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ABSTRACT: This study assesses streamflow predictions generated by two distributed hydrologic models, the Hillslope
Link Model (HLM) and the National Water Model (NWM), driven by three radar-based precipitation forcing datasets.
These forcing data include the Multi-Radar Multi-Sensor (MRMS), and the Iowa Flood Center’s single-polarization-based
(IFC-SP) and dual-polarization-based (IFC-DP) products. To examine forcing- and model-dependent aspects of the
representation of hydrologic processes, we mixed and matched all forcing data and models, and simulated streamflow for
2016-18 based on six forcing-model combinations. The forcing product evaluation using independent ground reference
data showed that the IFC-DP radar-only product’s accuracy is comparable to MRMS, which is rain gauge corrected.
Streamflow evaluation at 140 U.S. Geological Survey (USGS) stations in Iowa demonstrated that the HLM tended to
perform slightly better than the NWM, generating streamflow with smaller volume errors and higher predictive power as
measured by Kling—Gupta efficiency (KGE). The authors also inspected the effect of estimation errors in the forcing
products on streamflow generation and found that MRMS’s slight underestimation bias led to streamflow underesti-
mation for all simulation years, particularly with the NWM. The less biased product (IFC-DP), which has higher error
variability, resulted in increased runoff volumes with larger dispersion of errors compared to the ones derived from
MRMS. Despite its tendency to underestimate, MRMS showed consistent performance with lower error variability as
reflected by the KGE. The dispersion observed from the evaluation metrics (e.g., volume error and KGE) seems to
decrease as scale becomes larger, implying that random errors in forcing are likely to average out at larger-scale basins.
The evaluation of simulated peaks revealed that an accurate estimation of peak (e.g., time and magnitude) remains
challenging, as demonstrated by the highly scattered distribution of peak errors for both hydrologic models.
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1. Introduction forcing data. The NWM configuration includes (i) high-resolution
modeling grids and National Hydrography Dataset (NHD)
Plus V2 (McKay et al. 2012) for landscape representation
and (ii) high-resolution precipitation forcing, such as the
Multi-Radar Multi-Sensor (MRMS; Zhang et al. 2016)
quantitative precipitation estimation (QPE) product. The
results from continental-scale retrospective simulations driven
by such forcing and topography data provided a glimpse into
modeling performance, demonstrating an early success and the
potential for the data-intensive national-scale flood forecasting
(e.g., Hansen et al. 2019). However, the key features of pre-
diction errors associated with model structure and individual
routing components, basin scale, and uncertainty in precipita-
tion forcing data have not been extensively examined since
NWM’s operational implementation in 2016. Different forcing
products (e.g., Seo et al. 2018), different models (e.g., Reed
et al. 2004; Smith et al. 2012), or different forcing-model
combinations may increase or decrease predictive capability.
It is crucial to understand how each element employed in the
forecasting system behaves and how it contributes to skill in
streamflow simulation. As such, a framework that can investigate
differences in prediction accuracy derived by the different con-
figurations of forcing products and models is required to improve
our understanding and prediction skills.

In this study, we explore streamflow prediction skill and
uncertainty derived from various combinations of multiple hy-
Corresponding author: Bong-Chul Seo, bongchul-seo@uiowa.edu  drologic models and precipitation forcing products. We focus on

Recent implementation of the National Water Model (NWM)
into U.S. National Weather Service (NWS) operations dem-
onstrates increasing demand for high-resolution hydrologic
modeling and forecasting. NWS’s operational hydrologic fore-
casting has relied on a long-standing lumped model with extensive
calibration (e.g., Sorooshian et al. 1993; Koren et al. 2014).
Many studies (e.g., Reed et al. 2004; Smith et al. 2012) have
explored the predictive capability of distributed models, sug-
gesting some requirements for distributed models to replace or
complement the lumped model. While the calibrated lumped
model is still a primary forecast tool for the NWS’s River
Forecast Centers, high-resolution modeling can help describe
scale-dependent variability and many details of interactions
between the atmosphere and the land surface (e.g., Cole and
Moore 2009). Conventional approaches (i.e., lumped hydrol-
ogy and mesoscale weather) have addressed these poorly.
Furthermore, high-resolution distributed modeling can com-
plement current hydrologic guidance at NWS forecast points
and expand forecast capability and coverage to ungauged
locations (e.g., Cosgrove et al. 2016; Cohen et al. 2018).

High-resolution modeling and forecasting require model con-
figuration using high-resolution topography and precipitation
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FIG. 1. (a) The locations of NWS COOP rain gauges and (b) USGS streamflow gauges in the study domain
represented by the black dashed box. The circular areas in (a) demarcate 230-km ranges centered on the WSR-88D
radars indicated by four-digit codes. Landform types presented in (b) are color coded to explore landscape-

dependent runoff features.

streamflow prediction during warm and hot months (e.g., April-
October) because streamflow during winter and early spring is
primarily affected by frozen ground and snowmelt combined
with winter precipitation, the data for all of which typically
contain large uncertainties. This mix-and-match approach is
critical, as the conventional approach of calibrating hydrologic
models is challenging at the national scale (e.g., Beven 1993).
Accordingly, herein we used the Iowa Flood Center (IFC;
Krajewski et al. 2017) Hillslope Link Model (HLM) and the
NWM for hydrologic models; and MRMS and IFC’s radar-
based QPE products for precipitation forcing data. The theo-
retical roots of the HLM are in the scaling properties of the
river networks and landscape decomposition into hillslopes
and channel links (Mantilla and Gupta 2005; Gupta et al. 2010,
2015). The scale of the hillslopes, where the conversion of
rainfall into runoff takes place, is much smaller than the scale
of the NHDPlus basins used as the topographic underlining for
the NWM. At larger scales, the two models are likely com-
patible, only within the margin of errors due to digital eleva-
tion model (DEM) data processing and network extraction
(Quintero and Krajewski 2018). The assessment of the mix-
and-match simulation results presented in this study will pro-
vide valuable insights to assist researchers and operational
forecasters to understand modeling uncertainties and improve
prediction skills.

2. Hydrologic models and data

We applied the mix-and-match approach to the IFC’s fore-
casting domain where a variety of hydrologic data resources
are instantly accessible through a web portal known as the
Iowa Flood Information System (e.g., Demir and Krajewski
2013; Krajewski et al. 2017). The climate in Iowa is described
by wet springs, hot summers, and cold winters. Jowa’s mean
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annual precipitation and evaporation are about 860 mm (http:/
www.ocs.orst.edu/) and 580 mm (http://www.ntsg.umt.edu/
project/mod16/), respectively. The main portion of land cover
is agriculture with corn-soybean rotation. Major rivers and
stream gauge stations in lowa belong to the NWS North
Central River Forecast Center (NCRFC) forecasting domain,
while smaller rivers in western Iowa belong to the Missouri
Basin RFC territory. We used streamflow observations from
140 U.S. Geological Survey (USGS) stream gauges in lowa to
evaluate the results of multiyear mix-and-match simulations
for the period from 2016 to 2018. We also collected meteoro-
logical forcing data, including multiple precipitation products
required for both HLM and NWM model simulations. The
following subsections provide brief descriptions of models,
model forcing products, and reference datasets (e.g., rain
gauge and streamflow observations) used for the evaluation of
forcing products and model simulations. The locations of rain
and stream gauge stations are illustrated in Figs. 1a and 1b,
respectively.

a. Hydrologic models
1) HLM

The Hillslope Link Model (HLM) is a conceptual hydrologic
model that simulates the main aspects of surface processes and
flood genesis. HLM is distributed in space using an irregular
mesh given by the partitioning of the landscape into hillslopes
and channels. In the model representation of the river network, a
channel-link pair is defined as the portion of a channel be-
tween two junctions of a river network, and hillslope is the
adjacent area that drains into the link. In HLM, the hillslope is
the volume control unit for runoff production, and runoff
propagation occurs from each hillslope to its adjacent channel
link. The conceptualization of runoff production at each hill-
slope consists of several vertical tanks representing different
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water storages in a soil column. These tanks are (i) snow tank,
(i) surface ponding, (iii) topsoil, (iv) subsurface, and (v) channel.
Vertical fluxes connecting these tanks are represented by the
processes of precipitation, snowmelt, evapotranspiration, in-
filtration, and percolation. Horizontal fluxes are associated
with overland flow, interflow, and base flow and provide inputs
into the channel tank. The HLM physics and equations are
documented in prior research (e.g., Mantilla and Gupta 2005;
Gupta et al. 2010; Quintero et al. 2016; ElSaadani et al. 2018),
and recent improvements in HLM’s routing elements are re-
ported in Ghimire et al. (2018) and Quintero et al. (2020). Since
IFC’s establishment in 2009, the HLM has been the IFC’s
operational forecast model to provide real-time streamflow
forecasts for Iowa communities (Krajewski et al. 2017).
Mathematically, the model consists of a large system of ordi-
nary nonlinear differential equations organized to correspond
with the river network topology. This allows use of an efficient
numerical solver designed for high-performance computing
(Small et al. 2013) and capable of updating the forecasts as
frequently as every 15 min.

2) NWM

The National Water Model (NWM) is also a highly distrib-
uted hydrologic model that simulates and forecasts streamflow
over the entire United States, based on an hourly modeling
cycle. The NWM is configured using hydrologic processes
and routing components (e.g., subsurface, surface/terrain, and
channel routing) included in the community WRF-Hydro
modeling system (Gochis et al. 2018) developed at the National
Center for Atmospheric Research (NCAR). The key modules of
the NWM system consist of the Noah Multi-Parameterization
(Noah-MP) land surface model (LSM) to represent land surface
processes (Niu et al. 2011; Yang et al. 2011) and separate water
routing modules. The LSM simulates the vertical exchange of
water and energy fluxes between the Earth surface and atmo-
sphere interface on a 1-km grid. The routing modules encom-
pass diffusive wave surface routing (Downer et al. 2002) and
saturated subsurface routing (Wigmosta et al. 1994; Wigmosta
and Lettenmaier 1999), based on a 250-m grid, as well as
Muskingum—Cunge channel routing (e.g., Tang et al. 1999)
using the vectorized NHDPIlusV2 stream units (McKay et al.
2012). To improve the model’s initial states for its forecasting
cycles, a simple nudging data assimilation (DA) scheme (e.g.,
Gochis et al. 2018; Seo et al. 2020, manuscript submitted to
J. Amer. Water Resour. Assoc.) is applied to the channel
routing routine using observed streamflow data. However, we
excluded DA and reservoir routing in our NWM configuration
for the simplicity of model implementation and a fair com-
parison with the HLM simulation.

b. Model forcing products

Hydrologic models require various forcing data to trigger
interactions between their modeling elements (e.g., atmosphere—
surface and surface—subsurface). These forcing data for distrib-
uted models include gridded precipitation and environmental
variables (e.g., surface temperature), estimated using re-
mote sensing platforms (e.g., radar and satellite) or nu-
merical weather prediction (NWP) models. For both HLM
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and NWM simulations, we used MRMS and IFC radar-based
precipitation products as the main driving factor. Because NWM
land surface modeling (i.e., Noah-MP) requires additional
environmental variables, we retrieved those forcing data
from the North America Land Data Assimilation System
(NLDAS) dataset (e.g., Xia et al. 2012).

MRMS integrates base radar data with satellite, lightning,
and rain gauge observations, as well as atmospheric environ-
mental data, using NWP model analyses (Zhang et al. 2016).
MRMS provides a suite of weather and QPE products (e.g.,
rainfall rate, accumulation, and precipitation type) with a 0.01°
(approximately 1km) resolution. The one used for this study
is a rain gauge—corrected product on an hourly basis.

The IFC product is a composite of the seven U.S. Weather
Surveillance Radar-1988 Doppler (WSR-88D) radars that
cover the full Towa domain (see Fig. 1). The IFC acquires Level
II radar volume data through Local Data Manager (e.g.,
Kelleher et al. 2007), processes the data with its own QPE algo-
rithms, and creates a real-time composite product (Krajewski
et al. 2017; Seo and Krajewski 2020). The IFC recently switched
the key QPE algorithm to the specific attenuation-based one (e.g.,
Cocks et al. 2019; Wang et al. 2019; Seo et al. 2020c) to take
advantage of its capability for full polarimetric observations.
The forcing dataset in the mix-and-match configuration in-
cludes the IFC’s former single-polarization-based (IFC-SP)
and the new dual-polarization-based (IFC-DP) estimates. We
generated both IFC products using a tool (Seo et al. 2019) that
acquires the Level II data from the Amazon’s Big Data archive
(Ansari et al. 2017) and delivers a customized QPE product for
the space-time domain of this study. These products are radar-
only estimates (not corrected with rain gauge data) with 5-min
and approximately 0.5-km resolutions. For this study, we ag-
gregated the estimates to hourly resolution to be compatible
with the MRMS product. The resolution and QPE algorithm
differences among MRMS and the two IFC products are
summarized in Table 1.

Additional forcing data for the Noah-MP LSM encompass
incoming shortwave and longwave radiation, specific humidity,
air temperature, surface pressure, near-surface wind compo-
nents, and precipitation rate. We retrieved all these forcing
data from the NLDAS dataset at 0.125° resolution, except for
precipitation rate, for which we used the radar-based forcing
products listed in Table 1. The HLM also uses another forcing
data, averaged evapotranspiration (ET) from the Moderate
Resolution Imaging Spectroradiometer (MODIS; e.g., Mu
et al. 2011). Monthly averages of the MODIS actual ET over
the entire State (see Fig. 1) for the past 10 years were used for
HLM streamflow simulation. The different forcing product
spatial resolutions (e.g., MRMS versus IFC) were resampled
onto the 1-km LSM grid and employed for NWM simulations,
while the HLM is more flexible for forcing product resolution.

¢. Rain gauge and streamflow data

To evaluate the precipitation forcing products, we acquired
ground reference rain gauge data from the NWS Cooperative
Observer Program (COOP; Mosbacher et al. 1989) network
for the period from 2016 to 2018. As illustrated in Fig. 1a, the
COOP gauges are well distributed over the study domain, and
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about 40% of them provide hourly observations. The rest re-
port daily totals measured by human observers (local volun-
teers). Because of the recognized report timing error of these

not immediately contribute to streamflow discharge (e.g., Fontaine
et al. 2002). The MRMS-generated initial states were then used
for model simulations driven by the two IFC products to avoid
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FIG. 2. A schematic view of the mix-and-match modeling framework. Initial states of both models (on 1 Apr, each
individual year) for simulations driven by the IFC-SP and IFC-DP products were taken from model simulations

driven by MRMS.

any discrepancies generated by different forcing products.
Figure 2 demonstrates the mix-and-match modeling strategy,
generating consistent initial conditions when comparing the
performance of different models driven by multiple precipi-
tation forcing products.

We configured WRF-Hydro (version 5.0.3) as closely as
possible to the NWM, which is running at the NWS. As part
of this effort, we acquired exactly the same NWM domain
grids and associated data for the study area, with the help
of the Consortium of Universities for the Advancement of
Hydrologic Science, Inc. (CUAHSI). The domain grids and
parameters were retrieved from the NWM version 1.2.2 using
a CUAHSI-developed tool “domain subsetter” (Castronova
et al. 2019) offline. Because the NWM’s upgrade to the current
operational version (2.0) focused mainly on spatial and tem-
poral domain expansion, the version discrepancy does not
likely engender any major differences in model simulation
results.

We note that modeling procedures in this study did not
include model parameter calibration and streamflow DA.
Calibration of model parameters may conceal prediction un-
certainties derived from different precipitation forcing prod-
ucts and prevent us from understanding the propagation of
these uncertainties through a hydrologic model. The benefit of
streamflow DA in streamflow prediction is documented in
F. Quintero et al. (2020, unpublished manuscript) and Seo
et al. (2020, manuscript submitted to J. Amer. Water Resour.
Assoc.), separately for the two models.

b. Evaluation
1) FORCING PRODUCTS

We evaluated the three precipitation forcing products using
the COOP rain gauge observations at two temporal scales
(e.g., yearly and hourly). To avoid the effect of timing errors in
daily readings, we accumulated individual gauge records over a
year (April-October) and compared yearly gauge totals with
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corresponding estimates collocated in the forcing products.
We also performed hourly radar-gauge (R—G) comparisons
for those locations where hourly observations are available,
as shown in Fig. 1a. We assumed that the gauge representa-
tiveness error (e.g., Morrissey et al. 1995) is negligible at the
temporal (hourly and yearly) and spatial (MRMS: 1km;
IFC-SP and IFC-DP: 0.5 km) scales analyzed. The independent
evaluation at both hourly and yearly scales employs three
statistical metrics to quantify the accuracy of precipitation
estimates: multiplicative bias (B) defined as a ratio (R/G),
Pearson correlation coefficient (r), and mean absolute error
(MAE). Detailed formulas for the three metrics are provided
in Egs. (1)-(3):

nt

2 R

"1

gt Y o)
G,
i=1j=1 "
nt . o
) 2 (R,',j - R)(G,"]‘ - G)
i=1)=1
r= , 2
nt B nt -
Y. (R,~R’ X (G,-G)
i=1y=1 i=1=1 Y
1
MAE:_t Z |R;J_G;’j‘v (3)

i=1,j=1

where R;; and G;;indicate the jth hour/day radar estimate and
gauge observation at the ith gauge location, respectively; n and
t denote the number of rain gauges and total hours/days in the
evaluation period; and R and G are the radar and gauge
mean values.

2) STREAMFLOW PREDICTIONS

We assessed streamflow predictions generated by the mix-
and-match simulations at 140 USGS stream gauge stations, as
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FIG. 3. Quantitative evaluation of the three precipitation forcing products (MRMS, IFC-SP, and IFC-DP) using hourly and daily
COOP observations at annual (April-October) total scale. The presented evaluation metrics in each scatterplot are separately
color coded for hourly (blue) and daily (orange) rain gauges shown in Fig. 1a. MAE was normalized by the gauge mean and

presented as a percentage.

shown in Fig. 1b. The simulated streamflow with a 15-min time
interval was analyzed using common statistical evaluation
metrics such as correlation (r), MAE, and root-mean-square
error (RMSE). The correlation and MAE calculations are
similar to those in Egs. (2) and (3), and RMSE is provided
in Eq. (4):

1 n
RMSE = \/ - Y Q. — Q) (4)
=1 ’ :

where Q, denotes observed (obs) and model simulated (sim)
discharge at time ¢, and » indicates the number of time steps.
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We further refined prediction performance based on the major
hydrologic indicators such as runoff volume and peak flow,
with respect to different combinations and upstream drainage
scales. This analysis permitted us to define prediction uncer-
tainties (or performance) as a function of such variables as
basin scale and regional landscape/geology. Iowa’s diverse
landscape is represented by several major landform types as
presented in Fig. 1b. The evaluation metrics that expose the
central features of hydrologic prediction include (i) relative
volume error (REy), (i) relative peak error (REy,), (iii) peak
timing error (E;,), and (iv) Kling-Gupta efficiency (KGE).
KGE (Gupta et al. 2009) describes an overall predictive power
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FIG. 4. Precipitation forcing product evaluation at hourly scale. The 2D histograms show the number of occurrences for given rainfall
ranges of radar—gauge pairs.

of hydrologic models and was proposed to improve deficiencies
in Nash—Sutcliffe efficiency (Nash and Sutcliffe 1970). The four
metrics are defined in Egs. (5)-(8):

V. -V
RE, = —sm__"obs X 100%, (5)
Vobs
Q,im €
RE,, =10 =P % 100%, (6)
? p,obs
Et = tp,sim - tp,obs’ (7)

P

KGE=10-\/(r—1+ (@1 + (817, (3

where V, O, and 1, denote total volume (m?), peak discharge
(m*s™1), and peak time (h) obtained from model simulations
(sim) and observations (obs) during the period from April to
October of each year. KGE is represented as a function of

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 03:17 PM UTC

correlation (r), the ratio of standard deviation («), and the ratio
of mean () between simulated and observed streamflow.

4. Results
a. Evaluation of precipitation forcing products

We evaluated three precipitation forcing products employed
in the mix-and-match simulations using ground reference data
attained from the NWS COOP network within the study do-
main illustrated in Fig. 1a. In the domain, there are 289 COOP
gauges in total (109 hourly and 180 daily gauges), and we ac-
cumulated precipitation records from these gauges for the
period from April to October for a yearly evaluation. Figure 3
shows the yearly evaluation of MRMS, IFC-SP, and IFC-DP
products with three statistical metrics defined in Egs. (1)-(3).
The MAE values shown in Fig. 3 were normalized by the gauge
mean and presented as a percentage. The dots represent
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FIG. 5. Performance comparison of the mix-and-match simulation results characterized by correlation (r), MAE, and RMSE. MAE and
RMSE were normalized by annual mean streamflow at individual USGS stations. The solid red circles in the correlation plots indicate a
high-density cluster in 2018 to compare the performance of MRMS and IFC-DP.

individual gauge and corresponding radar grid totals with the
same color code used in Fig. 1a to distinguish hourly (blue) and
daily (orange) gauges. As shown in Fig. 3, the dots indicating
MRMS and IFC-DP tend to closely align along the one-to-one
line, with slightly different degrees of linear dependence and
dispersion, while the tendency of the dots from IFC-SP looks
slanted from the line with relatively larger dispersion. We note
that MRMS and IFC-DP show quite comparable performance,
although IFC-DP does not contain a bias correction using rain
gauge records, which is included in the MRMS product. The
estimates of IFC-DP shown in Fig. 3 were derived from the
specific attenuation algorithm (Seo et al. 2020c); this reveals
significant accuracy improvement against its predecessor, the
reflectivity-based estimates IFC-SP. Overall, the performance
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of MRMS looks slightly better than that of IFC-DP, although
its bias values for all three years denote consistent underesti-
mations (i.e., B < 1.0). The behavior of bias seems to be better
for IFC-DP when compared to MRMS. Comparisons of rain
gauge records from different time scales reveal that the yearly
totals from daily gauges show larger dispersion than those from
hourly ones. We speculate that this is due to the errors in hu-
man reading (daily) versus automatic sensing (hourly). The
hourly evaluation results are presented in Fig. 4 with two-
dimensional histograms representing the occurrence of hourly
values between gauge observations and radar-based estimates.
The observed degrees of overall bias for each product shown in
Fig. 3 are consistent with those in Fig. 4. Figure 4 clearly shows
that: (i) the dispersion of IFC-DP is somewhat larger than that
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FIG. 6. Performance comparison of the mix-and-match simulation results characterized by the ratios of standard deviation («) and mean
(B). The two different colored zones indicate each model’s superiority. The dots are color coded regarding different analysis years as

labeled in Fig. 5.

of MRMS at hourly scale; and (ii) the three products are
characterized by different uncertainty features conditioned on
rainfall magnitude (e.g., Ciach et al. 2007; Seo et al. 2018).

b. Evaluation of mix-and-match simulations

We generated streamflow predictions from six mix-and-match
combinations using three precipitation forcing products
(MRMS, IFC-SP, and IFC-DP) and two distributed hydro-
logic models (HLM and NWM). Figures 5 and 6 show basic
statistical metrics (correlation, MAE, RMSE, and the ratios of
standard deviation and mean) for all six simulation evaluations
from 140 USGS stations, as shown in Fig. 1b for the study years
(2016-18). MAE and RMSE were normalized by the annual
mean of observed streamflow for each year to offer practical
insight regarding the degree of errors. For model performance
comparison, there are more dots placed below the one-to-one
line in correlation with MAE and RMSE, showing an opposite
tendency for all forcing products. This implies the superiority
of HLM in streamflow prediction. The ratios of standard de-
viation («) and mean (B) shown in Fig. 6 also reveal that the
distributions of high-density clusters with NWM are wider, and
their centers appear farther from the unity (1.0) axis than
HLM’s do (the closer to unity for @ and B, the better the
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agreement with observations). Concerning forcing product
comparisons represented by streamflow simulations, MRMS
and IFC-DP seem to perform better than IFC-SP, as shown
by the forcing product evaluation results presented in Figs. 3
and 4. IFC-SP shows more dots in a low correlation zone (e.g.,
r < 0.5 for both models) and fewer dots in a low error zone
(e.g., NMAE < 0.5 for both models). It is not clear whether
MRMS or IFC-DP performs better based on the presented
metrics in Figs. 5 and 6. While the scatter of IFC-DP seems
slightly smaller in correlation and errors (NMAE and
NRMSE), the high-density cluster in 2018 marked by the solid
red circles illustrates that MRMS simulations, particularly with
HLM, agree slightly better with streamflow observations (i.e.,
higher correlation).

In Fig. 7, we organized the same results (for 2016 only)
presented in Figs. 5 and 6, with respect to upstream drainage/
catchment scale covered by individual USGS stations. This
rearrangement enables inspection of forcing product and
model performance in streamflow generation at a variety of
basin scales. MAE and RMSE, presented in Fig. 7, were not
normalized to disclose distinct scaling behavior, with larger
errors as the scale increases. One can also recognize from Fig. 7
that correlation and the variability of « and 8 tend to gradually
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FIG. 7. Performance comparison of the mix-and-match simulation results regarding drainage scale covered by individual USGS stations.
The results for 2016 shown in Fig. 5 were reorganized.

increase and decrease, respectively, as drainage scale becomes
larger. Because the superiority of forcing product and model
performance changes from year to year, it is hard to decide
which product or model generates better streamflow predic-
tions based on the results shown in Fig. 7. Observations of
a and B gleaned from Figs. 5-7 include the following: (i) the
dispersion of NWM results looks wider than that of HLM re-
sults (several a values for NWM at small scales are not within
the presented range) and (ii) the center of HLM clusters for all
forcing products are closer to unity. Figure 8 shows examples of
observed and simulated hydrographs, with estimated « and

B values at different basin scales. In Fig. 8, one of « and B for
both models is in a good range (close to unity) at each different
location, whereas the other shows performance differences.
Good estimations of B8 at Redfield were contributed by the
erroneous peak (compensating early misses in April-May)
detected in August, which decreased correlation significantly.
HLM'’s underestimation in 8 at Wapello seems to arise from
(i) the early recession during the peak event detected in late
September and (ii) the initial condition and simulated dis-
charge during an early period (April-mid-June) lower than the
observed. Although NWM’s result at Wapello also revealed

600
South Raccoon River at Redfield lowa (2,517 km?)
400 HLM ( 0.24; a: 1.09; B: 1.00) g o e
NWM (- 0.14; a: 1.85; B: 0.95) imitated-(HLM)
! ! = Simulated (NWM)
200
2
-E 3000 =
o lowa River at Wapello, lowa (20,080 km’)
2000 - HLM (r: 0.89; a: 0.93; B: 0.63)
NWM (r: 0.83; a: 0.92; : 0.94)
1000 |
0 T T T

Apr May Jun

Jul Aug Sep Oct
2016

FIG. 8. Example cases showing observed (USGS) and simulated hydrographs (HLM and
NWM) at Redfield (USGS 05484000) and Wapello (USGS 05465500) in Towa.

Brought to you by NOAA Central Library |

Unauthenticated |

Downloaded ©08/28/24 03:17 PM UTC



SEPTEMBER 2021

REy (%)
100

SEO ET AL.

2285

2016
50 o]

-50{ © ©
OO Q 0]
100
2017
50
=
g 0
=
.50
[¢]
100
2018
50
0
501 o

HLM

FIG. 9. Model performance comparison driven by MRMS based on hydrologic evaluation metrics defined in Egs. (5)—(8). The metrics
were color coded by different landforms using the same colors shown in Fig. 1b. Minor landform regions (e.g., east-central Iowa drift plain,
Towa-Cedar lowland, Losses hills, and Missouri River alluvial plain) into which only few USGS stations are assigned are indicated by

the gray dots.

underestimated discharge during the same period, several
overestimations from June to September compensated for
the early misses. Correlation, «, and B are the factors that
determine the overall performance of streamflow prediction
represented by KGE defined in Eq. (8). The next few figures
present the estimated KGE to further assess the mix-and-match
simulation results, along with significant hydrologic features
associated with runoff volume and peak discharge.

We further refined the evaluation results using the perfor-
mance metrics defined in Egs. (5)—(8), which allow us to ex-
amine major hydrologic aspects of simulated streamflow.
Model simulations driven by MRMS and IFC-DP are com-
pared in Figs. 9 and 10, respectively. We excluded IFC-SP in
this analysis because of its relatively low accuracy, discovered
in Figs. 3 and 5. To determine relative peak (REg,) and peak
timing (E;) errors, we identified a model-simulated peak
within the same event period containing an annual peak ob-
served at each individual USGS station (hydrologic models
occasionally generate an annual peak at a completely different
time than the actual peak time observed). We color coded the
calculated metrics according to different landform types; the

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/28/24 03:17 PM UTC

corresponding colors are illustrated in Fig. 1b. As shown in
Figs. 9 and 10, no landform type shows consistent performance
with both models; neither model seems to favor a specific
type of landscape or geology in describing surface or subsur-
face processes. For example, the relative performance of the
two models varies (above and below the one-to-one line) from
year to year based on the KGE values for the “Des Moines
Lobe” and “Iowan Surface” landforms covering north-central
Towa. In Fig. 9, the HLM seems slightly better in estimating
runoff volume and peak discharge than the NWM does:
(i) more dots are closer to the vertical 0% (no error) line, in-
dicating that the HLM better estimates these quantities, and
(ii) the NWM shows underestimations (dots below the hori-
zontal 0% line) in REy and REg, at most USGS locations.
IFC-DP forcing (Fig. 10) significantly improved the underes-
timation tendency observed in Fig. 9 and “‘redeployed” many
dots in REy, and REy, into the positive area, particularly for
2016 and 2018. Given the results shown in Figs. 9 and 10, we
acknowledge that the estimation of peak (time and magni-
tude) is more challenging than that of volume: (i) the vari-
ability of REg, and E;, looks much larger than that of REy and
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FI1G. 10. As in Fig. 9, but driven by IFC-DP.

(ii) model predictions at many locations miss a presented range
(£24h) for E, . Overall, the HLM shows slightly better per-
formance for both MRMS and IFC-DP forcing, considering
the greater number of KGE dots below the one-to-one line in
Figs. 9 and 10.

To describe scale-dependent performance of the forcing-
model combinations, we rearranged the hydrologic evaluation
results presented in Figs. 9 and 10 regarding drainage scale.
Figures 11 and 12 demonstrate scale-dependent features of
the evaluation metrics for respective HLM and NWM pre-
diction results driven by the MRMS and IFC-DP products.
Because we found that the prediction results of HLM were
superior to those of NWM from Figs. 9 and 10, the analysis
shown in Figs. 11 and 12 focuses on comparing prediction re-
sults driven by different forcing products. In Figs. 11 and 12,
IFC-DP leads to increased runoff volumes compared to the
volumes generated by MRMS, which consistently stay below
the 0% line, indicating underestimations. As we discussed
earlier, peak estimation is quite challenging. It is difficult to
distinguish which forcing product performs better in capturing
the observed peaks. The highly scattered patterns shown in
both REy, and E,, are likely to diminish their scale-dependent
features, which are clearly exposed in REy, and KGE. As
drainage scale increases, the variability of RE, and KGE tends

Brought to you by NOAA Centra

to decrease and gradually approach ideal conditions (i.e., 0%
for REy and 1.0 for KGE). Figure 11 shows few exceptional
cases with some negative KGE values (<—0.5) at medium- and
large-scale basins (e.g., in 2018). We found that these points are
located downstream from reservoirs; both HLM and NWM did
not include reservoir routing and controls to simplify model
configuration and implementation. The results from NWM
(Fig. 12) at these locations also resulted in low performance
(e.g., negative KGE for medium-scale basins and slightly
above 0.0 for large-scale basins). Reservoir controls vary from
year to year depending on different circumstances (e.g., flood
control or irrigation) and may lead to inconsistent prediction
performance at these locations during the years shown in
Figs. 11 and 12.

5. Conclusions

This study reports the assessment results of streamflow
predictions generated by mix-and-match combinations us-
ing three precipitation forcing data (MRMS, IFC-SP, and
IFC-DP) and two hydrologic models (HLM and NWM). All
three forcing data are radar-based gridded products, which offer
spatially variable information to activate grid-based processes
and routing realized in the two distributed models. We evaluated
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FI1G. 11. HLM performance comparison resulted from different forcing products (MRMS vs IFC-DP) regarding drainage scale.

these forcing products and model-generated streamflows using
rainfall and streamflow observations acquired from about 289
NWS COORP rain gauges and 140 USGS stations. The objectives
of this assessment are (i) to improve our understanding of
forcing- and model-dependent prediction capabilities and (ii) to
define the best forcing-model combination and understand the
reasons.

Forcing product evaluation presented in Fig. 3 demonstrated
that one of the radar-only products (i.e., IFC-DP) is compa-
rable with the gauge-corrected one (i.e., MRMS). This implies
that the state-of-the-art polarimetric estimation (e.g., Wang
et al. 2019; Seo et al. 2020c) significantly improved QPE ac-
curacy against the widespread reflectivity-based estimation
(e.g., Fulton et al. 1998). It also enables the application of finer
temporal resolution forcing (e.g., 15 or 30 min) with greater
accuracy to hydrologic applications (gauge-corrected ones are
barely available at theses scales). The resulting effects of
forcing data resolution are closely related to the scale of the
basin being simulated (e.g., Aronica et al. 2005; Lyu et al. 2018).
For a bias perspective, IFC-DP looked closer to the reference
data, and MRMS consistently showed slight underestimations.
Interestingly, the dispersion shown in R—G comparisons (Figs. 3
and 4) appeared smaller for MRMS. We will discuss this ten-
dency of bias and dispersion between MRMS and IFC-DP and
its effects on the errors in streamflow prediction.

Based on our extensive comparison analyses, we conclude
that the HLM performs slightly better in streamflow genera-
tion than the NWM does: the runoff volume errors of HLM
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shown in Fig. 11 are more closely distributed to the 0% line,
with smaller variability than those of NWM in Fig. 12. As such,
we conjecture that the modeling elements of HLM addressing
precipitation losses (e.g., evapotranspiration and subsurface
process) tend to better capture what happens in nature. HLM’s
modeling element for precipitation losses based on the concept
of linear reservoirs (see, e.g., Quintero et al. 2016) is much
simpler than detailed land surface processes described by
Noah-MP (Niu et al. 2011) in the NWM. This indicates that
complex modeling of land surface processes using additional
data resources (e.g., NLDAS in this study) implemented in the
NWM does not necessarily lead to more accurate streamflow
generation. The snowmelt process (e.g., Fontaine et al. 2002) is
likely not included in the analyzed water volumes because
our analysis excluded the winter months. The evaluation
results regarding peak time and discharge are combined
effects of such complex processes as the aforementioned
losses, and surface, subsurface, and channel routing. As shown
in Figs. 9-12, it is not clear how the process components in-
cluded in the two models differ in describing the simulated
peaks because of the massive dispersion observed in peak er-
rors. One obvious observation from the comparison between
Figs. 11 and 12 is the relatively smaller peaks with the NWM
regardless of forcing data. We note that our prior research
comparing the two models, e.g., channel routing schemes
(ElSaadani et al. 2018) and representation of river network
(Quintero and Krajewski 2018), partially accounts for the ob-
served differences in the models’ performance.
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FIG. 12. NWM performance comparison resulted from different forcing products (MRMS vs IFC-DP) regarding drainage scale.

We discovered that bias in precipitation forcing products is
closely related to the volume of model-generated streamflow:
slight underestimations of MRMS presented in Fig. 3 led to
streamflow underestimations for all three years in the NWM
simulation, while the less biased forcing product (i.e., IFC-DP)
resulted in increased volumes (see Fig. 12). The observed
variability (dispersion) of the forcing product errors is also
likely associated with model performance. Fewer variable
errors in MRMS show smaller scatter in both model simula-
tions, as shown in Figs. 11 and 12. This scatter seems to de-
crease as scale becomes larger (e.g., volume error and KGE)
because random errors in precipitation tend to average out at
larger-scale basins (e.g., Vivoni et al. 2007; Cunha et al. 2012).
Given our evaluation and discussion, we concluded that
MRMS performs slightly better than IFC-DP, focusing on the
behavior of KGE (with some performance variations ob-
served from year to year). Therefore, we selected the com-
bination of MRMS and HLM as the best mix-and-match set in
this study.

As we demonstrated in Figs. 7, 11, and 12, there are not
many evaluation points at the smaller scale (e.g., <1000 km?),
which is particularly useful for flash flood forecasting (e.g.,
Gourley et al. 2013). This scale gap could be addressed by
about 280 stage-only sensors (Kruger et al. 2016) managed
by the IFC to monitor streams and creeks near lowa com-
munities. To use these sensor measurements in a variety of
hydrologic applications, the IFC has developed a frame-
work to build synthetic rating curves (Quintero et al. 2021).
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We will soon incorporate the data from these sensors into
our evaluation to fill the significant scale gap, as well as into
HLM and NWM configuration to improve and expand
streamflow prediction capability using streamflow DA (e.g.,
Seo et al. 2020, manuscript submitted to J. Amer. Water
Resour. Assoc.).

We recognize that recently proposed approaches can improve
hydrologic predictions by (i) averaging of multiple precipitation
forcing data (Schreiner-McGraw and Ajami 2020) and (ii) av-
eraging of simulated outputs generated from multiple models
and forcing data (Zhu et al. 2019). We plan to explore and test
these approaches to understand how they affect prediction skills,
particularly in small scale basins where the temporal and spatial
variability plays a primary role in streamflow generation.
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