanced near the altitudes where low-
level and upper-level jets frequently occur to better capture sharp
vertical gradients that can exist in these layers (e.g., Ralph et al.
2004, 2005). The model physics schemes are listed in Table 1.
Model initial and boundary conditions (ICBCs) for D01 are forced
by the analysis and forecast products (0.258 3 0.258 latitude–
longitude grids) from the operational GFS at NCEP. D01 provides
ICBCs for D02 and the one-way nesting option is employed.

(ii) Data assimilation system

The data assimilation system used for this study is based on
the Gridpoint Statistical Interpolation (GSI) hybrid four-
dimensional ensemble-variational (4DEnVar; Wang and Lei
2014) data assimilation technique (Kleist and Ide 2015). The back-
ground error-covariance matrix for 4DEnVar combines both the
static and ensemble error-covariance matrices. The ensemble
error-covariance matrix was calculated from a 30-member 9-km
ensemble generated by the West-WRF Model using the NCEP
Global Ensemble Forecast System (GEFS) forcing dataset. The
4DEnVar allows for the assimilation of observations at the appro-
priate assimilation time window around the observed time.
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The observations assimilated by the West-WRF GSI system
include the following: 1) conventional observations included
in the PrepBUFR files from the Global Data Assimilation
System (GDAS) of NCEP; 2) the operational version of at-
mospheric motion vectors (AMVs; Velden et al. 2005; Santek
et al. 2019); 3) The GNSS Radio Occultation (RO) refractivity
(e.g., Healy 2011); 4) microwave radiance observations from
Advanced Microwave Sounding Unit-A (AMSU-A), Advanced
Technology Microwave Sounder (ATMS), Microwave Humid-
ity Sounder (MHS), and Special Sensor Microwave Imager/
Sounder (SSMI/S); and 5) infrared radiance observations from
High-Resolution Infrared Radiation Sounder (HIRS/4) and In-
frared Atmospheric Sounding Interferometer (IASI). Data as-
similation was conducted only within the outer domain, and the
inner domain was initialized by interpolating from the outer do-
main. This means that assimilation occurred over the region

where the inner domain existed, but it was not conducted at the
resolution of the inner domain.

The cycled data assimilation was performed every 6 h cen-
tered at 0000, 0600, 1200, and 1800 UTC of each day, where
the model background data were the hourly outputs from the
previous cycle using West-WRF. The model background and
the ensemble perturbation input during each of the 6-h assim-
ilation time window was based on hourly forecasts between
3 and 9 h from the previous forecast. Observations were
sorted to each hourly time interval of this 6-h window accord-
ing to the time when each observation occurred.

(iii) Dropsonde data for assimilation

We focus primarily on the dropsonde observations collected
from the NOAAG-IV and Air Force C-130s (Table S1, Figs. S1
and S2 in the online supplemental material) during AR Recon,
which represent the key dataset of interest in this study. Note
that the operational PrepBUFR data includes the AR Recon
dropsondes at a lower vertical resolution (i.e., mandatory and
significant levels), which is used in the operational NCEP analy-
ses and hereafter is referred to as the operational version. The
operational version with reduced vertical resolution typically in-
cludes ;20–40 pressure levels while the raw dropsonde profiles
can typically have ;2000–4000 vertical levels, depending on the
aircraft and the flight altitudes. To create an observation dataset
with an improved vertical resolution of the ARRecon dropsondes
over the operational version, the raw dropsonde files were proc-
essed through the superobbing method (e.g., van Leeuwen 2015).
The superobbed observations were obtained by averaging obser-
vations whose observed pressure values fell within half of the
model layer above and below a model level for temperature, hu-
midity, horizontal wind, and pressure. The superobbed data, cre-
ated through this method, can condense information obtained
from raw observations, while also providing a greater number of
levels compared to the operational reduced version of dropsonde
data. These superobbed dropsondes data were utilized to replace
the lower-vertical-resolution dropsonde data in the operational
PrepBUFR files to create new PrepBUFR data files.

2) DATA DENIAL EXPERIMENTS

(i) Baseline experiments

The overarching purpose of data denial experiments is
to determine the influence of specific observations on forecast
skill (i.e., observation impact). Typically, a control run is
performed in which all operational observation types are

FIG. 1. WRF (a) Preprocessor System (WPS) domain and
(b) the vertical-level configuration. D01 is the outer domain at 9-km
grid spacing and D02 is for the nested domain at 3-km grid spacing.

TABLE 1. Details of the physics parameterization schemes used in the WRF simulations.

Physical process Scheme(s) used Reference(s)

Planetary boundary layer scheme Yonsei University scheme Hong et al. (2006)
Cloud microphysics Thompson microphysics scheme Thompson et al. (2008)
Land surface exchange Unified Noah land surface model Chen and Dudhia (2001),

Tewari et al. (2004)
Surface layer Monin–Obukhov similarity scheme Skamarock et al. (2019)
Radiation RRTMG shortwave and longwave schemes Iacono et al. (2008)
Deep convection Grell–Freitas cumulus scheme (only applied to D01) Grell and Freitas (2014)
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preprocessed and assimilated. A denial run, which is still a
full NWP experiment, is carried out based on the opera-
tional observations but with an observation type of interest
removed from the data assimilation steps. The forecasts from
the denial experiment are then compared with those produced
via a control run, with any differences indicating the observation
impact of the denied observation type.

In this study, we conducted two baseline experiments to as-
sess the impact of all AR Recon dropsonde data on model
analyses and forecasts. The first experiment, referred to as
“Control,” assimilated all observational data for the West-
WRF GSI system [details provided in section 2a(1)]. As for
the AR Recon data, we replaced the flight-level and opera-
tional version of dropsonde profile data from the operational
PrepBUFR files with the superobbed high-resolution drop-
sonde observations to create a new PrepBUFR file for each
IOP (Table 2). The second baseline experiment, referred to as
“NoDROP,” was identical to “Control,” but with the AR Re-
con data excluded from the data assimilation process. Fore-
casts are initialized from initial conditions during 0000 UTC
23 January–0000 UTC 28 January generated with both
experiments.

(ii) Temporal sampling (TS) experiments

To evaluate the role of aircraft mission frequency, a set of
denial experiments denoted by “TS” at the beginning of the
acronym are carried out (Table 2, Table S2). Of them, “TS2”
assimilates dropsondes collected during IOP3, IOP5, and
IOP7, as a representation of flying the targeted system every
other day. “TS3” only assimilates dropsondes during IOP3 and
IOP6 as a representation of flying the targeted weather system
every 3 days. An additional “TSsingle” experiment is also con-
figured that assimilated observations from IOP7 designed to
represent a single flight mission at a time just prior to the heavi-
est precipitation event.

(iii) Spatial sampling (SS) experiments

The second set of denial experiments was configured to investi-
gate the impact of horizontal spatial resolution of the dropsondes
in order to explore different deployment scenarios (Table 2). Of
these experiments, “SS3” assimilated data from every third

deployed dropsondes (i.e., assimilated 1/3 of the deployed
dropsondes). “SS5” assimilated every fifth dropsonde (i.e.,
only 1/5 of the dropsondes). In addition, the “SS_C130” run
assimilated dropsonde data collected from Air Force (AF)
C130 aircraft only while “SS_G4” assimilated dropsonde
data collected from NOAA G-IV aircraft only.

(iv) The operational experiment

The final experiment explores the potential added benefit of
using high-vertical-resolution dropsonde data by assimilating the
operational version of dropsonde data. This experiment is re-
ferred to as “Oper” and is similar to the “Control” experiment,
with the only difference being that the original PrepBUFR data,
which includes the operational version of dropsonde data, is as-
similated. Figure 2 shows that the number of assimilated direct
observations in the Control experiment is significantly higher
than that in the ManSig experiment during each assimilation win-
dow centered at 0000 UTC.

b. Data validation

In all experiments, meteorological variables are validated
against the ERA5 data (Hersbach et al. 2020). We selected
the ERA5 data because model forcing data were based on the
NCEP GFS products, and thus the ECMWF reanalysis will
provide more of an independent validation. Recent studies
(e.g., Cobb et al. 2021) have demonstrated that the ERA5 da-
taset has fewer integrated water vapor transport (IVT) errors
when compared to other reanalysis datasets, thus making it a
reliable choice for validation. Stage-IV precipitation prod-
ucts at 4-km grid spacing (Du 2011) were employed as a
high-resolution validation data for model precipitation from
domain 2, following Zheng et al. (2021b).

c. Forecast skill metrics

The Method for Object-Based Diagnostic Evaluation
(MODE; Davis et al. 2006, 2009), which is part of the Model
Evaluation Tools (MET; Brown et al. 2021), has been em-
ployed to validate precipitation and IVT. MODE can identify
objects in both the forecast and observation fields and match
the observation object with the forecast object based on pre-
defined thresholds. The MODE tool has been applied to object-

TABLE 2. A summary of the experiments conducted in this study. The letter “Y” denotes the assimilation of AR Recon dropsondes
from each IOP and “N” denotes the rejection of dropsondes. Here “S” denotes that the assimilated dropsondes are the high-resolution
superobbed version. The “O” denotes the experiment that assimilates dropsondes using the operational version with reduced levels.

Name and IOPs IOP3 23 Jan IOP4 24 Jan IOP5 25 Jan IOP6 26 Jan IOP7 27 Jan IOP8 28 Jan

Control Y (S) Y (S) Y (S) Y (S) Y (S) Y (S)
NoDROP N N N N N N
ManSig Y (O) Y (O) Y (O) Y (O) Y (O) Y (O)
TS2 Y (S) N Y (S) N Y (S) N
TS3 Y (S) N N Y (S) N N
TSsingle N N N N Y (S) N
SS3 Y (S: 1/3) Y (S: 1/3) Y (S: 1/3) Y (S: 1/3) Y (S: 1/3) Y (S: 1/3)
SS5 Y (S: 1/5) Y (S: 1/5) Y (S: 1/5) Y (S: 1/5) Y (S: 1/5) Y (S: 1/5)
SS_C130 N Y (S) N N Y (S) Y (S)
SS_G4 Y (S) Y (S) Y (S) Y (S) Y (S) Y (S)
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based validation for ARs in DeHaan et al. (2021), where it was
able to correctly identify ARs, and for high-resolution gridded
precipitation validation (e.g., Brown et al. 2021). Moreover,
MODE provides an intuitive way to interpret the physical
meaning of validation results.

MODE outputs attributes (e.g., object size, 90th-percentile
values) for each pair of forecast and observation objects to assess
the forecast skill. In addition, the total interest value, a summary
statistic that computes a weighted average of the shape and in-
tensity attributes of one or more matching forecast-observation
paired precipitation areas, represents the overall forecast skill. A
value of 1 in the total interest represents a perfect match be-
tween a pair of objects (Davis et al. 2009).

3. Synoptic overview

a. A synoptic overview of the sequence IOPs

On 0000 UTC 23 January 2021, an AR (hereafter AR-I),
characterized by enhanced integrated water vapor transport
(IVT, integrated from 1000 to 300 hPa), is present between
two high pressure areas in the Northeast Pacific Ocean (IOP3,
Fig. 3a). At 300 hPa, an ;80 m s21 upper-level jet lies just
west to the core of AR-I (Fig. 4a). South of 308N, there is an-
other enhanced IVT region transporting water vapor west-
ward from Hawaii to the date line (Fig. 3a). This feature is
associated with an inverted surface pressure trough near
1658W between 208 and 258N in the downstream of a 500-hPa
trough near the date line (Fig. 4a). The G-IV aircraft samples
the upper-level trough and northwestern peripheral regions
of the tropical moisture plume (Figs. 3a and 4a). AR-I propa-
gates eastward by ;208 longitude (Fig. 3b) and dissipates af-
ter making landfall at 1200 UTC 24 January (not shown). The
associated upper-level jet streak also propagates eastward,
and two Air Force (AF) C-130 aircraft sample this jet streak
and AR-I on 24 January (IOP4, Figs. 3b and 4b). Meanwhile,
the previous two highs merge into one well-defined high cen-
tered around 428N, 1528W (Fig. 3b), with northward moisture

advection from tropics on its southwestern periphery (Fig. 3b).
The surface inverted pressure trough continues to develop and
interacted with the upper-level trough between 1708W and the
date line (Figs. 3b and 4b) through potential vorticity advection.
A G-IV flight samples the strengthening low pressure trough
and core of the moisture advection (Figs. 4b and 3b). The
moisture advection exhibits further development at 0000 UTC
25 January (IOP5) with two IVT maxima formed: one centered
at 308N, 1678W, the other centered to its northeast near 458N
(Fig. 3c). A low pressure region forms along the western edge of
the moisture advection (Fig. 3c), along with a closed upper level
low (Fig. 4c), both of which are sampled by the G-IV.

One day later (26 January and IOP6, Fig. 3d), a high-latitude
low pressure system develops with the center near 558N, 1458W,
helping to form a new AR (hereafter AR-II) with maximum
IVT near 438N, 1408W over the enhanced pressure gradient on
the southwestern flank of the low. The enhanced IVT in the
AR is detached from the northern center of the meridional mois-
ture advection on the previous day and is also associated with a
zonal jet stream along 1488W(Figs. 3d and 4d). One C-130 aircraft
samples AR-II and the southern flank of the jet stream. The me-
ridional moisture advection along the western side of the high
pressure ridge is advected further westward and merges with the
enhanced upstream IVT. AR-II propagates southeastward the fol-
lowing day and makes landfall over Northern California and
southern Oregon at 0000 UTC 27 January (IOP7, Fig. 3e). Two
upper-level jet streaks are located at the western side and the
southern base of the closed low offshore the Pacific Northwest
(Fig. 4e). One Air Force C-130 and the G-IV sample AR-II and
its trailing area, respectively (Fig. 3e). AR-II moves southward
and makes landfall on 28 January (IOP8) in Central California
with decreased IVT, while the upstreammoisture advection wraps
around the high pressure system and a 500-hPa deep trough forms
offshore (Figs. 3f and 4f). AnAir Force C-130 continues to sample
AR-II and the G-IV samples the leading part of the upper-level
jet streak (Figs. 3f and 4f). AR-II continues to impact Southern
California the following day (0000 UTC 29 January 2021) but

FIG. 2. Numbers of assimilated (a) temperature and (b) horizontal wind observations in the Control, NoDROP, and
ManSig experiments during each 6-h assimilation window from 0000 UTC 23 Jan to 0000 UTC 28 Jan.
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weakened (not shown). After 1200 UTC 29 January, AR-II
dissipates and moves southward out of California.

b. A summary of the impacts in California

AR-II made landfall from 0000 UTC 27 January to 0000 UTC
29 January, classified as a long-duration AR (e.g., Zhou et al.
2018). Light to moderate precipitation was distributed along
the Northern California coast into the central valleys. Mod-
erate to heavy precipitation was observed over the Central
California coast during 1200 UTC 26 January–1200 UTC
27 January (Fig. 5a), along with snowfall in the Northern California
mountains and the Sierra Nevada (hereafter Sierra).

The maximum precipitation occurred from 1200 UTC
27 January to 1200 UTC 28 January (Fig. 5b). Moderate to
locally heavy precipitation was observed along the Central
California coast as well as inland valleys, with the heaviest pre-
cipitation ;280–390 mm falling in San Luis Obispo County.
Daily records were set in Merced (36.1 and 35.8 mm), Modesto
(63.2 and 23.9 mm), Paso Robles (35.3 and 74.7 mm), and Stock-
ton (34.8 and 36.3 mm) on both 27 and 28 January, respectively,
and in Fresno (45.2 mm), Hanford (37.3 mm), Santa Barbara
(56.9 mm), and Santa Maria (58.4 mm) on 28 January (Fig. 5b).

Moderate to heavy snow (;1–3 ft; 30.5–91.5cm) was observed in
the Northern California mountains and Sierra.

As the AR moved southward, the precipitation band also
shifted southward with the maximum precipitation (211 mm)
over southern Santa Barbara County (Fig. 5c). Heavy snow-
fall was observed over the southern Sierra (WPC 2021). This
impactful precipitation event has been identified as one of the
U.S. 2021 Billion-Dollar Weather and Climate Disasters, as
documented in the NOAA’s “Priorities for Weather Research
Report” (NOAA Science Advisory Board 2021). Notably, it
stands out as the sole billion-dollar disaster event in the contig-
uous United States during January 2021. The investigation of
this event in our study will improve the sampling strategy for
similar events and deepen our understanding of the predictabil-
ity of such high-impact events in NWP models.

4. Results

a. Temporal sampling

The impact of mission frequency on model analyses and
precipitation forecasts is assessed by analyzing the outputs of

FIG. 3. An overview of the IVT vectors (black arrows) and amplitude (shading, kg m21 s21) and MSLP (gray con-
tours, hPa) in the ERA5 data, and dropsonde distributions (filled cyan markers). Analysis is valid from (a) 0000 UTC
23 Jan (IOP3) to (f) 0000 UTC 28 Jan 2021, with a time interval of 24 h.
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Control, TS, and NoDROP experiments (Table 2 and Table S2).
In total, the Control experiment that assimilates AR Recon
dropsonde data from all IOPs has increased the temperature
and humidity observations within the model domain (Fig. 1a)
by 60.6% and 119.1%, respectively, relative to the NoDROP
experiment (Table 3). About 14% more wind observations are
assimilated in the Control experiment than in the NoDROP ex-
periment, despite there being a large volume of AMV observa-
tions. However, it is worth pointing out that dropsonde data
samples all-weather conditions while AMVs are often sparse
below thick clouds (Velden et al. 2005; Santek et al. 2019). The
TS2 experiment, which includes dropsonde observations every
other day, also assimilates substantially higher amounts
of temperature (24.8% more) and humidity (47.5% more)
observations than the NoDROP experiments. The numbers of
assimilated in situ observations in TS3 and TSsingle are com-
parable, which are slightly higher than that in the NoDROP
experiment. The statistics presented in Table 3 indicate that
incorporating dropsonde observations can significantly in-
crease the available humidity and temperature data in re-
gional modeling systems.

1) IMPACT ON INITIAL CONDITIONS

The impact of mission frequency on the initial conditions of the
model has been analyzed for a representative IOP (i.e., IOP5 on
25 January, Fig. 6). This IOP represents the first 0000 UTC analy-
sis when the TS2 and TS3 differ in the assimilation of AR Recon
dropsonde data. Large differences between the model analysis
and ERA5 are found within and around the 250-IVT-unit contour
that indicates the moisture advection extending poleward from
Hawaii. For all experiments, the maximum differences are around
the two IVTmaxima (.500 kg m21 s21) over the moisture advec-
tion. For instance, the Control analysis shifts the northern mois-
ture advection core to the east and underestimates the IVT
maxima near 1608W, 458N relative to ERA5 (Fig. 6a). Mean-
while, the Control analysis shifts the IVT center more west-
southwestward near the southern leg of the G-IV flight path
between 258 and 328N (Fig. 6a).

Control and TS2 experiments both assimilate dropsondes
from IOP5 and IOP3, so differences between them can be attrib-
uted to the assimilation of dropsondes from IOP4 (24 January).
The largest difference (;240 IVT units) is near the southern
leg of the G-IV flight for IOP4 (Fig. 6b), demonstrating that

FIG. 4. An overview of upper-level systems, including geopotential height at 500 hPa (contours, m), 300-hPa wind
speed (shading, m s21) and wind vectors (black arrows, m s21). Analyses are valid at the same time as in Fig. 3. Deep
pink markers indicate AR Recon dropsonde locations.
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dropsondes from the previous day can significantly impact the
analysis field with a cycling system. Differences in the TS2 and
TS3 analyses (Fig. 6d) are completely due to the assimilation of
dropsondes deployed from the G-IV flight during IOP5 in the
TS2 experiment, which enhances the IVT maxima and shifts the
moisture advection core between 258 and 328N more westward.
The amplitude of model differences along the G-IV flight path is
comparable to the difference between model analyses and the
reanalysis, suggesting that the increment provided by dropsondes

alone can be comparable to the initial condition errors in the tar-
geted weather system (Figs. 6c,d). This finding generally is valid
in other meteorological fields, such as the mean sea level pres-
sure (MSLP) and 500-hPa geopotential height (not shown).

Since TS3 only assimilates dropsonde data from IOP3
(23 January), the differences between TS3 and NoDROP
(Fig. 6f) represent the impact of assimilating IOP3 dropsondes
48 h previously and how it cycles through the system. Overall,
the differences are noisier and more widespread than in Figs. 6b
and 6d with the maximized values downstream of the low pres-
sure area and the IVT core from 208 to 308N. There are also
signs of spatial shifts, including a southward shift of the IVT
north of the low pressure. This further demonstrates that assimi-
lated dropsonde data can continue to influence the analysis for
the key features in a cycling system even two days later, aligning
with Weissmann et al. (2011).

Differences in two baseline experiments}Control and
NoDROP}represent the impact from dropsondes in the cur-
rent assimilation window and from all the previous IOPs.
Therefore, the difference fields (Fig. 6h) are observed around
the IOP5 flight path, downstream of each previous IOP flight
path, and in some areas far away from any IOP flight path

FIG. 5. Stage-IV accumulated 24-h precipitation (mm) ending at (a) 1200 UTC 27 Jan, (c) 1200 UTC 28 Jan, and
(c) 1200 UTC 29 Jan 2021. Red stars on each panel from north to south denote the following five cities: San Francisco,
Santa Cruz, San Luis Obispo, Los Angeles, and San Diego, respectively.

TABLE 3. Counts of assimilated temperature (T), humidity (Q),
and wind observation (U, V) in the Control, TS2, TS3, TSsingle, and
NoDROP experiments at 0000 UTC accumulated from 23 to 28 Jan.
The number in parentheses denotes the percentage of increase
compared to the NoDROP.

T Q U, V

NoDROP 91 756 (0.0%) 42 280 (0.0%) 409 654 (0.0%)
TSsingle 103 137 (12.4%) 52 584 (24.3%) 421 646 (2.9%)
TS3 101 108 (10.2%) 50 289 (18.9%) 419 209 (2.3%)
TS2 114 531 (24.8%) 62 356 (47.5%) 433 466 (5.8%)
Control 147 350 (60.6%) 92 654 (119.1%) 466 966 (14.0%)
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(due to numerical noise in the cycling). The differences are
maximized around two moisture advection IVT maxima
(.500 units), suggesting the importance of dropsondes
data in analyzing fields near the moisture advection cores
and the sharpest IVT gradients.

The root-mean-square difference (RMSD) between the
Control analysis and the ERA5 reanalysis over a subset domain

(158–508N, 1708W–1808) is 63.7 IVT units (Fig. 6a), ;8.1% less
than that between the NoDROP analysis and the ERA5 data
(69.3 IVT units, Fig. 6g). The assimilation of dropsonde data
from the three IOPs results in an RMSD of 50.3 IVT units be-
tween the Control and NoDROP experiments (Fig. 6h), This
value represents ;73% of the RMSD between the NoDROP
and ERA5 data, demonstrating the effectiveness of AR Recon

FIG. 6. Data impact on the initial condition of IVT at 0000 UTC 25 Jan 2021 (i.e., IOP5). (a),(c),(e),(g) IVT differ-
ences (shading, kg m21 s21) between each experiment and the ERA5 data, arranged in descending order of
AR Recon mission frequency, with (a) representing the highest frequency and (g) representing zero missions.
(b),(d),(f),(h) Differences (shading, kg m21 s21) between two experiments. Black contours are the analyzed IVT
amplitude in ERA5 starting from 250 kg m21 s21. The filled circles in (b), (d), (f), and (h) are the locations of additional
dropsondes in the experiment as the minuend. The number in the top right of each pane is the root-mean-square differ-
ence (RMSD) of IVT amplitude (kg m21 s21) based on the shaded difference field over a subset region [magenta box
in (h)] spanning from the date line to 1508W longitude and from 158 to 508N latitude.
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dropsonde data in influencing model analysis within a cycled
modeling system.

In the two experiments that assimilated dropsondes from
IOP5, IVT differences from two experiments that did not as-
similate IOP5 dropsondes reach 50% of the full amplitude
along the southern leg of the G-IV flight path (Figs. 6d,h). A
cross-sectional analysis along the southern flight path (Fig. 7a)
from the northwest to southeast waypoints reveals the impact
of dropsondes on dynamics. Significant pressure-level hori-
zontal vapor flux amplitudes indicate locations of enhanced
vapor fluxes (Fig. 7a).

Maximized vapor flux amplitudes appear near 975 hPa be-
tween 1698 and 1708W, reaching 190 g m (kg s)21, and near
waypoint A (Fig. 7a). The first maximum tilts upward on both
sides, creating maxima between 700 and 800 hPa from 1708 to
170.58W and between 500 and 900 hPa near 1688W. These are
associated with the moisture advection core and moisture
wrapped around to the northwest of the low pressure system
(Fig. 7a). Minima are observed near 900 hPa from 1718 to
172.58W with the minimum value of ;10 units, near 750 hPa
around 1698W, and between 300 and 550 hPa from 1718 to
173.98W, associated with subsiding cold, dry air from higher
latitudes. Compared to ERA5, vapor flux maxima could be
underestimated by more than 50%, e.g., from 168.58 to 1708W
below 850-hPa level in the NoDROP run, near 1688W around
700 hPa, and near waypoint A (Fig. 7g). However, vapor flux mi-
nima are overestimated in the NoDROP run, e.g., near 900 hPa
from 1718 to 172.58W.

Differences between the Control and NoDROP analyses
(Fig. 7h) are opposite to those between the NoDROP analysis
and the ERA5 data (Fig. 7g), suggesting that the assimilation
of all dropsondes can significantly correct the model initial
analyses. Here, we assume ERA5 as the ground truth. This as-
sumption is based on the overall better validation results of
ERA5 compared to other reanalysis data when verified with
in situ observations. However, it should be noted that the true
atmosphere state, particularly over oceans, is unknown. For
example, the overestimation in the NoDROP experiment
near 1728W between 900 and 1000 hPa has been significantly
reduced in the Control (Figs. 7a,g) and TS2 (Fig. 7c) experi-
ments, which assimilates data from IOP5. Underestimation of
vapor flux amplitudes from 1688 to 1708W below the 800-hPa
pressure level has generally been improved in the Control
(Figs. 7a,g,h). The moisture and wind speed cross-sectional analy-
ses indicate that the observed improvement is mainly attributable
to reducing the underestimation error of wind speed in the south-
erly direction within the 800–925-hPa layer. Substantial differences
between the Control and NoDROP experiments can be attrib-
uted to the direct assimilation of the dropsondes for the analysis
window (Fig. 7d), such as along 1728W and near 1688–1698W.
Nevertheless, assimilating dropsondes from previous IOPs (e.g.,
IOP3) yielded additional benefits, such as near the minimum va-
por flux area around 1698Wbetween 650 and 800 hPa.

The same cross section in Fig. 7 is produced for other varia-
bles: the specific humidity (Fig. S3), horizontal wind speed
(Fig. S4), and temperature (Fig. S5). Large discrepancies exist
between the NoDROP analysis and the ERA5 data, espe-
cially in dynamical features like the dry, cold-air intrusion

(inversion) along 1728W. Experiments without dropsondes pro-
duce warmer and moister conditions compared to the ERA5 data
(Figs. S3 and S5). Overall, dropsondes are critical for an accurate
representation of fine-scale vertical structures (i.e., inversion
layers) and strong gradients in wind, moisture, and vapor flux.

2) IMPACT ON FORECAST SKILL

(i) Forecasts initialized during IOP5

To better understand the impacts of mission frequency on
forecast skill, we examine the impact on short-term predictions
for the same IOP (i.e., IOP5) that we previously analyzed in de-
tail for differences between model analyses. The 12-h forecast of
IVT initialized at 0000 UTC 25 January is employed as a short-
term prediction example (Fig. 8). At 12 h, the core of the northern
portion of the moisture advection in the ERA5 data has moved
eastward by approximately 68 longitude near 478N since the initial
time (Fig. 8a), while the southern core has strengthened but not
propagated much since the initial time (Fig. S6a).

The investigated region is focused on the northern moisture
advection (Fig. 8),1 which is downstream of the assimilated drop-
sondes from G-IV missions. In the NoDROP forecast, the core
of the northern portion of the tropical moisture advection and
its northern quadrant are underestimated by ;200 kg m21 s21

(Fig. 8g). The Control forecast improves the underestimation
within the northern core of the moisture advection between 468
and 528N in the NoDROP by up to ;160 kg m21 s21 due to
the assimilation of dropsondes from IOP5 (Fig. 8d) and IOP3
(Fig. 8f). The Control run predicts weaker IVT at the south-
west edge of the moisture advection between 408 and 458N than
the NoDROP run does, which seems to be associated with the
assimilation of data from IOPs 4 and 5. The average RMSD be-
tween the model analysis and the ERA5 data for the two ex-
periments (Control and TS2), which assimilate dropsondes
from IOP5, is 57.45 IVT units (Figs. 8a,c). Notably, this value re-
flects a 6.9% reduction compared to the average RMSD ob-
served in the two experiments (TS3 and NoDROP) that do not
assimilate IOP5 data (Figs. 8e,g). Results for the southern mois-
ture advection region are mixed (see Fig. S6 and its description),
likely due to the interaction between observation impacts and
lateral boundary condition errors (Torn et al. 2006).

Results for the 72-h IVT forecasts show that dropsondes
from all IOPs overall improve the underestimation along the
coast of Central California and in the north of the inland IVT
maximum (Fig. S7). The skill of landfalling IVT in the Control
and TS2 experiments is higher than in the TS3 and NoDROP
experiments (Fig. S7). Meanwhile, the overall underestima-
tion of IVT along the coast and inland in model runs (Fig. S7)
results in the underforecast of the precipitation in the coastal
areas and over Sierra (Figs. 9a,c,e,g). Assimilating dropsondes
from all IOPs improves this underforecast of the heaviest pre-
cipitation area along the central CA coast, such as from north
of San Luis Obispo to Santa Cruz (Figs. 9h,g) and removes a
significant underestimation (.240 mm) over San Luis Obispo

1 This region is also less affected by the lateral boundary condi-
tion errors.
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FIG. 7. Vertical cross section for amplitude of the horizontal vapor flux [g m (kg s)21] along the flight path from A
(32.128N, 173.878W) to B (26.178N, 165.238W), which are around the two G-IV waypoints labeled in Fig. 6d.
(a),(c),(e),(g) The shading indicates the differences in vapor flux amplitudes between model analyses and the ERA5
data. (b),(d),(f),(h) The shading indicates differences between two experiments. Black contours for each panel repre-
sent ERA5 vapor flux. The analysis is valid at 0000 UTC 25 Jan 2021.
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County in the NoDROP run (Fig. 9g). The improved precipi-
tation along the coast and over Sierra in the Control run is
also mainly attributable to the contribution of dropsondes
from IOPs 4 and 5 (Figs. 9b,d), which is consistent with im-
proved IVT forecasts (Figs. S7b,d). The Control run reduces
the RMSD for precipitation over the investigated domain in
the NoDROP run by 13.6% (Figs. 9a,g) and increases the spa-
tial correlation by 8.4%.

(ii) MET-MODE-based precipitation validation for all cycles

The main goal of AR Recon is to improve the forecast skill
of precipitation that is associated with high-impact landfalling

ARs. Here we are focused on validation for record-high pre-
cipitation along the Central California coast during 1200 UTC
27–28 January. This region was also the domain of interest dur-
ing operational flight planning for the sequence of the IOPs
(Cobb et al. 2024). The MET-MODE tool, as described in
section 2c, is used to assess the skill for precipitation and
IVT.

The observed values within the heaviest precipitation ob-
ject (76 mm or 3 in.), created after convolving the raw precipi-
tation fields, show that the precipitation maxima are parallel
to the Central California coast (Fig. 10a). The best match be-
tween the observed object and a forecast object is found in

FIG. 8. As in Fig. 6, but for the 12-h IVT forecast valid at 1200 UTC 25 Jan 2021. The RMSD is calculated over the
plotting domain.
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FIG. 9. As in Fig. 8, but for the 24-h accumulated precipitation (mm) from 1200 UTC 27 Jan to 1200 UTC 28 Jan.
The initialization time is at 0000 UTC 25 Jan 2021. The validation data are based on the Stage-IV precipitation data.
The black contour outlines the 50-mm precipitation in Stage-IV. Red stars in (a) from north to south denote the fol-
lowing five cities: San Francisco, Santa Cruz, San Luis Obispo, Los Angeles, and San Diego, respectively.
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the Control run among the TS and baseline experiments from
day 2.5 to day 4.5 lead times (Fig. 10b). This period includes a
crucial forecast lead time (i.e., 3 days) for water management.
The lowest interest value is generally seen in the NoDROP
run from day 1 to day 4.5 lead times (Fig. 10b). The contrast
between the Control and NoDROP experiments demonstrates
an overall positive impact of assimilating dropsondes, particu-
larly for longer than 24-h lead time. Note that positive impacts
associated with the assimilation of dropsondes are also ap-
parent in forecasts initialized at 0600, 1200, and 1800 UTC.
Compared with the baseline experiments, the TS2 experi-
ment has a slightly lower interest value from day 2.5 to
day 4 while the TS3 experiment has a significantly lower
interest value (Fig. 10b).

To compare the skill of different physical metrics that con-
tributed to the total interest, we present the validation results
for the key attributes of the precipitation (Figs. 10c–f). The
90th-percentile intensity errors do not show notable differ-
ences among experiments. However, the NoDROP and TS3
experiments tend to have the lowest values more frequently
compared to the Control and TS2 experiments, particularly
during the 0000 UTC cycles (Fig. 10c). Validation for the
TSsingle run, which differs from the NoDROP run starting at
day 1.5 (IOP7), shows that the direct assimilation of a large num-
ber of dropsondes during the concurrent time window (after the
AR has made landfall) can improve the intensity of the precipita-
tion during the short range. Validation results for the centroid
displacement from different experiments are mixed (Fig. 10d).

FIG. 10. (a) The MET-MODE object including raw values for accumulated 24-h precipitation greater than 76 mm
using Stage-IV data from 1200 UTC 27 Jan to 1200 UTC 28 Jan. (b) The interest value as a comprehensive metric for
validating the observed coastal object in (a) based on different experiments for the 24-h precipitation time window
ending from a lead time of day 4.5 (IOP4, at 0000 UTC 24 Jan) to day 1 (12 h after IOP7 or at 1200 UTC 27 Jan) with
a time interval of 6 h. (c) As in (b), but for the 90th percentile of the precipitation amount within the object (mm).
(d) As in (b), but for the object centroid displacement (km). (e) As in (b), but for the intersection area between the
observed and model forecasted objects (km2). (f) As in (b), but for the object size errors (km2) for the object valida-
tion. The blue text above (b) and (c) denotes the IOPs at the forecast lead time of days 4.5, 3.5, 2.5, and 1.5.
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Forecasting the spatial coverage of the heaviest precipita-
tion is crucial for effective water management and risk mitiga-
tion, especially in areas with wildfire burn scars or antecedent
saturated soil moisture. Object size errors and intersection
areas represent the inaccuracies in the coverage of heaviest
precipitation across models and the overlapping areas be-
tween predicted and observed objects (Figs. 10e,f). The inter-
section area of paired objects for the Control and TS2
experiments is higher than that for the TS3 and NoDROP ex-
periments from day 2.75 through day 4.25 and in the short
range (e.g., day 1). The Control and TS2 experiments exhibit
less object size errors compared to the TS3 and NoDROP ex-
periments from day 1 through day 4.25. The TSsingle experi-
ment also has less errors in the short range compared to the
TS3 and NoDROP experiments (e.g., day 1–1.25, Fig. 10f).

Notably, the TS3 and NoDROP experiments frequently ex-
hibit the largest object size errors, indicating that reducing
mission frequency or completely removing all of the drop-
sonde data in this case would degrade the forecast skill for
heavy precipitation coverage. For instance, in the Control
run, the object size error at a lead time of day 2.75 is about
23000 km2, whereas the error is amplified to nearly27000 km2

in the TS3 and NoDROP runs, yielding a substantial missed
precipitating area, approximately 60% of the observed heavy
precipitation areas (11 472 km2, Table S3).

To quantify the distribution of the overall skill in each ex-
periment and provide the significance levels (a two-sample
Student’s t test) for the model differences, we present the box-
plots for all lead times and differences in mean values be-
tween two model runs in Fig. 11. Skill in terms of mean interest

FIG. 11. Boxplot of (a) the interest value, (b) the intersection area, and (c) the object size error for the coastal object validation in
Fig. 10. The boxplots are calculated by combining all 19 lead times together with the nonmatched forecast object excluded in the corre-
sponding lead time. The bottom and the top of each box represents the 25th percentile and the 75th percentile, respectively. The magenta
line in the middle of the box is the median. The cyan asterisk is the mean value of each experiment. The magenta horizontal line is the me-
dian of each data. (d) The p value, representing the degree of significance for the mean value differences between two experiments. The
green shading in (d) correspond to that the first experiment in the parentheses has less errors for the three metrics while the red shades
show the second experiment has less errors. Bold values in the chart of (d) show two experiments are significantly different at the
80% confidence levels.
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value, intersection area, and object size decreases as the number
of IOP used decreases (Figs. 11a–c). The Control experiment
has higher average skill in all three metrics than the TS2 experi-
ment, but they are overall comparable as indicated by the high
p values (Fig. 11d). The Control experiment also has higher skill
than the TS3 experiment, and lower p values between them in-
dicate larger differences between the Control and TS3 experi-
ments than between the Control and TS2 experiments. The TS2
run has higher skill than the TS3 run, but the difference is not
significant.2 Both the Control and TS2 experiments have signifi-
cantly higher skills than the NoDROP experiment, specifically
for the object size. Even with significantly reduced mission fre-
quency, the TS3 run has higher skill than the NoDROP run, in-
dicating that experiments with as few as one full mission still
have higher skill than those without dropsondes.

The MODE tool was also used to identify the IVT object
and validate the forecasted object with the ERA5 object. IVT
validation results show that the improved skill of precipita-
tion, particularly the coverage of the heaviest precipitation, is
associated with the improved forecast of the axis angle of the
AR object along the coast and offshore and the 90th percen-
tile of the IVT object (Fig. S8).

b. Spatial sampling

1) IMPACT ON INITIAL CONDITIONS

The analysis with an assimilation window centered at 0000 UTC
23 January (Fig. 3 and Table 2, IOP3) is employed to illustrate
the impact of dropsonde spatial resolution. Since this cycle is
the first to assimilate dropsonde data during the investigation
period, it provides a clean comparison of the observation impact
among the experiments. There are large differences between
model analyses and ERA5 along the southern leg of the G-IV
flight track and to the north of it (Figs. 12a,c,e,g). This region is
downstream of the moisture advection west of Hawaii (Fig. 3a),
with an associated upper-level trough (Fig. 4a). Impacts of the
full-horizontal-resolution dropsonde data are maximized
(;100 IVT units) along the southern leg, where horizontal
gradients in IVT are large, while the differences along the
northern leg are ;40–80 IVT units (Fig. 12h). These impacts
exhibit alternating positive and negative patterns at a horizontal
scale of hundreds of kilometers (Figs. 12b,h). Impacts of reduced-
resolution dropsondes, such as in the SS5 and SS3 experiments, are
spatially broad and quasi-Gaussian (Figs. 12d,f), which is a reflec-
tion of the background error covariance with sparse observations.

A west–east cross section that connects two waypoints on
the southern leg of the G-IV flight shows that model analyses
exhibit stronger vapor transport between 800 and 925 hPa
characterized by large vertical vapor flux gradients (Figs. S9a,c,e,g).
Model analyses tend to underestimate the vapor flux amplitude
near the maximum points at various levels. The assimilation of
full-horizontal-resolution dropsondes overall reduces the dis-
crepancy between the NoDROP analysis and the ERA5 data,
especially in regions with sharp horizontal and vertical gradients

(Fig. S9h). The impacts of reduced horizontal resolutions on the
vertical structure are more homogeneous due to the sparsity of
observations, whereas the inclusion of all of the dropsondes sig-
nificantly improves error correction and captures intricate struc-
ture in the results for IOP3 (Figs. S9b,d,f,h).

2) IMPACT ON FORECAST SKILL

The impact of the observation sampling on forecast skill is
first illustrated in IOP3. During operational flight planning,
ensemble sensitivity (Ancell and Hakim 2007; Torn and
Hakim 2008; Chang et al. 2013; Zheng et al. 2013; Hill et al.
2020) and adjoint sensitivity (Doyle et al. 2014; Reynolds et al.
2019; Doyle et al. 2019) tools were applied to inform the de-
sign of flight tracks (Cobb et al. 2024). For this IOP, one fore-
cast metric used in the ensemble sensitivity is an MSLP metric
over the north portion of the Kona low (Otkin and Martin
2004) valid at 0000 UTC 24 January (Fig. 3b). Therefore, we
verified the forecasts valid at 0000 UTC 24 January in the do-
main of 258–408N, 1658W–1808, which is in the north portion
of the Kona low.

The 24-h model forecasts exhibit positive error in the
MSLP (Figs. 13a,c,e,g), indicating a weaker Kona low. This is
qualitatively associated with the underestimation of the IVT
amplitude in the northwestern side (near date line) of the
TME. Meanwhile, the southwestern edge of the verification
box is slightly underestimated, suggesting a stronger pressure
gradient over 258–308N, 1708W–1808 (e.g., Fig. 13g). The posi-
tive error in MSLP is larger in the NoDROP and SS5 experi-
ments than in the SS3 and Control experiments (Fig. 13),
suggesting that assimilating higher-horizontal-resolution data
improves the skill of the Kona low forecast.

To compare the skill in different SS experiments for the
precipitation forecasts, we verify the same MODE object for
the heaviest coastal precipitation used in Fig. 10a from lead times
of day 4.5 to day 1 (Fig. 14). Among the Control, SS3, and SS5
experiments, the Control run that assimilates full-horizontal-
resolution data shows the highest skill in the interest value,
the intersection, and the object size for lead times . 1.5 days
(Figs. 14b,e,f). The skill in the Control experiment is signifi-
cantly higher than that in the SS5 experiment for the intersec-
tion area (Fig. 15d). In contrast, the SS5 experiment, which
increases the dropsonde spacing to 5 times, shows the lowest
skill based on the interest value, the intersection and object
size metrics specifically for lead times. 2 days. When consid-
ering all lead times, there is an overall decreasing trend in
skill for interest value, intersection area, and object size as
the dropsonde spacing increases (Figs. 15a–c). It is notewor-
thy that the SS3 experiment shows comparable skill with Con-
trol for the mean value of the intersection area (Fig. 15b).

In addition to the sensitivity experiments for dropsonde
horizontal spacing, we conducted the SS_G4 and SS_C130 ex-
periments to compare the impacts of dropsondes deployed
from NOAA G-IV aircraft and the AF C-130 aircraft, respec-
tively. The G-IV aircraft is designed for high-altitude and
long-range travel, with a maximum altitude of ;13 500 m
(;150 hPa), while the C-130 aircraft is designed for short
takeoff and landing operations and typically flies at lower

2 Note that the sample size for the box plot is limited to 15–17,
making the assessment of statistical significance challenging.
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altitudes of ;8000 m (;325 hPa). The skill of SS_G4 is over-
all higher than that of SS_C130 in terms of interest value, ob-
ject size, and intersection area particularly during days 1–4
lead times (Figs. 14b,e,f). However, it is noteworthy that this
comparison is unfair to the C-130 because the C-130 aircraft
were deployed for IOPs 4, 7, and 8 only, while G-IV aircraft
were sent out during all six IOPs. By the time of the start of

the heaviest precipitation, the SS_C130 run had only assimilated
C-130 dropsonde data in IOP4 and IOP7, with the former sam-
pling a decaying AR that made landfall in the Pacific Northwest
instead of California. Nevertheless, comparing these two experi-
ments shows that the G-IV aircraft, which flies higher, covers
longer distance, and followed the moisture advection as a pre-
cursor of the landfalling AR, and the AR itself, is critical to

FIG. 12. As in Fig. 6, but for the SS experiments for the analysis time of 0000 UTC 23 Jan. (a),(c),(e),(g) Arranged in
descending order based on the horizontal resolution of AR Recon dropsondes, with (a) representing the inclusion of
full dropsonde spatial resolution and (g) representing zero dropsondes. (b) The IVT differences (shading, kg m21 s21)
between Control and SS3. (d),(f),(h) As in (b),but for the differences between SS3 and SS5, SS5 and NoDROP, and
Control and NoDROP, respectively. Black contours are the analyzed IVT amplitude (kg m21 s21) in ERA5 starting
from 150 IVT units with an increase of 100 units. Filled black circles in (a), (c), and (e) indicate the locations of drop-
sondes assimilated during the analysis window centered at 0000 UTC 23 Jan for the Control, SS3, and SS5 experiments,
respectively.
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improving skill in predicting the heaviest precipitation in Cali-
fornia. In fact, the average skill of SS_G4 is comparable to that
of Control (Fig. 15) in the three metrics. However, the skill of
SS_G4 has more outliers and is not as stable as in the Control
run, indicating that having data from both aircraft benefits the
forecast.

c. Comparison of high-vertical-resolution and reduced-
vertical-level profiles

As of this writing, many operational models, such as the
NCEP GFS, only assimilate dropsonde data at mandatory and
significance levels (Zheng et al. 2021b). The ManSig experiment

FIG. 13. As in Fig. 12, but for the differences in MSLP in the forecast valid at 0000 UTC 24 Jan. The forecasts are
initialized at 0000 UTC 23 Jan. The text box on the bottom right is a summary of the RMSD between each experi-
ment and the ERA5 data for MSLP and IVT based on the domain of 258–408N, 1658W–1808.
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is conducted to compare the skill of assimilating reduced-level
dropsonde data with that of assimilating the higher-resolution
dropsonde data (i.e., the superobbed dropsonde data in the
Control run). Thus, comparisons of the Control and ManSig ex-
periments test the impact of using high-vertical-resolution data
(Control) versus lower-vertical-resolution data (ManSig).

The same cross section for IOP3 (Fig. S9) is made to com-
pare the initial conditions of the ManSig and Control runs
(Fig. 16). The differences in horizontal vapor flux amplitude
between the ManSig analysis and the ERA5 data resemble
other experiments (e.g., Fig. S9a) with underestimation in the
maxima and overestimation in the strong vertical gradients
(Fig. 16a). The differences between the Control and ManSig
analyses are most pronounced in regions with strong vertical
gradients, such as between 21828W (i.e., 1788E) and21798W,
and along 21758 and 172.58W (Fig. 16b). To disentangle the
impacts on wind and moisture, the same cross section for
wind speed and specific humidity is also shown in Figs. 16c,d
and 16e,f. The ManSig run underestimates the wind speed be-
low the upper-level jet roughly between 300 and 450 hPa on

the western half of the cross section and between 250 and
400 hPa on the eastern half (Fig. 16c). Differences between
the Control and ManSig experiments show a layer of positive
values under the upper-level jet (Fig. 16d), demonstrating
that the higher-vertical-resolution observations help to better
represent the downward extension of the upper-level jet.

The discrepancy in specific humidity between the ManSig
experiment and the ERA5 data is primarily an overestimation
of the moisture in the dry intrusion regions, such as between
21828 and 21758W from 600 to 900 hPa and along 21738W
from 600 to 700 hPa (Fig. 16e). Impacts of the vertical resolu-
tion are most pronounced in regions with sharp vertical mois-
ture gradients (Fig. 16f).

The largest differences in IVT between the Control and
ManSig analyses are along the southern leg of the G-IV flight
(Fig. S10c). A secondary region with significant differences is
along the northern leg. Note that the discrepancy between the
Control and ERA5 data is larger than that between the Man-
Sig and ERA5 data near the southwestern waypoint of the
flight path (Figs. S10a,b). Results for the IWV differences

FIG. 14. As in Fig. 10, but for the Control, SS3, SS5, SS_C130, and SS_G4 experiments.
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(Fig. S10d) show that the wind components dominate the IVT
difference on the western side of the flight path between
;1758E and 1808, while the moisture components dominate
the eastern side between 1808 and 1708W from 208 to 288N,
where the elongated IWV plume is maximized.

Overall, the skill in the Control and ManSig experiments for
the investigated period are comparable, and none of the metrics
show statistically significant differences between the two experi-
ments (Fig. 17, Fig. S11). Both experiments exhibit significant
improvement over NoDROP, underscoring once again the im-
portance of assimilating AR Recon dropsondes in accurately
forecasting the precipitation object size and intersection area.
The Control experiment show slightly higher skill in precipita-
tion intensity than the ManSig experiment for the shorter lead
times (e.g., days 1–2.5, Fig. 17c, Fig. S11c).

5. Discussion and conclusions

In this paper, we employ data denial experiments to explore
the impacts of AR Recon mission frequency and dropsonde
spatial resolution on regional model analyses and forecasts of a

2021 high-impact AR event in California. The event took place
during a 6-day intensive observing period (IOP) of 2021 AR
Recon, triggering heavy precipitation in both coastal California
and the Sierra Nevada.

Experiments are conducted to represent scenarios of vari-
ous flight missions and spatial resolutions during parallel
week-long cycled simulations with the West-WRF and
4DEnVar system. Overall, the results from this case study
indicate that:

• Dropsondes improved the representation of ARs in the
model analyses when using ERA5 as the ground truth, espe-
cially near sharp horizontal and vertical gradients, such as the
dry intrusion and the inversion layer. The benefits in model
analyses are transferred to positive impacts on the forecast
skill of ARs and QPF, particularly for lead times .1 day.
This finding is consistent with the results from Reynolds et al.
(2019), in which they found that the optimal perturbations of
moisture for ARs occur in regions where the humidity gradi-
ent is large, acting to fill the drier regions, rather than in re-
gions where the amount of humidity is greatest.

FIG. 15. As in Fig. 11, but for the SS experiments.
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• Reduced mission frequency resulted in degraded skill in fore-
casting the heaviest precipitation coverage. QPF skill was sig-
nificantly higher for the daily and every other day mission
scenarios than for the one-mission-every-three-days and no-
flight scenarios.

• Reduced dropsonde horizontal spatial resolution overall
degraded forecast skill. The scenario with the dropsonde
spacing increased to 5 times the original exhibits the worst
skill. Increasing the dropsonde horizontal spatial resolution
reduces phase errors that could exist near the sharp hori-
zontal gradients.

• The inclusion of two types of aircraft (G-IV and C-130s),
sampling different regions, is an effective strategy to enable
the benefits of missions on consecutive way. G-IV samples
weather features further upstream and at higher altitudes,
allowing more time for observations to improve future
forecasts via better background forecasts.

• Assimilating superobbed high-resolution dropsondes and only
assimilating data at mandatory and significant levels show sim-
ilar average skill. However, the former shows slightly higher
skill in the precipitation intensity than the latter.

This study suggests some promising guidance for flight plan-
ning during future operational AR Recon missions. Results indi-
cate that flights on consecutive days benefit the forecast more
than single flights, consistent with Stone et al. (2020) and Zheng
et al. (2021b). Moreover, results suggest that future missions
should maintain current dropsonde spacing, particularly along
the strong horizontal gradients of wind, moisture, and IVT in
ARs, consistent with the adjoint results of Reynolds et al. (2019)
and Doyle et al. (2019). Last, in addition to the AF C-130 aircraft
that are often used to sample the AR, the NOAA G-IV brings
the capability of sampling the full depth of the troposphere and
the jet stream.

FIG. 16. (left) Difference between the ManSig analysis and the ERA5 data (shaded) and (right) difference between
the Control and ManSig analyses. (a),(b) Vapor flux amplitude [kg m (kg s)21]; (c),(d) wind speed (m s21); and
(e),(f) specific humidity (g kg21). The cross section is from A (25.998N, 184.838W) to B (22.038N, 171.058W).
The analysis is valid at 0000 UTC 23 Jan 2021.
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A caveat of this study is that, except for the Control run, all
other experiments only reduced the resolution and/or mission
frequency and did not increase them due to the lack of flights
at higher frequency (e.g., every 12 h) and denser dropsondes
(e.g., ;45 km). Therefore, higher-observation-resolution ex-
periments are recommended if future flights increase the fre-
quency and dropsonde spatial resolution. It is also noteworthy
that this is a case study, and the results might change with more
cases, specifically cases with different flow regimes (Majumdar
et al. 2010). Future investigation will focus on the impacts on an
operational global modeling system, such as the NCEP GFS. In
addition, future work will also investigate other long-sequence
flights during different weather regimes, such as the zonal, fast-
moving atmospheric flow during a high-AR-activity period from
6 to 18 January 2023.
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FIG. 17. As in Fig. 10, but for ManSig. Control and NoDROP results are included for comparison.
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Users’ page (https://dtcenter.org/community-code/model-
evaluation-tools-met).
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