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ABSTRACT

Forecasting the timing and magnitude of snowmelt and runoff is critical to managing mountain water

resources. Warming temperatures are increasing the rain–snow transition elevation and are limiting the

forecasting skill of statistical models relating historical snow water equivalent to streamflow.While physically

based methods are available, they require accurate estimations of the spatial and temporal distribution of

meteorological variables in complex terrain. Across manymountainous areas, measurements of precipitation

and other meteorological variables are limited to a few reference stations and are not adequate to resolve the

complex interactions between topography and atmospheric flow. In this paper, we evaluate the ability of the

Weather Research and Forecasting (WRF) Model to approximate the inputs required for a physics-based

snow model, iSnobal, instead of using meteorological measurements, for the Boise River Basin (BRB) in

Idaho, United States. An iSnobal simulation using station data from 40 locations in and around the BRB

resulted in an average root-mean-square error (RMSE) of 4.5mm compared with 12 SNOTEL measure-

ments. ApplyingWRF forcings alone was associated with an RMSE of 10.5mm, while including a simple bias

correction to the WRF outputs of temperature and precipitation reduced the RMSE to 6.5mm. The results

highlight the utility of using WRF outputs as input to snowmelt models, as all required input variables are

spatiotemporally complete. This will have important benefits in areas with sparse measurement networks and

will aid snowmelt and runoff forecasting in mountainous basins.

1. Introduction

Rapidly warming climate in the western mountains of

North America is changing the partitioning of rain and

snow and increasing the rain–snow transition elevation

(Nolin andDaly 2006; Nayak et al. 2010; Klos et al. 2014;

Lute et al. 2015; Trujillo andMolotch 2014). Rain-on-snow

flooding events are becoming more common (Surfleet

and Tullos 2013; Tohver et al. 2014; Freudiger et al.

2014), can cause significant damage to downstream areas

(Kattelmann 1997; Rössler et al. 2014; Pomeroy et al.

2016), and pose a significant challenge to reservoir plan-

ning and operations that are typically designed around

the premise of a single, large spring melt pulse. The in-

creasing frequency and uncertain timing of such occur-

rences reduces flexibility to retain or release reservoir

water to optimize availability for agricultural use. On

the opposite side of the spectrum, droughts require

complex operations to ensure that the water releases

are optimized to not waste the limited available water.

Traditional statistical forecasting methods are based on

historical data relating streamflow and field measurementsCorresponding author: Scott Havens, scott.havens@ars.usda.gov
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of snow depth and snow water equivalent (SWE) at a

relatively small number of reference sites in a given

watershed. These historical models are unable to account

for the impacts of winter rain or mixed phase events,

suggesting the need for less statistical, and more mech-

anistic, physics-based snow and hydrologic forecasting

models (Frei et al. 1999; Groisman et al. 2001, 2004,

Mote 2003, 2006; Mote et al. 2005; Regonda et al. 2005;

Pierce et al. 2008). Such models, however, require ex-

tensive meteorological forcing data, which are typically

limited in remote mountain regions (Marks and Frew

1999; Garen and Marks 2005). Typical meteorological

data networks in mountainous regions are relatively

sparse, have variable periods of record, and contain

frequent data gaps of varying length.

TheWeather Research and Forecasting (WRF)Model

(Skamarock et al. 2008) has previously been used to

dynamically downscale output from global weather

forecasts, global climate models (GCMs), or reanalysis

data with an initial spatial resolution of 50–200km to a

more management-relevant resolution of between 1 and

12 km. These dynamically downscaledWRF outputs are

evenly distributed with relatively high spatial resolution

(when ran at high resolution), and are temporally com-

plete which makes them particularly efficient as forcing

data for hydrologic modeling applications. In moun-

tainous regions with complex topography and highly

heterogeneous land cover, however, further downscal-

ing may be required to produce WRF meteorological

outputs at the finescale grid resolution (10–250m) re-

quired to accurately capture small-scale snowpack vari-

ability in mountainous terrain (Winstral et al. 2014). It is

critical in this process that we understand how to account

for any scale differences between WRF output and local

variation in slope, aspect, elevation and land cover.

Numerical weather prediction models are commonly

used to provide meteorological inputs for hydrology

models both for predicting streamflow from a short-

term events, or for entire water years (from 1 October

through 30 September).Miller andKim (1996) investigated

a 5-day flood event on theRussianRiver in California by

using the Mesoscale Atmospheric Simulation (MAS)

model, at 20-km resolution, as input to the hydrology

model TOPMODEL. Results showed a 10% difference

between modeled and observed streamflow.

Westrick and Mass (2001) investigated a short-term

rain on snow event for the Snoqualmie River, Wash-

ington, using the Fifth-Generation PSU–NCAR Me-

soscale Model (MM5) to synthesize inputs to the

Distributed Hydrology Soil and Vegetation Model

(DHSVM) at 4-, 12-, and 36-km spatial resolution. The

authors used simple interpolation schemes to downscale

the MM5 outputs to the 150-m DHSVM domain and

applied a bias adjustment to precipitation and wind speed

to better estimate streamflow.Westrick et al. (2002) then

extended this analysis to evaluate real-time applica-

tions over multiple basins in Washington State though

an entire winter.While some basins simulated streamflow

better than others, the average error was 38% for

the entire winter season, compared with 31% using

meteorological-station-based observations.

Wayand et al. (2013) investigated three scenarios over

10 years in the American River basin, California. The

first scenario utilized one measurement station and

distributed the observations with the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM;

Daly et al. 1994) for precipitation and temperature. The

second case used a 6-kmWRF simulation downscaled to

the 150-mDHSVM grid using static lapse rates, with the

third case combining WRF and empirical models for

radiation. The resulting WRF outputs for precipitation

were biased high, with smaller diurnal temperature

ranges than observations. Modeled streamflow per-

formance was poor for all scenarios due to differences in

precipitation timing and application of an uncalibrated

hydrology model.

The physically based snow model SNOWPACK

(Lehning et al. 2002; Bartelt and Lehning 2002) was

forced at a point with output from the Canadian regional

model GEM15 to evaluate the potential of simulating

critical weak layers for avalanche forecasting (Bellaire

et al. 2011; Bellaire and Jamieson 2013). Chen et al.

(2014a) used 2-km WRF Model outputs to drive 6 land

surface models and compare how closely they matched

SWE at 112 Natural Resources Conservation Service

(NRCS) Snowpack Telemetry (SNOTEL) stations

across the Colorado River headwaters. To do this they

used output from the 4 nearest WRF cells to esti-

mate weather parameters at each SNOTEL site. They

found that WRF Model output resulted in a reasonable

agreement with the 112 SNOTEL site-averaged SWE

measurements, but that there was large variation from

site to site. Much of this variation was due to elevation

differences between the sites and the elevations assigned

to the 2-km WRF grid cells.

The WRF Model could provide a significant advance-

ment over current geostatistical methods for deriving

meteorological forcing data for hydrologic models where

sparse measurement networks exist. Current geostatistical

methods interpolate station measurements of meteo-

rological data (Havens et al. 2017; Garen et al. 1994;

Goovaerts 2000; Livneh et al. 2014; Luo et al. 2008),

however, these methods are severely limited in moun-

tainous regions and may not accurately capture the true

spatial distribution of parameters (Hedrick et al. 2018).

Regional-scale models, such as WRF, provide a new
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opportunity to simulate historic forcing data when ground

measurements are unreliable or at a coarse temporal res-

olution. However, the downscaling from the regional-scale

domain to the snow-modeling domain must be tested

and WRF Model outputs evaluated for bias and sen-

sitivity to downscaling.

In this study we used output from a WRF simulation

to force a physically based snowmelt model, iSnobal

(Marks et al. 1999), in lieu of using meteorological

station measurements. The study area has a relatively

dense measurement networks for a large watershed

allowing for comparison with an atmospheric model,

as opposed to the typically sparse and inconsistent mea-

surements found in most large watersheds. The objectives

for this study were twofold:

1) Utilize atmospheric model outputs from WRF to pro-

duce iSnobal results that are consistent with iSnobal

results from measured meteorological conditions.

2) Improve iSnobal results withWRF through additional

bias adjustments to precipitation and air temperature,

alongwith applying elevation dependent downscaling.

The utility of the methodology will be determined by

comparison of baseline iSnobal results from meteo-

rological stations with two iSnobal results using WRF.

The first was simple interpolation ofWRF output. The

second applied bias adjustment then elevation dependency

to the WRF output.

2. Model configurations

a. Boise River Basin

The Boise River Basin (BRB) in southwest Idaho,

United States, defined in this study as the watershed

above Lucky Peak Dam, is located just east of Boise,

Idaho, and encompasses roughly 7000km2 (Fig. 1). The

BRB contains three large subbasins: Mores, Twin Springs,

and Featherville, each draining one of the threemain forks

of the Boise River. The BRB ranges in elevation from

858 to 3249m, with Mores ranging between 939 and

2470m, Twin Springs between 997 and 3249m, and

Featherville between 1289 and 3125m. The majority

of winter precipitation occurs as snow, with average

annual precipitation of 500mm at the lowest elevations

to 1500mm at higher elevation (Garen andMarks 2005).

The BRB was selected for this study because it is one

of the most thoroughly instrumented large mountain

basins in the western United States, with more than

40 measurement sites, including 14 SNOTEL sites

monitoring both precipitation and SWE.

The BRB is composed of forest (43%), shrub land

(35%), herbaceous (21%), and other land covers (1%)

based on analysis of the 2011 National Land Cover

Database (NLCD; Homer et al. 2015). Each subbasin

has its own dominant land cover with Mores mainly forest

(62%), Twin Springs land cover similar to the basin

average, and Featherville 53% forest and 24% shrub.

FIG. 1. Boise River Basin modeling domain with major subbasins. Meteorological stations used

in modeling with measurements used at each site.
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Vegetation maps used for modeling were aggregated from

30-m NLCD classifications to a 100-m classification.

b. iSnobal

The physically based, distributed snowmelt model,

iSnobal (Marks et al. 1999), is a topographic-grid-based

energy and water balance model. The iSnobal model

simulates the snowpack as two layers, with the active

surface layer exchanging energy and mass with the

atmosphere and the lower layer transferring energy

and mass between the snow surface layer and soil. The

snow temperature, density, and liquid water content

are calculated for each layer. The iSnobal forcing data

inputs are raster surfaces over a digital elevation model

(DEM) of incoming thermal (longwave) radiation, air

temperature, vapor pressure, wind speed, soil tempera-

ture, net solar radiation, and precipitation (including

precipitation temperature, phase, and percent snow).

Given the forcing data inputs, the energy balance, snow

temperature, depth, mass, and cold content (energy re-

quired to bring the snowpack to 08C) are computed for

each grid cell. Melt cannot occur until the temperature

of the snow cover rises to 08C, under which conditions

the cold content equals 0 Jm22. Liquid water drainage

from the snow does not occur until the liquid water

holding capacity of the snow is exceeded.

The BRB modeling was conducted within a 1500 by

1500 pixel domain (Fig. 1) at 100-m resolution and at

an hourly time step. This resolution allows for a grid

size that captures topographically controlled snow-

melt processes but does not require an unreasonable

computation time. A 100-m DEM was coarsened from

the publicly available 10-m DEM to match the required

modeling resolution.

c. Weather Research and Forecasting Model

The WRF Model (Skamarock et al. 2008) is an atmo-

spheric modeling system used in both research and opera-

tions for a variety of applications (e.g., weather forecasting,

seasonal forecasting, atmospheric chemistry and regional

climate modeling). The code is open source with commu-

nity development and support provided by the National

Center for Atmospheric Research (NCAR). WRF is ap-

plied at a range of scales from horizontal resolutions of less

than 1km for large-eddy simulations, to tens of kilometers

for coarse resolution forecasts and climate simulations. The

model has two dynamical cores one used primarily for

operational applications, the Nonhydrostatic Mesoscale

Model (NMM), and another, the Advanced Research

WRF (WRF-ARW), which is geared toward research

and was used to generate the dataset used for this study.

The WRF-ARW model solves the governing equations

of atmospheric dynamics and uses selected modularized

physics packages to account for processes such as cloud

microphysics, shortwave and longwave radiation, and

land surface processes.

The WRF output used in this paper is from a single

simulation generated usingWRF version 3.5.1 over nested

model domains (Fig. 2) in the interior Pacific Northwest

region of the United States. The horizontal resolution of

the model domains d01, d02, and d03 are 9, 3, and 1km,

respectively. The simulation extends from 1 October 2009

through 1 June 2010 and uses initial and boundary atmo-

spheric conditions from the North American Regional

Reanalysis. Based upon Ikeda et al. (2010), the model con-

figuration included the following physics parameterizations:

d Community Noah land surface model (Chen and

Dudhia 2001),
d Thompson et al. (2008) microphysics scheme,
d Mellor–Yamada–Janjić (MYJ) planetary boundary

layer scheme (Janjić 2002),
d Community Atmosphere Model (CAM) shortwave

and longwave radiation schemes (Collins et al. 2004),

and
d Kain–Fritsch convective parameterization scheme

(Kain 2004) on the outer domain only.

3. Methods

Three iSnobal model runs were performed at 100-m

spatial resolution and at an hourly time step. The first

run used only meteorological station measurements,

serving as the control simulation. The second model run

used bilinear interpolation to regrid WRF output to the

FIG. 2. Nested domains used for the WRF Model simulation.

Domains d01, d02, and d03 have horizontal grid resolutions of 9, 3,

and 1 km, respectively. Topography is shown as resolved by the

model within each domain.
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iSnobal domain. The third model run used bias-adjusted

WRF air temperature and precipitation from stations

in a larger area in south Idaho, then incorporated

detrended interpolation of WRF outputs to the iSnobal

BRB domain.

a. Spatial distribution of station measurements

Data from a total of 40 meteorological stations in and

around the BRB were used as baseline data to derive

distributed model inputs as a control model run (Fig. 1).

Seven stations are operated by the Bureau of Land

Management (BLM), nine are operated by the Boise

office of the U.S. Bureau of Reclamation (USBR),

seven are operated by the Idaho Transportation De-

partment (ITD), fourteen are part of the SNOTEL

network, and three are operated by the Sawtooth

National Forest Avalanche Center (SNFAC). Due to

multiple station operators, station instrumentation and

configuration varied between meteorological stations.

For this study, we used the Spatial Modeling for Re-

sources Framework (SMRF; Havens et al. 2017) version

0.5.3 (Havens et al. 2019b) to interpolate the point sta-

tions measurements to the gridded modeling domain.

In depth methodologies within SMRF can be found in

Havens et al. (2017) and the configuration file for complete

replication of the distributed forcing input is available

(Havens et al. 2019a). Certain forcing parameters (air

temperature, precipitation, and vapor pressure) used

elevation-dependent detrended kriging (Garen et al.

1994; Garen 1995), which has been successfully applied in

other modeling studies (Susong et al. 1999; Garen and

Marks 2005). Detrended kriging first removes the eleva-

tion trend from the measurement data by calculating the

least squares fit to the measured values as a function of

elevation. The residuals are distributed to the gridded

model domain using ordinary kriging with an assumed

linear semivariogram. The elevation trend is then added

back to the kriged residuals based on the gridcell elevation.

Meteorological station measurements of air tempera-

ture from 38 stations were distributed using detrended

kriging. Air temperature typically has a negative trend

with elevation and the detrended kriging was constrained

to keep this negative trend.

Dewpoint and vapor pressure rely on coincident mea-

surements of air temperature and relative humidity, which

were measured at 19 of the meteorological stations. At

each of these stations, the vapor pressure was calculated

using themeasured air temperature and relative humidity

based on Clausius–Clapeyron empirical relationship.

The vapor pressure was then distributed using de-

trended kriging with a negative elevation trend. From

the distributed vapor pressure, the dewpoint temperature

was calculated.

Twenty-one stations measured precipitation, fourteen

of which were SNOTEL stations. The measured pre-

cipitation data were filtered to remove both high- and

low-amplitude noise while ensuring that the accu-

mulated precipitation was always increasing using the

Automated Precipitation Correct Program (APCP;

Nayak et al. 2008). The instantaneous precipitation for

each station was calculated from the difference in ac-

cumulated precipitation, then distributed at an hourly

time step using detrended kriging and ensuring a posi-

tive elevation trend. Undercatch correction was not

performed due to limited wind data at the measurement

sites.

Snowmelt models are sensitive to the precipitation

phase, as this can either build the snowpack or change

the snowpack energy balance and potentially induce

melt (Marks et al. 1998; Kormos et al. 2014). The pre-

cipitation phase was determined from the precipitation

temperature, set as the dewpoint temperature, which

allows for a reliable estimate of precipitation phase,

especially near the rain–snow transition elevation (Marks

et al. 2013). From the precipitation temperature, the

percent snow and snow density are estimated using

procedures described by Susong et al. (1999).

Fourteen meteorological stations measured wind

speed and direction, with three at sheltered SNOTEL

locations and the rest in more exposed locations along

roadways or in large clearings. With the abundance of

snowfall in the BRB, the Idaho Transportation De-

partment and the Sawtooth National Forest Avalanche

Center have installed three wind measurement stations

on the exposed mountain peaks and have measured

wind speeds in excess of 35ms21. These wind stations

provide a unique challenge when distributing wind

speed using the methods developed by Winstral and

Marks (2002) andWinstral et al. (2009). This distribution

method uses the maximum upwind slope to parameterize

how upwind terrain affects whether or not the pixel is

determined to be either sheltered or exposed. The max-

imum upwind slope parameter was calculated for a 30-m

DEM and averaged up to the 100-m model DEM for

72 wind directions. The exposed-peak stations required a

special case to set the maximum upwind slope to the

minimum calculated value to reduce the potential of

artificially high wind speeds in the surrounding areas.

Maximum and minimum wind speeds were set at 0.47

and 35m s21, respectively, to ensure turbulent transfer

calculation stability.

Estimating solar and thermal radiation over the BRB

requires multiple steps, all of which were performed

within SMRF. Both solar and thermal radiation require

cloud factor calculated as the measured solar radiation

over the clear sky radiation. Incoming solar radiation
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measured at 7 sites, 3 at BLM stations, 2 at USBR sta-

tions, and 2 at ITD stations, was used to estimate the

cloud factor. Measured solar radiation was integrated

over an entire day to calculate a daily cloud factor. The

cloud factor at each station was distributed to the model

domain using inverse distance weighting.

The soil temperature was set to a constant22.58C for

the entire simulation. This ensured that as the snowpack

began to form, the ground heat flux did not overcome

the energy balance and melt the snowpack prematurely.

Once the snowpack was deep enough, the ground heat

flux term was small, providing a limited contribution to

the calculation of the energy balance.

b. Simple interpolation of WRF output

EachWRFoutput variable was regridded using bilinear

interpolation. The variables were 2-m air temperature,

2-m relative humidity, 10-m wind speed, downwelling

longwave radiation at the surface, precipitation accu-

mulated, and cloud fraction.

Dewpoint temperature and vapor pressure were cal-

culated from the interpolated air temperature and rel-

ative humidity using the Clausius–Clapeyron empirical

relationship.

The 10-m wind speed was not adjusted for sheltering

due to terrain as with the station measurements. Down-

scaling wind from a gridded output over complex to-

pography is not a simple solution and will require more

research to analyze the best methods.

The solar radiation output fromWRF included effects

from clouds but was not corrected for terrain shading or

split into beam and diffuse radiation. To compensate for

this, we followed the same methods as the station mea-

surements by first calculating the clear sky radiation.We

then estimated the cloud fraction (CLDFRA) from

WRF outputs. CLDFRA is a four dimensional variable

(time, latitude, longitude, atmospheric layer), and the

distributed cloud cover at the surface was calculated as

the average cloud fraction for all atmospheric layers.

This method is a crude approximation and further studies

will investigate the proper method to account for the

cloud’s effect on radiation. The final step adjusted for

vegetation and corrected the beam and diffuse radiation

for the canopy and cloud factor.

Downwelling longwave radiation fromWRFwas used

as cloud corrected thermal radiation. Further adjustment

for topographic and canopy effects were performed in the

same manner as the station measurements.

The albedowas estimated by keeping track of the time

since last storm for each pixel, using the same method-

ology as for the station measurements. However, the

precipitation output from WRF has much finer scale

spatial patterns than can be achieved from detrended

kriging, making the albedo decay more prevalent and

variable than those calculated from stationmeasurements.

c. Bias-adjusted WRF output

Two additional modifications were made to improve

the WRF outputs for the iSnobal application. First, to

further improve the input data distribution, relative to

the bilinear technique, we borrowed from the concept

of detrended kriging. Each WRF cell was used as if it

were a measurement station (i.e., a virtualWRF station)

that has a latitude, longitude, and elevation. Stations

that were within the BRB boundary were used to get the

elevational trend in air temperature. The trend was

subtracted out from all the WRF stations to get the

residuals, which were distributed to the iSnobal do-

main using bilinear interpolation. With the residuals

on the iSnobal domain, the trend could be added back

in, producing an elevation-dependent air temperature

within the iSnobal modeling domain.

The second modification was a simple bias correction

function applied to each WRF grid cell based on the

particular cells’ value of temperature and precipitation.

Known biases exist in WRF for air temperature when

used with the Noah land surface model (Niu et al. 2011;

Yang et al. 2011; Chen et al. 2014b). The following

sections attempt to apply simple bias corrections to air

temperature and precipitation in order to provide more

robust inputs to iSnobal. These bias corrections were not

meant to address the physics behind WRF but rather

to solely adjust WRF output. The most recent WRF

version now includes the Noah-MP land surface model

which may reduce the temperature bias.

Thirty-nine stations were used in theWRF 1-km inner

modeling domain to compare air temperature and pre-

cipitation (Fig. 3). Additional stations were utilized from

outside of the BRB from themuch largerWRFmodeling

domain. Seven stations were from the Reynolds Creek

Experimental Watershed (RCEW) in SW Idaho main-

tained by the USDA-ARS. The remaining 32 were

SNOTEL stations within the modeling domain. The

closest WRF pixel to the measurement station was

used in the comparisons.

1) AIR TEMPERATURE

To address the temperature bias, the hourly WRF air

temperature was compared to the hourly measured air

temperature (Fig. 4). A nonlinear cold bias was observed

when the air temperature was below about 108C with a

warm bias above 108C. The histogram shows most of

the values centered between 2108 and 158C. The large

range in measurements can be attributed to two main

factors. The first, comparing hourly measurements di-

rectly to hourly WRF output, where a time shift of even
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an hour would cause differences between modeled and

measured air temperature. Second, theWRF output did

not have the diurnal range in maximum and minimum

temperatures that were measured at station locations as

previously documented by Wayand et al. (2013).

A goodness-of-fit to the desired line (1:1 line), in red,

showed a R2 value of 0.73. To adjust the air tempera-

tures, the offset of the measured bias to the desired line

was calculated for the range in WRF air temperatures.

This provided a continuous bias correction offset func-

tion to apply at each WRF air temperature. Once the

correction was applied, the goodness of fit to the desired

line improved with a R2 of 0.79.

To address how well the bias correction did, we com-

pared the daily minimum, average, and maximum air tem-

peratures (Fig. 5). The differences between measured and

modeled minimum and maximum air temperature were

more apparent, with minimum temperatures showing a

nonlinear bias about 08C (R2 of 0.74), the average

temperature had a similar bias as the hourly mea-

surements (R2 of 0.80), and the maximum had a cold

bias at all temperatures (R2 of 0.63). After the bias

correction was applied, the minimum temperature

cold bias was not as strong (R2 of 0.73), the average

temperature improved (R2 of 0.88), and the maximum

still had a cold bias, but the nonlinearity was removed

(R2 of 0.78).

2) DEWPOINT TEMPERATURE AND VAPOR

PRESSURE

Applying a bias correction to temperature will have

an effect on the modeled relative humidity. To com-

bat this potential change, the original WRF modeled

air temperature and relative humidity were used to

calculate the dewpoint temperature at each WRF

grid cell.

FIG. 3. WRF inner modeling domain d03 in blue with the BRBmodel domain in red. Stations

used for bias analysis from RCEW and SNOTEL shown.

FIG. 4. Hourly measured air temperature vs hourly WRF air temperature output. A cold bias exists at lower

temperatures. The wide spread in hourly measurements was due to greater temperature fluctuations at station

locations or differences in model timing. Original trend in black with bias corrected in red.
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The distribution of the dewpoint temperature was

performed in a similar manner to the air temperature by

assuming each WRF cell is a virtual meteorological

station, calculating and removing the elevation trend,

interpolating the residuals and finally retrending to the

iSnobal gridded domain. The final step ensures that the

dewpoint temperature cannot exceed the distributed

air temperature. Vapor pressure was then calculated

from the distributed dewpoint temperature.

3) PRECIPITATION

The measured accumulated precipitation was cal-

culated for all 39 measurement sites up to the WRF

Model end time. The modeled accumulation from

WRF compared to measured accumulation showed a

striking linear trend (Fig. 6) that was biased to un-

derestimated modeled accumulation with a poor fit to

the desired line (R2 of 0.43). A bias correction ratio

was calculated as an enhancement factor between the

original linear trend to the desired line as a function of

the modeled accumulated precipitation. Applying the

enhancement factor improved the goodness of fit to an

R2 value of 0.82. The enhancement factor was applied

based on a cell’s modeled accumulation to get a dis-

tributed enhancement factor. The distributed enhance-

ment factor was applied to the hourly precipitation prior

to downscaling to the iSnobal domain. Similar to the air

temperature and dewpoint temperature, the hourly pre-

cipitationwas detrended, interpolated, and retrended

based on WRF cells in the BRB boundary. The

bias corrected precipitation and dewpoint tempera-

ture changed the precipitation phase as well.

4) OTHERS

Wind, thermal radiation, and soil temperature were all

calculated in the same manner as the simple bilinear in-

terpolation. Albedo was calculated using the detrended

precipitation which changed the calculation of net solar

radiation.

4. Results

The objectives for the study were to use WRF out-

puts as inputs to iSnobal and compare with iSnobal

simulations from measured meteorological condi-

tions. Two iSnobal simulations were performed with

simple interpolation of WRF output and a more

complex, elevation-dependent interpolation with bias

adjustment of WRF output. Comparison of model re-

sults was feasible due to the extensive and relatively

dense measurement network in the BRB, as most

FIG. 5. Daily minimum, average, and maximum air temperatures before correction (black) and after bias correction (red).

FIG. 6. Measured accumulated precipitation vs modeled accu-

mulation shows the underestimation of precipitation from WRF

(blue) and after simple ratio based on accumulation (orange).
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watersheds of this size have a sparse and incomplete

measurement network.

a. Precipitation bias correction

A simple water balance was used to ensure that enough

precipitation volume was distributed to account for basin

outflow and evapotranspiration (ET) demands. ET de-

mands for various canopy cover can be estimated using

eddy covariance towers. At nearby RCEW, ET estimates

were 300mmyr21 for sagebrush and 700mmyr21 for aspen

(Flerchinger et al. 2010). ET estimates from the semiarid

southwestern United States (Ha et al. 2015) were between

415 and 510mmyr21 and between 400 and 800mmyr21 in

the Sierra Nevada in California (Goulden et al. 2012) for

ponderosa pine, a major vegetation species in the Boise

River Basin. A rough estimate of ET based on the previous

ET values and percent vegetation cover for each basin

is between 400 and 490mmyr21 for Mores, from 360 to

425mmyr21 for Twin Springs, and between 360 and

440mmyr21 for Featherville. Mores subbasin has an ad-

ditional complexity due to a large population drawing

up to 7.6m3 s21 from surface water for residential and ir-

rigation water rights (Idaho Department of Water Re-

sources, https://research.idwr.idaho.gov/apps/Hydrologic/

ccounting/). The water rights have the potential to draw

up to 230mmyr21 for the entire year, however the actual

water used is unknown and most likely lower.

Comparing the distributed accumulated precipitation

and measured streamflows, normalized to basin area,

provides a rough estimate of the available water left

for ET (Fig. 7). Based on the ET estimates above, the

distributed precipitation from station measurements

provided enough water volume to account for stream-

flow andET in all the basins. Even though theWRF runs

stopped prior to the end of the year, there was only one

significant storm during the summer, potentially adding

FIG. 7. Simple water balance showing thatWRF bilinear did not have enough precipitation

to account for streamflow and ET. Bias correcting the WRF precipitation falls more in line

with station measurements and will account for streamflow and ET. Values in legend are the

difference of the last value and the maximum accumulated streamflow.
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up to an additional 170mm to the distributed pre-

cipitation. Even with this addition, the WRF pre-

cipitation would not have enough precipitation to

account for both streamflow and ET, indicating that

the original WRF output did not produce enough

precipitation. However, the simple ratio correction

created enough precipitation to account for ET and

streamflow.

The distributed accumulated precipitation shows a

striking difference between simple WRF interpolation

and bias adjusted WRF (Fig. 8). Large differences exist

everywhere when comparing measurements to simple

interpolation, with up to 600mm of difference in the

middle of the basin (Fig. 8a). After bias adjusting the

precipitation, WRF had a much stronger elevation

gradient, placing a higher concentration of precipita-

tion at higher elevations (Fig. 8b). This differs from

the measurement kriging, which tends to smooth the

measurements over the domain and does not have as

strong of an elevation gradient.

b. SWE at a point

Fourteen SNOTEL stations exist in the Boise River

Basin with which to compare model results. However,

two aspects must be taken into consideration when

comparing a spatial model to point measurements,

scale differences and topography. A large-scale dif-

ference exists between a SNOTEL pillow (7m2) that

is essentially a point measurement and the 100-m mod-

eling pixel (10 000 m2). While there are large differ-

ences in scale making direct comparison difficult,

the importance of the comparison was to ensure that

the proper trends in SWE accumulation and melt

were captured. In addition to the scale differences,

SNOTEL sites are located in sheltered flat areas.

However, the underlying DEM of the model will likely

FIG. 8. Distributed accumulated precipitation compared. Measurement kriging tended to smooth the station measurements, whereas

WRF had a larger elevation gradient.
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not be representative and will have some slope and as-

pect to the pixel.

The differences between scale and topography can be

addressed by not only looking at the particular pixel that

the SNOTEL site occupies, but also looking at those

pixels directly adjacent. Looking at the pixels adjacent to

the site encompasses a 300m 3 300m area and the local

topography becomes apparent. Figure 9 compares 9 out

of the 14 sites that had reliable SWEmeasurements. The

model result at the pixel location is represented by a solid

line with the adjacent pixels as dashed lines.

The model results with stations performed well

at some sites but not at others (Table 1). The topography

differences are quite apparent with Jackson Peak hav-

ing little variation due to the relatively flat topogra-

phy and significant tree cover. Other sites had a

large variation in SWE, for example Banner Summit,

where an adjacent pixel matches more closely to the

SNOTEL measurements. The model results at Bogus

basin were extremely low due to either an under

catch of precipitation, low relative humidity mea-

surement which will affect the precipitation phase, or

the site being extremely sheltered next to a ski run.

The Nash–Sutcliffe efficiency (Nash and Sutcliffe

1970) varies from 0.5 to 0.93 with an average of

0.76. The average root-mean-square error (RMSE) is

FIG. 9. SWE for station measurements performed well at some sites but not at others. WRF bilinear underestimated precipitation

at all sites. WRF bias adjusted performed better but still underpredicted at some. Bogus basin either has an issue with precipitation

undercatch or the relative humidity sensor leading to higher dewpoint temperatures and more rain.
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4.5mm and an average mean squared error (MSE) of

48mm.

The underestimation of precipitation is quite evident

in the simple interpolation WRF Model results (Fig. 9).

The modeled SWE is underestimated at all sites, with up

to 400mmof difference betweenmeasured andmodeled

SWE. The Nash–Sutcliffe efficiency varies from 0.18

to 0.65 with an average of 0.42. The average RMSE is

10.5mm and an average MSE of 128mm.

After bias correcting and detrending the precipitation

and air temperature, the WRF bias adjusted model re-

sults perform much better. The WRF bias adjusted re-

sults were closer to the SNOTEL measurements but

some sites were still underestimated. TheNash–Sutcliffe

efficiency varies from 0.24 to 0.87 with an average of 0.65.

The average RMSE is 6.5mm and the average MSE is

73mm. The WRF bias correction outperforms the WRF

bilinear and is close to the station measurements.

c. Snow-covered area

The snow-covered area (SCA) for the Boise River

Basin and each sub basin were calculated for the station

measurements, simple interpolation, and bias corrected

WRF. The SCA from the MODIS product MODSCAG

(Painter et al. 2009) was obtained for scenes that had less

than 10% cloud cover and mainly occurred during

the spring. Comparing the model runs to MODSCAG

(Fig. 10) show that the snow cover modeled with station

measurements contain snow in more pixels due to in-

terpolating point measurements to the model domain.

The simple interpolation of WRF outputs showed the

closest to MODSCAG SCA and is attributed to the

underestimation of precipitation. The bias corrected

WRF outputs have a lower SCA than station mea-

surements and are close to the MODSCAG SCA for

all subbasins. The results show that the WRF outputs

are providing a different spatial coherency than can be

estimated from station interpolation.

5. Discussion and conclusions

The results show that WRF output could be used to

provide input to iSnobal in lieu ofmeteorological station

measurements and could replicate results in a large,

well instrumented basin. WRF outputs provide spatially

distributed forcing data at a much finer scale that cannot

be replicated with geostatistical methods to interpolate

measured meteorological data in a large basin such as

the BRB. The ability to create all the necessary forcing

inputs to iSnobal makes using WRF outputs enticing,

especially where sparse measurement networks exist

or have unreliable data. In some sense, regional weather

and climate models like WRF are platforms for inter-

polating large-scale atmospheric motions in accordance

with the physics and thermodynamics as they are

represented within these models to much finer spatial

resolutions. However, caution must be used and the

WRF outputs should be carefully checked to ensure

that the model outputs are realistic as compared with

meteorological station measurements. Without correct-

ing for bias, the modeled snowpack was underestimated

at all SNOTEL locations, mainly due to the underesti-

mation of precipitation, and produced larger errors than

using measured station data. After applying simple bias

corrections to the air temperature and precipitation,

the modeled snowpack performed almost as well as

the measured station data at SNOTEL locations. The

NSE and RMSE show that usingWRF outputs as inputs

can simulate SWE almost as well as with meteorological

measurements. The bias correction however, will most

TABLE 1. RMSE, MSE, and NSE for each SNOTEL site. Average is the average for all sites and all nine pixels. SM 5 station mea-

surements, WB 5 WRF bilinear, and WC 5 WRF bias corrected.

RMSE MSE NSE

Station SM WB WC SM WB WC SM WB WC

Atlanta Summit 2.0 10.7 5.1 17 128 51 0.93 0.50 0.80

Banner Summit 2.8 19.5 19.1 30 220 204 0.89 0.18 0.24

Bogus Basin 9.3 9.5 5.5 112 117 66 0.50 0.48 0.71

Cozy Cove 1.9 5.8 4.2 21 62 43 0.81 0.45 0.62

Dollarhide Summit 5.2 9.6 5.0 56 127 70 0.71 0.35 0.64

Galena 2.1 5.4 4.8 21 71 60 0.85 0.50 0.58

Galena Summit 8.2 6.7 2.5 88 86 27 0.52 0.53 0.85

Jackson Peak 5.3 11.1 7.8 59 139 94 0.77 0.44 0.63

Mores Creek Summit 4.4 7.8 2.7 36 100 33 0.86 0.62 0.87

Prairie 2.0 1.8 2.7 19 20 23 0.67 0.65 0.61

Trinity Mountain 6.4 15.3 3.5 63 200 45 0.82 0.43 0.87

Vienna Mine 3.5 19.1 10.5 43 231 116 0.86 0.24 0.62

Average 4.5 10.5 6.5 48 128 73 0.76 0.42 0.65
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likely not be applicable to other WRF simulations from

the complicated uncertainty in the model outputs which

may vary between seasons, simulations, space, and

model configuration. Therefore, each model run must

be examined independently and prior to use, to en-

sure that WRF outputs are adequate as inputs for

snowmelt modeling. To adequately evaluate WRF

outputs, there must be enough station meteorological

measurements to capture the measurement gradient,

which can be difficult in regions with sparse measure-

ments. WRF simulations that span a longer time frame

(i.e., multiple years) will need a more sophisticated

bias adjustment to address interannual variability

and potential climate change effects.

In applying techniques to regions where the sparse-

ness of surface observations precludes the bias correc-

tion technique used here, it may be necessary to rely on

ancillary sources of information to correct hydromete-

orological fields that are then used as input to hydrologic

models. Because WRF is also associated with a land sur-

face model (Noah, in this case), a number of land surface

variables influenced by precipitation can be compared to

observational data and used to infer bias in the associated

precipitation. Two variables, in particular, that may be of

interest in correcting biases in WRF precipitation include

soil moisture and runoff derived from the land surface

model and for which remote sensing (soil moisture) and

surface observations (discharge) may be available.

With the increased spatial information provided, new

methods were developed to handle downscaling from

the WRF domain to the iSnobal domain. The WRF grid

cell locations were taken as if they were virtual meteo-

rological station measurements, with a latitude, longi-

tude, and elevation, in order to take advantage of

detrended interpolation for WRF outputs that have

some elevation dependence, like air temperature,

vapor pressure, and precipitation. Additionally, the

precipitation distribution from WRF was highly event

dependent and can spatially resolve precipitation at a

much finer scale. Because a storm could affect only part

of the basin, the day since last storm was tracked for

each pixel in the iSnobal domain. This produced a dis-

tributed albedo estimate and each pixel could decay at

a different rate.

The methods described in this study to downscale

output from meso- or regional-scale atmospheric models

were developed using a reanalysis dataset but can be

applied for other mesoscale model outputs. Based on

this work, USDA-ARS worked to implement the op-

erational National Weather Service model High Reso-

lution Rapid Refresh (HRRR; Benjamin et al. 2016) as

input to iSnobal in near real time in support of water

FIG. 10. Comparison of SCA between model runs. Station measurements show the highest SCA during the spring.
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supply forecasts in California. Additionally, USDA-ARS

provided near-real-time forecasts for the USBR and

NRCS in the Boise River Basin (Havens et al. 2015).

For water year 2016, the methods developed in the

study were applied to a short-term 72-h forecast to

help quantify how the forecasted precipitation and

temperature will affect snow accumulation or melt to

provide additional information, from physically based

models, to operational water managers.
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