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Research Impact Statement: Increasing model complexity with climate variables and data-

driven models advances seasonal municipal water system demand estimate accuracy to enhance 

management decision-making in a changing climate.  

ABSTRACT 

Altered precipitation and temperature patterns from a changing climate will affect supply, 

demand, and overall municipal water system operations throughout the arid western U.S. While 

supply forecasts leverage hydrological models to connect climate influences with surface water 

availability, demand forecasts typically estimate water use independent of climate and other 

externalities. Stemming from an increased focus on seasonal water demand management, we use 

the Salt Lake City, Utah municipal water system as a testbed to assess model accuracy vs. 

complexity trade-offs between simple climate-independent econometric-based models and 

complex climate-sensitive data-driven models to average to extreme wet and dry climate 

conditions – representative of a new climate normal. The climate-independent model displayed 

low performance during extreme dry conditions with predictions exceeding 90% and 40% of the 

observed monthly and seasonal volumetric demands, respectively, which we attribute to 

insufficient model complexity. The climate-sensitive models displayed greater accuracy in all 

conditions, with an ordinary least squares model demonstrating a measurable reduction in 

prediction bias (3.4% vs. -27.3%) and RMSE (74.0 lpcd vs. 294 lpcd) compared to the climate-

independent model. The climate-sensitive workflow increased model accuracy and characterized 

climate-demand interactions, demonstrating a novel tool to enhance water system management. 
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INTRODUCTION 

The nexus surrounding supply and demand in the arid western U.S. continues to be a 

considerable water resources challenge, displayed by extensive infrastructure to store and deliver 

water (Gleick, 2010; Dawadi & Ahmad, 2012). For example, there are nearly 11,000 water storage 

reservoirs in the western U.S., with the three largest river systems (i.e., Columbia, Colorado, and 

Missouri) combined storage capacity approaching 185,000 Mm3 (USBR, 2023). The extensive 

infrastructure addresses the differential timing of snowmelt-driven streamflow in the spring with 

heavy summer water use, and supports multiyear storage for prolonged drought (Christensen et 

al., 2004; Rajagopalan et al., 2009; Stern & Sheikh, 2021). For municipal water systems (MWS), 

the persistent summer drought and high evapotranspiration drive increases in outdoor water use 

from April to October to maintain landscaping health (UDNR, 2014; Opalinski et al., 2020). With 

climate change altering the surface water yields of critical western U.S. catchments and cost and 

feasibility constraints hampering new source and infrastructure development (Brown et al., 2019), 

there is a shift to explore demand management for operational, tactical, and strategic MWS 

management decisions (Gleick, 2010; Ryu et al., 2012; Olmstead, 2014).  

Demand management leverages water demand estimates (e.g., monthly, annual, total 

volume) to support MWS decision-scaling, capacity planning, conservation efforts, and overall 

operations (Donkor et al., 2014). Statistical time-series models can estimate short- (< 1 day) to 

long-term (> 10 years) water use projections based on historical use trends with high accuracy 

(Ghiassi et al., 2008; Arandia et al. (2015)), assuming serial correlations between demand and 

seasonality will only deviate through efficiencies in water use (Billings & Jones, 2011). While 

these econometric-based methods can produce high accuracy, the arid western U.S. exhibits high 
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water use seasonality, and because of a changing climate, irrigation season length and intensity 

deviate from historical use patterns (Finch et al., 2016; Snyder et al., 2019; Opalinski et al., 2020). 

Regional seasonality, global climate anomalies (e.g., ENSO), and a changing climate challenge 

the use of serial correlation models, autoregressive models, and/or models neglecting climate 

influences (Matthews et al., 2011; Koutsoyiannis & Montanari, 2014). 

Integrating features describing MWS service area characteristics and change within the 

model workflow can improve prediction accuracy, connecting climate influences and urbanization 

pathways to changes in water demand (Coomes et al., 2010; Opalinski et al., 2020). Polebitski and 

Palmer (2010) integrated city size and sector composition, population characteristics, rainfall and 

temperature, the marginal price of water, and socioeconomic factors describing the municipal 

service area into their demand model to increase forecasting accuracy. Identifying and integrating 

key influencers of municipal demand is becoming increasingly important in arid and semi-arid 

regions, where limited supplies and high per-capita water use determine water system performance 

(Hirsch, 2011; Zhao et al., 2018) and where there is a need to develop contingency plans to mitigate 

supply-demand deficits during hydrological drought (Blanc et al., 2014). 

Building on the relationships between MWS service area dynamics and water demand, 

machine learning (ML) algorithms have advanced short- and long-term water demand forecasting 

accuracy (Adamowski & Karapatki, 2010; Behboudian et al., 2014; Ghalehkhondabi et al., 2017; 

Vijai & Sivakumar, 2018; Antunes et al., 2018; Altunkaynak & Assefa, 2018). W. Li and Huicheng 

(2010) demonstrated a 6% reduction in annual demand uncertainty for Dalian City, China by using 

fuzzy neural networks (vs. using linear regression methods) with socioeconomic, climate, and 

other related demand-influencing features. Tiwari and Adamowski (2014) developed an artificial 

neural network (ANN) to forecast weekly to monthly demands to advance operational forecasting 
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accuracy (< 3% error). Although ML can deliver accurate water system demand estimates, ML 

algorithms are susceptible to overfitting, can produce unreasonable estimates from inputs 

exceeding the bounds of training data (e.g., a changing climate leading to temperatures exceeding 

those observed in the historical record), and the black box from high model complexity obscuring 

the relationships between input variables, model algorithm, and predictions (Riter & Munoz-

Carpena, 2013). The documented limitations of ML have resulted in a reluctant adoption within 

MWSs for examining system performance and informing decision-making (Donkor et al., 2014). 

The complex interactions between arid western U.S. climate, service area characteristics, 

and modeling methodology highlight a research gap surrounding the prediction accuracy of 

seasonal municipal demand, specifically, to current and projected conditions influenced by a 

changing climate while considering model complexity vs. accuracy trade-offs. Integrating model 

complexity as an evaluation measure allows for a methodological investigation of accuracy 

changes to different model formulations, with an operational preference for algorithms with high 

accuracy and low complexity. Lower complexity models generally offer greater interpretability, a 

less intensive development time, and are more computationally efficient (Makridakis et al., 2018; 

Shrestha & Mahmood, 2019). We define model complexity as the number of parameters within 

the model and translate the complexity to the interpretability given by the number of parameters, 

consistent with the ML community (Guidotti et al., 2018; Barcel´o et al., 2020). Addressing the 

research gap, we pose two research questions surrounding model complexity and variations in 

seasonal climate conditions concerning arid western U.S. municipal water use:  

• Is there a measurable change in seasonal water demand forecasting accuracy from more 

complex climate-sensitive models compared to climate-independent econometric-based 

models for arid western municipal water systems under extreme climate conditions? 
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•  Are there measurable changes in prediction skill from models of differing levels of 

complexity for estimating demands to various climate regimes? 

We investigate the research questions using Salt Lake City Department of Public Utilities 

(SLCDPU) as a case application, where we develop climate-independent econometric-based 

models, to be referred to as climate-independent models, and data-driven climate-sensitive 

modeling workflows. The objective is to characterize climate-independent model accuracy for 

estimating municipal demands and use a data-driven climate-sensitive modeling workflow to 

advance the prediction accuracy to different climate conditions. We train a lower complexity 

Ordinary Least Squares (OLS) model and develop complex Random Forest Regression (RFR) and 

multilayered perceptron (MLP) models to address the research questions. The research motivation 

is to advance the understanding of climate influences on the water system and develop tools to 

support sustainable water system management. 

METHODS 

Study Area 

We use SLCDPU as a representative arid western U.S. water system because of its 

seasonality, high summer water use, interannual climate variability, and urbanized landscape 

(serving 350,000 people), recognizing that demands, their specific influences, and the resulting 

accuracy in modeling demands will vary between water systems. The long-term records of water 

use support the development of the climate-independent and climate-sensitive models, and to 

investigate model forecasting accuracy to seasonality, year-to-year climate changes, and climatic 

extremes synonymous with climate change. Due to the proximity of SLCDPU to the Wasatch 

Mountains, there is a strong dependence on winter snowpack for supply that strongly influences 

seasonal and year-to-year surface water supply availability (Smith et al., 2015; Brooks et al., 2021). 
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The mountain snowpack functions as a natural storage reservoir, with the streamflow from City 

(CC), Parleys (PC), Big Cottonwood (BCC), and Little Cottonwood (LCC) creeks providing 

approximately 60% of the annual supply (Figure 1) (Khatri et al., 2018). Valley groundwater 

withdrawal and interbasin water transfers, both driven by snow-dominated hydrology, complete 

the remaining 40% of the annual water supply (Figure S1) (Collins & Associates, 2019). 

Four distinct seasons influence SLCDPU water demands: a snowy winter with no 

irrigation; a hot, dry summer with high evapotranspiration and irrigation use; and wet spring and 

fall periods that define the beginning and the end of the irrigation season (UDNR, 2010). 

Temperatures exceeding 35.0oC throughout the summer result in up to 1000 mm of irrigation 

applied between April to October, contributing to Utah routinely ranking as a top five highest per-

capita water use state in the country (Dieter, 2018). Idaho, Wyoming, Arizona, Nevada, Colorado, 

Oregon, and Montana exhibit similar water use, with these western states ranked as the top ten 

highest per-capita water use states in the nation (Maupin, 2018). 

SLCDPU has reported the total volume of monthly treated water releases into the 

distribution system to the Utah Division of Water Rights from 1980 to the present (UDWR, 2023), 

consisting of residential, institutional, and commercial uses and including leakage and 

unaccounted-for system losses. Figure S2 decomposes water use by sector, indicating residential 

outdoor water use as the dominant sector (e.g., 44%). Municipal demand has decreased from 1100 

lpcd to 800 lpcd over the past two decades, reducing per-capita demand by 25% (Figure S3). Table 

1 displays the statistical summary of SLCDPU water use from April to October, highlighting the 

high seasonal and annual variability because of outdoor demands. Per-capita water use is a function 

of the total water delivered into the water system divided by the service area population (i.e., Salt 

Lake City, Holladay, Cottonwood Heights, and Millcreek).. 
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[Insert Figure 1, JAWRA_RJohnson_Fig1.pdf here] 

[Insert Table 1 here] 

Climate-Independent Demand Modeling 

Climate-independent water demand model development aligns with the methods described 

in Billings and Jones (2011) and we calculate the monthly liters per-capita day water (lpcd) use 

from the training period spanning from 1980-2017, omitting the testing scenarios and disregarding 

years with missing observations. The model relies upon serial correlation, estimating monthly 

demands as a function of the historically observed monthly climate-demand interactions and the 

assumption that previous observations will reflect future demands based on Equation 1 

𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑚𝑚 =
∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑚𝑚𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

                                                                     (1) 

where m refers to the month of interest and n refers to the number of years in the training period, 

which consists of  30 years of training data (n). While small fluctuations in indoor water use from 

November to March occur, we assume consistent per-capita water use during this period (i.e., 590 

lpcd). Table 2 displays the historical monthly per-capita demands for SLCDPU. 

[Insert Table 2 here] 

Climate-Sensitive Demand Modeling 

The motivation of the climate-sensitive modeling workflow is to connect dynamic climate 

conditions to monthly outdoor per-capita water use from April to October. We create service area 

climate and urbanization features as model inputs and apply dimensionality reduction techniques 

to optimize the model features. The climate-sensitive models use the same features and training 

data, consistent with the 30 years of data used to develop the climate-independent models.  
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Data and Feature Engineering. Data preparation for modeling outdoor demands requires 

separating indoor water use from total water use, with the assumption that indoor plus outdoor 

water use equals total municipal water use. We assume indoor water use activities (e.g., showers, 

dishwashing, laundry) remain relatively constant throughout the year (Jacobs and Haarhoff, 2007; 

Lee et al., 2011) and that there is minimal water applied for outdoor purposes from November to 

March. With these assumptions, we calculate monthly per-capita indoor use with Equation 2 

𝐷𝐷𝐼𝐼𝑦𝑦 =
𝐷𝐷𝑁𝑁𝑁𝑁𝑁𝑁𝑦𝑦−1+𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦−1+𝐷𝐷𝐽𝐽𝐽𝐽𝐽𝐽𝑦𝑦+𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝑦𝑦+𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀𝑦𝑦  

5
                                        (2) 

where 𝐷𝐷𝐼𝐼𝑦𝑦 is the mean annual indoor per-capita water use for the respective year (y). We calculate 

monthly outdoor water use (𝐷𝐷𝑂𝑂𝑚𝑚) using Equation 3 

D𝑂𝑂𝑚𝑚 = D𝑇𝑇𝑚𝑚 −  𝐷𝐷𝐼𝐼𝑦𝑦                                                                      (3) 

where 𝐷𝐷𝐼𝐼𝑦𝑦 is the indoor water use from Equation 2, D𝑇𝑇𝑚𝑚is the total per-capita demand, and m is the 

month of interest. The outdoor demand (lpcd) of each month forms the dependent variable for 

training climate-sensitive models. 

Feature engineering seeks to develop independent variables that improve water demand 

modeling skill. We create temperature, precipitation, snowfall, and streamflow features to 

represent the dynamic climate conditions and conservation guidelines, land-cover type, 

population, and housing features as these features can be strong predictors of municipal water 

demand (Polebitski & Palmer, 2010; Tiwari & Adamowski, 2014; Oyebode & Ighravwe, 2019).  

Precipitation and temperature are critical features reflecting seasonal climate influences on 

demand and we use the North American Land Data Assimilation System (NLDAS) climate-

forcing data products to retrieve temperature and precipitation estimates (Xia et al., 2012). We 

calculate monthly air temperature (oC) and precipitation (mm) features as a function of the spatial 
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average of the service area from March through October – one month before and extending through 

the end of the irrigation season. While there are many in-situ weather stations, the NLDAS data 

products broaden the transferability of the framework to other water systems. 

Mountain streamflow represents the complex interactions among mountainous topography 

(e.g., snowdrift, aspect, and microclimates), variable winter precipitation patterns (e.g., global 

climate oscillations), snowmelt (e.g., timing, duration, and quantity), and the mountain hydrology 

(e.g., groundwater and baseflow) that contribute to supply availability (Scalzitti et al., 2016; Bohne 

et al., 2020; Brooks et al., 2021). We calculate monthly streamflow ( 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐) from the daily 

discharge measurements at the canyon mouths of the four supply streams using the United States 

Geological Survey (USGS) and Salt Lake County monitoring stations before extensive water 

diversion. While nearly a complete time series, we interpolate the few missing daily values as a 

function of up or downstream measurements per the methods from Hughes and Smakhtin (1996). 

We create snowfall features as an indicator of the climate anomaly (e.g., wet, average, or 

dry winters). Although temporally separate from summer outdoor use and different than the 

precipitation metrics, snowfall can indicate high-elevation watershed supply availability (Shukla 

et al., 2011; Peters-Lidard et al., 2021) and we used November to April monthly and seasonal 

snowfall from the Alta Guard station (NOAA, 2023) to form the snowfall features. While there 

are four key watersheds for SCLDPU, year-to-year variability is highly correlated between 

watersheds due to the proximity of their headwaters and we use the features to differentiate year-

to-year climate conditions rather than characterize the physical volume of water per watershed. 

We incorporate antecedent climate features to reflect the hydrological system memory, 

specifically, that previous precipitation and temperature conditions affect future soil moisture 

conditions and irrigation needs (Potts et al., 2006; J. Li et al., 2020). The antecedent climate 
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features begin in March, before the irrigation season, and incrementally increase in number per 

month until October. For example, the antecedent climate features of October include March, 

April, May, June, July, August, and September precipitation, temperature, and streamflow features 

in addition to October precipitation, temperature, and streamflow features.  

Complementing the climate features, we develop density-based population and housing 

features to reflect urbanization and as a generalizable metric to compare with other municipalities. 

We use the population and housing estimates from the U.S. Census (Census, 2023) to calculate 

population and housing densities based on the boundaries of the SLCDPU service area (204 km2). 

Since census data is not continuous, we use linear interpolation between decadal census 

observations to create a continuous population (p) and housing (H) dataset. 

Agricultural, residential, and urban land uses can influence municipal water use (Donnelly 

& Cooley, 2015). At a five-year frequency, beginning in 1985 and including 2017, we retrieve 

USGS Landsat 5 and 8 surface reflection tier 1 satellite imagery to determine land cover/land use 

changes within the service area boundary. We select images between September and November to 

assist algorithm training and delineate between irrigated vs. non-irrigated and vegetated vs. non-

vegetated land covers. The September to November imagery emphasizes irrigated areas within the 

520-560 nm wavelengths, contrasting against dead grass and non-irrigated vegetation. We adjust 

the blue, green, and red bands with the parameters of 500 (min), 3000 (max), and 1.4 (gamma) for 

Landsat 5. All parameters remain the same for Landsat 8 images, except for the max parameter 

increasing to 5000 to match the pixel attributes of Landsat 5 images. We process all images as 

recommended by USGS for shadow and cloud removal (USGS, 2019a, 2019b) and use the Sci-

Kit learn Random Forest classifier version v0.21.3 to create features as the percentage of the urban 
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area, residential area, irrigated area, and vegetated area, further described in the Supplementary 

Information (Buitinck et al., 2013; Rodriguez- Galiano et al., 2012; Zhu et al., 2012). 

The Utah Department of Water Resources established a statewide goal to reduce per-capita 

water use by 25% by 2025 (UDWR, 2019), and we develop a conservation feature (𝐶𝐶𝑚𝑚) to 

represent the anticipated monthly reductions in demand based on the goals. The conservation 

features uses the long-term average demand of each month from the 1980-2000 period as the 

baseline and determine the monthly 25% reduction goal for 2025. We use linear interpolation 

between 2001 to 2025 to create a continuous time series of conservation goals using Equation 4 

𝐶𝐶𝑚𝑚  =  𝐷𝐷𝑚𝑚  −  𝐷𝐷𝑚𝑚∗25% 
25 𝑦𝑦𝑦𝑦𝑦𝑦

∗ 𝑦𝑦                                        (4) 

where 𝐶𝐶𝑚𝑚is the conservation feature, m refers to the month of interest, 𝐷𝐷𝑚𝑚 is the mean per-capita 

water use of month m for the 1980-2000 period, and y is the number of years past the year 2000. 

The conservation feature aligns with western U.S. water conservation policies and the adoption of 

linear conservation goals to achieve substantial long-term reductions (UDWR, 2019; CWCB, 

2015; SNWA, 2019). Municipalities not using a constant rate may explore a constant percent rate 

reduction, which would form the feature (U.S. EPA, 1998). Figure S3 displays the conservation 

trend for SLCDPU, along with year-to-year variability in annual water use. 

Feature Selection. Feature selection reduces model dimensionality, improves learning 

accuracy, and facilitates a better model understanding (Cai et al., 2018). We use Recursive Feature 

Elimination (RFE) due to the algorithm prioritizing dimensionality reduction through the 

identification of strong predictors to improve model skill, even in the presence of highly correlated 

features (X.-w. Chen & Jeong, 2007; Lin et al., 2012; Hamada et al., 2021). The RFE algorithm 

removes noisy and non-informational variables, selecting stronger features than other methods 

such as Lasso penalized logistic regression or Random Forest (Tolosi & Lengauer, 2011). 
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Implementing a correlation bias reduction (CBR) strategy into the feature selection workflow can 

further improve model performance and we adapt the CBR algorithm introduced by Yan and 

Zhang (2015), as displayed in Equations 5 – 11 

𝐶𝐶𝐶𝐶𝐶𝐶 �𝐹𝐹𝑚𝑚𝑖𝑖𝑖𝑖 ,𝐷𝐷𝑚𝑚,𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡 ,𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓� = 𝐹𝐹𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜               (5) 

Where m is the month of interest, 𝐹𝐹𝑚𝑚𝑖𝑖𝑖𝑖are all the potential features, 𝐷𝐷𝑚𝑚 is the target demand, 𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡is 

the threshold for determining the minimum correlation between features and demand, 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓is the 

threshold for determining the maximum correlation between two features, and 𝐹𝐹𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜are the highly 

correlated features to the target demand (𝐷𝐷𝑚𝑚) with minimal correlation to another. The first step is 

to select features with a correlation greater than 𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡  to the respective monthly demand 

𝑓𝑓𝑚𝑚𝑜𝑜𝑢𝑢𝑢𝑢 = 𝑖𝑖 ∈ 𝐹𝐹𝑚𝑚𝑖𝑖𝑖𝑖||ρ(𝑖𝑖,𝐷𝐷𝑚𝑚)| > 𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡               (6) 

where 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜are the features with a correlation greater than 𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡with demand. The Pearson 

correlation coefficient determines the correlation between features to target and feature to features 

ρ = ∑ �𝑓𝑓𝑖𝑖−𝑓𝑓�(𝑦𝑦𝑖𝑖−𝑦𝑦)𝑖𝑖

�∑ �𝑓𝑓𝑖𝑖−𝑓𝑓�
2

𝑖𝑖 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦)2𝑖𝑖

              (7) 

where ρ is the Pearson correlation coefficient to measure the linear association between features 

(𝑓𝑓𝑖𝑖) to target (𝑦𝑦𝑖𝑖) or feature (𝑓𝑓𝑖𝑖) to features (𝑦𝑦𝑖𝑖). Using 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 , the algorithm selects for features that 

correlate less than 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓  

𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜2 = 𝑗𝑗 ∈ 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜|�ρ�𝑗𝑗,𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜�� < 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓            (8) 

where 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜2are the features from 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜that exhibit a correlation with another less than 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓  (e.g., 

not highly correlated). If two features exhibit a correlation greater than 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 , the algorithm selects 

the features with a greater correlation with the demand (𝐷𝐷𝑚𝑚) of month m from 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜  

𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜3 = 𝑘𝑘 ∈ 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜|�ρ�𝑘𝑘,𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜�� > 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓            (9) 
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where 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜3are the features (𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜) with a greater correlation to another than 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 . The function 

then selects features with a greater correlation with the demand (𝐷𝐷𝑚𝑚) of month m from 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜3  using 

𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜4 = 𝑙𝑙 ∈ 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜3 �|ρ(𝑙𝑙,𝐷𝐷𝑚𝑚)| > 𝑛𝑛 ∈ 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜3� |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛,𝐷𝐷𝑚𝑚)|                             (10) 

where 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜4are the features with the greater correlation with the demand (𝐷𝐷𝑚𝑚) from 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜3 . For 

example, if features l and n exhibit a correlation to another greater than 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓and feature l exhibits 

a greater correlation with 𝐷𝐷𝑚𝑚than n, then l joins the 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜4  group and the CBR function removes n 

as a potential feature. With the features in 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜2and 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜4with greater than the minimum 

correlation threshold (𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡) to demand (𝐷𝐷𝑚𝑚) and a feature-to-feature correlation of less than 𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 , 

the algorithm determines the CBR features by 

𝐹𝐹𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜4 + 𝑓𝑓𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜2                                                                                       (11) 

The CBR process selects demand-correlated features 𝐹𝐹𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜with acceptable levels of collinearity 

(i.e., <10) to pass to RFE (Song & Kroll, 2011). 

 We use Scikit-learn 0.24.1 RFE to identify the optimal monthly per-capita outdoor demand 

predictors (Pedregosa et al., 2011). The algorithm uses a grid search function to assign feature 

importance weights and recursively prune the number of features over five-fold cross-validation 

to optimize the feature set. We perform an exhaustive grid search using RFE over a range of target 

correlation thresholds (𝑇𝑇𝑚𝑚𝑡𝑡𝑡𝑡 , 0-0.7 in 0.05 increments) and feature correlation thresholds (𝑇𝑇𝑚𝑚𝑓𝑓𝑓𝑓 , 

0.65-0.90 in 0.05 increments), with the CBR-RFE framework identifying the optimal predictors of 

monthly demand to train the climate-sensitive OLS, MLP, and RFR models. 

Ordinary Least Squared Regression. We use the Scikit-learn OLS algorithm for its 

interpretable statistical relationships between predictors and demand (i.e., variable coefficients), 
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providing a formal representation of the observed interactions to mitigate the black box of ML 

algorithms. The generalized monthly OLS regression formula is 

𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑𝑚𝑚 = β1𝑥𝑥1 + β2𝑥𝑥2 + .  .  .  + β𝑛𝑛𝑥𝑥𝑛𝑛                                                                 (12) 

where m is the month of interest, β𝑛𝑛 are the coefficient weights, and 𝑥𝑥𝑛𝑛is the predictor of interest. 

We train the OLS model using five-fold cross-validation and fit without a y-intercept to 

characterize the influence of each predictor on demand. For example, if July air temperature is a 

key predictor of July demand, the coefficient will communicate the statistical relationship between 

a projected 1oC increase in July temperature on July per-capita day (lpcd) demand with respect to 

the other features. We apply the Statsmodels v0.12.2 package to communicate a 95% prediction 

confidence level based on the internally characterized model error (Seabold & Perktold, 2010) and 

the number of features in the final model determines model complexity. 

Random Forest Regression. We use the tree-based RFR algorithm to represent one of two 

complex machine learning models for its proficiency in water resources modeling applications 

(Tyralis et al., 2019). RFR uses a meta-estimator of several fitted decision trees on multiple 

subsamples of the training data and then averages to improve prediction accuracy and overall 

robustness (Biau & Scornet, 2016). We use the Scikit-Learn RandomForestRegressor package 

(Pedregosa et al., 2011) to train the model using a five-fold cross-validation and a GridSearchCV 

function to optimize the hyperparameters: number of estimators 5-75 at 5-unit intervals, max depth 

2-40 at 2-unit intervals, and max predictors 0.2 - 0.8 at 0.2-unit intervals. The function evaluates 

model performance via a “fit” and “score” method for all possible hyperparameter combinations, 

with the final hyperparameters demonstrating the least internal model error. The number of trees 

in the optimized model (i.e., the number of estimators) determines model complexity. 
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Multilayered Perceptron. An MLP model serves as the second complex ML algorithm 

and demonstrates high performance across many water resources applications (Hastie et al., 2009; 

Sit et al., 2020). We use the Keras package within TensorFlow v2.4.1 (Abadi et al., 2015) to build 

the MLP network, consisting of an input layer that receives the optimized predictors, middle 

hidden layers with nodes/neurons that form the computational engine, and an output layer that 

produces the prediction. Model training consisted of the following parameters: relu activation 

function, eight hidden layers with neurons ranging from 8 to 128, the Adam optimizer, and 500 

epochs. Model training used five-fold cross-validation with backpropagation gradient descent to 

weigh the network and minimize error and the total number of model weights from the layer-node 

combinations determines the model complexity. 

Evaluation Scenarios and Metrics 

Given the proximity to and the dependence of SLCDPU to the surface water supplies from 

the adjacent mountains, we use seasonal accumulated snowfall (Scm) as the metric to characterize 

the climate and establish wet, dry, and average testing. Seasonal accumulated snowfall describes 

the climate, as it bridges the gap between climate conditions and surface water supply (Rosenberg 

et al., 2011; Fleming et al., 2021). We use the observations from Alta Guard station (40.5905oN, -

111.638oE, 2,656 m) located within the headwaters of LCC to identify the most recent wettest 

(2008), driest (2015), and average (2017) seasonal snowfall. We performed a Log Pearson type III 

analysis using the 78 years of observations to determine the dry scenario (680 cm) and wet scenario 

(1,660 cm) have a 150-year and 15-year return period, respectively, a significant departure from 

the historical mean (1,262 cm) and consistent with a changing climate (Khatri et al., 2018; Naz et 

al., 2018; Brown et al., 2019). We include an average climate state (1,347 cm) as a reference point 

to compare performance with extreme scenarios. Complementing the dry, average, and wet climate 
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conditions, we use the climate conditions from 2018-2022 to extend the model evaluation period 

and assess the skill of each method to year-to-year variations in climate, filling in the gap between 

extremely wet and extremely dry (Table 3). The 30 years of observations and 8 years of testing 

resulted in an 80%/20% training/testing split that is consistent with ML model development (Pham 

et al. 2020; Moayedi et al. 2020). The temperature, precipitation, and surface water supply 

observations from each scenario drive the climate-sensitive models and we determine model 

performance using the observed monthly per-capita demands attributed to each scenario. 

[Insert Table 3 Here] 

We use percent bias (PBias), root-mean-squared-error (RMSE), and Kling-Gupta 

Efficiency metrics (KGE) metrics to determine model performance to the three climate states (i.e., 

wet, average, dry), the average performance across the three climate states, and the average 

performance over the 2018-2022 period. Evaluating model performance across the different 

climate conditions highlights the predictive performance one can expect for each modeling method 

to the year-to-year variability in arid western U.S. climate. Motivated to enhance seasonal MWS 

guidance, we do not model finer resolution (e.g., daily) demands because we are not concerned 

with daily water use fluctuations or the effects of individual precipitation events. Complementing 

the model performance metrics, we include the volumetric percent error of seasonal and annual 

demand estimates to further exemplify the operational strengths and limitations of each method. 

Percent Bias (PBias). PBias computes the average amount that the observed is greater or 

lesser than predicted as a percentage of the absolute value of the observed. PBias communicates 

if, on average, the model favors predictions above (- bias) or below (+ bias) the observed, with 

ideal PBias values close to zero. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 100\%
𝑛𝑛

∑ (𝑦𝑦𝑖𝑖−𝑓𝑓𝑖𝑖)
|𝑦𝑦𝑖𝑖|

𝑛𝑛
𝑖𝑖=1                                                                                     (13) 
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where 𝑓𝑓𝑖𝑖are the predicted values and 𝑦𝑦𝑖𝑖 are the observed for timestep n. 

Root Mean Squared Error (RMSE). RMSE aggregates the magnitude of residuals for all 

data points into a single quantitative measure of performance, with values closer to zero indicating  

a greater model accuracy (Fisher, 1920). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑀𝑀𝑀𝑀𝑀𝑀 = �∑ (𝑓𝑓𝑖𝑖−𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑛𝑛−1

𝑛𝑛
                                                                        (14) 

Kling-Gupta Efficiency Metric (KGE). KGE is an expression of the distance between 

the point of ideal model performance in the space described by: 1) correlation, 2) variability, and 

3) bias (Gupta et al., 2009). KGE values approaching 1 indicate a perfect model fit; a benchmark 

of -0.41 indicates an overall performance greater than the mean (Knoben et al., 2019). 

β′ = µ𝑓𝑓
µ𝑦𝑦

                                                                                                                  (15) 

where β′ is the bias ratio, μ is the mean target value (f for predicted and y for observed). 

α = σ𝑓𝑓
σ𝑦𝑦

                                                                                                                       (16) 

where α is the variability ratio and σ is the standard deviation of the predicted and observed values. 

ρ = ∑ �𝑓𝑓𝑖𝑖−𝑓𝑓�(𝑦𝑦𝑖𝑖−𝑦𝑦)𝑖𝑖

�∑ �𝑓𝑓𝑖𝑖−𝑓𝑓�
2

𝑖𝑖 �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦)2𝑖𝑖

                                                                                        (17) 

where ρ is the Pearson correlation coefficient to measure the overall strength of a linear association 

between predicted (𝑓𝑓𝑖𝑖) and observed (𝑦𝑦𝑖𝑖), and KGE being the lowest score of its components 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 −�(ρ − 1)2 + (β′ − 1)2 + (α − 1)2                                                (18) 

RESULTS/DISCUSSION 

Climate-Independent Demand Estimates 

The climate-independent model produces demand estimates greater than the observed for 

all scenarios (Figures 2 & 3), with the PBias metric characterizing the prediction trend at -27.3% 
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and -19.0% for the three climate conditions and the 2018 - 2022 period (Table 4), respectively. 

The highest prediction accuracy was during the wet scenario, displayed by an approximate 50% 

reduction in PBias and RMSE, along with an increase in KGE (i.e., 0.81 vs. 0.67). We observed 

the average and dry climate conditions challenging model accuracy with errors approaching 90% 

or 700 lpcd, and a large PBias of -39.7% and 33.4% for the dry and average conditions, 

respectively. The dry and average climate conditions resulted in greater than a 100% increase in 

error compared to the wet scenario and strongly biased overall model performance. A high 

negative PBias with the demand estimates for 2021 and 2022 (-30% and -40%, respectively) is 

consistent with the average and dry conditions. The KGE exceeds the acceptable prediction 

threshold of -0.41 but the overall error indicates a poor model fit. 

[Insert Table 4 Here] 

[Insert Figure 2, JAWRA_RJohnson_Fig2.pdf Here] 

[Insert Figure 3, JAWRA_RJohnson_Fig3.pdf Here] 

The climate-independent model error compounds when scaling predictions to monthly, 

seasonal, and annual volumetric demands. The overall model error (i.e., RMSE of 294 lpcd) results 

in an overprediction of seasonal demand by 6.5 Mm3 (8%), 24.2 Mm3 (34%), and 20.8 Mm3 (31%) 

for the wet, dry, and average conditions, respectively (Table 5). The model similarly overestimates 

volumetric water demand during the 2018-2022 period by an average of 22% or 17.4 Mm3/yr. The 

annual volumetric error during the dry conditions (i.e., 32.8 Mm3) exceeds the storage capacity of 

the Dell reservoir system (i.e., 27.1 Mm3), challenging the utility of the demand estimates for 

decision support and extending to include financial operations. For example, the revenue 

projections will exceed the realized monetary resources by $33,000 - $66,000 (e.g., 32.9 Mm3 × 
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0.01 - 0.02 $/m3 (Salt Lake City Department of Public Utilities, 2022)) during the dry scenario and 

the municipality may have purchased unnecessary supplies to mitigate anticipated deficits. 

[Insert Table 5 Here] 

Climate-Sensitive Demand Estimates 

The climate-sensitive models translated the climate influences on water demand with high 

prediction accuracy (Figures 2 & 3). The predictions were close to the observed, displayed by 

PBias values of 3.4%, -2.5%, and 1.7% for the OLS, MLP, and RFR models, respectively, over 

the wet, dry, and average climate conditions (Table 4). The RFR model produced a lower PBias 

and greater KGE than the OLS and MLP models during the wet conditions while the OLS model 

produced a lower PBias and greater KGE than the RFR and MLP during the average and dry 

conditions. The dry scenario presented challenging conditions for the MLP and RFR models, 

displayed by a PBias of -13.8% and -7.5%, and KGE decreases to 0.68 and 0.82, respectively. The 

OLS model displayed the highest model accuracy during the dry climate conditions, with a low 

PBias (0.20%), RMSE (48.4 lpcd), and high KGE (0.98). 

The 2018-2022 period examines the impacts of inputs outside of the training bounds on 

model skill and we observed a decrease in prediction accuracy. The MLP model displayed the least 

performance of the climate-sensitive models with an increasingly negative PBias (-6.0% vs. -

2.5%), an increase in RMSE (237 lpcd vs. 153 lpcd), and a reduction in KGE (0.62 vs. 0.86) 

compared to the wet, dry, and average scenarios. The MLP model overpredicted June through 

September demands during the average and dry climate conditions of 2021 and 2022 by up to 50%. 

The OLS and RFR models displayed similar performance for the 2018-2022 period with a PBias 

less than 1%, RMSE around 170 lpcd, and a KGE close to 0.80. The OLS and RFR models 

overpredicted June through September demands for 2021 and 2022 but to a lesser degree than the 
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MLP model. The consistent over-prediction is likely due to Salt Lake County conserving water 

amid a multiyear drought,  noted by a 13% reduction in water use (Salt Lake County, 2021).  

Addressing research question 1, the seasonal and annual error reductions from the climate-

sensitive models, specifically the OLS and RFR models, during climate extremes demonstrate a 

measurable improvement in the model skill compared to the climate-independent model. The 

reduction in error exceeds the Dell reservoir system storage capacity (i.e., 27.1 Mm3) during the 

dry scenario, exemplifying the strengths of the climate-sensitive modeling framework. The MLP 

model demonstrated greater accuracy than the climate-independent model but exhibited a 

reduction in model accuracy during the 2018-2022 period compared to the OLS and RFR 

algorithms. Based on the model evaluation, the strength in connecting climate conditions to 

demand estimates becomes more substantial as conditions trend drier. 

Model Accuracy vs. Complexity 

There is a substantial variation in the model complexity between each method. The climate-

independent model has a complexity degree of 1 (i.e., monthly demand), the OLS algorithm has a 

complexity degree of 18 (i.e., the number of non-zero model coefficients), the MLP model has a 

complexity degree of 33,721 (i.e., number of parameters), and the RFR model has complexity 

degree of 60 (i.e., number of trees). Model accuracy was consistent across all scenarios, with the 

greatest to least accuracy as follows: OLS, RFR, MLP, and climate-independent models. There 

were minimal differences in accuracy between the OLS and RFR climate-sensitive models. 

A qualitative evaluation of model complexity can bridge the research to operations 

boundary by understanding how the number of parameters relates to model interpretability and 

model accuracy (Barcel´o et al., 2020). The climate-independent model is the least complex due 
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to the demand estimate being historical monthly mean demand (Equation 1). While simple, the 

method ignores which can measurably improve prediction accuracy.  

The OLS model is the second least complex model with its eighteen predictors but provides 

the greatest interpretability because of the statistically-derived coefficient relationships between 

predictors and demand, Table 6. We observe twelve of the eighteen predictors connecting service 

area monthly air temperature and precipitation to demand, expressing the importance of climate 

features in the SLCDPU demand modeling framework and exemplifying the benefits of the 

interpretable predictor-target relationships. For example, for every degree increase in April mean 

temperature (oC), SLCDPU can expect a 21.3 lpcd increase in April demand. The positive feedback 

between temperature and demand aligns with the observed patterns of outdoor water use, where 

high temperatures and minimal precipitation require substantial irrigation (>1000 mm) to maintain 

landscape health. The statistical relationships between predictors and demand can further support 

the adoption of climate-sensitive modeling methods in water system management, especially when 

the model coefficients align with water system operator experience. 

The RFR and MLP are the most complex models and due to the number of model 

parameters (e.g., model weights), the models offer minimal interpretability. The RFR does provide 

feature importance scoring that indicates the relative importance of a predictor and model logic 

from the training data but has been shown to not represent model logic outside of the training 

bounds (Strobl et al., 2008; Tyralis et al., 2019; Drobniˇc et al., 2020). The MLP is the least 

interpretable due to the unknown relationships between climate to demand (i.e., black box), only 

communicating the model performance from training. Model development intensity and 

computational efficiency can differentiate model complexity trade-offs  (Al-Jarrah et al., 2015; 

Shrestha et. al., 2019), however, the climate-sensitive models took approximately the same time 



22 
 

to develop because of automated training algorithms and predicted in under 1 second, resulting in 

negligible differences in development and computational efficiency. 

[Insert Table 6 Here] 

Addressing research question 2, we find that there can be measurable improvements in 

model accuracy by increasing model complexity. The OLS model demonstrated a measurable 

improvement in prediction accuracy from increased model complexity compared to the climate-

independent model. The OLS model demonstrated that sufficient complexity could match or 

exceed the performance of greater complexity models (i.e., MLP, RFR), making the model a likely 

tool to assist in water system management. The RFR and MLP models did not produce measurable 

gains in model accuracy compared to the OLS model, indicating that the largest gains in model 

accuracy stem from the integration of key, temporally dynamic service area characteristics. 

Benefits of Increased Model Complexity for Water System Management 

A strength of the more complex models is linking water use behavior to the climate 

conditions, quantifying the influence of air temperature and precipitation changes on monthly, 

seasonal, and annual demand estimates. From the OLS model, we identify three key climate-

demand relationships that improve the understanding of SLCDPU water demands; 1) monthly 

precipitation and mean air temperature are the strongest determinants of monthly per-capita 

demand, 2) spring climate conditions play a pivotal role in overall water use, and 3) antecedent 

climate conditions demonstrate a strong influence on June through September demands. For 

example, the model identifies a negative precipitation to demand feedback connecting moist spring 

conditions with prolonged cloud cover and above-average precipitation (e.g., reduced 

evapotranspiration) to reductions in seasonal water use and dry, warm, and sunny conditions with 
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increased water use. The climate-demand relationships provide system management with a 

conceptual understanding of the interactions between climate, seasonality, and water use. 

A benefit of including climate influences when estimating season demands is to support 

water system decision-making. Should the demand projections exceed the estimated supply 

availability, concerning streamflow timing and storage, an alternative source or contract may be a 

mitigation strategy. The results indicate that climate-sensitive demand estimates become more 

essential and representative during drier, supply-limited conditions, a condition where there is an 

increased need for additional supplies and/or demand hedging to prevent system deficits.  

A climate-sensitive demand modeling workflow can produce long-term climate-influenced 

demand estimates to examine the impacts of a changing climate on MWS performance. By 

applying a range of climate scenarios, climate-sensitive models can generate a range of demands 

reflecting the influences of different climate futures on municipal water demands to support 

planning activities ranging from seasonal outlooks to long-term climate resilience. For example, 

Figure 4 demonstrates a range of seasonal demands from the OLS model driven by historically 

observed air temperature and precipitation anomalies.  

[Insert Figure 4, JAWRA_RJohnson_Fig4.pdf Here] 

Opportunities to Improve the Climate-Sensitive Modeling Workflow 

The climate-sensitive models demonstrate improved model accuracy compared to the 

climate-independent models but there remains an opportunity to advance the overall modeling 

framework. We can no longer assume indoor demands are independent of dynamic service area 

conditions, as errors in November through March demands indicate the potential effect of water-

saving measures due to public drought awareness (Parker & Wilby, 2013; Moglia et al., 2018). 

There is the potential for a non-linear conservation trend, as a negative exponential trend partially 
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describes the observed error as each scenario nears the long-term reduction goal year (i.e., 2025). 

Future research exploring different conservation metric formulations and integrating service area 

characteristics for indoor demand modeling may improve overall modeling performance, leading 

to improvements in overall demand prediction accuracy (equation 3). 

While the OLS model demonstrated the greatest overall performance for the SLCDPU 

system, applying the climate-sensitive workflow to other systems may indicate a non-linear 

predictor-demand relationship that challenges linear regression-based algorithms. We encourage 

developers to explore many ML algorithms that increase prediction accuracy under non-linear 

relationships (G. Chen et al., 2017b; Desai & Ouarda, 2021). Examining several ML architectures 

supports a comprehensive model accuracy vs. complexity comparison to select the optimal model 

and/or develop an ensemble demand forecasting to produce a range of demand estimates (Al-

Sulttani et al., 2021; Granata & Di Nunno, 2021; Mosavi et al., 2021).  

Decomposing sector water use and including demographic and socioeconomic components 

could improve model skill by reflecting changes within the service area, as demonstrated by Vijai 

& Sivakumar (2018) considering census blocks. If the data is available, partitioning water use by 

sector could refine demand estimates and we expect smaller spatial scales to identify urban, 

residential, irrigated, and vegetated areas as strong demand predictors. The SLCDPU service area 

scale likely did not identify these features as strong predictors due to a greater explanatory 

relationship between the climate and demand compared to land cover changes. For long-term 

assessments concerning climate and/or urbanization pathways, a range of demographic and 

socioeconomic shifts could occur and influence the demands (Behboudian et al., 2014).  

Risk-tolerance-based decision-making encourages the use of probabilistic predictions 

(Towler et al., 2013, Quilty et al., 2019). A probability distribution (e.g., Gaussian) of temperature 
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and precipitation forcings to drive the climate-sensitive model or using probability-based ML 

algorithms (e.g., Gaussian Process Regression) could generate a probable range of demands (Y. 

Wang et al., 2014). As an alternative or complement to ensemble methods, probabilistic estimates 

could support the climate-sensitive modeling workflow for water system management and 

informed decision-making regarding future climate and urbanization pathways. 

CONCLUSION 

This research investigates model complexity vs. accuracy trade-offs considering the 

linkages between climate and seasonal water demands for arid western U.S. municipal water 

systems. The substantial year-to-year climate variability of Salt Lake City Department of Public 

Utilities serves as a case study to explore the prediction accuracy limitations of climate-

independent models (i.e., low complexity) and demonstrate how increases in model complexity 

(i.e., novel data-driven climate-sensitive model frameworks) can increase prediction skill. Using 

testing scenarios examining model skill to extreme wet to extreme dry climate conditions, we find 

the climate-independent model to overestimate monthly demands up to 90% and seasonally up to 

40%. We attribute the errors to low model complexity and identify potentially severe management 

implications concerning supply acquisition, budgeting, and overall water system management as 

climate conditions trend toward a drier state. We develop climate-sensitive water demand models 

using ordinary least-squared (OLS), multilayered perceptron (MLP), and random forest (RFR) 

algorithms to investigate how models of increased complexity influence prediction accuracy. The 

climate-sensitive models produced measurable reductions in the overall prediction bias compared 

to the climate-independent model across wet, dry, and average testing scenarios (3.4% vs. -27.3%) 

and over a 5-year holdout dataset (0.83% vs. -19.0%), with the OLS algorithm demonstrating the 

highest accuracy during dry conditions and enhancing the understanding of climate-demand 
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interactions. The model accuracy vs. complexity comparison identified the OLS algorithm as the 

ideal balance between interpretability and prediction accuracy.  

Applying data-driven ML techniques in the climate-sensitive modeling workflow 

demonstrated significant improvements in model accuracy compared to traditional econometric-

based climate-independent models and highlights opportunities for future work to advance water 

system management. We encourage future research to apply the climate-sensitive ML framework 

to other municipal water systems, where there may be stronger non-linear predictor-demand 

relationships that favor more complex ML algorithms. Additional research opportunities include 

applying probabilistic algorithms, exploring ensemble modeling strategies, and further 

decomposing service area water use to advance climate-sensitive demand modeling workflows.  

Given the projected changes in supply from a changing climate, the demonstrated 

improvements in monthly, seasonal, and annual water demand prediction accuracy using more 

complex climate-sensitive water demand estimation frameworks demonstrate the capabilities to 

advance water system management and enhance resilience to climate vulnerabilities. 

DATA AVAILABILITY 

This research uses open-source Python v3.8.5 software for all ML applications and the models 

are at the following GitHub: https://github.com/whitelightning450/Water-Demand-Forecasting. 

The repository contains all data to train and run the CSD-WDM.  

SUPPORTING INFORMATION 

“Additional supporting information may be found online under the Supporting Information tab for 

this article: a description of the land-cover feature engineering process and figures describing Salt 

Lake City Department of Public Utilities water use.” 

https://github.com/whitelightning450/Water-Demand-Forecasting
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Tables 

Table 1.     The long-term record of Salt Lake City Department of Public Utilities (SLCDPU)  

water use from 1980 - 2017 exhibits high seasonal (i.e., change in water use from month to month) 

and high interannual (i.e., large deviations of monthly use between years) variability. 

              
  Month Minimum Mean Maximum σ   
  Apr* 430 720 1010 140   
  May* 610 1110 1520 250   
  Jun* 1090 1720 2180 280   
  Jul* 1470 2070 2640 280   
  Aug* 1280 1930 2390 280   
  Sep* 1030 1440 1840 210   
  Oct* 600 870 1230 160   
  Season* 1060 1410 1690 170   
  Season** 79.1 105.1 125.7 13.0   
  * units in lpcd         

  ** units in Mm3         
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Table 2. Historical monthly per-capita demands (lpcd) calculated using the historical water records 

of SLCDPU and equation 1. 

                    
  Nov-Mar Apr Mar Jun Jul Aug Sep Oct   
  590 730 1130 1750 2110 1970 1090 890   
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Table 3. The testing scenarios cover a range of climate conditions from wet to dry and display 

how recent years have trended drier than the historical record based on annual snowfall from the 

Alta Guard station located in the headwaters of Little Cottonwood Canyon, Utah. 

              

  
Year Scenario 

Classification 

Annual 
Snowfall 

(cm) 

Δ Mean 
Snowfall 

(cm) 

Return 
Interval 

(yrs)   

  2008 Wet 1,660 399 15   

  2015 Dry 680 -582 150   
  2017 Average 1,347 85 2   
  2018 Dry 731 -530 70   
  2019 Average 1,206 -56 2   
  2020 Average 1,056 -205 4   
  2021 Average 949 -312 5   
  2022 Dry 717 -545 85   
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Table 4. The climate-independent model demonstrates a large negative PBias for all testing 

scenarios, with dry conditions leading to greater error and reduced prediction accuracy. The 

climate-sensitive Ordinary Least Squared (OLS), Multilayered Perceptron (MLP), and Random 

Forest (RFR) models display an improvement in prediction accuracy compared to the climate-

independent method. The OLS and RFR models demonstrate the most refined predictive capability 

of the models evaluated. 

                

  Scenario Model Pbias (%) RMSE (lpcd) RMSE (×104 m3) KGE   
  Total Climate-Independent -27.3 294 10.3 0.67   
    OLS 3.4 74 2.6 0.96   
    MLP -2.5 153 5.6 0.86   
    RFR -1.7 109 4.0 0.93   
  Wet Climate-Independent -12.1 145 5.1 0.81   
    OLS 6.04 93 3.2 0.89   
    MLP 8.0 91 3.3 0.91   
    RFR -2.3 136 5.0 0.94   
  Dry Climate-Independent -39.7 363 12.7 0.48   
    OLS 0.2 48 1.7 0.98   
    MLP -13.8 181 6.6 0.68   
    RFR -7.5 108 3.9 0.82   
  Average Climate-Independent -33.4 330 11.5 0.62   
    OLS 3.3 74 2.6 0.96   
    MLP -4.3 170 6.2 0.84   
    RFR 3.6 73 2.7 0.94   
  2018-2022 Climate-Independent -19.0 293 10.7 0.66   
    OLS 0.8 165 6.0 0.79   
    MLP -6.0 237 8.7 0.62   
    RFR 0.003 172 6.3 0.81   
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Table 5. All climate-sensitive models demonstrate a large percentage reduction in error compared 

to the climate-independent model. Seasonal water use refers to the period between April and 

October of increased outdoor water demand. 

                

  
Scenario Model 

Annual 
Prediction 

(Mm3) 

Annual 
Error 
(%) 

Seasonal 
Prediction 

(Mm3) 

Seasonal 
Error 
(%)   

  Wet Climate-Independent 135 6.2 108.0 7.9   
    OLS 112 -16.9 92.4 -99.0   
    MLP 117 -10.6 91.9 -6.5   
    RFR 123 -5.8 97.5 1.7   
  Dry Climate-Independent 135 36.1 108.0 34.0   
    OLS 101 -0.8 78.8 0.1   
    MLP 116 10.1 93.7 17.6   
    RFR 110 5.6 87.4 9.9   
  Average Climate-Independent 135 30.8 108.0 31.4   
    OLS 104 -2.8 82.4 1.0   
    MLP 112 0.8 90.0 8.5   
    RFR 109 0.5 87.9 8.0   
  2018-2022 Climate-Independent 135 20.2 108.0 21.7   
    OLS 112 -4.8 90.3 3.6   
    MLP 120 -0.2 97.9 11.6   
    RFR 113 -3.7 91.1 5.5   
  * 5-year average           
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Table 6.   The Correlation Bias Reduction with Recursive Feature Elimination (CBR-RFE) feature 

selection process identifies the optimal predictors of monthly per-capita demand. Using the 

predictors in the Ordinary Least Squares (OLS) algorithm communicates the statistical 

relationships to the respective monthly demands with the respective variable coefficients as shown 

below. 

                    
  Predictor Apr May Jun Jul Aug Sep Oct   
  Population Density1       -0.3 -0.1       
  Mar LCC Streamflow2 -0.2       0.2       
  Apr LCC Streamflow2 0.1       0.1       
  May LCC Streamflow2         -0.4       
  May BCC Streamflow2         0.2       
  Season Snowfall3     11.2           
  Apr Mean Temperature4 21.3   33.3 -16.0 22.5 11.7 15.8   
  Apr Precipitation5 -1.2       -1.1       
  May Mean Temperature4   54.1 56.0 36.1 45.4 12.4 -7.9   
  May Precipitation5   -4.0             
  Jun Mean Temperature4         3.1 -14.9     
  Jun Precipitation5     -7.4   1.5       
  Jul Mean Temperature4       118.5 3.5 -28.2     
  Aug Mean Temperature4         58.5 45.9     
  Aug Precipitation5         -6.8       
  Sep Mean Temperature4           30.7     
  Sep Precipitation5           -3.6     
  Oct Mean Temperature4             21.6   
  1 change in lpcd per persons/km2               
  2 change in lpcd per cms of streamflow (× 10-4)         
  3 change in lpcd per cm of snow               
  4 change in lpcd per oC                 

  
5 change in lpcd per mm of liquid precipitation  
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Figure Captions 

Figure 1. The Salt Lake City Department of Public Utilities (SLCDPU) provides constituents with 

high-quality snowpack-driven surface water supplies (i.e., up to 60% of the annual supply) from 

four key watersheds in the adjacent Wasatch Mountains (Collins & Associates, 2019). 

 

Figure 2. The climate-independent model exhibits an average -27% PBias (A., B.) across all 

climate scenarios, with drought conditions severely challenging the prediction accuracy of the 

model. The climate-sensitive models (C. - H.) display a prediction accuracy improvement for wet, 

dry, and average climate conditions. The Ordinary Least Squares (OLS) (C., D.) and Random 

Forest (RFR) (G., H.) capture the influences of climate on municipal water demands with improved 

prediction skill compared to the multilayered perceptron model (MLP) (E., F.). The black error 

bars within the OLS predictions (C.) communicate the April to October predictions to a 95% 

confidence interval. 

 

Figure 3. The climate-independent model exhibits an average -19%  PBias (A., B.) across the 

2018-2022 forecast period, with the average and dry conditions of 2021 and 2022, respectively, 

challenging model accuracy to a greater degree than the other years. The climate-sensitive models 

(C. - H.) display a prediction accuracy improvement for the dry and average climate conditions 

experienced during the 2018-2022 period, with the OLS (C., D.) and RFR (G., H.) demonstrating 

greater prediction skill than the MLP model, which tends to over predict demands (PBias  -6.0\%). 

The black error bars within the OLS predictions (C.) communicate the April to October predictions 

to a 95% confidence interval. 
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Figure 4. By varying the monthly air temperature and precipitation as percentages of normal 

within the bounds of the historical record, the climate-sensitive OLS model can produce a range 

of annual volumetric demands reflecting the influences of dynamic climate conditions to support 

proactive water system management. 
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