
1.  Introduction
Stream temperature (Ts, temperature of water in a river) is an important variable: it not only exerts a strong 
influence on ecosystem health (Chapin et  al.,  2014; Marcogliese,  2001; Martins et  al.,  2012), water quality 
(Ducharne,  2008; Morrill et  al.,  2005; Zhi et  al.,  2021), and human water uses (Förster & Lilliestam,  2010; 
Madden et al., 2013; van Vliet et al., 2013), but also carries information about the source of water contributions 
in a hydrologic system (Du et al., 2020; Michel et al., 2020). In the face of climate change and widespread altera-
tion of streamflow (Virkki et al., 2022), understanding how stream temperature will change can be important for 
management of fish habitat and planning for power generation and other human uses (Du et al., 2022; Fellman 
et al., 2014; Vliet et al., 2016). Moreover, in headwater basins, Ts is a manifestation of hydrologic processes: 
groundwater contribution to streams has a low annual thermal variability and is often the critical source of cool 
water during base flow periods (Hare et al., 2021); surface runoff temperature is closer to air temperature (or 
snowmelt) and is more temporally dynamic; shallow subsurface flow is between these two extremes. These water 

Abstract  Although deep learning models for stream temperature (Ts) have recently shown exceptional 
accuracy, they have limited interpretability and cannot output untrained variables. With hybrid differentiable 
models, neural networks (NNs) can be connected to physically based equations (called structural priors) to 
output intermediate variables such as water source fractions (specifying what portion of water is groundwater, 
subsurface, and surface flow). However, it is unclear if such outputs are physically meaningful when only 
limited physics is imposed, and if structural priors have enough impacts to be identifiable from data. Here, 
we tested four alternative structural priors describing basin-scale water temperature memory and instream 
heat processes in a differentiable stream temperature model where NNs freely estimate the water source 
fractions. We evaluated models’ abilities to predict Ts and baseflow ratio. The four priors exhibited noticeably 
different behaviors in these two metrics and their tradeoffs, with some dominating others. Therefore, the better 
structural priors can be identified. Moreover, testing different priors yielded valuable insights: having a separate 
shallow subsurface flow component better matches observations, and a recency-weighted averaging of past 
air temperature for calculating source water temperature resulted in better Ts and baseflow prediction than 
traditionally employed simple averaging. However, we also highlight the limitations when insufficient physical 
constraints are implemented: the internal variables (water source fractions) may not be adequately constrained 
by a single target variable (stream temperature) alone. To ensure the physical significance of the internal fluxes, 
one can either employ multivariate data for model selection, or include more physical processes in the priors.

Plain Language Summary  A new framework called differentiable modeling combines the benefits 
from neural networks (NNs) and process-based models. This framework can learn from big data while the 
process-based model components (called prior knowledge, or priors) are intended to output intermediate 
physical variables. However, do such priors matter, can we tell if one set of priors is better than another, 
and do the intermediate outputs represent the intended physical concepts? We explore these questions with 
a differentiable stream temperature model where the NN replaces the hydrologic component and estimates 
parameters pertaining to the stream temperature module. The strong optimizing capability of NNs allows us 
to avoid some complexities and attribute the differences in model outcomes to the assumed priors. Testing 
different priors thus yielded many important lessons, for example, the need for having a separate shallow 
groundwater “bucket,” the benefit of placing more importance on recent air temperature when estimating 
groundwater temperature, and the importance of describing in-stream temperature. The results show lots of 
untapped potential with differentiable modeling and the data we have available.
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sources mix in the channel and further undergo instream thermal processes such as radiative heating and cool-
ing, shading, evaporation, and streambed friction and conduction. A significant departure of stream temperature 
from air temperature typically suggests influences from groundwater (Bundschuh, 1993; Hare et al., 2021) or 
reservoir operations (Amirkhani et al., 2016; Webb & Walling, 1995). Stream temperature data thus contain the 
signatures of different streamflow sources and may be useful in inferring difficult-to-measure variables such as 
thermal memory (the time frame over which the air temperature influences the groundwater) and the volume of 
groundwater influx to a stream reach.

Water temperature has often been predicted using process-based models (Dugdale et al., 2017; Markstrom, 2012; 
Meisner et al., 1988; Wanders et al., 2019) or statistical models (Benyahya et al., 2007; Detenbeck et al., 2016; Graf 
et al., 2019; Mohseni & Stefan, 1999; Siegel et al., 2022) with simplifying assumptions that are difficult to prove 
true or false. For example, the process-based stream temperature model component of the Precipitation-Runoff 
Modeling System (PRMS) (hereafter “SNTEMP”) (Markstrom, 2012; Regan & Markstrom, 2021), can assume 
that the temperatures of the surface runoff, shallow subsurface water, and groundwater are the averages of the 
air temperature in the most recent 1, 30, and 365 days, respectively (Sanders et al., 2017). The temperature of 
lateral flow entering the stream is then assumed to be a weighted average of these different sources based on 
their volumetric contributions to streamflow, and then instream thermal processes are considered to estimate the 
downstream water temperature. The assumption in Meisner et al. (1988), is similar to the assumption in SNTEMP 
but assumes no shallow subsurface component and sets the averaging length of air temperature impact on ground-
water temperature to multiple years (e.g., one or 2 years). The model from Wanders et al. (2019) introduced a 
different assumption for the water temperature lateral flow, adding bias terms and threshold functions to the 
surface flow and groundwater temperature calculations to compensate for the cooling of rain as it falls.

The uncertainty with these structural assumptions is substantial, and it is challenging to assess their quality 
because the structural uncertainty is intertwined with parametric uncertainty. If models perform poorly, the issue 
could be due to inadequate structures, suboptimal parameters, a combination of both (Draper, 1995; Loucks & 
Beek, 2017), or data uncertainty. Characterizing structural uncertainty is traditionally harder because for every 
set of model structures, we need to either find the optimal parameter set (highly ambiguous) or identify a range of 
functional parameters and assess their uncertainty (highly computationally expensive). Moreover, stream temper-
ature models are seldom benchmarked on the same data set (please refer to Table S1 in Supporting Informa-
tion S1 in Rahmani, Lawson, et al., 2021; Rahmani, Shen, et al., 2021), making the conclusions sometimes data 
set-dependent and difficult to generalize.

Since 2017, it has been demonstrated that deep learning (DL) networks (Shen, 2018; Shen et al., 2018), like long 
short-term memory (LSTM; Hochreiter & Schmidhuber,  1997), can learn to predict environmental variables 
including stream temperature with exceptionally high accuracy (Rahmani, Lawson, et al., 2021; Rahmani, Shen, 
et al., 2021; Rehana & Rajesh, 2023; Sadler et al., 2022; Weierbach et al., 2022; S. Zhu & Piotrowski, 2020; Zwart 
et al., 2023). LSTM has shown its strength and versatility in simulating hydrologic variables such as soil moisture 
(Fang et al., 2017, 2019; J. Liu et al., 2022; O & Orth, 2021), streamflow (Feng et al., 2020, 2021; Khoshkalam 
et al., 2023; Xiang et al., 2020), dissolved oxygen (Heddam et al., 2022; Zhi et al., 2023), snow water equivalent 
(Broxton et al., 2019; Meyal et al., 2020), stream nitrate concentration (Saha et al., 2023; Samarinas et al., 2020), 
and radiation (Y. Liu et al., 2020; F. Zhu et al., 2021). However, mostly used as a forward simulator in hydrol-
ogy, LSTM is also limited by its black-box nature: it does not provide an interpretable explanation of internal 
processes, and its intermediate variables lack physical meaning and thus cannot be compared against observations 
to diagnose the model's internal logic (Appling et al., 2022). Apart from LSTM, other machine learning models 
have also been leveraged to simulate stream temperature (Feigl et al., 2021; Sohrabi et al., 2017), but in most 
cases they similarly serve as black boxes.

To overcome DL’s limitations while benefiting from its ability to learn from big data, a new class of 
physics-informed machine learning models—“differentiable models”—has emerged. They harness the core tech-
nology behind DL, differentiable programming, while including process-based equations as model priors or 
constraints of the system (Shen et al., 2023). These models enable efficient and accurate calculations of gradients 
of the outputs with respect to the variables used in the model, and these gradients are used to update weights in the 
connected neural networks (NNs) or parameters in the model. Differentiable models can take basic model struc-
tures and assumptions from existing process-based models to serve as the backbone (i.e., structural priors) and 
then insert NNs to either provide parameter estimation or replace existing process descriptions. Varying degrees 
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of constraining physics-based structural priors can be imposed, ranging from a full physical structure or graph 
connectivity (Bindas et al., 2023) with NN-based parameterization, to limited physical constraints. The training 
is done in an “end-to-end” fashion using gradient descent, and the loss is only computed for the model’s final 
outputs on a large collection of data simultaneously. Because the supervising signal can be backpropagated from 
the loss function related to the output of the physical components, we do not need target data to directly supervise 
the outputs of the NNs, nor do we need to pretrain NNs as surrogate models— the NN training and physically 
based simulation can be done in one single stage.

Differentiable models can, to an extent, circumvent the intertwined parametric issues mentioned above because 
NNs can produce highly performant, robust, and well-generalized parameters by efficiently learning from big 
data, reducing the need for complex parameter interrogation. Within this paradigm, we first demonstrated the 
advantages of differentiable modeling in a method we call differentiable parameter learning (dPL) (Aboelyazeed 
et al., 2023; Tsai et al., 2021). Another advantage of the dPL framework over current parameter optimization 
methods is that it has orders of magnitude savings in computational power (because it leverages commonalities 
between sites and data points, as well as parallel computing). When NNs learn to predict physical parameters 
directly based on some raw input information and these parameters simultaneously impact the modeling results, 
there is no need for training data (or “ground truth” measurements) for these physical parameters or other inter-
mediate variables (which is highly beneficial, since such data almost never exist). It has been further shown that 
we can approach the state-of-the-art prediction performance of LSTM for streamflow using an interpretable, 
mass-conservative model (Feng et al., 2022) and even potentially obtain better performance with spatial extrap-
olation and projection of future trends (Feng, Beck, Lawson, & Shen, 2023). The untrained variables (those that 
were not provided as training targets but are calculated and output due to the physical priors) like evapotranspira-
tion also compared well with alternative estimates (Feng et al., 2022). Differentiable models leverage the advan-
tages of speed and scale (parameters can be rapidly estimated for many sites at once) offered by modern artificial 
intelligence development (Shen et al., 2023).

Although differentiable models have demonstrated strong potential, their configuration can be highly flexible 
so their ability to derive process insights remains to be explored. As mentioned above, differentiable models 
can be set up to be “NN-dominant” in that NN components estimate the bulk of the dynamical variables. For 
example, Kraft et al. (2022) sought to estimate physical fluxes including evaporation, runoff, and recharge using 
LSTM, and connected them using mass balance equations. However, for such systems, the physical significance 
of these fluxes are not guaranteed and the variance of such estimates may be high. In addition, because the deep 
network components are powerful at fitting to observation data, it is not yet clear if the structural priors matter 
to the prediction accuracy or if better priors can be identified within a hybrid framework. Unlike with a purely 
process-based model, there is a risk that the NN components of the model will more-than-competently adapt to 
and compensate for the unique weaknesses of each alternative structural prior such that accuracy of the combined 
system is always high and thus the best structural prior cannot be identified. This problem may occur when the 
implementations of physical constraints in a hybrid model lack balance, and those specific components of the 
model exhibit an excessive utilization of available freedom. For example, most water quality models depend on 
hydrologic simulations. A hybrid model which only relies on the physical constraints of water quality equations 
and excludes the hydrological constraints may be at risk of having large uncertainty.

In this work, we evaluate an NN-dominant hybrid model (an NN model constrained by structural priors of a 
stream temperature process-based model) with the purpose of not only predicting daily stream temperature, but 
also estimating the volumes and temperatures of streamflow sources (surface flow, shallow subsurface flow, and 
groundwater flow) and identifying the most effective model structure for predicting all of these variables. The 
viability of this approach hinges on the fact that stream temperature data contain information about hydrologic 
pathways, and with some structural assumptions (priors), the estimation of fluxes can be solved at large scales. 
Another key idea is that, based on our past experiences with the strong performance of differentiable models 
joined with LSTM, we hypothesize that the hybrid model will nearly optimally estimate parameters for a given 
structural prior and configuration, allowing us to reveal the limitations of the structural priors. The present system 
is “NN-dominant” but can be expanded to include more priors later. We apply multidimensional assessment to 
four different sets of structural priors, drawn from three existing process-based stream temperature models, and 
compare their performance and impacts on the learned relationships. We seek to address the following research 
questions.
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1.	 �How well can NN-dominant hybrid models trained only on Ts data predict Ts compared to purely data-driven 
models, and how much variance do they have in predicting baseflow fractions (which are internal untrained 
variables) given that they have only limited physics?

2.	 �Are instream processes necessary to achieve high simulation quality for daily stream temperature, and is 
the previously employed air temperature averaging approach the most suitable for approximating inflow 
temperature?

3.	 �Given the strong adaptive capability of LSTM, do different structural priors matter to the results of the hybrid 
model? That is, can we identify better priors?

2.  Methods
2.1.  Overall Framework

As a summary, our hybrid model (LSTM + mixing assumptions + physical instream thermal processes) followed 
the dPL approach (Figure 1a) first described in Tsai et al.  (2021) and then in Feng et al.  (2022). First, given 
forcing and attribute data for a basin, an LSTM unit predicts (a) daily fractions of water sources into the stream 
(lateral inflow); (b) convolutional parameters (θc) for calculating water temperature from air temperature for 
different water sources; and (c) some physical parameters (θ). Since this gives LSTM and the overall model lots 
of flexibility, we call it an NN-dominant system. Next, given various transit time assumptions, we estimate water 
source temperatures by convolving daily air temperature with kernels (defined by θc)—at the risk of oversim-
plifying the description, this convolution can be regarded as a recency-weighted average of air temperature over 
certain lengths of time. Lastly, after mixing water sources with a flow-weighted mean of source temperatures 
to obtain lateral flow water temperature, we used physical parameters (θ) and instream heat processes from 

Figure 1.  (a) The differentiable parameter learning workflow. Here, parameters include water source fractions, convolutional parameters for temperature calculation 
in water sources, and physical parameters for the stream temperature (SNTEMP) instream processes module. The blue dashed lines are the backpropagation paths for 
updating long short-term memory (LSTM) weights. “Assumptions” (blue boxes inside SNTEMP model) shows where different structural priors for thermal memory 
were implemented. (b) The traditional workflow in PRMS-SNTEMP, of which we only use the SNTEMP part in this work.
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SNTEMP to predict stream temperature at a downstream gauge (Figure 1a). This framework is most applicable 
to smaller, headwater basins where the river network can be represented by a single conceptual reach, otherwise 
a routing section should be added to the framework to convey runoff from upstream reaches to downstream. In 
practice, this conceptual representation also seems to be effective for medium-sized basins of around a few tens 
of thousands of square kilometers (Figure S1 in Supporting Information S1). This NN-dominant system does not 
require specification of the structural priors for the hydrologic component. This setup saves developmental effort, 
but subjects the system to larger uncertainty, which we are trying to understand in this work.

Regarding the structural priors for thermal memory, we considered three sets of basic assumptions existing in 
the literature: the original assumption in SNTEMP (Sanders et al., 2017) (hereafter SMRA17), the assumption in 
Meisner et al. (1988) (hereafter MRR88), and that of Wanders et al. (2019) (hereafter WVWBB19). They differ 
in the number of water storage components included, the length of the air temperature record that is convolved or 
averaged to estimate the temperature of each storage component, and the thresholds and biases that are applied. 
For example, both SMRA17 and WVWBB19 have three sources: surface runoff (sr), shallow subsurface water 
(ss), and groundwater (gw), whereas MRR88 only has surface runoff and groundwater. WVWBB19 applies 
offsets (biases) to air temperature to calculate sr temperature and assumes 5°C as the minimum gw temperature 
threshold, whereas the other two studies do not. The necessity of the instream processes is not entirely clear. 
Thus we also evaluated a model option (called “LSTM + mixing”) that did not involve the SNTEMP instream 
module and thus omitted radiative heating and cooling, shading, evaporation, and streambed friction and conduc-
tion (therefore only including the mixing assumptions). Besides these differences, we also considered variants 
with different convolutional lengths (n) and treatment of some SNTEMP instream parameters as either static or 
dynamic (θ). For each prior, we tested many configurations (Section 2.4) to exhaustively explore its limits.

All the hybrid models were trained on daily water temperature observations for 415 stations across the conter-
minous United States (CONUS) (Section 2.3). We evaluated the model with two metrics: the daily temperature 
simulation accuracy against observed data, and the correlation between the baseflow estimation of our model 
with a published alternative estimate based on baseflow recession analysis (Section 2.6.2). The remainder of this 
section describes each part of the model in detail.

2.2.  Differentiable Water Temperature Model

The main difference between the differentiable model and many other previous physics-guided frameworks is that 
the process-based model is written in a differentiable platform like those used for NNs. This approach makes it 
possible for the framework to seamlessly integrate both machine learning and process-based model parts and be 
trained as a unified model (Shen et al., 2023). The training process is “end-to-end,” with any parameters within 
the model being learnable by gradient descent, just like when a pure LSTM model is trained (indicated by the blue 
dashed-line arrows in Figure 1a for the gradient descent path from the loss function to the process-based part and to 
the NN part). Thus, there is no need to calibrate each component independently. In other words, the process-based 
model becomes a part of the NN with the added advantage of process transparency. Equations 1–4 (Table 1) serve as 
the key assumptions of the estimation framework by providing hypothesized constraints (structural priors) that force 
the LSTM to estimate physically meaningful water source fractions. We will test the effects of these constraints.

All these process-based and NN components were implemented in a machine-learning platform that supports 
automatic differentiation (thus, the model is programmatically differentiable) to enable end-to-end training of 
the hybrid model. We used the PyTorch platform (Paszke et  al.,  2017); however, similar platforms, such as 
Tensorflow (Abadi et al., 2016), JAX (Bradbury et al., 2021), and Julia (Bezanson et al., 2012), are also options 
for differentiable modeling. In theory, it is even possible to write the different parts in different differentiable 
languages; however, the gradient connectivity should be maintained.

2.2.1.  Long Short-Term Memory

The LSTM estimates water source fractions and optionally other parameter values for the source water tempera-
ture estimation, mixing module, and instream module (Figure 1a). This recurrent NN is a powerful tool for retain-
ing information for long timescales. LSTM equations, gates, and cells have been described in previous works in 
detail (Fang et al., 2017; Hochreiter & Schmidhuber, 1997) and are thus omitted here.

To standardize the LSTM inputs, streamflow values were divided by long-term mean annual precipitation and 
watershed drainage area to become a dimensionless variable to decrease the differences between large and small 
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Model Equations

LSTM-SMRA17 𝐴𝐴
{

𝑓𝑓 ′ 1∶𝑡𝑡
ss , 𝑓𝑓 ′ 1∶𝑡𝑡

gw , 𝜃𝜃1∶𝑡𝑡, 𝜃𝜃1∶𝑡𝑡𝑐𝑐

}

= LSTM
(

𝑥𝑥1∶𝑡𝑡, 𝐴𝐴1

)

  (1)

𝐴𝐴
{

𝑓𝑓 1∶𝑡𝑡
sr , 𝑓𝑓 1∶𝑡𝑡

ss , 𝑓𝑓 1∶𝑡𝑡
gw

}

= MA_adj
(

𝑓𝑓 ′ 1∶𝑡𝑡
ss , 𝑓𝑓 ′ 1∶𝑡𝑡

gw , 𝑄𝑄1∶𝑡𝑡
)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
gw = max

(

0, conv
(

𝑇𝑇
𝑡𝑡−𝑛𝑛gw∶𝑡𝑡

air
, 𝜃𝜃𝑡𝑡𝑐𝑐𝑐gw

))

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
ss = max

(

0, conv
(

𝑇𝑇
𝑡𝑡−𝑛𝑛𝑠𝑠𝑠𝑠∶𝑡𝑡

air
, 𝜃𝜃𝑡𝑡𝑐𝑐𝑐ss

))

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
sr = max

(

0, 𝑇𝑇 𝑡𝑡

air

)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡

lat
= 𝑓𝑓 𝑡𝑡

sr𝑇𝑇
𝑡𝑡
sr + 𝑓𝑓 𝑡𝑡

ss𝑇𝑇
𝑡𝑡
ss + 𝑓𝑓 𝑡𝑡

gw(𝑇𝑇
𝑡𝑡
gw + 𝑏𝑏opt) 

𝐴𝐴 𝐴𝐴 𝑡𝑡
𝑠𝑠 = SNTEMP (𝐴𝐴 𝐴𝐴 𝑡𝑡

lat
, 𝑇𝑇 𝑡𝑡−1

𝑠𝑠 , 𝜃𝜃𝑡𝑡, 𝐴𝐴2, 𝑥𝑥
𝑡𝑡

2
 )

LSTM-MRR88 𝐴𝐴
{

𝑓𝑓 ′ 1∶𝑡𝑡
gw , 𝜃𝜃1∶𝑡𝑡, 𝜃𝜃1∶𝑡𝑡𝑐𝑐

}

= LSTM
(

𝑥𝑥1∶𝑡𝑡, 𝐴𝐴1

)

  (2)

𝐴𝐴
{

𝑓𝑓 1∶𝑡𝑡
sr , 𝑓𝑓 1∶𝑡𝑡

gw

}

= MA_adj
(

𝑓𝑓 ′ 1∶𝑡𝑡
gw , 𝑄𝑄1∶𝑡𝑡

)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
gw = max

(

0, conv
(

𝑇𝑇
𝑡𝑡−𝑛𝑛gw∶𝑡𝑡

air
, 𝜃𝜃𝑡𝑡𝑐𝑐𝑐gw

))

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
sr = max

(

0, 𝑇𝑇 𝑡𝑡

air

)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡

lat
= 𝑓𝑓 𝑡𝑡

sr𝑇𝑇
𝑡𝑡
sr + 𝑓𝑓 𝑡𝑡

gw(𝑇𝑇
𝑡𝑡
gw + 𝑏𝑏opt) 

𝐴𝐴 𝐴𝐴 𝑡𝑡
𝑠𝑠 = SNTEMP

(

𝑇𝑇 𝑡𝑡

lat
, 𝑇𝑇 𝑡𝑡−1

𝑠𝑠 , 𝜃𝜃𝑡𝑡, 𝐴𝐴2, 𝑥𝑥
𝑡𝑡

2

)

 

LSTM-WVWBB19 𝐴𝐴
{

𝑓𝑓 ′ 1∶𝑡𝑡
ss , 𝑓𝑓 ′ 1∶𝑡𝑡

gw , 𝜃𝜃1∶𝑡𝑡, 𝜃𝜃1∶𝑡𝑡𝑐𝑐

}

= LSTM
(

𝑥𝑥1∶𝑡𝑡, 𝐴𝐴1

)

  (3)

𝐴𝐴
{

𝑓𝑓 1∶𝑡𝑡
sr , 𝑓𝑓 1∶𝑡𝑡

ss , 𝑓𝑓 1∶𝑡𝑡
gw

}

= MA_adj
(

𝑓𝑓 ′ 1∶𝑡𝑡
ss , 𝑓𝑓 ′ 1∶𝑡𝑡

gw , 𝑄𝑄1∶𝑡𝑡
)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
gw = max

(

5.0, conv
(

𝑇𝑇
𝑡𝑡−𝑛𝑛gw∶𝑡𝑡

air
, 𝜃𝜃𝑡𝑡𝑐𝑐𝑐gw

))

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
ss = max

(

0, 𝑇𝑇 𝑡𝑡

air

)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
sr = max

(

0, 𝑇𝑇 𝑡𝑡

air
− 1.5

)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡

lat
= 𝑓𝑓 𝑡𝑡

sr𝑇𝑇
𝑡𝑡
sr + 𝑓𝑓 𝑡𝑡

ss𝑇𝑇
𝑡𝑡
ss + 𝑓𝑓 𝑡𝑡

gw(𝑇𝑇
𝑡𝑡
gw + 𝑏𝑏opt) 

𝐴𝐴 𝐴𝐴 𝑡𝑡
𝑠𝑠 = SNTEMP

(

𝑇𝑇 𝑡𝑡

lat
, 𝑇𝑇 𝑡𝑡−1

𝑠𝑠 , 𝜃𝜃𝑡𝑡, 𝐴𝐴2, 𝑥𝑥
𝑡𝑡

2

)

 

LSTM + mixing 𝐴𝐴
{

𝑓𝑓 ′ 1∶𝑡𝑡
ss , 𝑓𝑓 ′ 1∶𝑡𝑡

gw , 𝜃𝜃1∶𝑡𝑡, 𝜃𝜃1∶𝑡𝑡𝑐𝑐

}

= LSTM
(

𝑥𝑥1∶𝑡𝑡, 𝐴𝐴1

)

  (4)

𝐴𝐴
{

𝑓𝑓 1∶𝑡𝑡
sr , 𝑓𝑓 1∶𝑡𝑡

ss , 𝑓𝑓 1∶𝑡𝑡
gw

}

= MA_adj
(

𝑓𝑓 ′ 1∶𝑡𝑡
ss , 𝑓𝑓 ′ 1∶𝑡𝑡

gw , 𝑄𝑄1∶𝑡𝑡
)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
gw = max

(

0, conv
(

𝑇𝑇
𝑡𝑡−𝑛𝑛gw∶𝑡𝑡

air
, 𝜃𝜃𝑡𝑡𝑐𝑐𝑐gw

))

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
ss = max

(

0, conv
(

𝑇𝑇
𝑡𝑡−𝑛𝑛𝑠𝑠𝑠𝑠∶𝑡𝑡

air
, 𝜃𝜃𝑡𝑡𝑐𝑐𝑐ss

))

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
sr = max

(

0, 𝑇𝑇 𝑡𝑡

air

)

 

𝐴𝐴 𝐴𝐴 𝑡𝑡
𝑠𝑠 = 𝑓𝑓 𝑡𝑡

sr𝑇𝑇
𝑡𝑡
sr + 𝑓𝑓 𝑡𝑡

ss𝑇𝑇
𝑡𝑡
ss + 𝑓𝑓 𝑡𝑡

gw(𝑇𝑇
𝑡𝑡
gw + 𝑏𝑏opt) 

Note. Explanations: x 1:t are the basin-averaged atmospheric forcings time series, from day 1 to day  t that consist of daily 
precipitation, minimum and maximum air temperature, day length, shortwave solar radiation, vapor pressure, and observed 
streamflow. A1 are the static attributes representing basin characteristics. 𝐴𝐴 𝐴𝐴 ′ 1∶𝑡𝑡

ss  , 𝐴𝐴 𝐴𝐴 ′ 1∶𝑡𝑡
gw  are the raw outputs of LSTM. MA is 

the moving average (MA) filter. 𝐴𝐴 𝐴𝐴 1∶𝑡𝑡
sr  , 𝐴𝐴 𝐴𝐴 1∶𝑡𝑡

ss  , and 𝐴𝐴 𝐴𝐴 1∶𝑡𝑡
gw  are the daily fractions of streamflow contributions coming from surface 

flow, subsurface flow, and groundwater flow. 𝐴𝐴 𝐴𝐴 𝑡𝑡
sr , 𝐴𝐴 𝐴𝐴 𝑡𝑡

ss , 𝐴𝐴 𝐴𝐴 𝑡𝑡
gw are the surface, subsurface, and groundwater temperatures. θ 1:t are 

the SNTEMP parameters (can be time-dependent or static), which are: light reduction factors due to riparian shading and 
topographic shading and no shading (these sum to 1 each day), two parameters for estimating stream width w from discharge 
Q (w = a × Q + b, in which a and b are the parameters), the Hamon coefficient for evaporation heat flux, and an optional 
bias term (bopt) for groundwater temperature. θc are the parameters for the convolutional filter (conv(), a cumulative gamma 
distribution) used to compute source water temperatures from recent air temperatures. ngw and nss are the number of days 
used in the convolutional filter for groundwater and subsurface flows. Tlat is the lateral flow temperature, which is calculated 
as a flow-weighted average of the temperatures of all water sources. A2 are the basin attributes that SNTEMP needs in 
order to model stream temperature at each time step: slope, elevation, and stream length. x2 are the dynamic daily forcings 
that SNTEMP needs, such as mean air temperature, solar radiation, flow rate, and vapor pressure. 𝐴𝐴 𝐴𝐴 𝑡𝑡

𝑠𝑠 is the final stream 
temperature at time t. MA_adj is a MA adjustment operator to improve the smoothness of the subsurface and groundwater 
fractions prediction. It involves applying a MA smoothing operator to fgw and fss with different lengths (MA_length), and 
then adjusting the other fractions so they sum up to one. For priors that contain all three components, fgw, fss, and fsr can 

written as the following: � 1∶�
gw = min

(

MA
(

� ′ 1∶�
gw ∗�1∶� ,MAlength

)

�1∶� , 1
)

 , � 1∶�
ss = min

(

MA
(

� ′ 1∶�
ss ∗

(

1−�1∶�
gw

)

∗�1∶� ,MAlength
)

�1∶� , 1 − � 1∶�
gw

)

 , 

𝐴𝐴 𝐴𝐴 1∶𝑡𝑡
sr =

(

1 − 𝑓𝑓 1∶𝑡𝑡
gw − 𝑓𝑓 1∶𝑡𝑡

ss

)

 , while for the prior without 𝐴𝐴 𝐴𝐴 1∶𝑡𝑡
ss  , the subsurface fraction is equal to zero.

Table 1 
Major Equations for the Models With Different Structural Priors
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basins. This variable, along with precipitation, was redistributed by a logarithmic formula to look more like a 
Gaussian distribution (Equation 5) (please see Feng et al., 2020). These two variables, along with the remaining 
inputs, were then standardized using Equation 6. The standardization process is similar to our previous work 
(Rahmani, Shen, et al., 2021).

𝑣𝑣∗ = log
10
(

√

𝑣𝑣 + 0.1)� (5)

𝑥𝑥𝑖𝑖𝑖stand =

(

𝑥𝑥𝑖𝑖 − 𝑥𝑥
)

𝜎𝜎
� (6)

where v is the dimensionless streamflow or precipitation value, v* is the value transformed to a Gaussian distri-
bution, xi is the initial values of streamflow or precipitation (after processing by Equation 6), 𝐴𝐴 𝑥𝑥 and σ are the 
mean and standard deviation of the initial values (calculated based on the training data set only), and xi,stand is the 
standardized value that has been used as an input for the LSTM NNs.

The LSTM hyperparameters were determined based on our previous experiences with running the LSTM model 
for predicting daily stream temperature across the contiguous United States (Rahmani, Lawson, et  al.,  2021; 
Rahmani, Shen, et al., 2021). In this study, we ran all experiments with 600 epochs. One forward run for all 
training basins is considered one epoch. The number of features in LSTM, called hidden layer size, was 256. The 
length of the time series for training and testing, known as ρ, was selected as 365 days. Each training sample had 
208 basins. We used Adadelta (Zeiler, 2012) with adaptive learning rates as the optimizer to update the parame-
ters based on gradients.

2.2.2.  Structural Priors for Source Water Temperature and Mixing

The main structural priors for source water temperature and mixing are described in Table  1. In the origi-
nal assumptions by SMRA17, WVWBB19, and MRR88, the source water temperature is an average of the 
air temperatures from a number of recent days. MRR88 and WVWBB19 assume the groundwater temperature 
equals the  annual mean air temperature. SMRA17 gives the freedom to select different time spans for aver-
aging air temperature for the groundwater temperature calculation. The default value is 365  days (Regan & 
Markstrom, 2021); however, this value is adjustable from 1 to 365. SMRA17 makes the same assumptions for 
shallow subsurface flow temperature but with a default value of 30 days. The WVWBB19 model assigns daily 
temperature to subsurface flow.

In our work, to accommodate gradient-based training and to make the model more realistic, we chose to convolve 
daily air temperature with a cumulative gamma function distribution (defined by θc parameters, and conv() in 
Table 1), resulting in an S-type curve similar to Mohseni and Stefan (1999). Earlier days were assigned lower 
weights (Figure S2 in Supporting Information S1). This curve may be flat, in which case it reverts to simple 
averaging just as in the original SMRA17. It can also have a large gradient to give higher weights to the most 
recent days. Moreover, as to be discussed in Section 2.2.4, we also explored adding an optional bias term bopt 
to the groundwater temperature part to compensate for additional heat fluxes that are not described, such as the 
heat conduction from geothermal heat flux (Burns et al., 2016; Yasukawa et al., 2009). The initial temperature of 
lateral flow entering the stream (before instream thermal exchanges occur) was calculated as the flow-weighted 
average of surface, subsurface, and groundwater source waters. We applied a moving average (MA) convolutional 
filter on the raw LSTM outputs for groundwater flow (f 'gw × total_Q) and subsurface flow (f 'ss × total_Q), and 
subsequently obtained fgw (groundwater flow fraction) and fss (subsurface flow fraction), respectively. Surface 
flow fraction fsr is determined by the subtraction of the combined proportion of groundwater and subsurface flow 
fractions from the total value of 1 (Table 1).

2.2.3.  The SNTEMP Instream Module

SNTEMP contains a heat transport model that can simulate daily mean and daily maximum temperatures based 
on the concept of equilibrium temperature (Sanders et al., 2017) and net heat flux calculation. SNTEMP is a 
one-dimensional in-stream temperature model that calculates the transfer of energy to or from a stream segment 
by heat flux equations or advection. As mentioned earlier, in each basin we only simulate one conceptual reach to 
represent all the channel flow in the basin. This lumped representation may not capture the local heterogeneities 
in large basins, but greatly simplifies the modeling. The energy balance is computed for each time step for each 
stream segment based on net heat flux from shortwave solar radiation, evaporation heat flux from the latent 
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heat of vaporization, streambed heat flux, heat flux from friction, and longwave radiation emitted by the water, 
riparian vegetation, and the atmosphere. Daily cloud coverage is calculated based on the average watershed slope, 
aspect, and the ratio of actual shortwave solar radiation and maximum shortwave solar radiation on each Julian 
day of the year (in our case, we assumed aspect and slope to be equal to zero for simplicity). SNTEMP assumes 
that the initial water temperature tends to reach the equilibrium temperature in a given meteorological condition 
(Edinger et al., 1968; Theurer et al., 1984). The final stream temperature (Ts) in the conceptual reach segment 
is a second-order Taylor expansion (Hazewinkel, 2001) between the equilibrium temperature and the incoming 
source water temperature, in our case Tlat. This Taylor expansion mainly relies on the above-mentioned heat flux 
equations. Here we are testing different structural priors (SMRA17, MRR88, and WVWBB19) in the SNTEMP 
model (Table 1).

2.2.4.  Structural Configurations

With each prior there are still many configurations that control the behaviors and best achievable outcomes of the 
model. Given different structural configurations, the training may produce models with different performance or 
internal diagnostic outputs. To understand the variance of performance, we ran experiments with a multitude of 
structural configurations, including:

1.	 �The length of the convolutional filter in groundwater temperature (ngw) was set to 365 days for all models.
2.	 �The length of the convolutional filter for subsurface flow temperature (nss) in LSTM-SMRA17 was 30 days.
3.	 �To increase the smoothness of LSTM-predicted daily groundwater flow, we added a MA convolution filter 

to groundwater and subsurface flow (the MA() operations in Table 1). After this filter, we rescaled the total 
water source fractions to 1. We ran the experiments with and without the MA filter. MA was tried with 
different lengths (MA_length) of 7, 15, 30, 40, 60, 75, and 90 days for LSTM-SMRA17, LSTM-MRR88, and 
LSTM-WVWBB19.

4.	 �One parameter provides an optional bias adjustment (bopt) for groundwater temperature. We ran experiments 
with this parameter set to 0 or nonzero values for all models except LSTM + mixing.

5.	 �Most parameters can be either dynamic or static in our settings (see Table S1 in Supporting Information S1 
for the list of combinations). Dynamic parameters are different from day to day whereas static parameters 
do not change over time. We ran experiments with both static and dynamic options for all parameters except 
temperature convolutional filters that were fixed as static.

In total, we ran 144 experiments with different configurations of structural hyperparameters to understand 
whether they induced substantial variance in the performance and how they impacted simulated stream temper-
ature and water source fractions.

2.3.  Data Sets

We selected 415 headwater basins from the 9,017 basins in the Geological Attributes of Gages for Evaluating 
Streamflow data set, version-II (GAGES-II) (Falcone, 2011) across the CONUS. Basin attributes from GAGES-II 
were used as inputs or evaluation targets as described in Sections 2.4 and 2.6.2, respectively. We selected those 
415 basins for which observed streamflow data were fully available from October 2010 to September 2016, and 
stream temperature data were available for at least 10% of the days in that window (Rahmani, Shen, et al., 2021). 
Mean daily observed streamflow and stream temperature data were downloaded from the U.S. Geological Survey 
(USGS) National Water Information System (U.S. Geological Survey, 2016). We collected daily meteorological 
forcings for these basins in the above-mentioned time range by extracting the overlaps of the basins’ shapefiles 
and the 1-km grid cells of the Daymet V4 data set (Thornton et al., 2022).

2.4.  Inputs

In this study, we used 33 attributes and seven forcings as inputs to the LSTM (Table S2 in Supporting Infor-
mation  S1). The attributes were mostly related to topography (e.g., area, slope), long-term climate variables 
(e.g., mean and maximum annual air temperatures), dam and reservoir information (e.g., number of dams), land 
coverage (e.g., forest coverage percentage in watershed), geological aspects (e.g., dominant geology type), and 
soil types (e.g., silt and clay percentages). Meteorological forcings for the LSTM were maximum and mini-
mum daily air temperature, vapor pressure, observed daily streamflow, day length, shortwave solar radiation, 
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and precipitation. SNTEMP needs a different set of attributes and forcings (Table S2 in Supporting Informa-
tion S1). SNTEMP attributes are slope, watershed drainage area, and stream (segment) length. We calculated 
stream length based on basin area provided by GAGES-II.

Additionally, SNTEMP needs daily vapor pressure for the atmospheric longwave radiation heat flux equation, 
shortwave solar radiation to calculate the absorbed portion by the stream, and flow rate for each water source. 
In the original SNTEMP settings, daily flow information is modeled and provided by the hydrology part called 
PRMS (Figure 1b); however, we provided this information to SNTEMP by defining the water source fractions as 
outputs by the NN (Figure 1a).

2.5.  Outputs

Our framework predicts daily stream temperature in an end-to-end fashion. LSTM provides the parameters that 
the process-based model (SNTEMP) component needs, and the process-based model component simulates daily 
stream temperature. Intermediate values, including the water source fractions and evapotranspiration rate, can 
also be tracked.

2.6.  Experiments and Metrics

2.6.1.  Training and Testing Settings

The training time range in all experiments was from 1 October 2010 to 30 September 2014. The testing period 
was the next 2 years, between 1 October 2014 and 30 September 2016. We chose these time ranges to be compa-
rable to another study that used LSTM alone to model daily stream temperature prediction (Rahmani, Shen, 
et al., 2021). We ran 144 different model configurations, as described in Section 2.2.4.

2.6.2.  Model Evaluation Against Literature

Apart from comparing daily Ts to observations, we estimated one baseflow index (BFI) per basin by summing 
the daily baseflow (groundwater and subsurface flow fractions each multiplied by streamflow for each day) and 
dividing it by the total streamflow in the same period. For SMRA17, “baseflow” includes flow from both the deep 
and shallow subsurface. For MRR88 and WVWBB19, there is only one deep subsurface compartment which is 
treated as baseflow. We calculated the spatial correlation between this estimate and the BFI from hydrograph 
separation (RBFI), which combines a local minimums approach with a recession slope test (Wolock, 2003). Based 
on Wolock’s work, GAGES-II (Falcone, 2011) calculated a long-term estimation of the baseflow percentage of 
total streamflow by inverse-distance-weighted interpolation of the baseflow ratios that were calculated at USGS 
stream gauges and made 1-km resolution grid points. Although none of the above methods can be considered the 
ground truth, the comparison can be a soft criterion to provide a sense of our model's capability to capture the 
hydrological signals.

2.6.3.  Performance Metrics

We computed metrics for each basin, treated for simplicity as a single stream reach. The metric used in the loss 
function for error minimization between simulated and observed stream temperature was the root-mean-square 
error (RMSE) (Equation  7). However, we also calculated bias (the average error between simulation and 
measurement) (Equation  8), Nash-Sutcliffe efficiency (NSE) (Nash & Sutcliffe,  1970) (Equation  9), and 
Kling-Gupta efficiency (Gupta et al., 2009) (Equation 10) for some of the selected experiments to compare 
with each other.

Additionally, one of the aims of this study was to investigate whether it is possible to get a low error in stream 
temperature simulation (the target of the model) and a high correlation between the simulated source baseflow 
ratio (intermediate output of the model) and an alternative baseflow estimate (BFI, in GAGES-II). We calculated 
the Pearson correlation (Equation 11) between simulated baseflow and GAGES-II values. These metrics measure 
whether the model accurately predicts stream temperature and utilizes physically meaningful intermediate param-
eters. The metrics can be expressed as:

RMSE =

√

∑𝑛𝑛

𝑖𝑖=1
(𝑇𝑇𝑖𝑖𝑖sim − 𝑇𝑇𝑖𝑖𝑖obs)

2

𝑛𝑛
� (7)
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Bias =

∑𝑛𝑛

𝑖𝑖=1
(𝑇𝑇𝑖𝑖𝑖sim − 𝑇𝑇𝑖𝑖𝑖obs)

𝑛𝑛
� (8)

NSE = 1 −
∑�

�=1 (��,sim − ��,obs)2

∑�
�=1

(

��,obs − � obs

)2
, � obs =

∑�
�=1 ��,obs

�� (9)

KGE = 1 −

√

√

√

√

√

√

√

√

√

(Corr − 1) +

⎛

⎜

⎜

⎜

⎜

⎝

√

∑𝑛𝑛
𝑖𝑖=1

(

𝑇𝑇𝑖𝑖𝑖sim−𝑇𝑇 sim

)2

𝑛𝑛
√

∑𝑛𝑛
𝑖𝑖=1

(

𝑇𝑇𝑖𝑖𝑖obs−𝑇𝑇 obs

)2

𝑛𝑛

− 1

⎞

⎟

⎟

⎟

⎟

⎠

+

(

𝑇𝑇 sim

𝑇𝑇 obs

− 1

)

� (10)

Corr =

∑�
�=1

[(

��,obs − � obs

)(

��,sim − � sim

)]

√

∑�
�=1

(

��,obs − � obs

)2
∑�

�=1

(

��,��� − � sim

)2
, � sim =

∑�
�=1 ��,sim

�� (11)

In which Ti,obs and Ti,sim are observed and simulated stream temperatures and n is the number of observations 
during the time range the metrics are calculated. 𝐴𝐴 𝑇𝑇 obs and 𝐴𝐴 𝑇𝑇 sim are the average of observed and simulated stream 
temperatures. Index i indicates the ith day of the testing period. RMSE, Bias, NSE, KGE, and Corr are the RMSE, 
bias, Nash-Sutcliff efficiency, Kling-Gupta efficiency, and correlation metrics between simulations and observa-
tions, respectively. All results discussed in this manuscript are the performance results in the testing period, which 
were very close to those of the training period (please see Rahmani et al., 2023 for full data release).

3.  Results and Discussion
We first show the mild tradeoff between temperature prediction accuracy and BFI correlation. Stream temper-
ature serves as the target variable in the model, and baseflow is an intermediate untrained variable. Then we 
discuss the different tradeoff curves corresponding to different priors. We then selected several models to explore 
the predictive capability and behaviors of these models in more depth.

3.1.  The Mild RMSE-RBFI Pareto Front and the Significant Variance in RBFI

With different structural configurations, the trained models are scattered in different places on the median RMSE-
RBFI plane (RBFI represents the correlation coefficient of BFI), showing noticeable variance even for the same priors 
(Figure 2). For the LSTM-SMRA17 prior, many points (with different configurations) were spread out laterally near 
the bottom of the plot, which means these models have almost equally good temperature predictive performance but 
widely different RBFI values (which also implies the simulated BFIs are varying widely). Apparently, near the bottom 
line, we have exhausted the room for optimization with respect to temperature RMSE for this prior. However, given 
that prior, various structural configurations with similar temperature prediction accuracies led to different RBFI values. 
Similar patterns are found with LSTM-MRR88 and LSTM-WVWBB19. RBFI is a useful second dimension; however, 
because the hydrograph separation approach used for comparison is also empirical and cannot clearly distinguish 
between shallow and deep subsurface outflow, RBFI should only provide a soft constraint on model selection.

The tradeoffs between RMSE and RBFI are mild, manifesting as sharp corners on the point clouds for each prior 
in Figure 2. Sharp Pareto fronts mean that the two dimensions do not strongly interact, and we do not have to 
lose performance by one metric to improve the other. The mild tradeoff may have resulted from the strong opti-
mization capability of deep networks and the NN-dominant nature of this hybrid model. We hypothesize that 
the tradeoffs would be stronger with more rigid structural constraints. More constraints could be provided by 
integrating a process-based hydrology model into the current framework.

3.2.  The Impacts of Different Priors and Process Insights

We can see that different structural priors demonstrate distinct behaviors in both the best achievable metrics 
and the tradeoff, and analyzing such behaviors gives us a wealth of insights about processes. Summarizing the 
many experiments we have run (Table 1), LSTM-SMRA17 gave the lowest error in terms of stream temperature 
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as well as the best BFI correlation (Figure 2). LSTM-SMRA17 has the most complicated processes, enabling 
a low RMSE, but it may have too much flexibility, as evidenced by the wide range of RBFI values that suggest a 
large variance in the internal representations. More than half of the LSTM-SMRA17 stream temperature RMSE 
values are between 0.89°C and 1.27°C, and between 0.74 and 0.80 for RBFI. LSTM-MRR88 displays slightly 
worse stream temperature accuracy (more than half of RMSE values are between 1.08°C and 1.45°C), and RBFI 
(more than half of RBFI values are between 0.63 and 0.74). LSTM-WVWBB19, on the other hand, has a minimum 
RMSE of 1.10°C. In addition, as mentioned earlier, LSTM-SMRA17 has a sharp Pareto front, LSTM-MRR88 
has a mild one, and LSTM-WVWBB19 has a moderate one. All results discussed in this manuscript are the 
performance results in the testing period, which are very close to the training period performance (please see 
Rahmani et al., 2023 for full data release).

These different behaviors show that the basic priors have noticeable control over the stream temperature predic-
tions despite the presence of a highly capable ML component for parameterization—thus we can attribute these 
differences clearly to the priors and gain process insights. In this case, it seems SMRA17 and MRR88 are both 
sound priors to perform at the national scale, with the former being slightly preferred. However, the variance of 
the predicted BFI remains large even within a small range of the optimal RMSE, suggesting the internal dynamics 
are underconstrained by stream temperature alone. If LSTM-SMRA17 were to be developed further, its utility 
might be improved with additional data sets or process constraints. Notice that “being a good prior” is different 
from “having small variance”—a good prior defines the upper bound of performance and structural interpreta-
tion, but more data may be required to reduce the variance.

Comparing the results between LSTM-SMRA17 and LSTM-MRR88 implies that a separate bucket for shallow 
subsurface flow (the only difference between the two models) could improve both stream temperature accuracy 
and baseflow representation. Having this compartment is justified physically, as Briggs et al. (2018) associated 
the substantial phase lag between air temperature and stream temperature with the shallow subsurface water pass-
ing through the preferential water zones of groundwater. LSTM-SMRA17 and LSTM-WVWBB19 use different 
assumptions for temperature calculation of water source fractions that resulted in relatively better performance in 
both aspects in LSTM-SMRA17 along the Pareto front. For instance, LSTM-WVWBB19 assumes the temper-
ature of the subsurface flow to be the same as air temperature because the flow is considered as an interflow/
stormflow, not baseflow (Wanders et al., 2019). LSTM-SMRA17 assumes a longer averaging time for calculating 
subsurface flow temperature and considers 0°C as the minimum groundwater temperature, which seems more 
consistent with big data.

Figure 2.  Scatterplot of the median root-mean-square error (RMSE) of stream temperature and the Pearson correlation of 
simulated baseflow with baseflow index ratio (RBFI) in the Geological Attributes of Gages for Evaluating Streamflow data set, 
version-II for four model structures with different structural priors. Each point represents an individual model with different 
configurations. The points closer to the bottom left of XY coordinates are more desirable (higher RBFI and lower median 
RMSE). The black circles at the Pareto fronts are the models that were selected for further analysis in Section 3.3. The size of 
the points increases with more dynamic parameters in the model.
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All the models with relatively high RBFI and lower RMSE values (lower left corner of Figure 2) are regarded 
as functional, and LSTM-SMRA17 has many such models. Most of the models with lower accuracy in BFI 
correlations (the points on the left side of Figure 2, mostly) are the ones in which the flow MA operator was not 
activated. This MA operator serves to stabilize the water source fractions and can be interpreted as representing 
transient storages and pools along the flow paths that act as buffers. This aspect of simulation is not constrained 
by the temperature observations but is regulated by the BFI correlation. The benefit of MA operators in terms of 
BFI correlation suggests the water source fractions should not vary too rapidly.

Almost all experiments in the Pareto fronts consist of dynamic θc or θ, having the configuration of type 1 (all 
parameters except the convolutional filters are dynamic), type 2 (similar to 1 but with static groundwater tempera-
ture bias), or type 3 (similar to 2 but with static stream width coefficient factors) (Tables S1 and S3 in Supporting 
Information S1), which suggests different values exist for parameters in different seasons. The models with all 
static parameters (type 4 in Table S1 in Supporting Information S1) had relatively larger median RMSE values for 
stream temperature. This is consistent with our knowledge that these parameters can behave in a time-dependent 
manner. For instance, topographic and vegetation shading vary seasonally with the sun's height and leaf abun-
dance. There is a tradeoff: overly dynamical parameterization could lead to overfitting and non-physical outputs, 
while over-static parameterization could lead to underfitting. Here, based on the multidimensional evaluation, it 
seems that dynamical parameterization is justified.

For the purpose of determining source water temperature (groundwater and shallow subsurface if applicable), 
a cumulative gamma function (recency-weighted) outperforms a simple averaging function in three models 
(WVWBB19, SMRA17, and MRR88). We observed that switching from a simple average function to convo-
lutional parameters respectively improved the RMSE and RBFI values by 11% and 13% on average (Table 
S4 in Supporting Information S1). Because both metrics were improved, it can be argued that the use of the 
recency-weighted scheme, rather than a simple average, is a better approximation of reality. Conceptually, a simple 
average implies a well-mixed groundwater reservoir, whereas the recency-weighted scheme could arise from flow 
systems where the water in the shallow layers plays a prominent role in the outflow (Freeze & Cherry, 1979; 
Wang et al., 2017; Zijl, 1999). Our results lend support to the latter, consistent with other groundwater modeling 
efforts (Maxwell et al., 2016; Zhang et al., 2021), and show that such signals of flow can be identified by the data 
and our model. Simple averaging has been employed in stream temperature models for decades (Anderson, 2005; 
Meisner et al., 1988; Pekárová et al., 2022), and our results clearly show that the alternative is better. This is not 
meant to disparage previous models, but rather to highlight the promise of new differentiable modeling methods 
which can estimate high-dimensional functions and learn from big data.

3.3.  Additional Analysis of Selected Models

We selected three models out of all 144 experiments (the three black-circled points in Figure 2, Table S5 in 
Supporting Information S1). For additional comparison, we added a model that does not have instream processes 
and only describes the mixing processes (LSTM + mixing, black triangle in Figure 2), to understand the necessity 
of the instream component.

Overall, these selected differentiable models performed formidably well in stream temperature prediction, but 
there are also differences (Figure 3). The chosen LSTM-SMRA17 model demonstrates outstanding performance 
with median NSE and KGE values of 0.970 and 0.951. These metrics are very close to the LSTM model by 
Rahmani, Lawson, et al.  (2021) and Rahmani, Shen, et al.  (2021) with median NSE and KGE values of 0.98 
and 0.956. The variability of metrics, indicated by the lengths of the whiskers on the boxes of Figure 3, was the 
smallest for LSTM-SMRA17 amongst the differentiable models, which indicates the model’s performance was 
consistent across basins. The median bias was the closest to zero (bias = −0.23°C); however, the median RMSE 
was 0.23°C higher than the LSTM model’s RMSE. LSTM-MRR88 and LSTM-WVWBB19 ranked third and 
fourth in terms of median RMSE, NSE, and KGE (Figure 3).

Instream processes played a crucial role in simulating stream temperature, judged by the considerable differ-
ence in RMSE values between LSTM + mixing and the other models (Figure 3, also notice the black triangle 
in Figure 2). The LSTM + mixing model incurred a much larger bias (mostly negative), suggesting instream 
processes such as solar insolation and stream-atmospheric heat exchange frequently served to impact stream 
temperature by warming up the water. Considering that, in the absence of instream processes, the bias cannot 
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even be mitigated by the strong adaptive capability of LSTM, processes that lead to shifts in channel temperature, 
in addition to those accounting for lags and mixing, are mandatory to fit the observations. If we examine equation 
set 6 in Table 1 (LSTM + mixing), there is no term that would introduce shifts in temperature into the system 
after source waters are mixed, which led to irreconcilable negative biases.

Visualizing stream temperature time series at a few stream gauges confirms that the issue with the 
LSTM  +  mixing model is due to omitting instream processes (Figure  4). For instance, in the Maine and 
Alabama sites, LSTM + mixing mostly showed a negative bias resulting from staying closer to the air temper-
ature (e.g., the average absolute biases between air temperature and simulation in Maine for LSTM + mixing, 
LSTM-SMRA17, and LSTM-MRR88 were 4.32°C, 4.55°C, and 4.52°C, respectively)—presumably, the solar 
insolation processes not captured by LSTM + mixing caused this bias. Moreover, the shallow subsurface flow 
component let LSTM-SMRA17 better control the local peaks and valleys in temperature simulation, compared 
to LSTM-MRR88 in Alabama (Figures  4a and  4b). In summer and fall at the stream gauge in Oregon, the 
lack of a shallow subsurface flow temperature module in LSTM-MRR88 resulted in more bias compared to 
LSTM-SMRA17 (Figure 4c).

The selected models illustrated strong correlation with the baseflow estimates obtained from hydrograph separa-
tion compared to LSTM + mixing (Figure 5). Among the chosen models (circled in Figure 2), LSTM-SMRA17 
showed the highest Pearson correlation (RBFI) with GAGES-II BFI (r  =  0.724). LSTM-WVWBB19 and 
LSTM-MRR88 were relatively less correlated, with RBFI values of 0.658 and 0.664, respectively. The lowest RBFI 
was for LSTM + mixing with a value of 0.234, suggesting that this model is compensating for the lack of instream 
processes using other processes like source flow temperatures in mixing processes. Other than the intercept of the 
LSTM + mixing model, the intercepts LSTM-MRR88 and LSTM-WVWBB19 were approximately 0.2, however 

Figure 3.  Conterminous United States-scale aggregated metrics (415 basins, tested between 1 October 2014 and 30 
September 2016) of the selected stream temperature models using the differentiable parameter learning (dPL) framework, 
with several basin-scale water temperature memory functions as priors combined with the long short-term memory (LSTM) 
algorithm (Rahmani, Shen, et al., 2021). Except for LSTM-mixing, these priors are all connected to stream temperature as the 
in-stream temperature module, but they have different ways to calculate temperatures and fractions of water sources (Table 1). 
LSTM-mixing is a hybrid differentiable model that only contains mixing processes and excludes in-stream processes entirely. 
The selected models have only slightly lower performance than LSTM, while also providing process transparency and likely 
better reliability in cases of extrapolation. The lower whisker, lower box edge, center bar, upper box edge, and upper whisker 
represent 5%, 25%, 50%, 75%, and 95% of the sites, respectively.
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the intercept in LSTM-SMRA was negligible which implies that the shallow subsurface module is necessary for 
achieving higher performance in both stream temperature and baseflow estimation (Figure 5). It also suggests 
there is enough information in stream temperature data to inform shallow and deep hydrologic paths, a conclusion 
that can be used for future large-scale modeling.

LSTM-SMRA17 showed consistent spatial BFI patterns with GAGES-II (Falcone,  2011; Wolock,  2003), in 
general (Figure 6). However, the lack of a subsurface module in LSTM-MRR88 resulted in an underestima-
tion of BFI in many basins. BFI values were larger in the Rocky Mountains, Oregon, and Washington, and 
smaller in parts of the central lowlands (Texas, Oklahoma, Kansas, Missouri, Iowa, Indiana, Ohio) and Louisi-
ana. LSTM-SMRA17 could capture these different behaviors. The main differences between LSTM-SMRA17 

Figure 4.  Stream temperature time series of observed values, LSTM-SMRA17, LSTM-MRR88, LSTM + mixing, and air 
temperature in testing time range for U.S. Geological Survey (USGS) stream gauges in (a) Allagash River in Maine, (b) 
Village Creek at Alabama, and (c) Willamette River in Oregon. Observed data from U.S. Geological Survey (2016).



Water Resources Research

RAHMANI ET AL.

10.1029/2023WR034420

15 of 21

baseflow and GAGES-II BFI were in the northeastern United States and the Michigan Upper Peninsula (Figure 6), 
where our estimates tended to be higher than those from GAGES-II. In these regions, flows through the glacial 
deposit layers are dominant (Fang & Shen, 2017; Niu et al., 2014; Shen & Phanikumar, 2010; Shen et al., 2016) 
and may not follow the air temperature of the recent days, therefore, a significant shallow subsurface component 
with low temperature could also contribute toward BFI in the GAGES-II estimate. We hypothesize that although 
LSTM-SMRA17 separates flows into shallow subsurface and groundwater, it lacks a module for modeling snow-
melt and its temperature.

3.4.  Further Modeling Implications

In this work, we employed a multidimensional assessment to choose models with better physics, and our results 
indicate that caution is needed when interpreting results from NN-dominant systems where the NN has lots 
of flexibility. In the future, we can seek additional data and physics to co-constrain the system, for example, 
applying a differentiable model for the hydrologic component as in Feng et al. (2023) and Feng et al. (2022) and 
constraining it using daily discharge. That will potentially remove the need for a post-training multidimensional 
evaluation, but will require us to implement the hydrologic component as physics-based equations (rather than 

Figure 5.  Scatterplots comparing baseflow ratio predicted by each of four models (our selected differentiable parameter 
learning [dPL] models in Figure 2) and Geological Attributes of Gages for Evaluating Streamflow dataset, version-II 
(GAGES-II) estimates of baseflow index (BFI) (Falcone, 2011). Each dot represents one of the 415 basins in our study 
data set during the testing time range, and the lines are the best linear regression fit to the scatterplots. RBFI is the Pearson 
correlation between baseflow estimations which is stated in the title for each plot.
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allowing LSTM to provide all the estimates). Temperature data can be used to provide meaningful constraints 
on parameterizations of the hydrologic cycle. As we incorporate more and better physics, we expect to maintain 
strong performance and sharp Pareto fronts as more realistic systems can satisfy all constraints at once. In addi-
tion, we will continue to seek data sets that can provide an objective estimate of the source water fractions to 
further validate the model.

This work demonstrates the advantage of differentiable modeling—the genre of model that allows gradient infor-
mation to be propagated along the entire chain of calculations and thus support training of NNs anywhere in 
the model. We recommend that readers refer to Shen et al. (2023) and Tsai et al. (2021) for a more comprehen-
sive discussion. Traditional calibration or response-surface approaches typically work on a site-by-site basis and 
cannot train a massive amount of weights in complex NNs on large data, and thus typically fall into the problem 
of non-uniqueness, also called equifinality. In contrast, the size of the NN allowed by differentiable modeling is 
practically unbounded and is only limited by the amount of training data available. This allowed us to constrain 
one NN using all the data from 415 basins (and more if data becomes available) and build a more complex but 

Figure 6.  Spatial maps of average baseflow index (BFI) in the 415 basins of our data set for (a) Geological Attributes of 
Gages for Evaluating Streamflow dataset, version-II (GAGES-II) long-term estimation, as an alternative for comparison from 
literature, (b) deviation between our LSTM-SMRA17 model and GAGES-II BFI estimations from October 2014 to September 
2016, and (c) deviation between our LSTM-MRR88 model and GAGES-II BFI estimations from October 2014 to September 
2016. Base map layers are drawn using the database provided by Wessel et al. (2019) and Wessel and Smith (1996).
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generalizable relationship, mitigating the issue of equifinality. Unlike with calibration, the parameters obtained 
are constrained by all sites and in cases of unavailable data, can be reliably used for interpolation or extrapolation 
of predictions (Feng, Beck, de Bruijn, et al., 2023; Feng, Beck, Lawson, & Shen, 2023). While we need to further 
constrain these flexible NNs, learning from big data is essential to evolving the complexity and performance of 
our models—it provides an implicit spatial constraint among all the sites and we see beneficial scaling with data 
(Feng et al., 2022; Tsai et al., 2021). Differentiable modeling also allowed us to train a dynamical NN that can 
output daily parameter and flux estimates (based on a history of daily forcings), which were simply not possible 
before. The full differentiability further means the supervising signal can come indirectly from the loss function 
related to any observable variables simulated by the combined system, here water temperature measurements, 
thus removing the need for direct supervising data or pretraining for the NN. This is critical since in practice we 
do not know the ground truth for these parameters or fluxes. Compared to “physics-guided ML” which focuses on 
adding constraints to ML algorithms, differentiable modeling also enables the discovery of knowledge (unknown 
relationships) from data. Lastly but nontrivially, computing on the differentiable platforms using graphical 
process units is highly parallel and can be orders of magnitude faster than the original models. Once a model is 
differentiable, we have great latitude in learning and optimization, along with from performance improvements.

4.  Conclusions
We employed an NN-dominant hybrid model to simulate not only temperature but also internal dynamics including 
baseflow, stream evaporation, and other instream processes. We obtained stream water temperature predictions, as 
well as estimates of a variety of internal states and fluxes, which exhibited substantial variance and must be miti-
gated by multidimensional assessments. It appears the current system is still under-determined by water temperature 
alone, but a further selection based on baseflow fraction can narrow down the admissible models. Therefore, we 
must be cautious with interpreting the internal dynamics of such NN-dominant models. This system may not be 
the ultimate model for large-scale deployment, but the physical parts of the hybrid model still provided physically 
meaningful and substantive constraints, and the role of deep networks was limited. For example, the LSTM could 
not compensate for the lack of instream processes, which also confirms the important role these processes play in 
stream water temperature. In addition, the different priors led to substantially different behaviors in the Pareto fronts.

The large differences in behaviors of models with different priors mean this hybrid modeling and parameter learn-
ing approach can be used to identify better physical assumptions and gain a wealth of process insights. Due to 
the strong optimization ability of deep networks, we can circumvent parametric issues and focus on the struc-
tural priors. Here, the LSTM-SMRA17 prior gave strong results with respect to predicting both water temperature 
and baseflow (temperature NSE = 0.970 and RBFI = 0.724 for the selected configuration, though a few config-
urations had RBFI as low as 0.12, or as high as 0.77) compared to the other three priors tested (LSTM-MRR88, 
LSTM-WVWBB19, and LSTM + mixing). The available data allowed us to identify that (a) a separate bucket for 
the shallow subsurface improves both temperature and baseflow modeling, since stream temperature data contain 
useful information regarding hydrologic pathways; (b) groundwater and subsurface flow temperature are better 
simulated by recency-weighted averaging, rather than a well-mixed reservoir (implied by simple averaging); (c) 
dynamical parameters that reflect seasonal changes in instream processes such as evapotranspiration and shading 
are favorable; and (d) in-stream heat processes are necessary which means their impacts on stream temperature are 
substantial. In each evaluation, a more flexible model was preferred. Considering the reported metrics were from the 
test period rather than the training period (and thus the models were not substantially overfitted), our results suggest 
more complicated models that better approximate reality can be trained using big data, which was challenging 
before differentiable modeling existed. Despite these qualitative insights, as stated earlier, the quantitative estima-
tion of internal fluxes still needs more constraints and more careful evaluation. Involving other hydrologic observa-
tions and differentiable modeling (adding a process-based model for the simulation of water source fractions) can 
jointly inform hydrologic and transport processes to investigate the contribution of stream temperature observations 
on large-scale hydrological predictions. Our differentiable modeling framework allows us to ask different scientific 
questions that were impossible using a pure NN, while achieving better accuracy than a purely process-based model.
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