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ABSTRACT

Altered precipitation and temperature patterns from a changing climate will affect supply,
demand, and overall municipal water system operations throughout the arid western U.S. While
supply forecasts leverage hydrological models to connect climate influences with surface water
availability, demand forecasts typically estimate water use independent of climate and other
externalities. Stemming from an increased focus on seasonal water demand management, we use
the Salt Lake City, Utah municipal water system as a testbed to assess model accuracy vs.
complexity trade-offs between simple climate-independent econometric-based models and
complex climate-sensitive data-driven models to average to extreme wet and dry climate
conditions — representative of a new climate normal. The climate-independent model displayed
low performance during extreme dry conditions with predictions exceeding 90% and 40% of the
observed monthly and seasonal volumetric demands, respectively, which we attribute to
insufficient model complexity. The climate-sensitive models displayed greater accuracy in all
conditions, with an ordinary least squares model demonstrating a measurable reduction in
prediction bias (3.4% vs. -27.3%) and RMSE (74.0 Ipcd vs. 294 Ipcd) compared to the climate-
independent model. The climate-sensitive workflow increased model accuracy and characterized
climate-demand interactions, demonstrating a novel tool to enhance water system management.
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INTRODUCTION

The nexus surrounding supply and demand in the arid western U.S. continues to be a
considerable water resources challenge, displayed by extensive infrastructure to store and deliver
water (Gleick, 2010; Dawadi & Ahmad, 2012). For example, there are nearly 11,000 water storage
reservoirs in the western U.S., with the three largest river systems (i.e., Columbia, Colorado, and
Missouri) combined storage capacity approaching 185,000 Mm3 (USBR, 2023). The extensive
infrastructure addresses the differential timing of snowmelt-driven streamflow in the spring with
heavy summer water use, and supports multiyear storage for prolonged drought (Christensen et
al., 2004; Rajagopalan et al., 2009; Stern & Sheikh, 2021). For municipal water systems (MWS),
the persistent summer drought and high evapotranspiration drive increases in outdoor water use
from April to October to maintain landscaping health (UDNR, 2014; Opalinski et al., 2020). With
climate change altering the surface water yields of critical western U.S. catchments and cost and
feasibility constraints hampering new source and infrastructure development (Brown et al., 2019),
there is a shift to explore demand management for operational, tactical, and strategic MWS
management decisions (Gleick, 2010; Ryu et al., 2012; Olmstead, 2014).

Demand management leverages water demand estimates (e.g., monthly, annual, total
volume) to support MWS decision-scaling, capacity planning, conservation efforts, and overall
operations (Donkor et al., 2014). Statistical time-series models can estimate short- (< 1 day) to
long-term (> 10 years) water use projections based on historical use trends with high accuracy
(Ghiassi et al., 2008; Arandia et al. (2015)), assuming serial correlations between demand and
seasonality will only deviate through efficiencies in water use (Billings & Jones, 2011). While

these econometric-based methods can produce high accuracy, the arid western U.S. exhibits high



water use seasonality, and because of a changing climate, irrigation season length and intensity
deviate from historical use patterns (Finch et al., 2016; Snyder et al., 2019; Opalinski et al., 2020).
Regional seasonality, global climate anomalies (e.g., ENSO), and a changing climate challenge
the use of serial correlation models, autoregressive models, and/or models neglecting climate
influences (Matthews et al., 2011; Koutsoyiannis & Montanari, 2014).

Integrating features describing MWS service area characteristics and change within the
model workflow can improve prediction accuracy, connecting climate influences and urbanization
pathways to changes in water demand (Coomes et al., 2010; Opalinski et al., 2020). Polebitski and
Palmer (2010) integrated city size and sector composition, population characteristics, rainfall and
temperature, the marginal price of water, and socioeconomic factors describing the municipal
service area into their demand model to increase forecasting accuracy. Identifying and integrating
key influencers of municipal demand is becoming increasingly important in arid and semi-arid
regions, where limited supplies and high per-capita water use determine water system performance
(Hirsch, 2011; Zhao et al., 2018) and where there is a need to develop contingency plans to mitigate
supply-demand deficits during hydrological drought (Blanc et al., 2014).

Building on the relationships between MWS service area dynamics and water demand,
machine learning (ML) algorithms have advanced short- and long-term water demand forecasting
accuracy (Adamowski & Karapatki, 2010; Behboudian et al., 2014; Ghalehkhondabi et al., 2017;
Vijai & Sivakumar, 2018; Antunes et al., 2018; Altunkaynak & Assefa, 2018). W. Li and Huicheng
(2010) demonstrated a 6% reduction in annual demand uncertainty for Dalian City, China by using
fuzzy neural networks (vs. using linear regression methods) with socioeconomic, climate, and
other related demand-influencing features. Tiwari and Adamowski (2014) developed an artificial

neural network (ANN) to forecast weekly to monthly demands to advance operational forecasting



accuracy (< 3% error). Although ML can deliver accurate water system demand estimates, ML
algorithms are susceptible to overfitting, can produce unreasonable estimates from inputs
exceeding the bounds of training data (e.g., a changing climate leading to temperatures exceeding
those observed in the historical record), and the black box from high model complexity obscuring
the relationships between input variables, model algorithm, and predictions (Riter & Munoz-
Carpena, 2013). The documented limitations of ML have resulted in a reluctant adoption within
MWSs for examining system performance and informing decision-making (Donkor et al., 2014).
The complex interactions between arid western U.S. climate, service area characteristics,
and modeling methodology highlight a research gap surrounding the prediction accuracy of
seasonal municipal demand, specifically, to current and projected conditions influenced by a
changing climate while considering model complexity vs. accuracy trade-offs. Integrating model
complexity as an evaluation measure allows for a methodological investigation of accuracy
changes to different model formulations, with an operational preference for algorithms with high
accuracy and low complexity. Lower complexity models generally offer greater interpretability, a
less intensive development time, and are more computationally efficient (Makridakis et al., 2018;
Shrestha & Mahmood, 2019). We define model complexity as the number of parameters within
the model and translate the complexity to the interpretability given by the number of parameters,
consistent with the ML community (Guidotti et al., 2018; Barcel o et al., 2020). Addressing the
research gap, we pose two research questions surrounding model complexity and variations in
seasonal climate conditions concerning arid western U.S. municipal water use:
e Is there a measurable change in seasonal water demand forecasting accuracy from more
complex climate-sensitive models compared to climate-independent econometric-based

models for arid western municipal water systems under extreme climate conditions?



e Are there measurable changes in prediction skill from models of differing levels of
complexity for estimating demands to various climate regimes?
We investigate the research questions using Salt Lake City Department of Public Utilities
(SLCDPU) as a case application, where we develop climate-independent econometric-based
models, to be referred to as climate-independent models, and data-driven climate-sensitive
modeling workflows. The objective is to characterize climate-independent model accuracy for
estimating municipal demands and use a data-driven climate-sensitive modeling workflow to
advance the prediction accuracy to different climate conditions. We train a lower complexity
Ordinary Least Squares (OLS) model and develop complex Random Forest Regression (RFR) and
multilayered perceptron (MLP) models to address the research questions. The research motivation
is to advance the understanding of climate influences on the water system and develop tools to
support sustainable water system management.
METHODS
Study Area
We use SLCDPU as a representative arid western U.S. water system because of its
seasonality, high summer water use, interannual climate variability, and urbanized landscape
(serving 350,000 people), recognizing that demands, their specific influences, and the resulting
accuracy in modeling demands will vary between water systems. The long-term records of water
use support the development of the climate-independent and climate-sensitive models, and to
investigate model forecasting accuracy to seasonality, year-to-year climate changes, and climatic
extremes synonymous with climate change. Due to the proximity of SLCDPU to the Wasatch
Mountains, there is a strong dependence on winter snowpack for supply that strongly influences

seasonal and year-to-year surface water supply availability (Smith et al., 2015; Brooks et al., 2021).



The mountain snowpack functions as a natural storage reservoir, with the streamflow from City
(CC), Parleys (PC), Big Cottonwood (BCC), and Little Cottonwood (LCC) creeks providing
approximately 60% of the annual supply (Figure 1) (Khatri et al., 2018). Valley groundwater
withdrawal and interbasin water transfers, both driven by snow-dominated hydrology, complete
the remaining 40% of the annual water supply (Figure S1) (Collins & Associates, 2019).

Four distinct seasons influence SLCDPU water demands: a snowy winter with no
irrigation; a hot, dry summer with high evapotranspiration and irrigation use; and wet spring and
fall periods that define the beginning and the end of the irrigation season (UDNR, 2010).
Temperatures exceeding 35.0°C throughout the summer result in up to 1000 mm of irrigation
applied between April to October, contributing to Utah routinely ranking as a top five highest per-
capita water use state in the country (Dieter, 2018). Idaho, Wyoming, Arizona, Nevada, Colorado,
Oregon, and Montana exhibit similar water use, with these western states ranked as the top ten
highest per-capita water use states in the nation (Maupin, 2018).

SLCDPU has reported the total volume of monthly treated water releases into the
distribution system to the Utah Division of Water Rights from 1980 to the present (UDWR, 2023),
consisting of residential, institutional, and commercial uses and including leakage and
unaccounted-for system losses. Figure S2 decomposes water use by sector, indicating residential
outdoor water use as the dominant sector (e.g., 44%). Municipal demand has decreased from 1100
Ipcd to 800 Ipcd over the past two decades, reducing per-capita demand by 25% (Figure S3). Table
1 displays the statistical summary of SLCDPU water use from April to October, highlighting the
high seasonal and annual variability because of outdoor demands. Per-capita water use is a function
of the total water delivered into the water system divided by the service area population (i.e., Salt

Lake City, Holladay, Cottonwood Heights, and Millcreek)..



[Insert Figure 1, JAWRA RJohnson_Figl.pdf here]

[Insert Table 1 here]

Climate-Independent Demand Modeling

Climate-independent water demand model development aligns with the methods described
in Billings and Jones (2011) and we calculate the monthly liters per-capita day water (Ipcd) use
from the training period spanning from 1980-2017, omitting the testing scenarios and disregarding
years with missing observations. The model relies upon serial correlation, estimating monthly
demands as a function of the historically observed monthly climate-demand interactions and the

assumption that previous observations will reflect future demands based on Equation 1

_ Yizq lpedpy, (1)
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where m refers to the month of interest and # refers to the number of years in the training period,
which consists of 30 years of training data (n). While small fluctuations in indoor water use from
November to March occur, we assume consistent per-capita water use during this period (i.e., 590
Ipcd). Table 2 displays the historical monthly per-capita demands for SLCDPU.

[Insert Table 2 here]

Climate-Sensitive Demand Modeling

The motivation of the climate-sensitive modeling workflow is to connect dynamic climate
conditions to monthly outdoor per-capita water use from April to October. We create service area
climate and urbanization features as model inputs and apply dimensionality reduction techniques
to optimize the model features. The climate-sensitive models use the same features and training

data, consistent with the 30 years of data used to develop the climate-independent models.



Data and Feature Engineering. Data preparation for modeling outdoor demands requires
separating indoor water use from total water use, with the assumption that indoor plus outdoor
water use equals total municipal water use. We assume indoor water use activities (e.g., showers,
dishwashing, laundry) remain relatively constant throughout the year (Jacobs and Haarhoff, 2007;
Lee et al., 2011) and that there is minimal water applied for outdoor purposes from November to

March. With these assumptions, we calculate monthly per-capita indoor use with Equation 2
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where D_,y is the mean annual indoor per-capita water use for the respective year (y). We calculate
monthly outdoor water use (D, ) using Equation 3

Dy, =Dy — Dy, 3)

y
where D_,y is the indoor water use from Equation 2, Dy, is the total per-capita demand, and m is the

month of interest. The outdoor demand (Ipcd) of each month forms the dependent variable for
training climate-sensitive models.

Feature engineering seeks to develop independent variables that improve water demand
modeling skill. We create temperature, precipitation, snowfall, and streamflow features to
represent the dynamic climate conditions and conservation guidelines, land-cover type,
population, and housing features as these features can be strong predictors of municipal water
demand (Polebitski & Palmer, 2010; Tiwari & Adamowski, 2014; Oyebode & Ighravwe, 2019).

Precipitation and temperature are critical features reflecting seasonal climate influences on
demand and we use the North American Land Data Assimilation System (NLDAS) climate-
forcing data products to retrieve temperature and precipitation estimates (Xia et al., 2012). We

calculate monthly air temperature (°C) and precipitation (mm) features as a function of the spatial



average of the service area from March through October — one month before and extending through
the end of the irrigation season. While there are many in-situ weather stations, the NLDAS data
products broaden the transferability of the framework to other water systems.

Mountain streamflow represents the complex interactions among mountainous topography
(e.g., snowdrift, aspect, and microclimates), variable winter precipitation patterns (e.g., global
climate oscillations), snowmelt (e.g., timing, duration, and quantity), and the mountain hydrology

(e.g., groundwater and baseflow) that contribute to supply availability (Scalzitti et al., 2016; Bohne

et al., 2020; Brooks et al., 2021). We calculate monthly streamflow ( Qems) from the daily
discharge measurements at the canyon mouths of the four supply streams using the United States
Geological Survey (USGS) and Salt Lake County monitoring stations before extensive water
diversion. While nearly a complete time series, we interpolate the few missing daily values as a
function of up or downstream measurements per the methods from Hughes and Smakhtin (1996).
We create snowfall features as an indicator of the climate anomaly (e.g., wet, average, or
dry winters). Although temporally separate from summer outdoor use and different than the
precipitation metrics, snowfall can indicate high-elevation watershed supply availability (Shukla
et al., 2011; Peters-Lidard et al., 2021) and we used November to April monthly and seasonal
snowfall from the Alta Guard station (NOAA, 2023) to form the snowfall features. While there
are four key watersheds for SCLDPU, year-to-year variability is highly correlated between
watersheds due to the proximity of their headwaters and we use the features to differentiate year-
to-year climate conditions rather than characterize the physical volume of water per watershed.
We incorporate antecedent climate features to reflect the hydrological system memory,
specifically, that previous precipitation and temperature conditions affect future soil moisture

conditions and irrigation needs (Potts et al., 2006; J. Li et al., 2020). The antecedent climate



features begin in March, before the irrigation season, and incrementally increase in number per
month until October. For example, the antecedent climate features of October include March,
April, May, June, July, August, and September precipitation, temperature, and streamflow features
in addition to October precipitation, temperature, and streamflow features.

Complementing the climate features, we develop density-based population and housing
features to reflect urbanization and as a generalizable metric to compare with other municipalities.
We use the population and housing estimates from the U.S. Census (Census, 2023) to calculate
population and housing densities based on the boundaries of the SLCDPU service area (204 km?).
Since census data is not continuous, we use linear interpolation between decadal census
observations to create a continuous population (p) and housing (H) dataset.

Agricultural, residential, and urban land uses can influence municipal water use (Donnelly
& Cooley, 2015). At a five-year frequency, beginning in 1985 and including 2017, we retrieve
USGS Landsat 5 and 8 surface reflection tier 1 satellite imagery to determine land cover/land use
changes within the service area boundary. We select images between September and November to
assist algorithm training and delineate between irrigated vs. non-irrigated and vegetated vs. non-
vegetated land covers. The September to November imagery emphasizes irrigated areas within the
520-560 nm wavelengths, contrasting against dead grass and non-irrigated vegetation. We adjust
the blue, green, and red bands with the parameters of 500 (min), 3000 (max), and 1.4 (gamma) for
Landsat 5. All parameters remain the same for Landsat 8§ images, except for the max parameter
increasing to 5000 to match the pixel attributes of Landsat 5 images. We process all images as
recommended by USGS for shadow and cloud removal (USGS, 2019a, 2019b) and use the Sci-

Kit learn Random Forest classifier version v0.21.3 to create features as the percentage of the urban
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area, residential area, irrigated area, and vegetated area, further described in the Supplementary
Information (Buitinck et al., 2013; Rodriguez- Galiano et al., 2012; Zhu et al., 2012).

The Utah Department of Water Resources established a statewide goal to reduce per-capita
water use by 25% by 2025 (UDWR, 2019), and we develop a conservation feature (C,,) to
represent the anticipated monthly reductions in demand based on the goals. The conservation
features uses the long-term average demand of each month from the 1980-2000 period as the
baseline and determine the monthly 25% reduction goal for 2025. We use linear interpolation
between 2001 to 2025 to create a continuous time series of conservation goals using Equation 4

_ 7 _ Dmr25% 4

where C,,is the conservation feature, m refers to the month of interest, D,, is the mean per-capita
water use of month m for the 1980-2000 period, and y is the number of years past the year 2000.
The conservation feature aligns with western U.S. water conservation policies and the adoption of
linear conservation goals to achieve substantial long-term reductions (UDWR, 2019; CWCB,
2015; SNWA, 2019). Municipalities not using a constant rate may explore a constant percent rate
reduction, which would form the feature (U.S. EPA, 1998). Figure S3 displays the conservation
trend for SLCDPU, along with year-to-year variability in annual water use.

Feature Selection. Feature selection reduces model dimensionality, improves learning
accuracy, and facilitates a better model understanding (Cai et al., 2018). We use Recursive Feature
Elimination (RFE) due to the algorithm prioritizing dimensionality reduction through the
identification of strong predictors to improve model skill, even in the presence of highly correlated
features (X.-w. Chen & Jeong, 2007; Lin et al., 2012; Hamada et al., 2021). The RFE algorithm
removes noisy and non-informational variables, selecting stronger features than other methods

such as Lasso penalized logistic regression or Random Forest (Tolosi & Lengauer, 2011).
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Implementing a correlation bias reduction (CBR) strategy into the feature selection workflow can
further improve model performance and we adapt the CBR algorithm introduced by Yan and

Zhang (2015), as displayed in Equations 5 — 11

CBR (me, Dy, Ty T fc) = Fp, . (5)
Where m is the month of interest, F, are all the potential features, Dy, is the target demand, Ty, is
the threshold for determining the minimum correlation between features and demand, T, fcis the
threshold for determining the maximum correlation between two features, and F,, _ are the highly
correlated features to the target demand (D, ) with minimal correlation to another. The first step is
to select features with a correlation greater than Ty, to the respective monthly demand

Frtous = 1 € By 1p(i, Dy)| > Ti, (6)
where fp, are the features with a correlation greater than T, with demand. The Pearson

correlation coefficient determines the correlation between features to target and feature to features
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where p is the Pearson correlation coefficient to measure the linear association between features

(f) to target (y;) or feature (f;) to features (y;). Using fp, ., the algorithm selects for features that

correlate less than Ty, fe

fmoutz =] € fmoutllp(j’fmout)l < Tmfc (8)
where f,, . are the features from f,  that exhibit a correlation with another less than T, fe (e.g.,
not highly correlated). If two features exhibit a correlation greater than T, for the algorithm selects

the features with a greater correlation with the demand (D,,) of month m from f, .

fmouts =k € fmout”p(k’ fmout)' > Tmfc (9)
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where f, . are the features (f, ) with a greater correlation to another than T, fe- The function

then selects features with a greater correlation with the demand (D, ) of month m from f;;, .. using

frouts = L€ frgues [P D)l > n € fin o | [corT(n, Dy )| (10)

where fp, . are the features with the greater correlation with the demand (Dy,) from f,, ... For

example, if features / and n exhibit a correlation to another greater than T, fcand feature / exhibits

a greater correlation with Dy, than n, then / joins the f;,, ., group and the CBR function removes 7
as a potential feature. With the features in f, and f, . with greater than the minimum
correlation threshold (Ts,,,) to demand (D,,) and a feature-to-feature correlation of less than T, fer

the algorithm determines the CBR features by

Fngue = fmoues * frnouez (1D)
The CBR process selects demand-correlated features F,  with acceptable levels of collinearity
(i.e., <10) to pass to RFE (Song & Kroll, 2011).

We use Scikit-learn 0.24.1 RFE to identify the optimal monthly per-capita outdoor demand
predictors (Pedregosa et al., 2011). The algorithm uses a grid search function to assign feature
importance weights and recursively prune the number of features over five-fold cross-validation
to optimize the feature set. We perform an exhaustive grid search using RFE over a range of target
correlation thresholds (T,,,, 0-0.7 in 0.05 increments) and feature correlation thresholds (75, fer
0.65-0.90 in 0.05 increments), with the CBR-RFE framework identifying the optimal predictors of
monthly demand to train the climate-sensitive OLS, MLP, and RFR models.

Ordinary Least Squared Regression. We use the Scikit-learn OLS algorithm for its

interpretable statistical relationships between predictors and demand (i.e., variable coefficients),
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providing a formal representation of the observed interactions to mitigate the black box of ML
algorithms. The generalized monthly OLS regression formula is

Ipcdy, = Bixy + Baxy +. . + Brxy, (12)
where m is the month of interest, 3,, are the coefficient weights, and x,,is the predictor of interest.
We train the OLS model using five-fold cross-validation and fit without a y-intercept to
characterize the influence of each predictor on demand. For example, if July air temperature is a
key predictor of July demand, the coefficient will communicate the statistical relationship between
a projected 1°C increase in July temperature on July per-capita day (Ipcd) demand with respect to
the other features. We apply the Statsmodels v0.12.2 package to communicate a 95% prediction
confidence level based on the internally characterized model error (Seabold & Perktold, 2010) and
the number of features in the final model determines model complexity.

Random Forest Regression. We use the tree-based RFR algorithm to represent one of two
complex machine learning models for its proficiency in water resources modeling applications
(Tyralis et al., 2019). RFR uses a meta-estimator of several fitted decision trees on multiple
subsamples of the training data and then averages to improve prediction accuracy and overall
robustness (Biau & Scornet, 2016). We use the Scikit-Learn RandomForestRegressor package
(Pedregosa et al., 2011) to train the model using a five-fold cross-validation and a GridSearchCV
function to optimize the hyperparameters: number of estimators 5-75 at 5-unit intervals, max depth
2-40 at 2-unit intervals, and max predictors 0.2 - 0.8 at 0.2-unit intervals. The function evaluates
model performance via a “fit” and “score” method for all possible hyperparameter combinations,
with the final hyperparameters demonstrating the least internal model error. The number of trees

in the optimized model (i.e., the number of estimators) determines model complexity.
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Multilayered Perceptron. An MLP model serves as the second complex ML algorithm
and demonstrates high performance across many water resources applications (Hastie et al., 2009;
Sit et al., 2020). We use the Keras package within TensorFlow v2.4.1 (Abadi et al., 2015) to build
the MLP network, consisting of an input layer that receives the optimized predictors, middle
hidden layers with nodes/neurons that form the computational engine, and an output layer that
produces the prediction. Model training consisted of the following parameters: relu activation
function, eight hidden layers with neurons ranging from 8 to 128, the Adam optimizer, and 500
epochs. Model training used five-fold cross-validation with backpropagation gradient descent to
weigh the network and minimize error and the total number of model weights from the layer-node
combinations determines the model complexity.
Evaluation Scenarios and Metrics

Given the proximity to and the dependence of SLCDPU to the surface water supplies from
the adjacent mountains, we use seasonal accumulated snowfall (Sc») as the metric to characterize
the climate and establish wet, dry, and average testing. Seasonal accumulated snowfall describes
the climate, as it bridges the gap between climate conditions and surface water supply (Rosenberg
etal., 2011; Fleming et al., 2021). We use the observations from Alta Guard station (40.5905°N, -
111.638°E, 2,656 m) located within the headwaters of LCC to identify the most recent wettest
(2008), driest (2015), and average (2017) seasonal snowfall. We performed a Log Pearson type III
analysis using the 78 years of observations to determine the dry scenario (680 cm) and wet scenario
(1,660 cm) have a 150-year and 15-year return period, respectively, a significant departure from
the historical mean (1,262 cm) and consistent with a changing climate (Khatri et al., 2018; Naz et
al., 2018; Brown et al., 2019). We include an average climate state (1,347 cm) as a reference point

to compare performance with extreme scenarios. Complementing the dry, average, and wet climate
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conditions, we use the climate conditions from 2018-2022 to extend the model evaluation period
and assess the skill of each method to year-to-year variations in climate, filling in the gap between
extremely wet and extremely dry (Table 3). The 30 years of observations and 8 years of testing
resulted in an 80%/20% training/testing split that is consistent with ML model development (Pham
et al. 2020; Moayedi et al. 2020). The temperature, precipitation, and surface water supply
observations from each scenario drive the climate-sensitive models and we determine model
performance using the observed monthly per-capita demands attributed to each scenario.
[Insert Table 3 Here]

We use percent bias (PBias), root-mean-squared-error (RMSE), and Kling-Gupta
Efficiency metrics (KGE) metrics to determine model performance to the three climate states (i.e.,
wet, average, dry), the average performance across the three climate states, and the average
performance over the 2018-2022 period. Evaluating model performance across the different
climate conditions highlights the predictive performance one can expect for each modeling method
to the year-to-year variability in arid western U.S. climate. Motivated to enhance seasonal MWS
guidance, we do not model finer resolution (e.g., daily) demands because we are not concerned
with daily water use fluctuations or the effects of individual precipitation events. Complementing
the model performance metrics, we include the volumetric percent error of seasonal and annual
demand estimates to further exemplify the operational strengths and limitations of each method.

Percent Bias (PBias). PBias computes the average amount that the observed is greater or
lesser than predicted as a percentage of the absolute value of the observed. PBias communicates
if, on average, the model favors predictions above (- bias) or below (+ bias) the observed, with

1deal PBias values close to zero.

. 100\% wn  (i—fi)
PBias = — =17 |y (13)
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where f;are the predicted values and y; are the observed for timestep n.
Root Mean Squared Error (RMSE). RMSE aggregates the magnitude of residuals for all
data points into a single quantitative measure of performance, with values closer to zero indicating

a greater model accuracy (Fisher, 1920).

RMSE = MSE = zg_l({l_—wz (14)

Kling-Gupta Efficiency Metric (KGE). KGE is an expression of the distance between
the point of ideal model performance in the space described by: 1) correlation, 2) variability, and
3) bias (Gupta et al., 2009). KGE values approaching 1 indicate a perfect model fit; a benchmark

of -0.41 indicates an overall performance greater than the mean (Knoben et al., 2019).

B =L (15)

Hy

where (3’ is the bias ratio, p is the mean target value (f for predicted and y for observed).

a=-L (16)
where a is the variability ratio and o is the standard deviation of the predicted and observed values.
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(17)

where p is the Pearson correlation coefficient to measure the overall strength of a linear association

between predicted (f;) and observed (y;), and KGE being the lowest score of its components

KGE=1—-/(p— 12+ (' = D2 + (a — 1)2 (18)
RESULTS/DISCUSSION
Climate-Independent Demand Estimates
The climate-independent model produces demand estimates greater than the observed for

all scenarios (Figures 2 & 3), with the PBias metric characterizing the prediction trend at -27.3%
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and -19.0% for the three climate conditions and the 2018 - 2022 period (Table 4), respectively.
The highest prediction accuracy was during the wet scenario, displayed by an approximate 50%
reduction in PBias and RMSE, along with an increase in KGE (i.e., 0.81 vs. 0.67). We observed
the average and dry climate conditions challenging model accuracy with errors approaching 90%
or 700 Ipcd, and a large PBias of -39.7% and 33.4% for the dry and average conditions,
respectively. The dry and average climate conditions resulted in greater than a 100% increase in
error compared to the wet scenario and strongly biased overall model performance. A high
negative PBias with the demand estimates for 2021 and 2022 (-30% and -40%, respectively) is
consistent with the average and dry conditions. The KGE exceeds the acceptable prediction
threshold of -0.41 but the overall error indicates a poor model fit.
[Insert Table 4 Here]

[Insert Figure 2, JAWRA RJohnson_Fig2.pdf Here]

[Insert Figure 3, JAWRA RJohnson_Fig3.pdf Here]

The climate-independent model error compounds when scaling predictions to monthly,
seasonal, and annual volumetric demands. The overall model error (i.e., RMSE of 294 Ipcd) results
in an overprediction of seasonal demand by 6.5 Mm? (8%), 24.2 Mm? (34%), and 20.8 Mm?> (31%)
for the wet, dry, and average conditions, respectively (Table 5). The model similarly overestimates
volumetric water demand during the 2018-2022 period by an average of 22% or 17.4 Mm?/yr. The
annual volumetric error during the dry conditions (i.e., 32.8 Mm?) exceeds the storage capacity of
the Dell reservoir system (i.e., 27.1 Mm?), challenging the utility of the demand estimates for
decision support and extending to include financial operations. For example, the revenue

projections will exceed the realized monetary resources by $33,000 - $66,000 (e.g., 32.9 Mm? x
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0.01 - 0.02 $/m? (Salt Lake City Department of Public Utilities, 2022)) during the dry scenario and

the municipality may have purchased unnecessary supplies to mitigate anticipated deficits.
[Insert Table 5 Here]

Climate-Sensitive Demand Estimates

The climate-sensitive models translated the climate influences on water demand with high
prediction accuracy (Figures 2 & 3). The predictions were close to the observed, displayed by
PBias values of 3.4%, -2.5%, and 1.7% for the OLS, MLP, and RFR models, respectively, over
the wet, dry, and average climate conditions (Table 4). The RFR model produced a lower PBias
and greater KGE than the OLS and MLP models during the wet conditions while the OLS model
produced a lower PBias and greater KGE than the RFR and MLP during the average and dry
conditions. The dry scenario presented challenging conditions for the MLP and RFR models,
displayed by a PBias of -13.8% and -7.5%, and KGE decreases to 0.68 and 0.82, respectively. The
OLS model displayed the highest model accuracy during the dry climate conditions, with a low
PBias (0.20%), RMSE (48.4 Ipcd), and high KGE (0.98).

The 2018-2022 period examines the impacts of inputs outside of the training bounds on
model skill and we observed a decrease in prediction accuracy. The MLP model displayed the least
performance of the climate-sensitive models with an increasingly negative PBias (-6.0% vs. -
2.5%), an increase in RMSE (237 Ipcd vs. 153 Ipcd), and a reduction in KGE (0.62 vs. 0.86)
compared to the wet, dry, and average scenarios. The MLP model overpredicted June through
September demands during the average and dry climate conditions of 2021 and 2022 by up to 50%.
The OLS and RFR models displayed similar performance for the 2018-2022 period with a PBias
less than 1%, RMSE around 170 Ipcd, and a KGE close to 0.80. The OLS and RFR models

overpredicted June through September demands for 2021 and 2022 but to a lesser degree than the
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MLP model. The consistent over-prediction is likely due to Salt Lake County conserving water
amid a multiyear drought, noted by a 13% reduction in water use (Salt Lake County, 2021).

Addressing research question 1, the seasonal and annual error reductions from the climate-
sensitive models, specifically the OLS and RFR models, during climate extremes demonstrate a
measurable improvement in the model skill compared to the climate-independent model. The
reduction in error exceeds the Dell reservoir system storage capacity (i.e., 27.1 Mm?®) during the
dry scenario, exemplifying the strengths of the climate-sensitive modeling framework. The MLP
model demonstrated greater accuracy than the climate-independent model but exhibited a
reduction in model accuracy during the 2018-2022 period compared to the OLS and RFR
algorithms. Based on the model evaluation, the strength in connecting climate conditions to
demand estimates becomes more substantial as conditions trend drier.
Model Accuracy vs. Complexity

There is a substantial variation in the model complexity between each method. The climate-
independent model has a complexity degree of 1 (i.e., monthly demand), the OLS algorithm has a
complexity degree of 18 (i.e., the number of non-zero model coefficients), the MLP model has a
complexity degree of 33,721 (i.e., number of parameters), and the RFR model has complexity
degree of 60 (i.e., number of trees). Model accuracy was consistent across all scenarios, with the
greatest to least accuracy as follows: OLS, RFR, MLP, and climate-independent models. There
were minimal differences in accuracy between the OLS and RFR climate-sensitive models.

A qualitative evaluation of model complexity can bridge the research to operations
boundary by understanding how the number of parameters relates to model interpretability and

model accuracy (Barcel o et al., 2020). The climate-independent model is the least complex due
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to the demand estimate being historical monthly mean demand (Equation 1). While simple, the
method ignores which can measurably improve prediction accuracy.

The OLS model is the second least complex model with its eighteen predictors but provides
the greatest interpretability because of the statistically-derived coefficient relationships between
predictors and demand, Table 6. We observe twelve of the eighteen predictors connecting service
area monthly air temperature and precipitation to demand, expressing the importance of climate
features in the SLCDPU demand modeling framework and exemplifying the benefits of the
interpretable predictor-target relationships. For example, for every degree increase in April mean
temperature (°C), SLCDPU can expect a 21.3 Ipcd increase in April demand. The positive feedback
between temperature and demand aligns with the observed patterns of outdoor water use, where
high temperatures and minimal precipitation require substantial irrigation (>1000 mm) to maintain
landscape health. The statistical relationships between predictors and demand can further support
the adoption of climate-sensitive modeling methods in water system management, especially when
the model coefficients align with water system operator experience.

The RFR and MLP are the most complex models and due to the number of model
parameters (e.g., model weights), the models offer minimal interpretability. The RFR does provide
feature importance scoring that indicates the relative importance of a predictor and model logic
from the training data but has been shown to not represent model logic outside of the training
bounds (Strobl et al., 2008; Tyralis et al., 2019; Drobni“c et al., 2020). The MLP is the least
interpretable due to the unknown relationships between climate to demand (i.e., black box), only
communicating the model performance from training. Model development intensity and
computational efficiency can differentiate model complexity trade-offs (Al-Jarrah et al., 2015;

Shrestha et. al., 2019), however, the climate-sensitive models took approximately the same time
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to develop because of automated training algorithms and predicted in under 1 second, resulting in
negligible differences in development and computational efficiency.
[Insert Table 6 Here]

Addressing research question 2, we find that there can be measurable improvements in
model accuracy by increasing model complexity. The OLS model demonstrated a measurable
improvement in prediction accuracy from increased model complexity compared to the climate-
independent model. The OLS model demonstrated that sufficient complexity could match or
exceed the performance of greater complexity models (i.e., MLP, RFR), making the model a likely
tool to assist in water system management. The RFR and MLP models did not produce measurable
gains in model accuracy compared to the OLS model, indicating that the largest gains in model
accuracy stem from the integration of key, temporally dynamic service area characteristics.
Benefits of Increased Model Complexity for Water System Management

A strength of the more complex models is linking water use behavior to the climate
conditions, quantifying the influence of air temperature and precipitation changes on monthly,
seasonal, and annual demand estimates. From the OLS model, we identify three key climate-
demand relationships that improve the understanding of SLCDPU water demands; 1) monthly
precipitation and mean air temperature are the strongest determinants of monthly per-capita
demand, 2) spring climate conditions play a pivotal role in overall water use, and 3) antecedent
climate conditions demonstrate a strong influence on June through September demands. For
example, the model identifies a negative precipitation to demand feedback connecting moist spring
conditions with prolonged cloud cover and above-average precipitation (e.g., reduced

evapotranspiration) to reductions in seasonal water use and dry, warm, and sunny conditions with
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increased water use. The climate-demand relationships provide system management with a
conceptual understanding of the interactions between climate, seasonality, and water use.

A benefit of including climate influences when estimating season demands is to support
water system decision-making. Should the demand projections exceed the estimated supply
availability, concerning streamflow timing and storage, an alternative source or contract may be a
mitigation strategy. The results indicate that climate-sensitive demand estimates become more
essential and representative during drier, supply-limited conditions, a condition where there is an
increased need for additional supplies and/or demand hedging to prevent system deficits.

A climate-sensitive demand modeling workflow can produce long-term climate-influenced
demand estimates to examine the impacts of a changing climate on MWS performance. By
applying a range of climate scenarios, climate-sensitive models can generate a range of demands
reflecting the influences of different climate futures on municipal water demands to support
planning activities ranging from seasonal outlooks to long-term climate resilience. For example,
Figure 4 demonstrates a range of seasonal demands from the OLS model driven by historically
observed air temperature and precipitation anomalies.

[Insert Figure 4, JAWRA RJohnson_Fig4.pdf Here]
Opportunities to Improve the Climate-Sensitive Modeling Workflow

The climate-sensitive models demonstrate improved model accuracy compared to the
climate-independent models but there remains an opportunity to advance the overall modeling
framework. We can no longer assume indoor demands are independent of dynamic service area
conditions, as errors in November through March demands indicate the potential effect of water-
saving measures due to public drought awareness (Parker & Wilby, 2013; Moglia et al., 2018).

There is the potential for a non-linear conservation trend, as a negative exponential trend partially

23



describes the observed error as each scenario nears the long-term reduction goal year (i.e., 2025).
Future research exploring different conservation metric formulations and integrating service area
characteristics for indoor demand modeling may improve overall modeling performance, leading
to improvements in overall demand prediction accuracy (equation 3).

While the OLS model demonstrated the greatest overall performance for the SLCDPU
system, applying the climate-sensitive workflow to other systems may indicate a non-linear
predictor-demand relationship that challenges linear regression-based algorithms. We encourage
developers to explore many ML algorithms that increase prediction accuracy under non-linear
relationships (G. Chen et al., 2017b; Desai & Ouarda, 2021). Examining several ML architectures
supports a comprehensive model accuracy vs. complexity comparison to select the optimal model
and/or develop an ensemble demand forecasting to produce a range of demand estimates (Al-
Sulttani et al., 2021; Granata & Di Nunno, 2021; Mosavi et al., 2021).

Decomposing sector water use and including demographic and socioeconomic components
could improve model skill by reflecting changes within the service area, as demonstrated by Vijai
& Sivakumar (2018) considering census blocks. If the data is available, partitioning water use by
sector could refine demand estimates and we expect smaller spatial scales to identify urban,
residential, irrigated, and vegetated areas as strong demand predictors. The SLCDPU service area
scale likely did not identify these features as strong predictors due to a greater explanatory
relationship between the climate and demand compared to land cover changes. For long-term
assessments concerning climate and/or urbanization pathways, a range of demographic and
socioeconomic shifts could occur and influence the demands (Behboudian et al., 2014).

Risk-tolerance-based decision-making encourages the use of probabilistic predictions

(Towler et al., 2013, Quilty et al., 2019). A probability distribution (e.g., Gaussian) of temperature
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and precipitation forcings to drive the climate-sensitive model or using probability-based ML
algorithms (e.g., Gaussian Process Regression) could generate a probable range of demands (Y.
Wang et al., 2014). As an alternative or complement to ensemble methods, probabilistic estimates
could support the climate-sensitive modeling workflow for water system management and
informed decision-making regarding future climate and urbanization pathways.
CONCLUSION

This research investigates model complexity vs. accuracy trade-offs considering the
linkages between climate and seasonal water demands for arid western U.S. municipal water
systems. The substantial year-to-year climate variability of Salt Lake City Department of Public
Utilities serves as a case study to explore the prediction accuracy limitations of climate-
independent models (i.e., low complexity) and demonstrate how increases in model complexity
(i.e., novel data-driven climate-sensitive model frameworks) can increase prediction skill. Using
testing scenarios examining model skill to extreme wet to extreme dry climate conditions, we find
the climate-independent model to overestimate monthly demands up to 90% and seasonally up to
40%. We attribute the errors to low model complexity and identify potentially severe management
implications concerning supply acquisition, budgeting, and overall water system management as
climate conditions trend toward a drier state. We develop climate-sensitive water demand models
using ordinary least-squared (OLS), multilayered perceptron (MLP), and random forest (RFR)
algorithms to investigate how models of increased complexity influence prediction accuracy. The
climate-sensitive models produced measurable reductions in the overall prediction bias compared
to the climate-independent model across wet, dry, and average testing scenarios (3.4% vs. -27.3%)
and over a 5-year holdout dataset (0.83% vs. -19.0%), with the OLS algorithm demonstrating the

highest accuracy during dry conditions and enhancing the understanding of climate-demand
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interactions. The model accuracy vs. complexity comparison identified the OLS algorithm as the
ideal balance between interpretability and prediction accuracy.

Applying data-driven ML techniques in the climate-sensitive modeling workflow
demonstrated significant improvements in model accuracy compared to traditional econometric-
based climate-independent models and highlights opportunities for future work to advance water
system management. We encourage future research to apply the climate-sensitive ML framework
to other municipal water systems, where there may be stronger non-linear predictor-demand
relationships that favor more complex ML algorithms. Additional research opportunities include
applying probabilistic algorithms, exploring ensemble modeling strategies, and further
decomposing service area water use to advance climate-sensitive demand modeling workflows.

Given the projected changes in supply from a changing climate, the demonstrated
improvements in monthly, seasonal, and annual water demand prediction accuracy using more
complex climate-sensitive water demand estimation frameworks demonstrate the capabilities to

advance water system management and enhance resilience to climate vulnerabilities.
DATA AVAILABILITY

This research uses open-source Python v3.8.5 software for all ML applications and the models
are at the following GitHub: https://github.com/whitelightning450/Water-Demand-Forecasting.

The repository contains all data to train and run the CSD-WDM.

SUPPORTING INFORMATION
“Additional supporting information may be found online under the Supporting Information tab for
this article: a description of the land-cover feature engineering process and figures describing Salt

Lake City Department of Public Utilities water use.”
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Tables
Table 1.  The long-term record of Salt Lake City Department of Public Utilities (SLCDPU)
water use from 1980 - 2017 exhibits high seasonal (i.e., change in water use from month to month)

and high interannual (i.e., large deviations of monthly use between years) variability.

Month Minimum Mean Maximum o

Apr* 430 720 1010 140
May* 610 1110 1520 250
Jun* 1090 1720 2180 280
Jul* 1470 2070 2640 280
Aug* 1280 1930 2390 280
Sep* 1030 1440 1840 210
Oct* 600 870 1230 160
Season* 1060 1410 1690 170
Season** 79.1 105.1 125.7 13.0

* units in Ipcd

** ynits in Mm?>
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Table 2. Historical monthly per-capita demands (Ipcd) calculated using the historical water records

of SLCDPU and equation 1.

Nov-Mar Apr Mar Jun Jul Aug Sep Oct
590 730 1130 1750 2110 1970 1090 890
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Table 3. The testing scenarios cover a range of climate conditions from wet to dry and display
how recent years have trended drier than the historical record based on annual snowfall from the

Alta Guard station located in the headwaters of Little Cottonwood Canyon, Utah.

S . Annual A Mean Return
Year cgnarlg Snowfall Snowfall Interval
Classification
(cm) (cm) (yrs)
2008 Wet 1,660 399 15
2015 Dry 680 -582 150
2017 Average 1,347 85 2
2018 Dry 731 -530 70
2019 Average 1,206 -56 2
2020 Average 1,056 -205 4
2021 Average 949 -312 5
2022 Dry 717 -545 85
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Table 4. The climate-independent model demonstrates a large negative PBias for all testing

scenarios, with dry conditions leading to greater error and reduced prediction accuracy. The

climate-sensitive Ordinary Least Squared (OLS), Multilayered Perceptron (MLP), and Random

Forest (RFR) models display an improvement in prediction accuracy compared to the climate-

independent method. The OLS and RFR models demonstrate the most refined predictive capability

of the models evaluated.

Scenario Model Pbias (%) RMSE (Ipcd) RMSE (x10°m®) KGE
Total Climate-Independent -27.3 294 10.3 0.67
OLS 3.4 74 2.6 0.96

MLP -2.5 153 5.6 0.86

RFR -1.7 109 4.0 0.93

Wet Climate-Independent -12.1 145 5.1 0.81
OLS 6.04 93 3.2 0.89

MLP 8.0 91 33 0.91

RFR -2.3 136 5.0 0.94

Dry Climate-Independent -39.7 363 12.7 0.48
OLS 0.2 48 1.7 0.98

MLP -13.8 181 6.6 0.68

RFR -7.5 108 3.9 0.82

Average Climate-Independent -33.4 330 11.5 0.62
OLS 3.3 74 2.6 0.96

MLP -4.3 170 6.2 0.84

RFR 3.6 73 2.7 0.94

2018-2022  Climate-Independent -19.0 293 10.7 0.66
OLS 0.8 165 6.0 0.79

MLP -6.0 237 8.7 0.62

RFR 0.003 172 6.3 0.81
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Table 5. All climate-sensitive models demonstrate a large percentage reduction in error compared

to the climate-independent model. Seasonal water use refers to the period between April and

October of increased outdoor water demand.

Annual Annual Seasonal Seasonal

Scenario Model Prediction = Error Prediction  Error
(Mm?) (%) (Mm’) (%)
Wet Climate-Independent 135 6.2 108.0 7.9

OLS 112 -16.9 92.4 -99.0

MLP 117 -10.6 91.9 -6.5
RFR 123 -5.8 97.5 1.7

Dry Climate-Independent 135 36.1 108.0 34.0
OLS 101 -0.8 78.8 0.1

MLP 116 10.1 93.7 17.6
RFR 110 5.6 87.4 9.9

Average Climate-Independent 135 30.8 108.0 314
OLS 104 -2.8 82.4 1.0
MLP 112 0.8 90.0 8.5
RFR 109 0.5 87.9 8.0

2018-2022  Climate-Independent 135 20.2 108.0 21.7
OLS 112 -4.8 90.3 3.6

MLP 120 -0.2 97.9 11.6
RFR 113 -3.7 91.1 5.5

* 5-year average
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Table 6. The Correlation Bias Reduction with Recursive Feature Elimination (CBR-RFE) feature

selection process identifies the optimal predictors of monthly per-capita demand. Using the

predictors in the Ordinary Least Squares (OLS) algorithm communicates the statistical

relationships to the respective monthly demands with the respective variable coefficients as shown

below.
Predictor Apr May Jun Jul Aug Sep Oct
Population Density! -0.3 -0.1
Mar LCC Streamflow? -0.2 0.2
Apr LCC Streamflow? 0.1 0.1
May LCC Streamflow? -0.4
May BCC Streamflow? 0.2
Season Snowfall® 11.2
Apr Mean Temperature* 21.3 33.3 -16.0 22.5 11.7 15.8
Apr Precipitation® -1.2 -1.1
May Mean Temperature® 54.1 56.0 36.1 454 12.4 -7.9
May Precipitation’ -4.0
Jun Mean Temperature* 3.1 -14.9
Jun Precipitation’ -7.4 1.5
Jul Mean Temperature* 118.5 3.5 -28.2
Aug Mean Temperature* 58.5 45.9
Aug Precipitation’ -6.8
Sep Mean Temperature® 30.7
Sep Precipitation® 3.6
Oct Mean Temperature* 21.6

! change in Ipcd per persons/km?
2 change in Ipcd per cms of streamflow (x 107%)
3 change in Ipcd per cm of snow

* change in Ipcd per °C
> change in Ipcd per mm of liquid precipitation
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Figure Captions
Figure 1. The Salt Lake City Department of Public Utilities (SLCDPU) provides constituents with
high-quality snowpack-driven surface water supplies (i.e., up to 60% of the annual supply) from

four key watersheds in the adjacent Wasatch Mountains (Collins & Associates, 2019).

Figure 2. The climate-independent model exhibits an average -27% PBias (A., B.) across all
climate scenarios, with drought conditions severely challenging the prediction accuracy of the
model. The climate-sensitive models (C. - H.) display a prediction accuracy improvement for wet,
dry, and average climate conditions. The Ordinary Least Squares (OLS) (C., D.) and Random
Forest (RFR) (G., H.) capture the influences of climate on municipal water demands with improved
prediction skill compared to the multilayered perceptron model (MLP) (E., F.). The black error
bars within the OLS predictions (C.) communicate the April to October predictions to a 95%

confidence interval.

Figure 3. The climate-independent model exhibits an average -19% PBias (A., B.) across the
2018-2022 forecast period, with the average and dry conditions of 2021 and 2022, respectively,
challenging model accuracy to a greater degree than the other years. The climate-sensitive models
(C. - H.) display a prediction accuracy improvement for the dry and average climate conditions
experienced during the 2018-2022 period, with the OLS (C., D.) and RFR (G., H.) demonstrating
greater prediction skill than the MLP model, which tends to over predict demands (PBias -6.0\%).
The black error bars within the OLS predictions (C.) communicate the April to October predictions

to a 95% confidence interval.
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Figure 4. By varying the monthly air temperature and precipitation as percentages of normal
within the bounds of the historical record, the climate-sensitive OLS model can produce a range
of annual volumetric demands reflecting the influences of dynamic climate conditions to support

proactive water system management.
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