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ABSTRACT

Forecasting the timing and magnitude of snowmelt and runoff is critical to managing mountain water
resources. Warming temperatures are increasing the rain—-snow transition elevation and are limiting the
forecasting skill of statistical models relating historical snow water equivalent to streamflow. While physically
based methods are available, they require accurate estimations of the spatial and temporal distribution of
meteorological variables in complex terrain. Across many mountainous areas, measurements of precipitation
and other meteorological variables are limited to a few reference stations and are not adequate to resolve the
complex interactions between topography and atmospheric flow. In this paper, we evaluate the ability of the
Weather Research and Forecasting (WRF) Model to approximate the inputs required for a physics-based
snow model, iSnobal, instead of using meteorological measurements, for the Boise River Basin (BRB) in
Idaho, United States. An iSnobal simulation using station data from 40 locations in and around the BRB
resulted in an average root-mean-square error (RMSE) of 4.5 mm compared with 12 SNOTEL measure-
ments. Applying WRF forcings alone was associated with an RMSE of 10.5 mm, while including a simple bias
correction to the WRF outputs of temperature and precipitation reduced the RMSE to 6.5 mm. The results
highlight the utility of using WRF outputs as input to snowmelt models, as all required input variables are
spatiotemporally complete. This will have important benefits in areas with sparse measurement networks and
will aid snowmelt and runoff forecasting in mountainous basins.

1. Introduction (Kattelmann 1997; Rossler et al. 2014; Pomeroy et al.
2016), and pose a significant challenge to reservoir plan-
ning and operations that are typically designed around
the premise of a single, large spring melt pulse. The in-
creasing frequency and uncertain timing of such occur-
rences reduces flexibility to retain or release reservoir
water to optimize availability for agricultural use. On
the opposite side of the spectrum, droughts require
complex operations to ensure that the water releases
are optimized to not waste the limited available water.

Traditional statistical forecasting methods are based on
Corresponding author: Scott Havens, scott.havens@ars.usda.gov  historical data relating streamflow and field measurements

Rapidly warming climate in the western mountains of
North America is changing the partitioning of rain and
snow and increasing the rain—snow transition elevation
(Nolin and Daly 2006; Nayak et al. 2010; Klos et al. 2014;
Lute et al. 2015; Trujillo and Molotch 2014). Rain-on-snow
flooding events are becoming more common (Surfleet
and Tullos 2013; Tohver et al. 2014; Freudiger et al.
2014), can cause significant damage to downstream areas
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of snow depth and snow water equivalent (SWE) at a
relatively small number of reference sites in a given
watershed. These historical models are unable to account
for the impacts of winter rain or mixed phase events,
suggesting the need for less statistical, and more mech-
anistic, physics-based snow and hydrologic forecasting
models (Frei et al. 1999; Groisman et al. 2001, 2004,
Mote 2003, 2006; Mote et al. 2005; Regonda et al. 2005;
Pierce et al. 2008). Such models, however, require ex-
tensive meteorological forcing data, which are typically
limited in remote mountain regions (Marks and Frew
1999; Garen and Marks 2005). Typical meteorological
data networks in mountainous regions are relatively
sparse, have variable periods of record, and contain
frequent data gaps of varying length.

The Weather Research and Forecasting (WRF) Model
(Skamarock et al. 2008) has previously been used to
dynamically downscale output from global weather
forecasts, global climate models (GCMs), or reanalysis
data with an initial spatial resolution of 50-200km to a
more management-relevant resolution of between 1 and
12 km. These dynamically downscaled WRF outputs are
evenly distributed with relatively high spatial resolution
(when ran at high resolution), and are temporally com-
plete which makes them particularly efficient as forcing
data for hydrologic modeling applications. In moun-
tainous regions with complex topography and highly
heterogeneous land cover, however, further downscal-
ing may be required to produce WRF meteorological
outputs at the finescale grid resolution (10-250 m) re-
quired to accurately capture small-scale snowpack vari-
ability in mountainous terrain (Winstral et al. 2014). It is
critical in this process that we understand how to account
for any scale differences between WRF output and local
variation in slope, aspect, elevation and land cover.

Numerical weather prediction models are commonly
used to provide meteorological inputs for hydrology
models both for predicting streamflow from a short-
term events, or for entire water years (from 1 October
through 30 September). Miller and Kim (1996) investigated
a 5-day flood event on the Russian River in California by
using the Mesoscale Atmospheric Simulation (MAS)
model, at 20-km resolution, as input to the hydrology
model TOPMODEL. Results showed a 10% difference
between modeled and observed streamflow.

Westrick and Mass (2001) investigated a short-term
rain on snow event for the Snoqualmie River, Wash-
ington, using the Fifth-Generation PSU-NCAR Me-
soscale Model (MMS5) to synthesize inputs to the
Distributed Hydrology Soil and Vegetation Model
(DHSVM) at 4-, 12-, and 36-km spatial resolution. The
authors used simple interpolation schemes to downscale
the MMS5 outputs to the 150-m DHSVM domain and
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applied a bias adjustment to precipitation and wind speed
to better estimate streamflow. Westrick et al. (2002) then
extended this analysis to evaluate real-time applica-
tions over multiple basins in Washington State though
an entire winter. While some basins simulated streamflow
better than others, the average error was 38% for
the entire winter season, compared with 31% using
meteorological-station-based observations.

Wayand et al. (2013) investigated three scenarios over
10 years in the American River basin, California. The
first scenario utilized one measurement station and
distributed the observations with the Parameter-Elevation
Regressions on Independent Slopes Model (PRISM;
Daly et al. 1994) for precipitation and temperature. The
second case used a 6-km WRF simulation downscaled to
the 150-m DHSVM grid using static lapse rates, with the
third case combining WRF and empirical models for
radiation. The resulting WRF outputs for precipitation
were biased high, with smaller diurnal temperature
ranges than observations. Modeled streamflow per-
formance was poor for all scenarios due to differences in
precipitation timing and application of an uncalibrated
hydrology model.

The physically based snow model SNOWPACK
(Lehning et al. 2002; Bartelt and Lehning 2002) was
forced at a point with output from the Canadian regional
model GEM15 to evaluate the potential of simulating
critical weak layers for avalanche forecasting (Bellaire
et al. 2011; Bellaire and Jamieson 2013). Chen et al.
(2014a) used 2-km WRF Model outputs to drive 6 land
surface models and compare how closely they matched
SWE at 112 Natural Resources Conservation Service
(NRCS) Snowpack Telemetry (SNOTEL) stations
across the Colorado River headwaters. To do this they
used output from the 4 nearest WRF cells to esti-
mate weather parameters at each SNOTEL site. They
found that WRF Model output resulted in a reasonable
agreement with the 112 SNOTEL site-averaged SWE
measurements, but that there was large variation from
site to site. Much of this variation was due to elevation
differences between the sites and the elevations assigned
to the 2-km WREF grid cells.

The WRF Model could provide a significant advance-
ment over current geostatistical methods for deriving
meteorological forcing data for hydrologic models where
sparse measurement networks exist. Current geostatistical
methods interpolate station measurements of meteo-
rological data (Havens et al. 2017; Garen et al. 1994;
Goovaerts 2000; Livneh et al. 2014; Luo et al. 2008),
however, these methods are severely limited in moun-
tainous regions and may not accurately capture the true
spatial distribution of parameters (Hedrick et al. 2018).
Regional-scale models, such as WRF, provide a new
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FIG. 1. Boise River Basin modeling domain with major subbasins. Meteorological stations used
in modeling with measurements used at each site.

opportunity to simulate historic forcing data when ground
measurements are unreliable or at a coarse temporal res-
olution. However, the downscaling from the regional-scale
domain to the snow-modeling domain must be tested
and WRF Model outputs evaluated for bias and sen-
sitivity to downscaling.

In this study we used output from a WRF simulation
to force a physically based snowmelt model, iSnobal
(Marks et al. 1999), in lieu of using meteorological
station measurements. The study area has a relatively
dense measurement networks for a large watershed
allowing for comparison with an atmospheric model,
as opposed to the typically sparse and inconsistent mea-
surements found in most large watersheds. The objectives
for this study were twofold:

1) Utilize atmospheric model outputs from WREF to pro-
duce iSnobal results that are consistent with iSnobal
results from measured meteorological conditions.

2) Improve iSnobal results with WRF through additional
bias adjustments to precipitation and air temperature,
along with applying elevation dependent downscaling.

The utility of the methodology will be determined by
comparison of baseline iSnobal results from meteo-
rological stations with two iSnobal results using WRF.
The first was simple interpolation of WRF output. The
second applied bias adjustment then elevation dependency
to the WRF output.
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2. Model configurations
a. Boise River Basin

The Boise River Basin (BRB) in southwest Idaho,
United States, defined in this study as the watershed
above Lucky Peak Dam, is located just east of Boise,
Idaho, and encompasses roughly 7000 km?* (Fig. 1). The
BRB contains three large subbasins: Mores, Twin Springs,
and Featherville, each draining one of the three main forks
of the Boise River. The BRB ranges in elevation from
858 to 3249 m, with Mores ranging between 939 and
2470m, Twin Springs between 997 and 3249 m, and
Featherville between 1289 and 3125 m. The majority
of winter precipitation occurs as snow, with average
annual precipitation of 500 mm at the lowest elevations
to 1500 mm at higher elevation (Garen and Marks 2005).
The BRB was selected for this study because it is one
of the most thoroughly instrumented large mountain
basins in the western United States, with more than
40 measurement sites, including 14 SNOTEL sites
monitoring both precipitation and SWE.

The BRB is composed of forest (43%), shrub land
(35%), herbaceous (21%), and other land covers (1%)
based on analysis of the 2011 National Land Cover
Database (NLCD; Homer et al. 2015). Each subbasin
has its own dominant land cover with Mores mainly forest
(62%), Twin Springs land cover similar to the basin
average, and Featherville 53% forest and 24% shrub.
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Vegetation maps used for modeling were aggregated from
30-m NLCD classifications to a 100-m classification.

b. iSnobal

The physically based, distributed snowmelt model,
iSnobal (Marks et al. 1999), is a topographic-grid-based
energy and water balance model. The iSnobal model
simulates the snowpack as two layers, with the active
surface layer exchanging energy and mass with the
atmosphere and the lower layer transferring energy
and mass between the snow surface layer and soil. The
snow temperature, density, and liquid water content
are calculated for each layer. The iSnobal forcing data
inputs are raster surfaces over a digital elevation model
(DEM) of incoming thermal (longwave) radiation, air
temperature, vapor pressure, wind speed, soil tempera-
ture, net solar radiation, and precipitation (including
precipitation temperature, phase, and percent snow).
Given the forcing data inputs, the energy balance, snow
temperature, depth, mass, and cold content (energy re-
quired to bring the snowpack to 0°C) are computed for
each grid cell. Melt cannot occur until the temperature
of the snow cover rises to 0°C, under which conditions
the cold content equals 0Jm 2. Liquid water drainage
from the snow does not occur until the liquid water
holding capacity of the snow is exceeded.

The BRB modeling was conducted within a 1500 by
1500 pixel domain (Fig. 1) at 100-m resolution and at
an hourly time step. This resolution allows for a grid
size that captures topographically controlled snow-
melt processes but does not require an unreasonable
computation time. A 100-m DEM was coarsened from
the publicly available 10-m DEM to match the required
modeling resolution.

c. Weather Research and Forecasting Model

The WRF Model (Skamarock et al. 2008) is an atmo-
spheric modeling system used in both research and opera-
tions for a variety of applications (e.g., weather forecasting,
seasonal forecasting, atmospheric chemistry and regional
climate modeling). The code is open source with commu-
nity development and support provided by the National
Center for Atmospheric Research (NCAR). WREF is ap-
plied at a range of scales from horizontal resolutions of less
than 1 km for large-eddy simulations, to tens of kilometers
for coarse resolution forecasts and climate simulations. The
model has two dynamical cores one used primarily for
operational applications, the Nonhydrostatic Mesoscale
Model (NMM), and another, the Advanced Research
WRF (WRF-ARW), which is geared toward research
and was used to generate the dataset used for this study.
The WRF-ARW model solves the governing equations
of atmospheric dynamics and uses selected modularized
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FIG. 2. Nested domains used for the WRF Model simulation.
Domains d01, d02, and d03 have horizontal grid resolutions of 9, 3,
and 1km, respectively. Topography is shown as resolved by the
model within each domain.

physics packages to account for processes such as cloud
microphysics, shortwave and longwave radiation, and
land surface processes.

The WREF output used in this paper is from a single
simulation generated using WRF version 3.5.1 over nested
model domains (Fig. 2) in the interior Pacific Northwest
region of the United States. The horizontal resolution of
the model domains d01, d02, and dO3 are 9, 3, and 1km,
respectively. The simulation extends from 1 October 2009
through 1 June 2010 and uses initial and boundary atmo-
spheric conditions from the North American Regional
Reanalysis. Based upon Ikeda et al. (2010), the model con-
figuration included the following physics parameterizations:

e Community Noah land surface model (Chen and
Dudhia 2001),

o Thompson et al. (2008) microphysics scheme,

e Mellor-Yamada-Janji¢ (MYJ) planetary boundary
layer scheme (Janjic¢ 2002),

e Community Atmosphere Model (CAM) shortwave
and longwave radiation schemes (Collins et al. 2004),
and

o Kain-Fritsch convective parameterization scheme
(Kain 2004) on the outer domain only.

3. Methods

Three iSnobal model runs were performed at 100-m
spatial resolution and at an hourly time step. The first
run used only meteorological station measurements,
serving as the control simulation. The second model run
used bilinear interpolation to regrid WRF output to the
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iSnobal domain. The third model run used bias-adjusted
WREF air temperature and precipitation from stations
in a larger area in south Idaho, then incorporated
detrended interpolation of WRF outputs to the iSnobal
BRB domain.

a. Spatial distribution of station measurements

Data from a total of 40 meteorological stations in and
around the BRB were used as baseline data to derive
distributed model inputs as a control model run (Fig. 1).
Seven stations are operated by the Bureau of Land
Management (BLM), nine are operated by the Boise
office of the U.S. Bureau of Reclamation (USBR),
seven are operated by the Idaho Transportation De-
partment (ITD), fourteen are part of the SNOTEL
network, and three are operated by the Sawtooth
National Forest Avalanche Center (SNFAC). Due to
multiple station operators, station instrumentation and
configuration varied between meteorological stations.

For this study, we used the Spatial Modeling for Re-
sources Framework (SMRF; Havens et al. 2017) version
0.5.3 (Havens et al. 2019b) to interpolate the point sta-
tions measurements to the gridded modeling domain.
In depth methodologies within SMRF can be found in
Havens et al. (2017) and the configuration file for complete
replication of the distributed forcing input is available
(Havens et al. 2019a). Certain forcing parameters (air
temperature, precipitation, and vapor pressure) used
elevation-dependent detrended kriging (Garen et al.
1994; Garen 1995), which has been successfully applied in
other modeling studies (Susong et al. 1999; Garen and
Marks 2005). Detrended kriging first removes the eleva-
tion trend from the measurement data by calculating the
least squares fit to the measured values as a function of
elevation. The residuals are distributed to the gridded
model domain using ordinary kriging with an assumed
linear semivariogram. The elevation trend is then added
back to the kriged residuals based on the gridcell elevation.

Meteorological station measurements of air tempera-
ture from 38 stations were distributed using detrended
kriging. Air temperature typically has a negative trend
with elevation and the detrended kriging was constrained
to keep this negative trend.

Dewpoint and vapor pressure rely on coincident mea-
surements of air temperature and relative humidity, which
were measured at 19 of the meteorological stations. At
each of these stations, the vapor pressure was calculated
using the measured air temperature and relative humidity
based on Clausius—Clapeyron empirical relationship.
The vapor pressure was then distributed using de-
trended kriging with a negative elevation trend. From
the distributed vapor pressure, the dewpoint temperature
was calculated.
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Twenty-one stations measured precipitation, fourteen
of which were SNOTEL stations. The measured pre-
cipitation data were filtered to remove both high- and
low-amplitude noise while ensuring that the accu-
mulated precipitation was always increasing using the
Automated Precipitation Correct Program (APCP;
Nayak et al. 2008). The instantaneous precipitation for
each station was calculated from the difference in ac-
cumulated precipitation, then distributed at an hourly
time step using detrended kriging and ensuring a posi-
tive elevation trend. Undercatch correction was not
performed due to limited wind data at the measurement
sites.

Snowmelt models are sensitive to the precipitation
phase, as this can either build the snowpack or change
the snowpack energy balance and potentially induce
melt (Marks et al. 1998; Kormos et al. 2014). The pre-
cipitation phase was determined from the precipitation
temperature, set as the dewpoint temperature, which
allows for a reliable estimate of precipitation phase,
especially near the rain-snow transition elevation (Marks
et al. 2013). From the precipitation temperature, the
percent snow and snow density are estimated using
procedures described by Susong et al. (1999).

Fourteen meteorological stations measured wind
speed and direction, with three at sheltered SNOTEL
locations and the rest in more exposed locations along
roadways or in large clearings. With the abundance of
snowfall in the BRB, the Idaho Transportation De-
partment and the Sawtooth National Forest Avalanche
Center have installed three wind measurement stations
on the exposed mountain peaks and have measured
wind speeds in excess of 35ms™'. These wind stations
provide a unique challenge when distributing wind
speed using the methods developed by Winstral and
Marks (2002) and Winstral et al. (2009). This distribution
method uses the maximum upwind slope to parameterize
how upwind terrain affects whether or not the pixel is
determined to be either sheltered or exposed. The max-
imum upwind slope parameter was calculated for a 30-m
DEM and averaged up to the 100-m model DEM for
72 wind directions. The exposed-peak stations required a
special case to set the maximum upwind slope to the
minimum calculated value to reduce the potential of
artificially high wind speeds in the surrounding areas.
Maximum and minimum wind speeds were set at 0.47
and 35ms ', respectively, to ensure turbulent transfer
calculation stability.

Estimating solar and thermal radiation over the BRB
requires multiple steps, all of which were performed
within SMRF. Both solar and thermal radiation require
cloud factor calculated as the measured solar radiation
over the clear sky radiation. Incoming solar radiation
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measured at 7 sites, 3 at BLM stations, 2 at USBR sta-
tions, and 2 at ITD stations, was used to estimate the
cloud factor. Measured solar radiation was integrated
over an entire day to calculate a daily cloud factor. The
cloud factor at each station was distributed to the model
domain using inverse distance weighting.

The soil temperature was set to a constant —2.5°C for
the entire simulation. This ensured that as the snowpack
began to form, the ground heat flux did not overcome
the energy balance and melt the snowpack prematurely.
Once the snowpack was deep enough, the ground heat
flux term was small, providing a limited contribution to
the calculation of the energy balance.

b. Simple interpolation of WRF output

Each WREF output variable was regridded using bilinear
interpolation. The variables were 2-m air temperature,
2-m relative humidity, 10-m wind speed, downwelling
longwave radiation at the surface, precipitation accu-
mulated, and cloud fraction.

Dewpoint temperature and vapor pressure were cal-
culated from the interpolated air temperature and rel-
ative humidity using the Clausius—Clapeyron empirical
relationship.

The 10-m wind speed was not adjusted for sheltering
due to terrain as with the station measurements. Down-
scaling wind from a gridded output over complex to-
pography is not a simple solution and will require more
research to analyze the best methods.

The solar radiation output from WRF included effects
from clouds but was not corrected for terrain shading or
split into beam and diffuse radiation. To compensate for
this, we followed the same methods as the station mea-
surements by first calculating the clear sky radiation. We
then estimated the cloud fraction (CLDFRA) from
WREF outputs. CLDFRA is a four dimensional variable
(time, latitude, longitude, atmospheric layer), and the
distributed cloud cover at the surface was calculated as
the average cloud fraction for all atmospheric layers.
This method is a crude approximation and further studies
will investigate the proper method to account for the
cloud’s effect on radiation. The final step adjusted for
vegetation and corrected the beam and diffuse radiation
for the canopy and cloud factor.

Downwelling longwave radiation from WRF was used
as cloud corrected thermal radiation. Further adjustment
for topographic and canopy effects were performed in the
same manner as the station measurements.

The albedo was estimated by keeping track of the time
since last storm for each pixel, using the same method-
ology as for the station measurements. However, the
precipitation output from WRF has much finer scale
spatial patterns than can be achieved from detrended
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kriging, making the albedo decay more prevalent and
variable than those calculated from station measurements.

¢. Bias-adjusted WRF output

Two additional modifications were made to improve
the WRF outputs for the iSnobal application. First, to
further improve the input data distribution, relative to
the bilinear technique, we borrowed from the concept
of detrended kriging. Each WREF cell was used as if it
were a measurement station (i.e., a virtual WREF station)
that has a latitude, longitude, and elevation. Stations
that were within the BRB boundary were used to get the
elevational trend in air temperature. The trend was
subtracted out from all the WREF stations to get the
residuals, which were distributed to the iSnobal do-
main using bilinear interpolation. With the residuals
on the iSnobal domain, the trend could be added back
in, producing an elevation-dependent air temperature
within the iSnobal modeling domain.

The second modification was a simple bias correction
function applied to each WRF grid cell based on the
particular cells’ value of temperature and precipitation.
Known biases exist in WRF for air temperature when
used with the Noah land surface model (Niu et al. 2011;
Yang et al. 2011; Chen et al. 2014b). The following
sections attempt to apply simple bias corrections to air
temperature and precipitation in order to provide more
robust inputs to iSnobal. These bias corrections were not
meant to address the physics behind WRF but rather
to solely adjust WRF output. The most recent WRF
version now includes the Noah-MP land surface model
which may reduce the temperature bias.

Thirty-nine stations were used in the WRF 1-km inner
modeling domain to compare air temperature and pre-
cipitation (Fig. 3). Additional stations were utilized from
outside of the BRB from the much larger WRF modeling
domain. Seven stations were from the Reynolds Creek
Experimental Watershed (RCEW) in SW Idaho main-
tained by the USDA-ARS. The remaining 32 were
SNOTEL stations within the modeling domain. The
closest WRF pixel to the measurement station was
used in the comparisons.

1) AIR TEMPERATURE

To address the temperature bias, the hourly WRF air
temperature was compared to the hourly measured air
temperature (Fig. 4). A nonlinear cold bias was observed
when the air temperature was below about 10°C with a
warm bias above 10°C. The histogram shows most of
the values centered between —10° and +5°C. The large
range in measurements can be attributed to two main
factors. The first, comparing hourly measurements di-
rectly to hourly WRF output, where a time shift of even
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FIG. 3. WRF inner modeling domain d03 in blue with the BRB model domain in red. Stations
used for bias analysis from RCEW and SNOTEL shown.

an hour would cause differences between modeled and
measured air temperature. Second, the WRF output did
not have the diurnal range in maximum and minimum
temperatures that were measured at station locations as
previously documented by Wayand et al. (2013).

A goodness-of-fit to the desired line (1:1 line), in red,
showed a R? value of 0.73. To adjust the air tempera-
tures, the offset of the measured bias to the desired line
was calculated for the range in WRF air temperatures.
This provided a continuous bias correction offset func-
tion to apply at each WREF air temperature. Once the
correction was applied, the goodness of fit to the desired
line improved with a R? of 0.79.

To address how well the bias correction did, we com-
pared the daily minimum, average, and maximum air tem-
peratures (Fig. 5). The differences between measured and
modeled minimum and maximum air temperature were
more apparent, with minimum temperatures showing a

nonlinear bias about 0°C (R? of 0.74), the average
temperature had a similar bias as the hourly mea-
surements (R? of 0.80), and the maximum had a cold
bias at all temperatures (R> of 0.63). After the bias
correction was applied, the minimum temperature
cold bias was not as strong (R” of 0.73), the average
temperature improved (R? of 0.88), and the maximum
still had a cold bias, but the nonlinearity was removed
(R? of 0.78).

2) DEWPOINT TEMPERATURE AND VAPOR
PRESSURE

Applying a bias correction to temperature will have
an effect on the modeled relative humidity. To com-
bat this potential change, the original WRF modeled
air temperature and relative humidity were used to
calculate the dewpoint temperature at each WRF
grid cell.

Normalized Histogram
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FIG. 4. Hourly measured air temperature vs hourly WRF air temperature output. A cold bias exists at lower
temperatures. The wide spread in hourly measurements was due to greater temperature fluctuations at station
locations or differences in model timing. Original trend in black with bias corrected in red.
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The distribution of the dewpoint temperature was
performed in a similar manner to the air temperature by
assuming each WREF cell is a virtual meteorological
station, calculating and removing the elevation trend,
interpolating the residuals and finally retrending to the
iSnobal gridded domain. The final step ensures that the
dewpoint temperature cannot exceed the distributed
air temperature. Vapor pressure was then calculated
from the distributed dewpoint temperature.

3) PRECIPITATION

The measured accumulated precipitation was cal-
culated for all 39 measurement sites up to the WRF
Model end time. The modeled accumulation from
WRF compared to measured accumulation showed a
striking linear trend (Fig. 6) that was biased to un-
derestimated modeled accumulation with a poor fit to
the desired line (R* of 0.43). A bias correction ratio
was calculated as an enhancement factor between the
original linear trend to the desired line as a function of
the modeled accumulated precipitation. Applying the
enhancement factor improved the goodness of fit to an
R? value of 0.82. The enhancement factor was applied
based on a cell’s modeled accumulation to get a dis-
tributed enhancement factor. The distributed enhance-
ment factor was applied to the hourly precipitation prior
to downscaling to the iSnobal domain. Similar to the air
temperature and dewpoint temperature, the hourly pre-
cipitation was detrended, interpolated, and retrended
based on WRF cells in the BRB boundary. The
bias corrected precipitation and dewpoint tempera-
ture changed the precipitation phase as well.

4) OTHERS

Wind, thermal radiation, and soil temperature were all
calculated in the same manner as the simple bilinear in-
terpolation. Albedo was calculated using the detrended
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precipitation which changed the calculation of net solar
radiation.

4. Results

The objectives for the study were to use WRF out-
puts as inputs to iSnobal and compare with iSnobal
simulations from measured meteorological condi-
tions. Two iSnobal simulations were performed with
simple interpolation of WRF output and a more
complex, elevation-dependent interpolation with bias
adjustment of WRF output. Comparison of model re-
sults was feasible due to the extensive and relatively
dense measurement network in the BRB, as most
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FIG. 6. Measured accumulated precipitation vs modeled accu-
mulation shows the underestimation of precipitation from WRF
(blue) and after simple ratio based on accumulation (orange).
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FIG. 7. Simple water balance showing that WRF bilinear did not have enough precipitation
to account for streamflow and ET. Bias correcting the WRF precipitation falls more in line
with station measurements and will account for streamflow and ET. Values in legend are the
difference of the last value and the maximum accumulated streamflow.

watersheds of this size have a sparse and incomplete
measurement network.

a. Precipitation bias correction

A simple water balance was used to ensure that enough
precipitation volume was distributed to account for basin
outflow and evapotranspiration (ET) demands. ET de-
mands for various canopy cover can be estimated using
eddy covariance towers. At nearby RCEW, ET estimates
were 300mm yr~ ' for sagebrush and 700 mm yr~ ! for aspen
(Flerchinger et al. 2010). ET estimates from the semiarid
southwestern United States (Ha et al. 2015) were between
415 and 510mmyr ' and between 400 and 800 mmyr~ ' in
the Sierra Nevada in California (Goulden et al. 2012) for
ponderosa pine, a major vegetation species in the Boise
River Basin. A rough estimate of ET based on the previous
ET values and percent vegetation cover for each basin
is between 400 and 4990mmyr ' for Mores, from 360 to
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425mmyr ! for Twin Springs, and between 360 and
440mmyr ! for Featherville. Mores subbasin has an ad-
ditional complexity due to a large population drawing
up to 7.6m>s ™" from surface water for residential and ir-
rigation water rights (Idaho Department of Water Re-
sources, https://research.idwr.idaho.gov/apps/Hydrologic/
ccounting/). The water rights have the potential to draw
up to 230mmyr~* for the entire year, however the actual
water used is unknown and most likely lower.
Comparing the distributed accumulated precipitation
and measured streamflows, normalized to basin area,
provides a rough estimate of the available water left
for ET (Fig. 7). Based on the ET estimates above, the
distributed precipitation from station measurements
provided enough water volume to account for stream-
flow and ET in all the basins. Even though the WRF runs
stopped prior to the end of the year, there was only one
significant storm during the summer, potentially adding


https://research.idwr.idaho.gov/apps/Hydrologic/Accounting/
https://research.idwr.idaho.gov/apps/Hydrologic/Accounting/
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F1G. 8. Distributed accumulated precipitation compared. Measurement kriging tended to smooth the station measurements, whereas
WREF had a larger elevation gradient.

up to an additional 170 mm to the distributed pre-
cipitation. Even with this addition, the WRF pre-
cipitation would not have enough precipitation to
account for both streamflow and ET, indicating that
the original WRF output did not produce enough
precipitation. However, the simple ratio correction
created enough precipitation to account for ET and
streamflow.

The distributed accumulated precipitation shows a
striking difference between simple WREF interpolation
and bias adjusted WRF (Fig. 8). Large differences exist
everywhere when comparing measurements to simple
interpolation, with up to 600 mm of difference in the
middle of the basin (Fig. 8a). After bias adjusting the
precipitation, WRF had a much stronger elevation
gradient, placing a higher concentration of precipita-
tion at higher elevations (Fig. 8b). This differs from
the measurement kriging, which tends to smooth the
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measurements over the domain and does not have as
strong of an elevation gradient.

b. SWE at a point

Fourteen SNOTEL stations exist in the Boise River
Basin with which to compare model results. However,
two aspects must be taken into consideration when
comparing a spatial model to point measurements,
scale differences and topography. A large-scale dif-
ference exists between a SNOTEL pillow (7 m?) that
is essentially a point measurement and the 100-m mod-
eling pixel (10000 m?). While there are large differ-
ences in scale making direct comparison difficult,
the importance of the comparison was to ensure that
the proper trends in SWE accumulation and melt
were captured. In addition to the scale differences,
SNOTEL sites are located in sheltered flat areas.
However, the underlying DEM of the model will likely
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not be representative and will have some slope and as-
pect to the pixel.

The differences between scale and topography can be
addressed by not only looking at the particular pixel that
the SNOTEL site occupies, but also looking at those
pixels directly adjacent. Looking at the pixels adjacent to
the site encompasses a 300m X 300 m area and the local
topography becomes apparent. Figure 9 compares 9 out
of the 14 sites that had reliable SWE measurements. The
model result at the pixel location is represented by a solid
line with the adjacent pixels as dashed lines.

The model results with stations performed well
at some sites but not at others (Table 1). The topography
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differences are quite apparent with Jackson Peak hav-
ing little variation due to the relatively flat topogra-
phy and significant tree cover. Other sites had a
large variation in SWE, for example Banner Summit,
where an adjacent pixel matches more closely to the
SNOTEL measurements. The model results at Bogus
basin were extremely low due to either an under
catch of precipitation, low relative humidity mea-
surement which will affect the precipitation phase, or
the site being extremely sheltered next to a ski run.
The Nash-Sutcliffe efficiency (Nash and Sutcliffe
1970) varies from 0.5 to 0.93 with an average of
0.76. The average root-mean-square error (RMSE) is
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TABLE 1. RMSE, MSE, and NSE for each SNOTEL site. Average is the average for all sites and all nine pixels. SM = station mea-
surements, WB = WREF bilinear, and WC = WREF bias corrected.

RMSE MSE NSE

Station SM WB wC SM WB wC SM WB wC
Atlanta Summit 2.0 10.7 5.1 17 128 51 0.93 0.50 0.80
Banner Summit 2.8 19.5 19.1 30 220 204 0.89 0.18 0.24
Bogus Basin 9.3 9.5 5.5 112 117 66 0.50 0.48 0.71
Cozy Cove 1.9 58 42 21 62 43 0.81 0.45 0.62
Dollarhide Summit 5.2 9.6 5.0 56 127 70 0.71 0.35 0.64
Galena 2.1 5.4 4.8 21 71 60 0.85 0.50 0.58
Galena Summit 8.2 6.7 2.5 88 86 27 0.52 0.53 0.85
Jackson Peak 53 11.1 7.8 59 139 94 0.77 0.44 0.63
Mores Creek Summit 44 7.8 2.7 36 100 33 0.86 0.62 0.87
Prairie 2.0 1.8 2.7 19 20 23 0.67 0.65 0.61
Trinity Mountain 6.4 153 3.5 63 200 45 0.82 0.43 0.87
Vienna Mine 35 19.1 10.5 43 231 116 0.86 0.24 0.62
Average 4.5 10.5 6.5 48 128 73 0.76 0.42 0.65

4.5mm and an average mean squared error (MSE) of
48 mm.

The underestimation of precipitation is quite evident
in the simple interpolation WRF Model results (Fig. 9).
The modeled SWE is underestimated at all sites, with up
to 400 mm of difference between measured and modeled
SWE. The Nash-Sutcliffe efficiency varies from 0.18
to 0.65 with an average of 0.42. The average RMSE is
10.5mm and an average MSE of 128 mm.

After bias correcting and detrending the precipitation
and air temperature, the WRF bias adjusted model re-
sults perform much better. The WRF bias adjusted re-
sults were closer to the SNOTEL measurements but
some sites were still underestimated. The Nash—Sutcliffe
efficiency varies from 0.24 to 0.87 with an average of 0.65.
The average RMSE is 6.5mm and the average MSE is
73mm. The WREF bias correction outperforms the WRF
bilinear and is close to the station measurements.

c. Snow-covered area

The snow-covered area (SCA) for the Boise River
Basin and each sub basin were calculated for the station
measurements, simple interpolation, and bias corrected
WREF. The SCA from the MODIS product MODSCAG
(Painter et al. 2009) was obtained for scenes that had less
than 10% cloud cover and mainly occurred during
the spring. Comparing the model runs to MODSCAG
(Fig. 10) show that the snow cover modeled with station
measurements contain snow in more pixels due to in-
terpolating point measurements to the model domain.
The simple interpolation of WRF outputs showed the
closest to MODSCAG SCA and is attributed to the
underestimation of precipitation. The bias corrected
WREF outputs have a lower SCA than station mea-
surements and are close to the MODSCAG SCA for
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all subbasins. The results show that the WRF outputs
are providing a different spatial coherency than can be
estimated from station interpolation.

5. Discussion and conclusions

The results show that WRF output could be used to
provide input to iSnobal in lieu of meteorological station
measurements and could replicate results in a large,
well instrumented basin. WRF outputs provide spatially
distributed forcing data at a much finer scale that cannot
be replicated with geostatistical methods to interpolate
measured meteorological data in a large basin such as
the BRB. The ability to create all the necessary forcing
inputs to iSnobal makes using WRF outputs enticing,
especially where sparse measurement networks exist
or have unreliable data. In some sense, regional weather
and climate models like WRF are platforms for inter-
polating large-scale atmospheric motions in accordance
with the physics and thermodynamics as they are
represented within these models to much finer spatial
resolutions. However, caution must be used and the
WRF outputs should be carefully checked to ensure
that the model outputs are realistic as compared with
meteorological station measurements. Without correct-
ing for bias, the modeled snowpack was underestimated
at all SNOTEL locations, mainly due to the underesti-
mation of precipitation, and produced larger errors than
using measured station data. After applying simple bias
corrections to the air temperature and precipitation,
the modeled snowpack performed almost as well as
the measured station data at SNOTEL locations. The
NSE and RMSE show that using WRF outputs as inputs
can simulate SWE almost as well as with meteorological
measurements. The bias correction however, will most
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FIG. 10. Comparison of SCA between model runs. Station measurements show the highest SCA during the spring.

likely not be applicable to other WRF simulations from
the complicated uncertainty in the model outputs which
may vary between seasons, simulations, space, and
model configuration. Therefore, each model run must
be examined independently and prior to use, to en-
sure that WRF outputs are adequate as inputs for
snowmelt modeling. To adequately evaluate WRF
outputs, there must be enough station meteorological
measurements to capture the measurement gradient,
which can be difficult in regions with sparse measure-
ments. WRF simulations that span a longer time frame
(i.e., multiple years) will need a more sophisticated
bias adjustment to address interannual variability
and potential climate change effects.

In applying techniques to regions where the sparse-
ness of surface observations precludes the bias correc-
tion technique used here, it may be necessary to rely on
ancillary sources of information to correct hydromete-
orological fields that are then used as input to hydrologic
models. Because WREF is also associated with a land sur-
face model (Noah, in this case), a number of land surface
variables influenced by precipitation can be compared to
observational data and used to infer bias in the associated
precipitation. Two variables, in particular, that may be of
interest in correcting biases in WRF precipitation include
soil moisture and runoff derived from the land surface
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model and for which remote sensing (soil moisture) and
surface observations (discharge) may be available.

With the increased spatial information provided, new
methods were developed to handle downscaling from
the WRF domain to the iSnobal domain. The WRF grid
cell locations were taken as if they were virtual meteo-
rological station measurements, with a latitude, longi-
tude, and elevation, in order to take advantage of
detrended interpolation for WRF outputs that have
some elevation dependence, like air temperature,
vapor pressure, and precipitation. Additionally, the
precipitation distribution from WRF was highly event
dependent and can spatially resolve precipitation at a
much finer scale. Because a storm could affect only part
of the basin, the day since last storm was tracked for
each pixel in the iSnobal domain. This produced a dis-
tributed albedo estimate and each pixel could decay at
a different rate.

The methods described in this study to downscale
output from meso- or regional-scale atmospheric models
were developed using a reanalysis dataset but can be
applied for other mesoscale model outputs. Based on
this work, USDA-ARS worked to implement the op-
erational National Weather Service model High Reso-
lution Rapid Refresh (HRRR; Benjamin et al. 2016) as
input to iSnobal in near real time in support of water
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supply forecasts in California. Additionally, USDA-ARS
provided near-real-time forecasts for the USBR and
NRCS in the Boise River Basin (Havens et al. 2015).
For water year 2016, the methods developed in the
study were applied to a short-term 72-h forecast to
help quantify how the forecasted precipitation and
temperature will affect snow accumulation or melt to
provide additional information, from physically based
models, to operational water managers.
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