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Abstract Evapotranspiration (ET) is a vital variable for land-atmosphere interactions that links surface
energy balance, water, and carbon cycles. The in situ techniques can measure ET accurately but the
observations have limited spatial and temporal coverage. Modeling approaches have been used to
estimate ET at broad spatial and temporal scales, while accurately simulating ET at regional scales
remains a major challenge. In this study, we upscale ET from eddy covariance flux tower sites to the
regional scale with machine learning algorithms. Five machine learning algorithms are employed for ET
upscaling including artificial neural network, Cubist, deep belief network, random forest, and support
vector machine. The machine learning methods are trained and tested at 36 flux towers sites (65 site
years) across the Heihe River Basin and are then applied to estimate ET for each grid cell (1 km x 1 km)
within the watershed and for each day over the period 2012-2016. The artificial neural network,
Cubist, random forest, and support vector machine algorithms have almost identical performance in
estimating ET and have slightly lower root-mean-square error than deep belief network at the site scale.
The random forest algorithm has slightly lower relative uncertainty at the regional scale than other
methods based on three-cornered hat method. Additionally, the machine learning methods perform
better over densely vegetated conditions than barren land or sparsely vegetated conditions. The
regional ET generated from the machine learning approaches captured the spatial and temporal
patterns of ET at the regional scale.

1. Introduction

Evapotranspiration (ET) is the sum of evaporation and plant transpiration from the Earth’s surface to the
atmosphere. ET is a vital climate variable in land surface processes as it uniquely links the surface energy bal-
ance (latent heat flux), water cycle (evaporation), and carbon cycle (transpiration-photosynthesis trade-off;
Fisher et al., 2017). The quantification of ET for regional, continents, or the globe can improve our understand-
ing of the water, heat, and carbon interactions and the feedback to the climate, which is important for water
resource management and global change research.

Over the last two decades, several different types of approaches have been developed to estimate ET at the
regional scale, such as remote sensing data-based methods (Ma et al., 2018; Song et al., 2016; Yao et al., 2014),
land surface models (Dai & Coauthors, 2003; Niu et al., 2011), variational data assimilation methods (Bateni
et al, 2014; Bateni & Entekhabi, 2012; Bateni et al., 2013; Xu et al., 2018), and land data assimilation systems
(Xia etal, 2012; Xu et al,, 2011). These methods can estimate ET at regional or global scales. However, daily ET
estimates based on these algorithms showed substantial differences (Long et al.,, 2014), and the relative
errors ranged from 14% to 44% compared with ground measurements (Kalma et al., 2008; Velpuri et al.,
2013; Yao et al.,, 2013).

The ET products based on modeling approaches need to be examined extensively because they have
large uncertainties for regional application. Ground-based observation networks (e.g., FLUXNET) and inten-
sive experiments (e.g., TERENO and HiWATER) have been implemented to acquire ET accurately over a
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variety of vegetative and climate conditions (Baldocchi & Ryu, 2001; Bogena et al., 2006; Li et al., 2013).
These observations can be used to quantify ET at the ecosystem level for different vegetation types.
However, they are typically sparse at both spatial and temporal scales. The representativeness of these
measurements is limited to the flux tower footprint with the longitudinal dimension from several hundred
meters to several kilometers (Liu et al., 2016). To quantify ET from the land surface to the atmosphere and
to assess ET products at the regional scale, we need to upscale ET from flux towers to regional scales.
Satellite sensors detecting two-dimensional information of land surface become an effective way to
upscale ET from flux towers to large areas.

There are mainly four types of methods to upscale ground-measured ET to large scales using satellite remote
sensing data. The first type of methods links ET observations from flux towers with vegetation index (e.g., nor-
malized difference vegetation index, enhanced vegetation index), land surface temperature observations,
and meteorological parameters (e.g., net radiation, air temperature, precipitation; Fang et al., 2016; Sun
etal, 2011; Wang & Liang, 2008; Wang et al., 2007). The predictive equations are usually developed empiri-
cally, and the parameters in these equations are estimated with the least squares method. The second type
of methods is so-called “geostatistical methods” based on kriging theoretical framework (Ge et al., 2015; Hu
et al, 2015) or Bayesian theory framework (Gao et al., 2014; Qin et al., 2013). The third type of methods
upscaled turbulent fluxes using semitheoretical models (Liu et al, 2016) or running theoretical models
(Heinemann & Kerschgens, 2005). The fourth type of method is based on machine learning techniques
(Bodesheim et al., 2018; Jung et al., 2011; Lu & Zhuang, 2010; Metzger et al., 2013; Wang et al,, 2017; Xiao,
Ollinger, et al., 2014; Xu et al., 2017a, 2017b; Yang et al., 2006).

Machine learning approaches have been increasingly used to estimate ET at regional scales. For example,
Yang et al. (2006) estimated eight-day-averaged ET in United States by using flux tower observations from
AmeriFlux network, three remote sensing variables (LST, enhanced vegetation index, and land cover), and
surface shortwave radiation with support vector machine (SVM) approach. Lu and Zhuang (2010) pro-
duced a daily ET product in United States using remotely sensed data, meteorological, and flux tower
observations with the artificial neural networks (ANN) technique. Jung et al. (2011) obtained monthly sen-
sible and latent heat fluxes globally using FLUXNET observations, meteorological, and vegetation statues
data with model tree ensemble method. Bodesheim et al. (2018) upscaled half-hourly FLUXNET observa-
tions and generated sensible and latent heat fluxes globally with random forest tree method. Xiao,
Ollinger, et al. (2014) upscaled ET measurements from flux towers to the continental scale for North
America over the period 2000-2012 using a piecewise regression approach (Xiao et al.,, 2008) based on
Cubist. Wang et al. (2017) estimated daily latent heat flux for different plant functional types across
North America using three machine learning algorithms: ANN, SVM, and multivariate adaptive regression
spline. Metzger et al. (2013) and Xu et al. (2017a, 2017b) upscaled sensible and latent heat fluxes to fine
spatiotemporal resolution with an environmental response function and boosted regression tree method.
All of these studies trained the machine learning models with flux observations and other ground-
measured variables related to ET or sensible and latent heat fluxes. The trained models were then applied
to produce ET over continental or global scales with remote sensing and meteorological inputs. Although
the machine learning techniques have been used to upscale ET from flux observations to large scales,
some commonly used machine learning methods have not been tested and compared systematically.
Moreover, the predicted regional ET estimates were not examined with independent ground observations
over large scales (e.g., ET measurements from large aperture scintillometers). In addition, the relative
uncertainty of these approaches has not been well evaluated over the regional scale.

In this study, five commonly used machine learning algorithms were employed to upscale tower-based ET
observations to the regional scale. These machine learning methods include artificial neural network
(ANN), Cubist, deep belief network (DBN), random forest (RF), and support vector machines (SVM). ET obser-
vations from 36 flux tower sites (65 site years) obtained by eddy covariance (EC) instruments across the Heihe
River Basin in northwestern China were used to test the selected machine learning methods at the site scale.
The five machine learning methods were assessed extensively with independent ET observations from eight
groups of large aperture scintillometer (LAS) systems. Then, the three-cornered hat (TCH) method was
employed to assess the relative uncertainty of each method at the regional scale. Finally, the optimal
machine learning method was used to generate daily ET (defined as ETMap) during the period 2012-2016
over the whole watershed.
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2, Methodology and Data
2.1. Machine Learning Algorithms

In this study, five machine learning algorithms including artificial neural network (ANN), Cubist, deep belief
network (DBN), random forest (RF), and support vector machines (SVM) are trained and tested over the
Heihe River Basin. In the machine learning methods, ET is the target variable, and variables that can account
for the variations in ET are explanatory variables (shown in section 3).

Artificial neural network (ANN) is an algorithm that mimics the behavior of neural network of the human
brain. The ANN algorithm is composed of the input layer, the hidden layer, and the output layer. Within an
ANN algorithm, the data are put into the input layer to train the model, the weights are obtained in the hid-
den layer, and the prediction results are generated in the output layer. The weight expressed in the hidden
layer is the connection strength between the hidden units without actual physical meanings (Kumar et al.,
2002). An ANN algorithm can process information through adjusting relationship between a large number
of nodes in the hidden layers according to the complexity of the system. ANN has the self-adaptive, self-
organizing, and self-learning ability, which can express the complex nonlinear relationship between the input
and output variables.

Cubist is a powerful tool based on modified regression tree theory. Cubist can generate a set of rule-based
predictive models that balance the need for accurate prediction against the requirements of intelligibility
(RuleQuest, 2008). Cubist models are expressed as collections of rules, where each rule has an associated mul-
tivariate linear model. Whenever a case matches a rule’s conditions, the associated model is used to calculate
the predicted value. Cubist models generally give better results than those produced by simple techniques
such as multivariate linear regression, while also being easier to understand than neural networks. Cubist
was designed to analyze big data containing millions of records with high speed and ease of use.

Deep belief network (DBN) is a deep learning method proposed by Hinton et al. (2006). DBN can learn more
useful features and generate more accurate predictions through constructing a machine learning model with
multiple hidden layers and massive training data. A DBN model is a deep network stack in series by a number
of restricted Boltzmann machines (RBM). In the training processes, RBM is trained from low layer to high layer
to generate suboptimal model initial parameters. Then, machine learning algorithms are employed to fine-
tune the network so that the model converges to the optimal value.

Random forest (RF) algorithm can generate independent regression trees through randomly selecting train-
ing samples automatically (Breiman, 2001). Each independent regression tree is generated using samples
selected by bootstrap sampling method. The final predictions are determined by averaging the outputs, after
fixing individual trees in entity. The RF can handle the high-dimensional data and strong nonlinear problems.
Since the correlation between each independent tree is low, the RF method can avoid falling into overfitting
problems in practical implementation.

Support vector machine (SVM) is a machine learning method based on the principle of structural risk minimi-
zation, and it can handle nonlinear regression relationships (Vapnik, 1998). Generally, the original problem is
expressed in a finite-dimensional space that is nonlinear. Thus, SYM can project the data sets of original finite-
dimensional space into the much higher-dimensional space with kernel function to achieve linear regression,
and obtain the global optimal solution by solving the convex two-order programming problem. SVM can be
used for both classification and regression analysis. The commonly used kernel functions include polynomial
kernel function, Gauss kernel function, and radial basis kernel function. The radial basis kernel function is used
in this study as it outperforms others in previous studies (Wang et al., 2017).

2.2. Uncertainty Evaluation

The uncertainty of upscaled regional ET from five machine learning methods is evaluated with three-
cornered hat method (TCH). The original TCH method was developed based on the hypothesis of uncor-
related variables (Gray & Allan, 1974). Tavella and Premoli (1994) proposed the generalized TCH algorithm
that lifted the too restrictive hypothesis of uncorrelated variables. The generalized TCH method can be
used to estimate uncertainties and relative uncertainty of the ET data sets from different models at the
regional scale without any prior knowledge. The detailed information for generalized TCH method are
described as follows.
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The time series of the available ET data sets can be stored as {X}}; = 1, 2, ..., n. The subscript i denotes i ET data
setand N is the total number of products to be evaluated. X; is assumed to be comprised by two components:
the true value (X;) and the error (g;),

X,':Xr-i-{,‘,', \7’;:1,2,...,N (1)

In order to obtain the uncertainty of each ET data set (¢;), we need to know the true value of each data set (X;).
However, it is hard to get the true value of ET data set in reality. The TCH method defined the differences
between ET data sets (X;) and reference ET data set (Xz) as

Yim=Xi —Xr =& — &r v,=12,...N-1 (2)

where Y is stored in an M x (N — 1) matrix and M is the time sample. The reference ET data set (Xz) can be
arbitrary chosen in either of X;. The covariance matrix of Y can be obtained by S = cov (Y). The unknown
N x N covariance matrix of the individual noise R is related to S as

S=JRJ with J=[Z—d'] €)

where Z is (N — 1) x (N — 1) identity matrix and a is [1 1---1]1 x (v — 1)- Since the number of unknown ele-
ments is larger than the number of equations, equation (3) is ill posed that cannot be solved. The remaining
free elements require a reasonable way to get the unique value. Galindo and Palacio (1999) have proposed
the constrained minimization problem using the Kuhn-Tucker theorem.

Finally, the R matrix is obtained through the above process. The uncertainty of the time series {X}; = 1,5, .. nis
the square root of the diagonal elements in the R matrix, and is stored as {o}; = 1, o, ... n- The relative uncer-
tainty is defined as the ratio of g; to the mean value of X..

2.3. Study Area and Data Sets

The Heihe River Basin (HRB) is the second-largest endorheic river basin located in the arid and semiarid
regions of northwest China. HRB covers an area of approximately 1.43 x 10® km?. The upstream of HRB is
characterized by mountainous areas with relatively high precipitation and is mainly covered by grassland
(alpine meadow) and evergreen needleleaf forest (Qinghai spruce, etc.). The Desert-Oasis landscape exists
in the relatively dry midstream and downstream areas. The dominant vegetation type is irrigated cropland
in the downstream area and shrub-forest (Tamarix, Populus euphratica) in the lower downstream
area (Figure 1a).

A prototype hydrometeorology observatory network was set up in the “Watershed Allied Telemetry
Experimental Research” (WATER) experiment over HRB from 2008 to 2011 (Li et al., 2009). In the WATER
experiment, three long-term eddy covariance (EC) systems, three automatic weather stations, and one set
of large aperture scintillometer were established in the upstream and midstream areas. A comprehensive
hydrometeorological observatory network was established in the “Heihe Watershed Allied Telemetry
Experimental Research” (HIWATER) experiment in 2013. The network includes three superstations and 18
ordinary stations that cover the upstream, midstream, and downstream areas of HRB (Li et al., 2013).
Moreover, a thematic experiment (Multi-Scale Observation Experiment on Evapotranspiration over
Heterogeneous Land Surfaces (HIWATER-MUSOEXE)) was conducted in the midstream area to better under-
stand the ET process under the heterogeneous surface from May to September 2012 (Li et al,, 2017; Liu et al.,
2016). Two nested matrices were set up in the HiIWATER-MUSOEXE: one large experimental area
(30 km x 30 km) and one kernel experimental area (5.5 km x 5.5 km). The large experimental area contained
one superstation and four regular stations. The kernel experimental area contained 17 stations and four sets
of LASs (Figure 1c). Except for WATER and HiIWATER experiments, other hydrometeorological observatory
experiments were also conducted at Hulugou (Chen et al., 2014), Linze (Ji et al.,, 2011) and Jinta sites (Wen
etal, 2012).

Turbulent heat fluxes from a total of 36 flux tower sites (65 site years) were collected in HRB. Table 1 summar-
ized 19 long term flux tower sites, and Figure 1a shows the site locations. Sites 1-5 are located in upstream of
HRB, sites 6-13 are located in the midstream area, and sites 14-19 are located in the downstream area.
Moreover, turbulent heat flux from 17 flux tower sites (15 cropland sites, 1 orchard site, and 1 build-up
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Figure 1. Land cover and flux tower site locations of the Heihe River Basin.

site) was collected during HIWATER-MUSOEXE within a 5.5 km x 5.5 km area from May to September 2012
(site locations can be found in Figure 1c). The half-hourly sensible and latent heat fluxes measured by EC
instruments were collected from 36 flux tower sites (65 site years) in HRB. The half-hourly meteorological data
(e.g., wind speed, air temperature, relatively humidity, solar radiation, precipitation) were also obtained with
automatic weather station mounted on flux towers. Additionally, sensible heat flux was measured via eight
groups of LAS instruments in HRB. The LASs measure the averaged sensible heat flux along the optical
path shown in Figure 1. The LAS locations can be found in Figure 1, and the detailed information of each
LAS instrument was summarized in Table 2. LAS1 is installed in the upstream area of HRB near the Arou
site, LAS2-LAS5 are installed in the midstream area near the Daman site, and LAS6-LAS8 are installed in
the downstream area near the Sidaogiao site.

The daily ET from EC instruments was calculated from half-hourly latent heat flux (LE) measurements.
Meanwhile, the Bowen ratio closure method was used to force the energy to balance when processing EC
data (Twine et al., 2000). The daily LE from the LAS instruments was generated as the residual of the surface
energy balance equation (LE = R,, — G — H) during the vegetation growth season. The net radiation was mea-
sured by a four-component radiometer, and the ground heat flux was measured by a ground heat flux plate.
The detailed data processing procedure can be found in Liu et al. (2011, 2013) and Xu et al. (2013).
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Table 1
Summary of Eddy Covariance Flux Tower Sites in the Heihe River Basin

No. Site name Duration Land cover Longitude (E) Latitude (N) Elevation (m)
1 Arou 6/2008-12/2016  Grassland 100.4643 38.0473 3033
2 Dashalong 8/2013-12/2016  Grassland 98.9406 38.84 3739
3 Hulugou 9/2011-12/2016 Grassland 99.8667 38.25 3232
4 Yakou 1/2015-12/2016 Grassland 100.2421 38.0142 4147
5 Guantan 1/2008-12/2011  ENF 100.2503 38.5333 2835
6 Yingke 1/2008-12/2011 Cropland 100.4103 38.8571 1519
7 Linze 4/2013-12/2014 Cropland 100.1408 39.3281 1399
8 Jinta 6/2008-8/2008 Cropland 98.9287 40.1722 1252
9 Daman 9/2012-12/2016 Cropland 100.3722 38.8555 1556
10 Bajitan Gobi 6/2012-4/2015 Barren land 100.3042 38915 1562
1 Huazhaizi desert steppe 6/2012-12/2016  Barren land 100.3186 38.7652 1731
12 Shenshawo sandy desert 6/2012-4/2015 Barren land 100.4933 38.7892 1694
13 Zhangye wetland 6/2012-12/2016  Wetland 100.4464 38.9751 1460
14 Populus euphratica 7/2013-12/2015 DBF 101.1239 41.9932 876
15 Mixed forest 7/2013-12/2016 DBF 101.1335 41.9903 874
16 Sidaogiao 7/2013-12/2016  Shrub 101.1374 42.0012 873
17 Cropland 7/2013-10/2015  Cropland 101.1338 42.0048 875
18 Barren land 7/2013-3/2016 Barren land 101.1326 41.9993 878
19 Desert 5/2015-12/2016  Barren land 100.9872 421137 1054

Note. ENF and DBF represent evergreen needleleaf forest and deciduous broadleaf forest

Leaf area index (LAI) data products were obtained from the Global LAnd Surface Satellite (GLASS) product
(Xiao, Liang, et al., 2014; http://glass-product.bnu.edu.cn). The fractional vegetation cover (FVC) can be calcu-
lated via FVC =1 — exp (—0.5 LAI) (Anderson et al., 1997; Norman et al., 1995; Xu et al., 2014). The land cover
data were provided by Zhong et al. (2014). The regional meteorological variables (air temperature, relative
humidity, precipitation, and solar radiation) were produced by the Weather Research and Forecasting model
(Pan et al., 2012). The detailed information of these data is shown in Table 3. The land cover data were aggre-
gated from 30 m x 30 m to 1 km x 1 km with the majority resampling method. The regional meteorological
variables were resampled from 5 km x 5 km to 1 km x 1 km with bilinear interpolation method. The LAl data
were interpolated from 8 days to daily; the air temperature, relative humidity, and solar radiation were aver-
aged from hourly to daily; and the precipitation was accumulated from hourly to 30-day time step.

3. Experiment Setup

ET is affected by atmosphere factors including energy, water, and land surface vegetation cover conditions.
Thus, air temperature (T,), relative humidity (RH), solar radiation (Ry), precipitation (P), and leaf area index (LAI)
were employed to predict daily ET over HRB. For the model training, all these variables and EC-derived ET
from 36 sites over HRB were input to the five machine learning algorithms. For model application, regional
daily ET (with spatial resolution 1 km x 1 km) was generated by using trained model combined with regional
explanatory variables in Table 3.

Table 2

Summary of Large Aperture Scintillometer Stations in the Heihe River Basin

Site name Instrument type, manufactures Duration Optical path length (m) Height (m)
LAS1 BLS450, Scintec Germany 03/2008-12/2016 2390 9.5
LAS2 BLS900, Scintec Germany 06/2012-09/2012 3256 3345
LAS3 BLS900, Scintec Germany 06/2012-09/2012 2841 3345
LAS4 BLS900, Scintec Germany 06/2012-09/2012 3111 3345
LAS5 BLS450, Scintec Germany 06/2012-12/2016 1854 2245
LAS6 BLS900, Scintec Germany 07/2013-04/2015 2390 255
LAS7 BLS900, Scintec Germany 09/2013-04/2015 2380 255
LAS8 BLS900,Scintec Germany 04/2015-12/2016 2350 255
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Figure 2. Sensitivity tests of ET predictions by using different explanatory

Table 3
Summary of Regional Data Collected in the Heihe River Basin

Products Spatial resolution Temporal resolution References

Land cover 30mx30m Monthly Zhong et al. (2014)

Leaf area index 1 km X 1 km 8 days Xiao, Liang, et al. (2014)
Air temperature 5km x 5 km Hourly Pan et al. (2012)
Relative humidity 5 km x 5 km Hourly

Precipitation 5 km x 5 km Hourly

Solar radiation 5 km x 5 km Hourly

Since the five type of input training data are not at the same order of magnitude, a normalization is needed to
eliminate the difference in the order of magnitude among each data. Otherwise, the machine learning algo-
rithms may be affected heavily by the input variables with huge magnitude. The following equation is
adopted to normalize all the data range [—1, 1]

Xi—X
N; = _r 7tavg (4)
Xmax - Xmin
where N; is the normalized data; X; is the original data; and Xayg, Xmax and Xmn are the average, maximum,
and minimum values of original data, respectively.

ET was trained and predicted under different land cover types with the following equation:
i
ET; = M(Rsh > P, LAl;, Tai, RHI) (5)
i—30

where M(:) is the training model; ET; is the target variable; Ry, P, LAI, T,, and RH are the explanatory variables;
and P is the cumulative precipitation for the 30-day period prior to ith day. The subscript i stands for ith day.

The global k-fold testing was adopted to examine the performance of each machine learning method. In
this study, 36 sites (65 site years) of flux tower observations were divided into k parts (k = 10 herein). In
each training, k — 1 parts of data were used as the training data, and the kth part of data was used as the
validation data. The cross-validation process was repeated k times (all the data set should be trained and
validated), and the results of the evaluation index were then averaged as the assessing results. Although
k-fold testing is time consuming for operational application, the data are fully used and the model can
lead to more accurate results than the residual testing method (Karimi et al., 2017; Marti et al, 2011;
Shiri et al., 2014).

Five sensitivity tests were conducted to explore the ET prediction performances by using different explana-
tory variables (Figure 2). The coefficient of determination (R%) and root-mean-square error (RMSE) were used
to measure the different performances with five machining learning methods. The R; was employed in test 1;
the P, LA, T,, and RH were added successively from test 2 to test 5. As indicated in Figure 2, R> (RMSE)
increased (decreased) with explanatory variables successively added. The R? (RMSE) reached their largest
(lowest) values when all the variables were included in test 5, which indicate that the ET can be predicted
accurately with the selected explanatory variables.

R2

—%— ANN —e—Cubist ——DBN —&—RF —#—SVM
RMSE - % -ANN -© -Cubist —©-DBN -A-RF -8-SVM 1 4' ReSUItS

1.1

093
08

=
072

0.6%

Figure 3 shows the k-fold testing results of the five machine learning meth-
ods including artificial neural network (ANN), Cubist, deep belief network
(DBN), random forest (RF), and support vector machines (SVM) under all
land cover types. Predicted daily ET from all five machine learning models

Testl

0.5
Testd TestS agreed well with EC observations and fell around the 1:1 line. Additionally,
the ANN, Cubist, RF, and SVM algorithms had almost identical perfor-

variables. The R; was employed in test 1; the P, LAI, T, and RH were added =~ Mances. The DBN method had slightly higher RMSE (0.64 mm/day) and

successively from test 2 to test 5.

MAPE (12.47%), and slightly lower R? (0.87) than ANN, Cubist, RF, and SVM.
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Figure 3. Performances of five machine learning algorithms for ET prediction at 36 flux tower sites.

The five trained models were applied over Heihe River Basin from May to September over the period 2012-
2016. To assess the performance of five machine learning methods over the whole Heihe River Basin, the rela-
tive uncertainty of ET estimates was calculated with three-cornered hat (TCH) method. Figure 4 shows the
relative uncertainties of ET predictions from five machine learning algorithms with TCH method. Generally,
the RF algorithm produced slightly lower relative uncertainty than ANN, Cubist, and DBN and much lower
relative uncertainty than SVM. The SVM method generated largest relative uncertainties in barren land areas.
The relative uncertainty of ET was lower in the upper reaches and the oasis areas in the middle and lower
reaches, while the largest relative uncertainty was found in the northern barren land areas.

Figure 5 summarizes the relative uncertainties of ET estimates from five machine learning methods with dif-
ferent FVC, land cover, and seasonal variations. As shown, the ET relative uncertainty increases as the FVC
decreases. The relative uncertainty is the highest when the FVC is less than 10%. ET relative uncertainty is
low for crop, grassland deciduous broadleaf forest, and evergreen needleleaf forest, while relative uncertainty
is high for barren land. The relative uncertainty of deciduous broadleaf forest is higher than evergreen nee-
dleleaf forest. The deciduous broadleaf forest (P. euphratica) is sparsely distributed in downstream of the
basin with low FVC compared with evergreen needleleaf forest. For seasonal variations, ET relative uncer-
tainty is low from June to August (densely vegetated), while relative uncertainty is high for May and
September (early and late vegetation growing season). The five machine learning methods perform well over
densely vegetated conditions and degrade over barren land or lower FVC conditions.

As indicated, RF method slightly outperformed other machine learning methods for site training assess-
ment with EC observations (Figure 3) and relative uncertainty evaluation with TCH method over the
whole HRB (Figures 4 and 5). Thus, the RF method was used to produce daily ET over HRB from 2012
to 2016. The regional ET predicted from RF algorithm was referred to as “ETMap” here after. Figure 6
shows the spatial distribution and seasonal variation of ETMap during the growing season in the HRB over
the period 2012-2016. ET increased from May to July and then decreased from July to September over
the whole basin; this can be seen clearly in the upper reaches and oasis areas in the middle and lower
reaches. In July and August, there was a sharp decrease of ET from south to north (upstream to down-
stream). In the upper reaches of HRB (Qilian Mountain areas), ET was large because of high precipitation
and vegetation covers, while ET was low over barren land in middle and lower reaches due to rare
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Cubist

Figure 4. Relative uncertainties of ET predicted from five machine learning methods with three cornered hat (TCH) method
over Heihe River Basin.

rainfalls and sparse vegetation. In the oasis areas of the middle reaches, ET was high because of heavy
irrigation from the Heihe River. ET was also high along the Heihe River due to transpiration of the
sparse riparian forest and evaporation. Similarly, high ET was also found around the terminal lake of
HRB due to transpiration of shrub/forest (P. euphratica and Tamarix).

Figure 7 describes ET spatial distribution generated from ETMap over the whole HRB from south to north (left)
and upstream HRB (Qilian Mountain areas) from low altitude to high altitude (right). The precipitation and
vegetation cover ratio are also shown in Figure 7. ET was the highest in the upper reaches (south) and
decreased from upstream to downstream areas (north). The key factors (precipitation and vegetation cover)
that affect ET distribution also had the similar pattern as ET. Additionally, there are two ET peaks for latitude
39.5°N-40.3°N and 42.0°N-42.5°N. The high ET is observed in two big oasis areas that were irrigated with
water from the Heihe River. In the upper reaches of HRB, ET increase with elevation due to the increasing
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Figure 5. Relative uncertainties of ET from five machine learning methods with different factional vegetation cover (FVC),
land cover, and seasonal variations over Heihe River Basin.
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May Jun. Jul. Sept.
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Figure 6. Spatial distribution of ET predicted by random forest method (ETMap) over the Heihe River Basin during the per-
iod 2012-2016.

precipitation and vegetation cover from 900 to 3,000 m and then decrease with elevation due to decreasing
precipitation and vegetation cover for elevation above 3,000 m. The highest ET values occurred around the
elevation of 2,800-3,200 m, where vegetation coverage and precipitation reached their peak values. All of
these indicated that the spatial patterns of ET from ETMap agreed well with hydrological and vegetative con-
ditions over HRB.
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upper reaches of the basin.
The monthly averaged ET showed seasonal variations across the main land cover types: cropland, grass-
land, populus forest, Qinghai spruce, and desert (Figure 8). ET increased from May to July and then
decreased to September. The cropland showed obvious seasonal variations, while desert land ET did
not change much from May to September due to low precipitation. The cropland had the largest magni-
tude of ET among all land cover types because of heavy irrigation. Moreover, the ET variation (e.g., inter-
quartile range in the box plot) was larger over cropland areas than that over other land cover types (e.g.,
grassland). The rotation irrigation in the midstream oasis areas led to heterogeneous water and heat con-
ditions over cropland, thus leading to large ET variations over cropland areas.
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Figure 8. Seasonal variations of ET from ETMap over the main land covers in the Heihe River Basin.
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Figure 9. Comparison of daily ET derived from ETMap and eight groups of LAS observations.

The daily ET derived from ETMap was compared with independent large-scale ground measurements (eight
groups of LAS observations) over Heihe River Basin (HRB; Figure 9). The LAS instrument can measure spatial-
averaged surface flux along the optical path. As indicated in Figure 1, LAS1 covers 2 x 2 grids (Figure 1b);
LAS2-LAS4 cover 3 X 1 grids, while LAS5 and LAS8 cover 2 X 1 grids (Figures 1c and 1d); and LAS6 covers
the right 2 x 2 grids, while LAS7 covers the left 2 x 2 grids, respectively (Figure 1d). The LAS observations were
compared to spatially averaged ET values from model predictions with same spatial representativeness.
Figure 9 shows ET comparison scatterplots between ETMap and LAS observations. As indicated, the ET from
ETMap agreed well with LAS observations and mainly fell around the 1:1 line. The RMSE (MAPE) over the
upstream (LAS1), midstream (LAS2-LAS5), and downstream (LAS6-LAS8) areas were 0.65 mm/day
(18.86%), 0.99 mm/day (19.13%), and 0.91 mm/day (22.82%), respectively. The discrepancies between
ETMap and LAS observations were mainly caused by uncertainties in training data, LAS observations, and
the heterogeneous land surfaces. Moreover, the RMSE and MAPE over the upstream area (LAS1) were lower
than those values over the midstream (LAS2-LAS5) and downstream (LAS6-LAS8) areas. The land surface at
LAS1 is dominated by grassland and is relatively homogeneous. However, land surface is heterogeneous
around LAS2-LASS5 (land cover is composed by cropland and buildup) and LAS6-LAS8 (land cover is mainly
composed by cropland, barren land, forest, shrub land, etc.). The heterogeneous land surface condition is a
key factor for the discrepancies between ETMap and LAS observations.

Figure 10 shows the time series of daily ET derived from ETMap over the LAS1 and LAS5-LAS7 stations
during the growing season in 2014. Daily ET from the LAS observations and precipitation observations
were also shown in Figure 10. Daily ET derived from ETMap was consistent with LAS observations in terms
of both magnitude and day-to-day dynamics, implying that the trained model with the RF method per-
formed well at the regional scale. Daily ET from ETMap decreased at rainy days (with precipitation).
The good agreement between the ET prediction and LAS observation illustrates that the ETMap can effec-
tively estimate ET at the regional scale by using EC ground measurement over different hydrology and
vegetative conditions.
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Figure 10. Time series of daily ET from ETMap and LAS observations during 2014.

5. Discussion

Five machine learning methods (ANN, Cubist, DBN, RF, and SVM) were compared for ET upscaling over Heihe
River Basin. Because the five selected methods were commonly applied and have different learning strategy
(introduced in section 2.1). Some other machine learning methods (model tree ensembles, boosted regres-
sion trees, etc.) have been reported good performances for ET and other variable prediction (Jung et al.,
2011; Metzger et al,, 2013; Xu et al., 2017a, 2017b). However, these methods are similar to Cubist and RF meth-
ods that we have already used in this study. Our results showed that the five machine learning approaches
have almost identical performances in upscaling ET observations from EC flux towers to the regional scale.
These methods have been widely used to upscale ET observations to broad spatial scales (Bodesheim
et al.,, 2018; Lu & Zhuang, 2010; Wang et al., 2017; Xiao, Ollinger, et al., 2014; Yang et al., 2006). Our results
show that overall, it does not matter much which method is used for regional upscaling of ET observations.
Meanwhile, our results also identified some relatively minor differences in performance among these meth-
ods. These minor differences are mainly caused by different machine learning strategy as same training data
were used for different machine learning algorithms.

The RF algorithm can generate independent regression trees through randomly selecting training samples
automatically (Breiman, 2001). Thus, the RF algorithm can handle the high-dimensional data and strong non-
linear problems. In Heihe River Basin, the land cover is complex and diverse (grassland, evergreen needleleaf
forest, deciduous broadleaf forest, cropland, wetland, barren land, etc.; Li et al., 2013). Thus, the RF produced
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regional ET with lower uncertainty than other algorithms. Since the DBN algorithm is a deep learning method,
it needs massive training data for model training to “optimal” (Hinton et al., 2006). In Heihe River Basin, the 36
site observations (65 site years; sample number is 65 site year x 365 day/year = 23,725) is not large enough for
DBN model training. Thus, the DBN algorithm underperformed other four algorithms in this study.

ET models were trained with land surface and meteorological variables including solar radiation (R;), precipi-
tation (P), leaf area index (LAl), air temperature (T,), and relative humidity (RH). Results showed that ET models
were sensitive to these variables and could generate accurate results by incorporating all these variables. ET is
also a function of other variables, such as land surface temperature, wind speed, and soil type (or water sto-
rage capacity). However, the remotely sensed regional LST is often contaminated by cloud; it is hard, if not
impossible, to get regional gap-free LST for every day. Except for the selected variables, wind speed is also
added as an additional explanatory variable for ET prediction. However, the RMSE for ET prediction was
increased by including wind speed (not shown in Figure 2). The soil type (or water storage capacity) is one
of the key limiting factors for soil moisture and ET prediction over humid regions. The soil type can represent
soil wetness distribution over regional scale. However, the precipitation is always low over dry regions where
soil type cannot represent soil wetness well. The soil type is not suitable for ET prediction as there is a big
desert area in Heihe River Basin (Figure 1). Therefore, LST, wind speed, and soil type (or water storage capa-
city) were not included for ET prediction.

The discrepancies between model predictions and observations were mainly caused by machine learning
methods, observation data uncertainty, and land surface heterogeneity (Figures 3 and 9). The machine learn-
ing methods train the prediction model without physical meanings, and neglect the real interactions
between explanatory variables and the target. Thus, the machine learning method generates uncertainty
in daily ET prediction. Moreover, the uncertainty in latent heat flux observations derived from EC instruments
are 16% (Wang et al., 2015). The flux observations from LAS instruments are in good agreement with that
from EC instruments (Liu et al., 2016; Xu et al., 2013), which represent similar uncertainty in LAS and EC obser-
vations. In addition, the larger misfits between LAS observation and ET estimation were found over down-
stream compared those from upstream (Figure 9). The land surface heterogeneity over downstream may
lead to this large misfit (Figure 1b).

The relative uncertainties of ET estimates from five machine learning methods are assessed by TCH method
over Heihe River Basin (Figure 4). The five machine learning methods perform well over densely vegetated
conditions and degrade over barren land or lower FVC conditions (Figure 5), because ET is mainly explained
by meteorological variables (e.g., radiation, air temperature) via equation (5) over sparsely vegetated condi-
tions (low LAl or FVC). Since LAl is an important variable for model training and regional application, the
machine learning methods are degraded with low LAl values. Hence, ET relative uncertainties are high over
sparsely vegetated conditions (low LAI/FVC, barren land, early and late vegetation growing season).

Our results can inform future upscaling efforts based on machine learning approaches. First, our analysis
demonstrated that the five machine learning methods (ANN, Cubist, DBN, RF, and SVM) have almost identical
performances in predicting ET. Any of these methods can be used to upscale ET measurements to the regio-
nal scale and thereby to estimate regional ET fairly well. Second, all these methods have higher relative uncer-
tainty for sparsely vegetated areas than for densely vegetated areas. It should be noted that, however, the
lower performance in sparsely vegetated areas is not due to an inherent shortcoming of machine learning
methods but due to the weaker signal of vegetation and larger influences of soil background in the remotely
sensed data used for these areas and the higher land surface heterogeneity. The use of finer spatial resolution
soil moisture products are expected to improve the accuracy of ET prediction for sparsely vegetated areas.
Third, RF has slightly lower relative uncertainty at the regional scale than other methods in our study region,
but this is not conclusive and could be region specific. Finally, to train the model to optimal DBN requires
massive training data. We recommend that a method other than DBN be used if there are only a very limited
number of measurements available for training.

6. Conclusions

Evapotranspiration (ET) is upscaled from flux towers to the regional scale with five machine learning algo-
rithms. The five machine learning methods include artificial neural network (ANN), Cubist, deep belief net-
work (DBN), random forest (RF), and support vector machines (SVM). The daily ET derived from eddy
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covariance (EC) instruments over 36 flux tower sites (65 site years) are taken as the training target. The solar
radiation (R;), precipitation (P), leaf area index (LAl), air temperature (T,), and relative humidity (RH) are taken
as the explanatory variables that related to ET. The machine learning algorithms are trained over 36 flux tower
sites (65 site years), and then applied over whole Heihe River Basin (HRB) from 2012 to 2016.

Five machine learning algorithms are assessed with k-fold testing method with EC observations. The RF,
Cubist, ANN, and SVM methods had almost identical performances in estimating ET and had slightly lower
RMSE and MAPE than DBN. The trained models are applied over whole HRB from 2012 to 2016. The three-
cornered hat (TCH) method is employed to quantify relatively uncertainties of daily ET from different machine
learning algorithms over whole watershed. Our results indicate that RF algorithm generates slightly lower
relative uncertainty than other machine learning approaches. Additionally, the machine learning methods
perform better over densely vegetated conditions than barren land or sparsely vegetated conditions. For
future studies, the spatiotemporal continuous land surface variables (e.g., land surface temperature, soil
moisture) at fine resolution might be added as explanatory variables, if available, to enhance the modeling
skill over sparsely vegetated conditions.

Regional ET (ETMap) was obtained through upscaling observations from 36 flux tower sites. The upscaled ET
had high accuracy based on the validation with LAS-derived ET data. ETMap is a useful product for ET-related
research (e.g., ET spatial distribution, carbon-water interaction) and for validation of ET products from physi-
cal models over the Heihe River Basin.
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