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Abstract
Compound dry and hot events (i.e. concurrent or consecutive occurrences of dry and hot events),
whichmay cause larger impacts than those caused by extreme events occurring in isolation, have
attractedwide attention in recent decades. Increased occurrences of compound dry and hot events in
different regions around the globe highlight the importance of improved understanding andmodeling
of these events so that they can be tracked and predicted ahead of time. In this study, amonitoring and
prediction systemof compound dry and hot events at the global scale is introduced. Themonitoring
component consists of two indicators (standardized compound event indicator and a binary variable)
that incorporate both dry and hot conditions for characterizing the severity and occurrence. The two
indicators are shown to performwell in depicting compound dry and hot events during June–July–
August 2010 inwesternRussia. The prediction component consists of two statisticalmodels, including
a conditional distributionmodel and a logistic regressionmodel, for predicting compound dry and
hot events based on ElNiño–SouthernOscillation, which is shown to significantly affect compound
events of several regions, including northern SouthAmerica, southernAfrica, southeast Asia, and
Australia. Thesemodels are shown to performwell in predicting compound events in large regions
(e.g. northern SouthAmerica and southernAfrica) duringDecember–January–February 2015–2016.
Thismonitoring and prediction system could be useful for providing early warning information of
compound dry and hot events.

1. Introduction

Droughts and hot extremes may cause severe impacts
on the society and ecosystem (Mishra and Singh
2011, Perkins et al 2012, Coumou and Robinson 2013,
Russo et al 2016, Oliver et al 2018). These two extremes
are interconnected and may occur concurrently or
consecutively (i.e. compound dry and hot events)
(Seneviratne et al 2012, Leonard et al 2014, Liu et al
2017, Miralles et al 2018, Russo et al 2019). Recent
decades have witnessed multiple compound dry and
hot events in different regions, such as Europe (2003),
China (2006), Russia (2010), southern US (2011), and
southern Africa (2015–2016) (Barriopedro et al 2011,

Hoerling et al 2013, Flach et al 2018, Herring et al 2018,
Wu et al 2019). The compound dry and hot event may
lead to impacts larger than the sum of impacts from
individual extremes and has attracted increased atten-
tion in recent decades (Seneviratne et al 2012, Kopp et al
2017, Zscheischler and Seneviratne 2017, Cheng et al
2019).

Numerous studies have analyzed the variability of
compound dry and hot events through observations
and model projections and highlighted increased
occurrences of compound events (Beniston 2009, Hao
et al 2013, Mazdiyasni and AghaKouchak 2015,
Sharma and Mujumdar 2017, Zhou and Liu 2018,
Chen et al 2019). For example, Zscheischler and
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Seneviratne (2017) showed an increased likelihood of
hot and dry seasons in many regions (e.g. southern
Africa and central Europe), which may result from
both the warming trend and the strengthened depend-
ence between precipitation and temperature. Zhou
and Liu (2018) investigated the likelihood of com-
pound extremes in China based on the copula model
and found increased occurrences of compound hot
and dry events in the warm season over southwestern
and northeastern China. The increased occurrences
and large impacts of compound dry and hot events in
different regions across the globe call for improved
understanding of underlying mechanisms as well as
reliable early warning. Since both dry and hot events
may result from large scale global circulations, com-
pound dry and hot events have been shown to be
linked to common forcing factors (e.g. El Niño–
Southern Oscillation, or ENSO) (López-Moreno et al
2011, Seneviratne et al 2012, Kopp et al 2017). Pre-
vious studies have explored the potential predictability
of compound dry and hot events based on ENSO. For
example, Hao et al (2019) proposed to employ the
meta-Gaussianmodel for the prediction of compound
events in southernAfrica based on ENSO.

Due to large impacts of droughts and hot
extremes, a variety of information systems at regional
and global scales have been established for the mon-
itoring and prediction of these events (Beguería et al
2010, Vicente-Serrano et al 2010, Hao et al 2014,
Nijssen et al 2014, Yuan et al 2015, Zink et al 2016). For
example, based on the standardized precipitation eva-
potranspiration index (SPEI), a global drought mon-
itoring system has been developed to track drought
conditions over global land areas (https://spei.csic.
es/map/) (Beguería et al 2010, Vicente-Serrano et al
2010). Yuan et al (2015) developed the Princeton glo-
bal seasonal hydrologic forecast system for hydrologic
drought forecasting based on climate forecast and
variable infiltration capacity model. Zink et al (2016)
developed an online platform for drought monitoring
in Germany based on soil moisture estimate of the
root zone from a hydrologic model on a daily basis.

The large impacts from compound dry and hot events
highlight the necessity to track their conditions and
predict their occurrences ahead of time; however, an
information system for monitoring and predicting
compound dry and hot events is still lacking.

The objective of this study is to develop amonitor-
ing and prediction system of compound dry and hot
events at the global scale. Data and methods for the
development of the system are introduced in section 2.
Results of monitoring and prediction are presented in
section 3, followed by the discussion and conclusion in
section 4.

2.Monitoring and prediction system

In the study, a compound dry and hot event is defined
based on monthly precipitation and temperature to
illustrate different components of the system. The
standardized compound event indicator (SCEI) and a
binary variable are used for characterizing compound
events at the global scale. The prediction component
consists of predicting the severity (i.e. SCEI) and
occurrence (i.e. the binary variable) based on the
conditional distribution model and logistic regression
model, respectively (Hao et al 2018a, Hao et al 2019).
The framework of different components of the system
is summarized in figure 1 and will be introduced in
detail in the following sections.

2.1.Data
Global precipitation and temperature data were
obtained from the reanalysis product of modern-era
retrospective analysis for research and applications,
version 2 (MERRA-2), which provides global estimates
of land surface conditions for the period 1980—
present at a spatial resolution of 0.5°×0.625° (Gelaro
et al 2017, Reichle et al 2017a). This dataset has been
shown to perform better than its previous versions
and is thus selected in this study (for the period
1980–2018). Two types of precipitation products are
available in the MERRA-2 system (one is generated by
atmospheric models and the other is corrected based

Figure 1.The framework of the globalmonitoring and prediction systemof compound dry and hot events.

2

Environ. Res. Lett. 14 (2019) 114034

https://spei.csic.es/map/
https://spei.csic.es/map/


on observations). The corrected MERRA-2 precipita-
tion, which involves merger and disaggregation of
observational products and model estimates, were
used in this study (Reichle et al, 2017b). Another
dataset of global monthly precipitation and temper-
ature from 1951 to 2016 at 0.5° spatial resolution was
obtained from the climatic research unit (CRU)
(Harris et al 2014). This dataset provides a relatively
longer record of precipitation and temperature to
extract compound dry and hot events and is also used
in this study.

The Niño 3.4 Sea Surface Temperature (SST) index
(NINO34), defined as the area averaged SST from 5S-
5N and 170–120W,was used as the ENSO indicator for
the prediction of compound dry and hot events. In
addition, indices of Pacific Decadal Oscillation (PDO)
and North Atlantic Oscillation (NAO) were also used
for analyzing their impacts on compound dry and hot
events. These data were obtained from the Global Cli-
mate Observing System (GCOS) Working Group on
Surface Pressure (WG-SP) (https://esrl.noaa.gov/psd/
gcos_wgsp/Timeseries/).

2.2. Indicators andmonitoring component
The drought condition was characterized by the
standardized precipitation index (SPI) based on accu-
mulated precipitation of different time scales (e.g.
3 month) (McKee et al 1993). The standardized
temperature index (STI) was employed to assess the
hot condition and was computed in a similar way to
the SPI. Usually, a distribution function was fitted to
precipitation (or temperature) to estimate the mar-
ginal probability, which was then transformed to a
standardized index based on the standard normal
distribution. To avoid assumptions of distribution
forms, the empirical Gringorten plotting position
(Gringorten 1963)was employed to estimate marginal
probabilities and compute the SPI and STI based on
precipitation and temperature of June–July–August
(JJA) and December–January–February (DJF) (i.e.
3 month time scale) for the period from 1980 to 2018.
Specifically, the empirical probability for each period i
based on observations of sample size n was estimated
as: P(xi)=(mi−0.44)/(n+0.12), where mi is the
number of occurrences xk£xi (1£k£n). To facil-
itate statistical modeling, the NINO34 was also
transformed into a standardized index (i.e. SNINO)
using the samemethod.

A compound dry and hot event was defined by low
precipitation (i.e. low SPI) and high temperature (i.e.
high STI) of the same period. Two types of indicators
of compound dry and hot events were defined in this
system. The first indicator is the SCEI derived from the
bivariate distribution function of precipitation (X) and
temperature (Y) (or SPI and STI) (Hao et al 2019). Spe-
cifically, the joint probability distribution of low pre-
cipitation and high temperature can be expressed as:

   > = -( ) ( ) ( )
( )

P X x Y y P X x P X x Y y, , .

1

A variety of distribution families for estimating the
distribution in equation (1), such as copula (Genest
and Favre 2007, Liu et al 2015), have been used for
deriving the joint distribution of compound events
(Bevacqua et al 2017, Zscheischler et al 2017, Ribeiro
et al 2019). To avoid the assumption of bivariate dis-
tribution forms, we derive the joint probability in
equation (1) following the concept of Gringorten plot-
ting position as follows:

=
-
+

( ) ( )P x y
n

n
,

0.44

0.12
, 2i i

i

where n is the length of observations; ni is the number
of occurrences xk�xi and yk>yi (1�k�n).

Since the joint probability in equation (1) is not
uniformly distributed, an empirical distribution F
(based on the Gringorten plotting position) can be fit-
ted to the joint probability to remap it into the uni-
form space (Mo and Lettenmaier 2014). Following the
similar methodology in computing the SPI in the uni-
variate case, the standardized index of compound dry
and hot event can be derived by transforming the
remapped joint probability through the standard nor-
mal distributionФ. Specifically, the SCEI based on the
joint probability of precipitation and temperature can
then be expressed as (Hao et al 2019).

= F >- ( ( ( ))) ( )F P X x Y ySCEI , . 31

Lower SCEI values indicate more severe condi-
tions of compound dry and hot events. The advantage
of this indicator is that it can be used to characterize
the severity of a compound dry and hot event.

The second indicator is a binary variable (Z=1
for occurrence and Z=0 for non-occurrence), which
indicates the occurrence based on precipitation (P)
and temperature (T) (or based on SPI and STI). For
specific thresholds p0 and t0 of precipitation and temp-
erature, respectively, the occurrence of a compound
dry and hot event can be expressed as:


=

>⎧⎨⎩ ( )Z
P p T t1, ,

0, otherwise
. 40 0

This indicator can be obtained simply by assessing
the concurrence of low precipitation and high temper-
ature for a specific period. For example, a compound
dry and hot event can be defined to occur (i.e. Z=1)
when precipitation is lower than or equal to the 50th
percentile (P�P50) and temperature is higher than
the 50th percentile (T>T50). However, it falls short
in characterizing severity, since there are only two
values (1 for occurrence and 0 for nonoccurrence). To
alleviate this shortcoming, we defined five thresholds
of precipitation and temperature based on different
percentiles, including P50/T50, P40/T60, P30/T70,
P20/T80, and P10/T90, for each period JJA and DJF for
each grid. The compound event was classified into 5
categories based on these five levels of occurrences for
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characterizing compound dry and hot conditions.
When the threshold value becomes extreme (e.g. from
P50/T50 to P10/T90), the number of occurrences gen-
erally decreases (figure S1 is available online at stacks.
iop.org/ERL/14/114034/mmedia). The occurrence
of a compound event based on the threshold P10/T90
indicates more severe conditions than that based on
the thresholdP50/T50.

2.3. Prediction component
2.3.1. Conditional distributionmodel
The SCEI was used as the predictand for predicting the
severity based on antecedent SCEI and SNINO, which
represents the persistence and external forcing, respec-
tively (Hao et al 2019). Specifically, the 1 month lead
prediction of SCEI for a period t (Wt+1) can be
achieved based on the conditional distribution given
two predictors Wt and Xt (SNINO) which can be
expressed as:

+( ∣ ) ( )P W W X, . 5t t t1

By assuming a multivariate normal distribution of
the three standardized variables (SPI, STI, and
SNINO), the conditional distribution in equation (5)
is essentially a normal distribution with mean μ and
variance σ2 (Wilks 2011, Hao et al 2019). The condi-
tionalmeanμ can be regarded as the predicted severity
of the compound event. The Pearson correlation coef-
ficient between observed and predicted SCEI was used
to evaluate the prediction skill of the conditional dis-
tributionmodel.

2.3.2. Logistic regressionmodel
For the prediction of occurrences of compound events
(Z=1), the logistic regression model was employed
and can be expressed as (Hao et al 2018a):

p
p

a b
-

= +
⎡
⎣⎢

⎤
⎦⎥ ( )xln

1
, 6

where π is the probability of occurrence P(Z=1|x); a
is the constant and b is the regression coefficient; x is
the predictor (i.e. NINO34). The 1 month lead predic-
tion of the probability of occurrences of a compound
dry and hot event (i.e.Z=1) can then be expressed as:

a b
= =

+ - +
+( ∣ )

[ ( )]
( )P Z x

x
1

1

1 exp
. 7t

t
1

The Brier Skill Score (BSS)was used to evaluate the
probabilistic prediction skill of the logistic regression
model, which was defined as (Wilks 2011, Lepore et al
2017):

å
å

= -
-

-
=

=

( )

( )
( )

P O

R O
BSS 1 , 8i

n
i i

i

n
i i

1
2

1
2

where n is the number of periods (or instances) of
prediction; Pi is the predicted probability for period i;
Oi=1 if the compound event in observations occurs
and Oi=0 otherwise; Ri is the reference prediction,
which is defined as the climatology frequency of
occurrences of compound dry and hot events during
the period 1980–2018. The BSS ranges from −∞ to 1
with a positive value indicating skillful prediction (i.e.
better prediction performance than the reference
prediction).

3. Results

3.1.Monitoring of compound dry and hot events
The compound dry and heat wave event during 2010
summer in Russia (Barriopedro et al 2011, Zscheischler
et al 2018), which is among the most severe compound
dry and hot events in historical records, was used to
illustrate themonitoring component of the system. The
individual SPI and STI during JJA 2010 at the global

Figure 2.Monitoring of compound dry–hot conditions for the period June–July–August (JJA) of 2010 at the global scale. (a) SPI.
(b) STI. (c) SCEI. (d)Occurrences based on different thresholds (1–5 in the color bar indicates the occurrence based on the thresholds
P50/T50, P40/T60,P30/T70,P20/T80, and P10/T90, respectively).
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scale is shown in figures 2(a), (b). Lower SPI and high
STI values during JJA in western Russia (and eastern
Europe) indicate severe dry and hot conditions. The
monitoring of this compound event based on SCEI is
shown in figure 2(c). The SCEI values were around
−1.5 to −2.5 for large regions in western Russia (and
eastern Europe), indicating severe conditions of com-
pound dry and hot events. The monitoring of the
occurrence of this compound event based on 5
combinations of thresholds is shown in figure 2(d).
Occurrences of compound events exceeding the
P10/T90 threshold during this period were shown for
large regions of western Russia, implying severe condi-
tions of this compound dry and hot event. Other
regions with lower values of SCEI and different levels of
occurrences included parts of India and northern
China, where concurrent droughts and high temper-
ature anomalies during summer 2010 have been shown
in previous studies (Schubert et al 2014, Panda et al
2017). We also assessed other historical occurrences of
compound dry and hot events and overall the two
indicators performed well in identifying historical
compound events (not shown).

3.2. Prediction of the severity and occurrence
3.2.1. Predictor assessment
ENSO is a commonly used predictor for precipitation
and temperature extremes across the globe and it tends
to peak in boreal winter (Neelin et al 2000, Wang et al
2012, Yeh et al 2018). Thus, we focused on the
prediction of compound dry and hot events during DJF.
In this section, we assessed the validity of ENSO as the
predictor by investigating its impact on compound dry
andhot events duringDJF. The lag 1month and3month
correlation coefficient (r) between SCEI of DJF and
NINO34 inprevious seasons (i.e.November–December–
January (NDJ), September–October–November (SON))
is shown in figures 3(a), (b). Significant (and negative)

correlationcoefficients (at the0.05 significance level)were
found in large regions, including northern North Amer-
ica, northern South America, southern Africa, southeast
Asia, and parts of Australia. This implies that lower SCEI
values (or more severe compound event conditions) are
associated with higher values of SNINO during DJF (or
ElNiño).

We used the threshold P50/T50 to define the occur-
rence of compound dry and hot events. This setting
enables the extraction of a relatively large number of
occurrences for statistical modeling of compound
events. Significant (and positive) regression coeffi-
cients β (at the 0.05 significance level) of lag 1 month
and 3 month in equation (6) were used to assess the
relationship between occurrences of compound
events during DJF and NINO34 in previous seasons
(NDJ and SON), which is shown in figures 3(c), (d).
Similar to figures 3(a), (b), regions with significant
(and positive) β mainly located in northern South
America, southern Africa, southeast Asia, and parts of
Australia. The positive values of β imply more occur-
rences of compound dry and hot events with higher
values of NINO34 during DJF (or during El Niño
years) in these regions.

For certain limited regions (e.g. southern North
America), the opposite pattern of relationships
between ENSO and compound events is shown (i.e.
significant positive r and negative β). This indicates
that LaNiña (or lowNINO34 values) is associatedwith
increased occurrences of compound dry and hot
events in southern North America. Themain reason is
that during La Niña, the Pacific jet stream often tends
to shift northward, leading to dry and hot conditions
in southernUnited States (Cook and Schaefer, 2008).

In previous sections, only 39 years of monthly pre-
cipitation and temperature data from MERRA-2 (i.e.
1980–2018) were used to evaluate the predictor. The
number of compound dry and hot events extracted

Figure 3.The correlation coefficient between SCEI andNINO34 forDJF (a), (b) and the logistic regression coefficient forDJF (c),
(d) for lag-1month and lag-3month at the global scale.
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from historical records may not be sufficient for statis-
tical modeling in certain regions. To address the
potential uncertainty of datasets, we used the CRU
data with a longer record (1951–2016) to assess ENSO
impacts. The correlation coefficient (r) between SCEI
and NINO34 and the regression coefficient (β) from
the logistic regression model of lag 1 month and
3 month based on the CRU data are shown in figure
S2. Overall, similar pattern of impacts of ENSO on
compound dry and hot events is shown (negative r and
positive β in regions such as northern South America
and southern Africa). These results indicate that
ENSO provides a good predictor for the prediction of
compound events in these regions.

3.2.2.Model validation
To assess the prediction skill of the two prediction
models, the leave-one-out cross validation (LOOCV)
was used for the period from 1980 to 2018 (n=39), in
which the fitting procedure is repeated n times, each
time with a sample of size n−1 by leaving out one
sample for prediction and evaluation (Wilks 2011).
For the prediction of SCEI, the positive correlation
(significant at the 0.05 significance level) between
observed and predicted SCEI values (1 month and
3 month lead time) of DJF during 1980–2018 based on
LOOCV is shown in figure S3. Due to the persistence
of SCEI, correlation coefficients between observations
and 1 month lead predictions is high for large land

areas. When the lead time increases to 3 month, high
correlation coefficients between observations and
predictions are mainly shown in southern US, north-
ern South America, southern Africa, southeast Asia
and parts of Australia. For the probabilistic prediction
of occurrences, the BSS for the 1 month and 3 month
lead prediction is shown in figure S4. Skillful predic-
tions are shown in regions with significant relation-
ships between ENSO and occurrences of compound
dry and hot events (e.g. positive BSS values in northern
South America and southern Africa). Overall, these
results show that ENSO provides skillful prediction of
compound events during DJF for 1 month and
3 month lead time for regions including southern US,
northern South America, southern Africa, southeast
Asia and parts of Australia.

3.2.3.Model application
Based on the analysis of the predictor and prediction
skill above, we then applied the two models to predict
compound events during DJF 2015–2016 as a case
study. Themonitoring of the compound event for this
period is shown in figures 4(a), (b). From figure 4(a),
the SCEI is particularly low in regions including
northern South America, northern and southern
Africa, southeast Asia, parts of Australia, and northern
Russia. From figure 4(b), the occurrence of different
categories of compound events resides in similar
regions (e.g. occurrences in northern South America

Figure 4.Observation and prediction (lead time L=1month and 3months) of the compound dry and hot events ofDJF 2016 at the
global scale. (a)Observed SCEI; (b) observed occurrences based on different thresholds. (c), (e) 1 month and 3 month lead predictions
of SCEI. (d), (f) 1 month and 3 month lead predictions of the occurrence based on the threshold P50/T50.
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and southern Africa based on the threshold P10/T90).
These patterns of compound events are generally
consistent with previous studies showing both
drought and hot conditions for this period in these
regions (Herring et al 2018), such as northern South
America, southern Africa (Yuan et al 2018), and
southeast Asia (King et al 2016, Christidis et al 2018).

The prediction of the SCEI and occurrence is first
illustrated at one grid to show the application of the
two models. The observed SCEI values and occur-
rences of compound events during DJF from 1980 to
2018 for one grid in southern Africa (longitude: 22.5,
latitude: −20) are shown in figure 5, which indicates
historical compound dry and hot events during cer-
tain periods, such asDJF 2015–2016. The 1 month and
3 month lead prediction of the SCEI and occurrence
from the two models based on LOOCV is shown in
figures 5(a) and (b), respectively. In figure 5(a), the
correlation between observations and predictions of
SCEI values is significant and relatively high (0.76 and
0.46 for 1 month and 3 month lead prediction, respec-
tively). For the predicted probability of occurrences in
figure 5(b), if 0.5 is selected as the threshold to define
the occurrence, the probabilistic prediction from the
logistic regression model performs well in identifying
a large number of historical occurrences of compound
events (e.g. during DJF 2015–2016). For example, the
1 month and 3 month lead prediction of the prob-
ability of occurrences of compound dry and hot events
during DJF 2015–2016 is 0.91 and 0.90, respectively,
indicating high likelihoods of occurrences during this
period.

The 1 month and 3 month lead prediction of SCEI
over global land areas is shown in figures 4(c), (e). The
low SCEI values from the prediction generally

resemble observations in figure 4(a) for large regions
(e.g. northern South America, southern Africa, south-
east Asia). In addition, the 1 month and 3 month lead
prediction of occurrences is shown in figures 4(d), (f).
Higher probability of occurrences of compound dry
and hot events is predicted in similar regions to those
with low SCEI values from the prediction in
figures 4(c), (e), which is consistent with observed
occurrences in figure 4(b). The relatively good predic-
tion performance of compound dry and hot events for
this period in these regions mainly results from the
strong impact of ENSO (Hao et al 2019). However, the
predictionmodel based on ENSO fails to predict com-
pound dry and hot events in certain regions, such as
northern Russia, where no significant impact of ENSO
is shown from figure 3. These results highlight the use-
ful early warning information of compound dry and
hot events from this system for regions with significant
impacts from ENSO. Meanwhile, improved under-
standing and modeling of compound events beyond
the region significantly affected by ENSO is a pressing
need to improve the system.

4.Discussion and conclusion

A global monitoring and prediction system for com-
pound dry and hot events at the global scale is
introduced in this study. The monitoring component
consists of two indicators incorporating both dry and
hot conditions, which is shown to perform well in
depicting the compound event during summer 2010
in western Russia. For the prediction component, the
conditional distribution model and logistic regression
model are employed for predicting the severity and

Figure 5. Illustration of the 1 month and 3 month lead prediction of the SCEI (a) and occurrence (b) of the compound dry and hot
event for a grid in southernAfrica based on leave-one-out cross validation (LOOCV).
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occurrence of compound dry and hot events based on
ENSO. These two models perform well in predicting
the compound dry and hot event during DJF
2015–2016 in large regions (e.g. northern South
America and southern Africa) for 1 month and
3 month lead time due to the strong impact of ENSO.

Though ENSO provides skillful prediction of
compound dry and hot events, a significant relation-
ship between ENSO and compound events exists only
for certain global land areas. Thus, influences of other
modes of climate variability (e.g. PDO and NAO) on
compound events need to be assessed to improve the
prediction of different regions. Similar to figure 3, we
show the impact of PDO on compound dry and hot
events based on lag 1 month and 3 month correlation
coefficient (r) and regression coefficient (β) for DJF
(significant at the 0.05 significance level) in figures S5
and S6 based on MERRA-2 and CRU data, respec-
tively. High values of PDO tend to increase the like-
lihood of compound dry and hot events (negative r
and positive β) in regions including northern North
America, northern South America, part of Australia
(Mantua and Hare 2002), which is roughly similar to
the impact of ENSO. Similarly, based on MERRA-2
and CRU data, NAO is shown to affect compound dry
and hot events in southern Europe and part of Medi-
terranean regions (figures S7, S8), which is consistent
with previous studies (Brandimarte et al 2011, López-
Moreno et al 2011). These results indicate that other
modes of climate variability can be employed to
improve the prediction of the system.

We mainly characterize compound dry and hot
events based on two indicators incorporating precipita-
tion and temperature at a monthly time scale. This
method can be applied to more variables or indicators
(e.g. SPEI) at finer time scales (e.g. define hot conditions
based on heat wave). A potential limitation of the predic-
tion component is that informationof dry andhot condi-
tions is combined into indicatorswhile their joint status is
not predicted explicitly. This can be alleviated by extend-
ing the conditional model in equation (5) to predict the
joint distribution function of dry and hot conditions
basedonESNO (Hao et al2018b). In addition, thepredic-
tion of compound events is achieved based on statistical
models, which rely on empirical relationships in histor-
ical records and generally fall short in capturing compli-
cated physical processes. To address this limitation,
seasonal prediction products from advanced general cir-
culationmodels (or GCMs) (e.g. North AmericanMulti-
Model Ensemble) (Doblas-Reyes et al 2013, Mcevoy et al
2016,Wood et al 2015, Schubert et al 2016) could also be
used for the prediction of compound dry and hot events
to improve the performance in different regions.
Results of this study will be available at the Global Com-
pound Dry-hot Monitoring and Prediction System
(GCDMaPS) website (gcdmaps.bnu.edu.cn). We stress
that the purpose of this system is to provide alternatives to
current efforts or systems in tracking droughts or hot

extremes, such as the Global Drought Monitor (https://
spei.csic.es/map/), with focus on compound events. This
system could be useful for tracking and predicting com-
pound dry and hot events at regional and global scales to
reduce their potential impacts.
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