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Abstract 34 

Knowledge of snow water equivalent (SWE) magnitude and spatial distribution are keys 35 

to improving snowmelt flood predictions. Since the 1980s, the operational National Oceanic and 36 

Atmospheric Administration’s (NOAA) airborne gamma radiation soil moisture (SM) and SWE 37 

survey has provided over 20,000 SWE observations to regional National Weather Service 38 

(NWS) River Forecast Centers (RFCs). Because the gamma SWE algorithm is based on the 39 

difference in natural gamma emission measurements from the soil between bare (fall) and snow-40 

covered (winter) conditions, it requires a baseline fall SM for each flight line. The operational 41 

approach assumes the fall SM remains constant throughout that winter’s SWE survey. However, 42 

early-winter snowmelt and rainfall events after the fall SM surveys have the potential to 43 

introduce large biases into airborne gamma SWE estimates. In this study, operational airborne 44 

gamma radiation SWE measurements were improved by updating the baseline fall SM with Soil 45 

Moisture Active Passive (SMAP) enhanced SM measurements immediately prior to winter onset 46 

over the north-central and eastern United States and southern Canada from September 2015 to 47 

April 2018. The operational airborne gamma SM had strong agreement with the SMAP SM 48 

(Pearson’s correlation coefficient, R = 0.69, unbiased root mean square difference, ubRMSD = 49 

0.057 m3/m3), compared to the Advanced Microwave Scanning Radiometer 2 (AMSR2) SM (R 50 

= 0.45, ubRMSD = 0.072 m3/m3) and the North American Land Data Assimilation System Phase 51 

2 (NLDAS-2) Mosaic SM products (R = 0.53, ubRMSD = 0.069 m3/m3) in non-forested regions. 52 

The SMAP-enhanced gamma SWE was evaluated with satellite-based SWE (R = 0.57, ubRMSD 53 

= 34 mm) from the Special Sensor Microwave Imager Sounder (SSMIS) and in-situ SWE (R = 54 

0.71 - 0.96) from the Soil Climate Analysis Network and United States Army Corps of Engineer 55 

(USACE) St. Paul District, which had better agreement than the operational gamma SWE (R = 56 
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0.48, ubRMSD = 36 mm for SSMIS and R = 0.65 - 0.75 for in-situ SWE). The results contribute 57 

to improving snowmelt flood predictions as well as the accuracy of the NOAA SNOw Data 58 

Assimilation System.  59 
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Snow water equivalent, Airborne gamma radiation, Soil moisture, SSMIS, SMAP, AMSR2, 61 
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1 Introduction 76 

In snowmelt-dominated regions, water resources management and flood predictions rely 77 

on accurate snowpack measurements (De Roo et al., 2003; Liu et al., 2012). The most important 78 

snowpack measure for streamflow prediction is snow water equivalent (SWE), which is the 79 

depth of liquid water that would result if the entire snowpack melted (Bergeron et al., 2016). In 80 

the north-central U.S. and southern Canada, accurate flood predictions are needed to help 81 

communities prepare for flood events and allocate flood management resources. However, flood 82 

prediction is hampered by insufficient information about the magnitude and spatial distribution 83 

of SWE and snowmelt across the landscape (Tuttle et al., 2017; Schroeder et al., 2019). In the 84 

flood-prone Red River of the North in Minnesota and North Dakota in U.S and Manitoba in 85 

Canada (Rannie, 2015; Stadnyk et al., 2016; Todhunter, 2001; Wazney and Clark, 2015), the 86 

National Weather Service (NWS) North Central River Forecasting Center (NCRFC) 87 

overestimated a peak flow by 70% of the observed 2013 flow in the region. The flood forecasters 88 

indicate that uncertainties in SWE spatial distribution as well as antecedent soil moisture 89 

estimates were potential causes of the forecasting’s failure (personnel communication, Mike 90 

DeWeese NOAA NCRFC). 91 

Since the late 1970s, satellite passive microwave sensors such as the Scanning 92 

Multichannel Microwave Radiometer (SMMR) aboard the NASA Nimbus-7 satellite (temporal 93 

coverage: 1978 – 1987), and the Special Sensor Microwave/Imager (SSM/I) and SSMIS aboard 94 

the Defense Meteorological Satellite Program (DMSP) series of satellites (F8, F11, F13, and 95 

F17: 1987 – current) have provided useful snowpack information globally (Armstrong et al., 96 

1994; Derksen et al., 2005; Foster et al., 2005; Pulliainen and Hallikainen, 2001; Tait, 1998). The 97 

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) aboard the 98 
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NASA Aqua satellite and AMSR2, a follow-on instrument of AMSR-E onboard the Japan 99 

Aerospace Exploration Agency (JAXA) Global Change Observation Mission 1-Water (GCOM-100 

W1) satellite, have successfully provided snow depth and SWE for the past two decades (Dai et 101 

al., 2012; Kelly et al., 2003; Kelly, 2009; Cho et al., 2017). SWE from current satellite-based 102 

microwave sensors has proven to be a valuable asset for improving snowmelt streamflow 103 

predictions at a watershed scale (approximately 47,000 km2; Vuyovich and Jacobs, 2011). 104 

Accurate SWE information at smaller scales remains challenging due to the coarse spatial 105 

resolution (e.g. 25 km by 25 km; 625 km2) of passive microwave satellite observations. In 106 

addition, wet snow and variations in snow grain size make the microwave satellite retrieval of 107 

SWE difficult (Armstrong et al., 1993; Tuttle et al., 2017; Vuyovich et al., 2017).  108 

Snow observations from airborne platforms can fill the knowledge gap between ground 109 

and satellite microwave remote sensing observations of snow (Painter et al., 2016). Airborne 110 

gamma-ray spectrometry supports operational snowpack monitoring efforts (Bland et al., 1997; 111 

Carroll, 2001; Grasty, 1982; Ishizaki et al., 2016). Since the 1980s, airborne gamma radiation 112 

snow surveys conducted by the NOAA’s Office of Water Prediction (OWP; and formerly by the 113 

National Operational Hydrologic Remote Sensing Center [NOHRSC]) have provided SWE 114 

observations to regional NWS RFCs across the U.S. (Carroll, 2001; Mote et al., 2003). The 115 

historical 40 years gamma SWE record was proven as reliable long-term reference SWE 116 

observations across the U.S. and southern Canada (Cho et al., 2019). The SWE data are also 117 

assimilated into NOAA NWS's NOHRSC SNOw Data Assimilation System (SNODAS) (Barrett, 118 

2003; Clow et al., 2012; Hedrick et al., 2015). 119 

Terrestrial gamma-ray emission from radioisotopes in surface soils (~ top 20 cm) is 120 

attenuated by water in the liquid or solid form (Carroll, 2001; Peck et al., 1980). The difference 121 
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between gamma radiation measurements taken in the fall (without snow) and in the winter (with 122 

snow) forms the basis of gamma-ray based airborne SWE measurements. Each flight line’s 123 

footprint is approximately 4.5 – 6 km2 (15 – 20 km long and about 300 m wide). Flight lines are 124 

measured once in the fall (in October or November) and then revisited several times throughout 125 

the winter (January to April) to estimate SWE (Carroll, 2001). The operational gamma SWE 126 

measurements are considered to be accurate assuming that SM conditions measured during the 127 

fall survey remain unchanged prior to winter surveys. However, SM conditions can change due 128 

to late-season rainfall events and early-winter snowmelt, which can result in large gamma SWE 129 

errors (e.g. NASA SnowEx Science Plan; Durand et al., 2019). Tuttle et al. (2018), for example, 130 

found a root mean square difference of 42.7 mm between AMSR‐E SWE and airborne gamma 131 

SWE in the Northern Great Plains, including parts of the North Dakota, South Dakota, 132 

Minnesota, and Iowa, the United States and southern Canadian prairies. They mentioned that a 133 

large portion of the error was likely due to the assumption that SM remains constant from fall 134 

into winter.  135 

Beginning with the SMMR from 1978 to 1987, satellite active and passive microwave 136 

sensors such as AMSR-E (2002 – 2011), ASCAT (Advanced Scatterometer; 2007, 2012, and 137 

2018 – present, from Metop-A, B, and C, respectively) and SMOS (Soil Moisture and Ocean 138 

Salinity; 2010 – present) have provided surface SM. Two recent instruments are the AMSR2 139 

(2012 – present) and SMAP (Soil Moisture Active Passive; 2015 - present). The L-band 140 

radiometer aboard the National Aeronautics and Space Administration’s (NASA) SMAP satellite 141 

is well suited for measuring surface SM (Entekhabi et al., 2010). SMAP was launched in January 142 

2015 and provides SM measurements globally every 2-3 days. SMAP SM observations have 143 

been used to study soil moisture dynamics (Akbar et al., 2018; Kim et al., 2019; McColl et al., 144 
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2017), which are important for hydrological and agricultural applications, such as flood detection 145 

(Fournier et al., 2016), irrigation signals (Lawston et al., 2017), and drought monitoring (Mishra 146 

et al., 2017), at both global and regional scales. However, satellite microwave-based SM 147 

products have well-known limitations for representative depths (~ upper few centimeters) and 148 

high uncertainties over dense-vegetated areas (Jackson & Schmugge, 1991; Entekhabi et al. 149 

2014; Chan et al., 2018).  150 

The physics used to estimate SM differ between gamma radiation and satellite microwave 151 

sensing. The gamma radiation method uses the difference between the naturally occurring 152 

terrestrial gamma radiation flux from wet and dry soils (Carroll, 1981; Jones & Carroll, 1983). 153 

The gamma flux from the ground is a function of the water mass and constant radioisotope 154 

concentration near the surface. The mass of the moisture regardless of any phase of water affects 155 

the attenuation. Increasing SM increases the gamma radiation flux attenuation and decreases the 156 

gamma flux at the ground surface. Passive microwave sensors estimate the soil dielectric 157 

constant using the observed brightness temperature (Tb) of the land surface (Jackson et al., 158 

1993). Using the estimated dielectric constant, a dielectric mixing model leverages the large 159 

difference between the dielectric constants of the soil particles (~4) and water (~80) to obtain the 160 

amount of SM with soil texture information. In the single channel algorithm (SCA) in the NASA 161 

SMAP standard products, the vertically polarized Tb observations by SMAP L-band are 162 

converted to emissivity using ancillary physical temperature (Chan et al., 2018; Dong et al., 163 

2018; O’Neill et al., 2015; updated 2019). The derived emissivity is corrected for surface 164 

roughness and vegetation to obtain soil emissivity. The soil emissivity is related to the dielectric 165 

properties of the soil and the incidence angle. The Fresnel reflection equation (Ulaby et al., 1986) 166 

is then used to determine the dielectric constant.  167 
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Land surface model (LSM) provides an alternative source of simulated SM products and 168 

have been vetted in weather and climate models as well as hydrological extreme monitoring (e.g. 169 

drought and floods) (Koster et al., 2009). The North American Land Data Assimilation System 170 

Phase 2 (NLDAS-2) provides simulated SM products for central North America using four land 171 

surface models, Noah (Ek et al., 2003; Wood et al., 1997), Mosaic (Koster and Suarez, 1996), 172 

Sacramento soil moisture accounting (SAC, Burnash, 1995), and the Variable Infiltration 173 

Capacity (VIC, Liang et al., 1994), which have high spatial (12.5 km by 12.5 km) and temporal 174 

(hourly) resolution (Xia et al., 2014).  175 

This study seeks to identify which of the aforementioned SM products can improve 176 

airborne gamma SWE estimates by updating the (“baseline”) fall operational gamma SM 177 

estimates to account for changes in SM conditions after baseline gamma flights. This study aims 178 

to answer the following four research questions:  179 

1. Are temporal changes in SM from satellite and LSM model products similar to each other 180 

after baseline gamma flights? 181 

2. Which satellite and LSM SM products have strong agreement with operational airborne 182 

gamma SM? 183 

3. How much does updating the baseline operational gamma SM change gamma SWE 184 

estimates? 185 

4. Does the updated gamma SWE improve agreement with independent SWE observations? 186 

2 Study Concept 187 

Operational airborne gamma radiation snow surveys rely on the assumption that the SM 188 

measured during the fall survey remains constant prior to winter SWE surveys. When SM 189 
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conditions evolve due to drying, rainfall events, and/or early-winter snowmelt, gamma SWE 190 

estimates biases result. Figure 1 shows an example of a SMAP soil moisture time series from the 191 

“ND440” flight line footprint, the gamma SM estimate for the flight line, and the daily rainfall 192 

and soil temperature data in Mooreton, North Dakota from North Dakota Agricultural Weather 193 

Network (NDAWN, https://ndawn.ndsu.nodak.edu) are also shown. The figure illustrates the soil 194 

moisture changes after the fall baseline gamma SM survey and their potential influence on the 195 

winter gamma SWE estimates. From the 9 November 2016 baseline gamma SM survey, SMAP 196 

SM evolves until 1 December 2017 with a net 0.12 m3/m3 increase. The gamma SWE estimated 197 

on 18 January 2017 using the baseline gamma SM value attributes all the additional gamma 198 

radiation attenuation in the winter measurement to SWE rather than accounting for the increase 199 

in soil moisture post-baseline survey. If the baseline gamma SM were updated to reflect the fall 200 

SM changes, then the operational gamma SWE should be reduced to reflect that portion of the 201 

attenuation of gamma radiation due to an increase in SM. Thus, gamma SWE estimates may be 202 

improved using an updated gamma SM estimate.  203 
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 204 

 205 

Figure 1. An example time series of satellite/model soil moisture (SMAP enhanced 206 

products in this figure) within the given flight line footprint and NOAA operational 207 

gamma soil moisture along with daily rainfall and air temperature in 2016 to 2017 from a 208 

North Dakota Agricultural Weather Network (NDAWN) station at Mooreton, ND. The 209 

ND440 flight line was flown over the Mooreton station. The increase in SMAP soil 210 

moisture in December was due to early snowmelt from 26 to 30, November. The errors of 211 

the SMAP product (ubRMSE < 0.04 m3/m3) meet the mission performance criteria from 212 

previous studies (Chen et al., 2018; Colliander et al., 2018). 213 

3 Study Area 214 

The study area comprises parts of the north-central and northeast United States and 215 

southern Canada (Figure 2), including parts of four RFCs (Missouri Basin RFC (MBRFC), 216 

North-Central RFC (NCRFC), North-East RFC (NERFC), and Mid-Atlantic RFC (MARFC)) 217 

and two Canadian Provinces including Saskatchewan (SK) and Manitoba (Winnipeg). The RFC 218 

boundaries (black lines) were designated by the NOAA NWS Integrated Hydrologic Automated 219 

Basin Boundary System to support river flow and flood forecasting throughout the United States. 220 

Gamma surveys occur in each regional RFC. The gamma flight lines in Figure 2 were flown 221 
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from September 2015 to April 2018 (black lines). The flight times range from 9 AM to 6 PM 222 

according to weather conditions and operations schedule 223 

(https://www.nohrsc.noaa.gov/snowsurvey/photos/). The region is dominated by three land cover 224 

types, forest (19%, Deciduous broadleaf forest and Mixed forest), croplands (77%, Croplands 225 

and Cropland/Natural vegetation mosaic), and grasslands (4%) from Global Mosaics of the 226 

Moderate Resolution Image Spectroradiometer (MODIS) land cover type data (MCD12Q1) 227 

using the International Geosphere-Biosphere Programme (IGBP) Land Cover Type 228 

Classification (Channan et al., 2014). Airborne gamma surveys in the western U.S. were 229 

excluded because most of there SM estimates from 2015 to 2018 used a subjective estimate 230 

(‘SE’) or unknown type (‘0’) (https://www.nohrsc.noaa.gov/snowsurvey).   231 

 232 
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Figure 2. Land cover map of the study area of the north-central and eastern United States and 233 

southern Canada with the NOAA airborne gamma flight lines surveyed from 2015 to 2018 (N = 234 
574, blue lines with cyan borders) with River Forecasting Center (RFC) boundaries (black lines) 235 

along with U.S. states and Canadian province boundaries (gray lines). The land cover map is 236 

from Global Mosaics of the Moderate Resolution Image Spectroradiometer (MODIS) land cover 237 

type product (MCD12Q1). 238 

4 Data and Methodology 239 

This study uses a number of SM and SWE products (Table 1). The details of each data 240 

product appear in the following sections.  241 

Table 1 Summary of soil moisture and snow water equivalent products including data type, 242 

period, footprint/grid size, and source used in this study 243 

Data Product Type Period 
Footprint/
Grid size 

Source 

SM & SWE NOAA gamma Airborne gamma radiation 2015-2018 5-7 km2 NOAA 

SM SMAP enhanced Satellite passive microwave 2015-2017 9 km NASA 

SM NLDAS-2 Mosaic Land surface model 2015-2017 12.5 km NOAA 

SM AMSR2 LPRM Satellite passive microwave 2015-2017 25 km NASA 

SWE SSMIS Satellite passive microwave 2016-2018 25 km NASA 

SWE GlobSnow Assimilation 2016-2018 25 km ESA 

SWE SCAN In-situ station 2017-2018 point USDA 

SWE USACE In-situ field survey 2017-2018 point USACE 

 244 

4.1 NOAA Airborne gamma survey 245 

The NWS gamma flight line network includes over 2,400 flight lines covering 29 U.S. 246 

states and seven Canadian provinces (Carroll, 2001; Peck et al., 1980). Since 1979, the NWS 247 

gamma radiation snow survey program has made about 27,000 gamma SWE measurements over 248 

North America via the NOHRSC website (http://www.nohrsc.noaa.gov/snowsurvey/). This study 249 

uses the 770 airborne SWE observations made from 2015 to 2018 with 413 flight lines in the 250 

study area including 648 observations in non-forested areas. A typical flight line is 251 
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approximately 300 m wide and 16 km long (5 km2 footprint). The gamma survey SM and SWE 252 

observations are areal-average values for each flight line footprint, while satellite and model 253 

products used in this study are provided as pixel values.  254 

The airborne gamma radiation technique measures the attenuation of the terrestrial 255 

gamma radiation signal due to the intervening water mass (Carroll, 2001; Peck et al.,1971). The 256 

gamma flux near the ground surface originates primarily from the 40K, 208Tl, and 238U 257 

radioisotopes in the soil. In a typical soil, 91% of the gamma radiation signal is emitted from the 258 

top 10 cm of the soil and 96% and 99% from the top 20 cm and 30 cm, respectively (Zotimov, 259 

1968). Airborne gamma fall SM measurements can be made for a given flight line if background 260 

terrestrial gamma count rates (40K0, 208Tl0, and gross count, GC0) and coincident background SM 261 

(SM0), and gamma count rates are available. Ground-sampled SM data collected over calibration 262 

flight lines are used to determine background SM (Jones and Carroll, 1983). Three independent 263 

SM values are calculated using the attenuation of the gamma radiation counts. SM values are 264 

calculated using gamma count rates from the 40K window (1.36 - 1.56 MeV), 208Tl (2.41 – 2.81 265 

MeV) window, and GC spectrum (0.41 to 3.0 MeV) by the following equations (Carroll, 1981; 266 

2001) 267 

��� ��� �	 =
��
 

��
 �������.����
�����

�.��                                                              Eq. (1) 268 

    ��� ����� �	 =
���
� 

���
� �������.����
�����

�.��                                                           Eq. (2) 269 

���� �� =
!"
!"�������.����
�����

�.��                                                            Eq. (3) 270 

��� =  0.346 ∙ ��� ��� �	 + 0.518 ∙ ��� ����� �	 + 0.136 ∙ ���� ��                           Eq. (4) 271 
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where 40Kc, 208Tlc, and GCc are current uncollided gamma count rates in windows 40K, 208Tl, and 272 

GC, respectively, and 40K0, 208Tl0, and GC0 are background uncollided gamma count rates. A 273 

single current SM estimate (SMc, in units of percent by weight) is calculated by multiplying the 274 

three current SM estimates by weighting factors, 0.346, 0.518, and 0.136 for 40K, 208Tl, and GC, 275 

respectively (Jones & Carroll, 1983). Only the single, weighted SM (SMc) is reported as 276 

antecedent fall SM which is used in this study. The fall SM survey data are available as Standard 277 

Hydrometeorological Exchange Format (SHEF) product through the NWS NOHRSC website 278 

(https://www.nohrsc.noaa.gov/snowsurvey/).  279 

The operational gamma SWE measurements are made using the following equations: 280 

�-.� ��� 	 = �
/ ⋅ 1�2 3 4�
 5

4�
 6 7 − �2 3�����.��⋅��� 4�
 6	
�����.��⋅��� 4�
 5	79                            Eq. (5) 281 

�-.� ����� 	 = �
/ ⋅ 1�2 3 :;�
� 5

:;�
� 67 − �2 3�����.��⋅��� :;�
� 6	
�����.��⋅��� :;�
� 5	79                            Eq. (6) 282 

�-.�� � = �
/ ⋅ <�2 =>?5

>?6 @ − �2 =�����.��⋅���>?6�
�����.��⋅���>?5�@A                            Eq. (7) 283 

�-.BCDEFGH =  0.346 ∙ �-.� ��� 	 + 0.518 ∙ �-.� ����� 	 + 0.136 ∙ �-.�� �             Eq. (8) 284 

where ��� ��� I	, ��� ����� I	, and ���� I� are SM values by weight (%) over bare ground 285 

and ��� ��� J	, ��� ����� J	, and ���� J� are SM values over snow-cover ground. 40Kb, 208Tlb, 286 

and GCb are uncollided gamma count rates over bare ground and 40Ks, 208Tls, and GCs for snow-287 

covered ground. �-.BCDEFGH  is the operational gamma radiation SWE estimate (g/cm2) reported 288 

in the SHEF product (Carroll and Schaake Jr, 1983; Carroll, 2001). Based on previous studies, 289 

errors of the airborne gamma SM measurement range from - 9.9 to 2.9% of percent bias (Carroll, 290 

1981). Errors of the gamma SWE were about 12.1% over agricultural areas in the Upper 291 
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Midwest U.S. and 1.3 – 24% over forested areas of the Lake Superior basin, U.S. and Saint John 292 

River basin, Canada. (Carroll and Carroll, 1989a; Carroll, 2001; Glynn et al., 1988). Glynn et al. 293 

(1988) indicate that the potential sources of errors in gamma SWE estimates include gamma 294 

count statistics, navigation, and biomass.  295 

The airborne gamma SM estimate is provided as “percent SM by weight” which is the 296 

weight of SM divided by the weight of dry soil multiplied by 100 from approximately the top 20 297 

cm of soil. To compare the gamma SM (by weight, %) to the gridded SM products (volumetric 298 

content, m3/m3), the units of SM were matched. The percent airborne gamma SM by weight was 299 

converted to volumetric SM contents (m3/m3) using the constant bulk density (1.295 g/cm3) 300 

based on a dominant soil bulk density in this study area (Dobson et al., 1985). Our results show 301 

that using a constant bulk density as compared to individual bulk density for each gamma 302 

footprint using the 1-km POLARIS soil datasets (available at www.polaris.earth; Chaney et al., 303 

2016) does not generate additional residual errors in the comparison between gamma SM and 304 

other SM products (Figure S1 & S2). 305 

4.2 Soil moisture (SM) 306 

4.2.1 SMAP enhanced SM 307 

The NASA’s SMAP satellite’s L-band radiometer has provided global SM measurements 308 

at 6:00 A.M./P.M. local time at 2–3 days revisit time since March 31, 2015 (Chan et al., 2016; 309 

Entekhabi et al., 2010). The SMAP SM product has been validated using ground-based 310 

observations and various assimilation products at a global scale (Kim et al., 2018; Colliander et 311 

al., 2017; Ma et al., 2019; Zhang et al., 2019; Zwieback et al., 2018).  312 
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The SMAP enhanced L3 SM, released in December 2016, is derived from SMAP Level-313 

1C (L1C) interpolated brightness temperatures using Backus-Gilbert optimal interpolation 314 

techniques (O'Neill et al., 2018). The SMAP enhanced SM product (9 x 9 km2) retrieved by the 315 

SCA (V-pol) has a finer grid posting relative to the SMAP native products (36 x 36 km2) 316 

although the enhanced footprint’s contributing domain is ~ 33km is similar to the native 36 km 317 

resolution (Chan et al., 2018). In this study, the SMAP level 3 radiometer global daily EASE-318 

Grid 2.0 (Equal-Area Scalable Earth Grid 2.0) enhanced soil moisture (V002) for the 319 

descending overpass (6 A.M.) is used from September 2015 to March 2018. This product (V002) 320 

has an improved depth correction for effective soil temperature, which reduced the dry bias in 321 

the initial version product (V001) (O'Neill et al., 2018). 322 

4.2.2 AMSR2 SM 323 

The AMSR2 passive microwave sensor, a follow-on of the AMSR-E sensor aboard the 324 

Aqua satellite, was launched on the GCOM-W1 satellite in May 2012 (Imaoka et al., 2010). The 325 

AMSR2 provides daily scans at 1:30 A.M. (descending) / P.M. (ascending) local time with 1–2 326 

days revisit time. There are three widely used AMSR2 surface SM products generated from 327 

different algorithms, the LPRM (Land Parameter Retrieval Model) (Owe et al., 2008), the JAXA 328 

algorithm (Koike, 2013; Cho et al., 2015) and the SCA (Single Channel Algorithm; Bindlish et 329 

al., 2018). The LPRM uses the dual-polarization Tb observations at individual (C or X) bands to 330 

retrieve surface SM and vegetation optical depth via a forward radiative transfer model (Owe et 331 

al., 2008). This study uses the LPRM AMSR2, Level 3 gridded X-band (10.7 GHz) SM from the 332 

ascending overpass, expressed on a regular 1/4° spatial grid (25 km).  333 

4.2.3 NLDAS-2 Mosaic SM 334 
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The NLDAS-2 is an offline modeling system, running four land surface models [Noah, 335 

Mosaic, Sacramento soil moisture accounting (SAC), and the Variable Infiltration Capacity 336 

(VIC) model] on a 1/8° spatial grid (12.5 km) over the continental United States (CONUS). 337 

NLDAS-2 uses meteorological forcing data (e.g. downward short/longwave radiation, 338 

precipitation, 2-m air temperature, 2-m specific humidity, and 10-m wind speed) to run the land 339 

surface models to produce water and energy fluxes and state variables (Xia et al., 2012). The 340 

NLDAS-2 has SM products from four land surface models (Mosaic, Noah, SAC, and VIC) (Xia 341 

et al., 2014). The Mosaic model has three soil layers: 0–10 cm, 10–60 cm, and 60–200 cm 342 

(Koster & Suarez, 1996). In this study, the Mosaic 12:00 PM SM at a depth of 0-10 cm is used to 343 

represent modeled SM values, because the Mosaic SM had a stronger agreement with the 344 

airborne gamma SM than the Noah and VIC SM products from the surface soil layer [0-10 cm] 345 

(Figure S3). The SAC SM was not compared because it uses a single soil layer with no surface 346 

soil moisture.   347 

In summary, this study uses SMAP and AMSR2 SM products as well as the NLDAS-2 348 

Mosaic SM product. Active microwave satellite (e.g. ASCAT) SM is not included because recent 349 

studies found that passive microwave SM (e.g. SMAP/SMOS) products generally have a 350 

stronger agreement with in-situ observations or reanalysis SM products than ASCAT SM over 351 

our study region (Al-Yaari et al., 2014; Kim et al., 2018). 352 

4.3 Snow water equivalent (SWE) 353 

4.3.1 SSMIS SWE  354 

The SSMIS sensor onboard the Defense Meteorological Satellite Program (DMSP) F17 355 

platform has provided daily brightness temperature (Tb) measurements with near-complete 356 
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global coverage from December 2006 to the present. In this study, F17 SSMIS SWE (
SSMISSWE ) 357 

was estimated using the Chang-type algorithm (Armstrong and Brodzik, 2001; Chang et al., 358 

1987) with modified coefficients developed by Brodzik (2014) as follows: 359 

�-.���K� = L ⋅ �MN,�P>NQ − M ⋅ �MN,RS>NQ − T                                    Eq. (9) 360 

where a, b, and c are given as 4.807 mm/K, 4.792 mm/K, and 6.036 mm, respectively. �MN,�P>NQ 361 

and �MN,RS>NQ are the brightness temperature at 19 and 37 GHz horizontal polarization, 362 

respectively. The DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures 363 

(Version 2) are provided on a 25-km grid on the National Snow & Ice Data Center website 364 

(https://nsidc.org/data/nsidc-0032; Armstrong et al., 1994). SSMIS Tb data from the descending 365 

overpass (6 A.M.) were used to minimize the potential error by wet snow (Derksen et al., 2000).   366 

4.3.2 GlobSnow SWE  367 

The European Space Agency GlobSnow project provides long-term gridded daily SWE 368 

maps with 25 km x 25 km spatial resolution from 1979 to current for the Northern Hemisphere, 369 

except for glaciers and mountainous regions (Takala et al., 2011). The GlobSnow SWE utilizes 370 

an assimilation approach, which combines ground-based synoptic snow depth station data (using 371 

constant snow density, 0.24 kg/m2) with passive microwave satellite measurements via the 372 

Helsinki University of Technology (HUT) snow emission model (Takala et al., 2011; Pulliainen, 373 

2006). Ground-based point snow depth measurements are from the World Meteorological 374 

Organization weather stations. The GlobSnow SWE has two versions, GlobSnow-2 from 1979 to 375 

2016 (archive_v2.0; http://www.globsnow.info/swe/archive_v2.0/) and GlobSnow-1 from 2011 376 

to current (near-real-time; http://www.globsnow.info/swe/nrt/). The retrieval accuracy is the 377 

same between the GlobSnow-1 and 2, but the GlobSnow-2 SWE was improved for northern 378 
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boreal forest and tundra regions (Luojus et al., 2014). Due to the current study period from 2015 379 

to 2018, the daily GlobSnow-1 SWE was used to evaluate the updated gamma SWE. 380 

4.3.3 Ground-based SWE  381 

Compared to the western U.S., there are few SWE stations in the north-central and 382 

northeastern U.S. Daily SWE measurements at the Glacial Ridge, Minnesota (ID: 2050; 383 

Latitude/Longitude: 47.72°/96.26°; Elevation: 343 m) operated by the 384 

United States Department of Agriculture (USDA) Soil Climate Analysis Network (SCAN) were 385 

compared to the updated gamma SWE measurements. The SCAN site land cover is “croplands” 386 

with a “prairie” snow classification. Two gamma flight lines, MN119 and MN120, are located 387 

near the SCAN site with the flight lines’ midpoints approximately 9.8 km (northwards) and 29.7 388 

km (southwards), respectively, from the SCAN site. The two flight lines’ land cover is also 389 

“cropland” and their elevations are about the same (Figure S4). Further details can be found on 390 

the SCAN website (https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=2050).  391 

The United States Army Corps of Engineer (USACE) ground-based snow survey data 392 

were collected by the USACE St. Paul District to determine snowpack SWE for spring flood risk 393 

assessment and water resources management. Their survey measurements sampled the snowpack 394 

at representative locations. At each site and date, at least four SWE samples were taken, each 395 

approximately 3–4 m apart, using a snow tube (3.81 cm diameter), then averaged to a single 396 

mean SWE value. This study uses the weekly USACE SWE observations from 2017 to 2018 at 397 

Baldhill, ND (Latitude/Longitude: 47.03°/-98.08°), Orwell, MN (46.22°/-96.18°), and Traverse, 398 

MN (45.86°/-96.57°). The gamma flight lines closest to each site with a distance between the 399 

midpoint of flight line and the site are ND432 and ND433 (10.6 km and 26.3 km from Baldhill), 400 

MN126 and MN129 (24.8 km and 19.2 km from Orwell), and ND441 and MN124 (13.8 km and 401 
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22.6 km from Orwell). The detailed gamma flight line locations are provided in Supplementary 402 

material (Figure S4).   403 

 4.4 Methodology 404 

For comparison to the airborne gamma SWE data, the satellite or model pixels 405 

overlapped by the given flight line footprint were weighted according to a portion of the 406 

footprint within each pixel. Only flight lines having more than 50% of the footprint covered by 407 

satellite observations were used in this analysis. For a detailed process with a schematic diagram, 408 

please refer to Tuttle et al. (2018).  409 

After one SM product (in this case, the SMAP enhanced SM) was selected based on the 410 

statistical agreement (e.g. correlation coefficient and unbiased root mean square difference) with 411 

operational baseline gamma SM, a linear regression model that minimizes the sum of squared 412 

residuals (UV) was developed to relate coincident gamma SM (��BCD,V) and the satellite (or 413 

model) SM (��JCW,V) measurements.  414 

��BCD,V = L ⋅ ��JCW,V + M ± UV                                        Eq. (10) 415 

where i is flight line number, a is the slope and b is the y-intercept of the linear regression 416 

equation. UV  is a residual error (m3/m3) between operational gamma SM and satellite (or model) 417 

SM for each flight line. Based on the model, new, updated gamma SM estimates were calculated 418 

by applying the latest antecedent SM of the chosen product into the linear regression model. It is 419 

assumed that the residual, UV, is largely generated from differences between the two products’ 420 

representative areas and land surface characteristics for each flight line. Thus, the residuals are 421 

included in the updated gamma SM.  422 
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The change in airborne gamma SWE, ∆�-.BCD,V, resulting from a change in antecedent 423 

SM in the unit of percentage (%) in soil was calculated using Carroll (2001) as follows: 424 

∆�-.BCD,V = �Z.�
/ ⋅ [ln ^�����.��⋅��_`aEFGH,b

�����.��⋅��_`acFd,b ef                               Eq. (11) 425 

where ∆�-.BCD,V is the change in snow water equivalent (mm), A is a radiation attenuation 426 

coefficient of water which is equal to 0.1482 (Carroll, 2001). 25.4 is used to convert “inches” to 427 

“mm” from Equation 3 in Carroll (2001). 1.11 represents the ratio of gamma radiation 428 

attenuation in water to air (Carroll, 1981).  ��BCDEFGH,V is operational gamma SM by weight (%) 429 

measured in the fall survey and ��BCDcFd,V is the updated gamma SM by weight (%). A 430 

schematic diagram of the methodology is provided in the Supplementary materials (Figure S5). 431 

The agreement between airborne gamma survey and satellite/model SM (or SWE) products was 432 

quantified by the Pearson’s linear correlation coefficient, R, the mean bias, Bias, the root mean 433 

square difference, RMSD, and the unbiased RMSD, ubRMSD. The equations are available in the 434 

Supplementary material (Text S1).  435 

5 Results 436 

5.1 Change in the soil moisture after baseline gamma flights from satellite and model 437 

products 438 

Figure 3 compares the change in NLDAS-2, SMAP, and AMSR2 regional SM maps from 439 

the dates of the baseline fall gamma flights until the last observation before freeze onset. As an 440 

example, in 2016 most gamma SM flights occurred about 25 October and the latest observation 441 

available prior to freezing onset was on 29 November. After the fall gamma flights, SM changes 442 

vary by year and location. These changes are typically caused by later rainfall, early-winter 443 
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snowmelt, and/or freeze/thaw events, suggesting that an adjustment of the baseline gamma SM is 444 

necessary for accurate gamma SWE survey. 445 

In 2015, the change in NLDAS-2 and SMAP SM from November 25 to December 12 446 

show similar spatial patterns. Surface soils became wetter in the north-central U.S. and drier in 447 

the northeastern U.S. The increases in SMAP SM are greater than NLDAS in Minnesota, North 448 

Dakota, and South Dakota where many of the gamma flights occurred. The AMSR2 SM change 449 

is remarkably different from NLDAS-2 and SMAP SM. AMSR2 shows drying in Minnesota and 450 

most Canadian provinces. In 2016, SM changes clearly differ by data source between 25 October 451 

and 29 November. SMAP has a strong drying signal of up to -0.17 m3/m3 in north-central and 452 

eastern U.S. as well as Saskatchewan and Manitoba, Canada. However, NLDAS-2 and AMSR2 453 

SM in the same regions get wetter by up to 0.12 and 0.25 m3/m3, respectively. In the Midwest, 454 

AMSR2 shows that SM increases exceed 0.25 m3/m3. In 2017, there are clear decreases in 455 

NLDAS-2 and SMAP SM from 25 October to 13 December in the Midwest. The drying of 456 

SMAP (~0.20 m3/m3) is stronger than that of NLDAS-2 (~0.10 m3/m3). NLDAS-2 captures 457 

modest wetting in Canada, which is not seen by SMAP and AMSR2 SM because these datasets 458 

are provided for only limited areas in Canada, due to data masking from soil freeze or snow 459 

cover. 460 

In general, SMAP SM changes are spatially similar to NLDAS-2 SM changes but have 461 

amplified drying (and wetting). AMSR2 has extreme SM changes considering the normal range 462 

of volumetric SM and differs spatially from SMAP and NLDAS-2, which may reflect the much 463 

thinner and closer-to-the-surface sensing depth of AMSR2 as compared to SMAP and NLDAS-464 

2’s deeper sensing depths. 465 
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  466 

Figure 3. SM difference maps for NLDAS-2, SMAP, and AMSR2 for the years 2015 to 467 

2017.  SM differences are calculated between the date of the fall baseline gamma flights and the 468 

date of the last SM observation prior to freezing onset. A past 5-day composite SM map was 469 

used to eliminate spatial gaps. 470 

 471 

5.2 Airborne gamma SM versus satellite and model SM products  472 

To identify which satellite or model SM product agrees best with gamma SM, the gamma 473 

SM data were compared to NLDAS-2, SMAP, and AMSR2 SM products. Because the 474 

performance of the microwave SM products typically weakens with increasing vegetation 475 

density (Jackson & Schmugge, 1991; Wang et al., 1982; Mladenova et al., 2014), the comparison 476 

is conducted with and without forest areas. When forested areas are included, NLDAS-2 SM has 477 

better agreement with operational gamma SM than the two satellite SM products (Table 1). 478 

There is little difference in agreement between NLDAS-2 mosaic SM and operational gamma 479 

SM with/without forest classes (Figure 4a & b). However, the agreement between SMAP and 480 

gamma SM clearly differs by a land cover (Figure 4c & d). A majority of the SMAP SM values 481 
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with a wet bias occur for flights over forests. For the Deciduous broadleaf forest and Mixed 482 

forest classes, there are large errors with SMAP SM compared to gamma SM (Bias: 0.11 and 483 

0.19 m3/m3 and RMSD: 0.17 and 0.21 m3/m3, respectively). For the AMSR2 comparison, most 484 

SM values over forested areas were excluded due to poor data quality before the analysis, but the 485 

remaining SM values show a wet bias, similar to SMAP SM, in forested regions (Figure 4e). 486 

AMSR2 SM has an extreme wet bias (0.13 m3/m3) even in non-forested areas. In non-forested 487 

regions, SMAP SM shows very strong agreement with gamma SM as compared to AMSR2 and 488 

NLDAS-2 SM (Table 2). The results indicate that SMAP SM values from forested areas (e.g. 489 

Deciduous broadleaf forest and Mixed forest) do not agree with the gamma observations and 490 

these land uses should be excluded if updating gamma SWE with SMAP SM. A linear regression 491 

model between SMAP and operational gamma SM [Eq. (10)] was developed using only the 492 

values from non-forested regions for the next step. Comparison between operational gamma SM 493 

and SMAP, AMSR2, and NLDAS-2 SM products for forested regions only, are provided in 494 

Figure S6. 495 

Table 2 Agreement between NOAA airborne gamma SM and NLDAS-2 Mosaic SM, SMAP 496 
enhanced SM, and AMSR2 SM with/without the SM values from forested areas 497 

Data 

with forested areas  without forested areas 

N R 
ubRMSD 

(m3/m3) 

RMSD 

(m3/m3) 

Bias 

(m3/m3) 

 
N R 

ubRMSD 

(m3/m3) 

RMSD 

(m3/m3) 

Bias 

(m3/m3) 

NLDAS-2 342 0.53 0.07 0.08 -0.03  277 0.53 0.07 0.08 -0.03 

SMAP 342 0.52 0.10 0.10 0.02  277 0.69 0.06 0.06 -0.02 

AMSR2 287 0.43 0.08 0.15 0.13  278 0.45 0.07 0.15 0.13 
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 498 

Figure 4. Comparison of NOAA airborne gamma soil moisture with (a, b) Phase 2 of the North 499 
American Land Data Assimilation System (NLDAS-2) Mosaic SM, (c, d) Soil Moisture Active 500 

Passive (SMAP) Level 3 enhanced soil moisture, and (e, f) Advanced Microwave Scanning 501 

Radiometer 2 (AMSR2) SM within the given flight line footprints with/without the SM values 502 

from forested areas. 503 

 504 
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5.3 Enhancement of gamma SWE by updating baseline SM  505 

When the operational, baseline gamma SM in non-forested regions from 2015 to 2017 are 506 

updated using SMAP SM, the gamma SWE values change. Figure 5a displays SMAP SM 507 

changes measured between the date of the fall baseline gamma flights and the date of the last SM 508 

observation before freeze-up as well as the corresponding operational and SMAP-updated 509 

airborne gamma SM estimates. The SMAP-updated gamma SM were calculated using the linear 510 

regression model between airborne gamma and SMAP SM, slope (a) = 0.69 and y-intercept (b) = 511 

0.083 [Eq. (10)]. The slope indicates that SMAP SM is more sensitive than gamma SM. 512 

Considering the two methods’ different representative soil depths, it is reasonable that SMAP’s 513 

surface SM would tend to have higher variability than the deeper gamma SM.  514 

 515 
Figure 5. (a) Boxplots of SMAP SM at original (operational) and latest available dates and 516 

original and updated gamma SM for entire flight lines in the non-forested region from 2015 to 517 

2017, along with (b) the corresponding original and updated gamma SWE. (a) The small circles 518 

are individual SM data (no meaning for a spread in the horizontal direction) and the larger circles 519 
are outliers. The bold line within each colored box is median, and the upper and bottom sides of 520 

the box are the upper (75%) and lower (25%) quantiles of the data. (b) The width of the leaf-521 

shape boxplot shows the relative amount of the SWE data at that magnitude. 522 
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 523 

The SMAP SM immediately before freeze-up (mean: 0.16 m3/m3, median: 0.12 m3/m3) is 524 

typically lower than the SM on the date of the fall baseline gamma flights (mean: 0.21 m3/m3, 525 

median: 0.20 m3/m3), indicating that for this study period most of the region dried in late fall to 526 

early winter. Note: a large portion of the gamma SM flights (193 of total 277 flight lines) 527 

occurred in fall 2016 when there was an average of 0.05 m3/m3 (median: 0.09 m3/m3) decrease in 528 

SMAP SM. As the SMAP SM differences between the baseline and latest available SM decrease, 529 

the gamma SM differences should also decrease following the linear regression model [Eq. (10)]. 530 

The SMAP-updated gamma SM is drier by an average of 0.03 m3/m3 than the operational 531 

baseline gamma SM. The SMAP-updated gamma SM also appears to have a greater interquartile 532 

range (IQR; total: 0.12 m3/m3) than the operational baseline gamma SM (0.08 m3/m3). This 533 

indicates that the residual values ( iε ) in the linear regression model comprise a considerable 534 

proportion of the variation in SMAP-updated gamma SM.  535 

Using the SMAP-updated SM for each flight footprint, a new, SMAP-updated gamma 536 

SWE was calculated using Eq. (10). The original, operational gamma SWE values (mean: 72 537 

mm, median: 69 mm) were adjusted upward by 15% (mean: 82 mm, median: 79 mm) when 538 

accounting for the changes in baseline SM (Figure 5b). In summary, decreases in the baseline 539 

SM by an average of 0.03 m3/m3 (gamma) and 0.05 m3/m3 (SMAP) generate average increases in 540 

gamma SWE of about 10 mm. Individual gamma SWE estimates have different SM changes due 541 

to the variations by year and flight line as presented in Figure 6. 75% of the SM values became 542 

drier and the remaining 25% became wetter, but with SM differences ranging from 0.22 to -0.25 543 

m3/m3 and gamma SWE changes ranging from -30 to 41 mm.  544 



Confidential manuscript submitted to Remote Sensing of Environment 

28 
 

 545 

Figure 6. Histogram of (a) changes in SMAP SM and (b) NOAA airborne gamma SWE from the 546 

date of the baseline fall gamma flights to the date immediately before winter freeze-up 547 
 548 

5.4 Evaluation of the updated gamma SWE  549 

To evaluate the SMAP-updated gamma SWE, satellite-based SWE measurements from 550 

SSMIS passive microwave sensors were used. Flight lines in forest-dominant regions were 551 
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excluded because SSMIS underestimates SWE compared to airborne gamma SWE over the 552 

forested areas (Figure S7). Figure 7 shows that the SSMIS SWE has better agreement with 553 

SMAP-updated gamma SWE than with the operational gamma SWE. When the SSMIS SWE 554 

exceeds 125 mm, the SMAP-updated gamma SWE values with high DOY converge toward the 555 

1:1 line. The agreement between the two SWE estimates was improved for each land cover type 556 

when gamma SWE was updated with SMAP SM (Figure S8). In grassland, the SSMIS SWE had 557 

a higher correlation and lower ubRMSD with SMAP-updated gamma SWE as compared to the 558 

agreement with the operational SWE. There were also modest improvements in the agreement 559 

statistics in croplands, except for Bias, which increases from -1.8 to -11 mm.  560 
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  561 
Figure 7. Comparison between operational and SMAP-updated NOAA airborne gamma 562 
snow water equivalent with (a, b) satellite-based snow water equivalent from Special Sensor 563 

Microwave Imager Sounder (SSMIS) and (c, d) ESA GlobSnow assimilation SWE within the 564 

given flight line footprint. The points are colored by day of year (DOY). 565 
 566 

To further validate the SMAP-updated gamma SWE, ground-based SWE measurements 567 

were obtained from the Glacial Ridge SCAN site snow pillow. Even though there are only five 568 

coincident gamma SWE observations, the gamma SWE captures the SWE evolution of the in-569 
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situ data for the two years (Figure 8). In 2017, gamma SWE updates were only 3 mm because of 570 

the limited changes in the baseline SM. In 2018, the operational gamma SWE values are updated 571 

by about 20 mm due to the large decrease in the antecedent SM. The updated gamma SWE 572 

shows a higher correlation (R = 0.95 with p < 0.01) with in-situ SWE than the operational 573 

gamma SWE (R = 0.75 with p = 0.15; Figure 8b). The slope and y-intercept of the updated SWE 574 

are also much closer to the 1:1 line. While the operational gamma SWE overestimated SWE by 8 575 

mm in 2017, it underestimated SWE by 12 mm in 2018. The updated gamma SWE biases are 576 

consistent for both years.  577 

A final comparison was conducted using the weekly SWE samples from the United 578 

States Army Corps of Engineer (USACE) at three sites (Baldhill, ND, Orwell, MN, and 579 

Traverse, MN) in the north-central U.S. (see Figure S4). The USACE SWE shows better 580 

agreement with the SMAP-updated SWE (R = 0.71 with p = 0.075) than the operational gamma 581 

SWE (R = 0.65 with p = 0.12; Figure 9). 582 

 583 

Figure 8. (a) Time series of in-situ SM and SWE measurements with the operational and SMAP-584 

updated gamma SWE at the Glacial Ridge Station, Minnesota (ID: 2050) from the Soil Climate 585 

Analysis Network (SCAN) and (b) agreement between the in-situ SWE and the operational and 586 

SMAP-updated gamma SWE. The red points in both plots indicate the operational gamma SWE, 587 

while the green points indicate SMAP-updated gamma SWE.    588 

 589 
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 590 
Figure 9. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated 591 
gamma SWE at three sites (Baldhill, ND, Orwell, MN, and Traverse, MN) from the United 592 

States Army Corps of Engineers (USACE) and (b) agreement between the in-situ USACE SWE 593 

and the operational and SMAP-updated gamma SWE.  The red points in both plots indicate the 594 

operational gamma SWE, while the green points indicate SMAP-updated gamma SWE.       595 

6 Discussion 596 

6.1 Evaluation of soil moisture  597 

The superior agreement of SMAP products with gamma SM in non-forested areas could 598 

be caused by its finer spatial resolution (9 km x 9 km) as compared to AMSR2 (25 km x 25 km) 599 

and NLDAS-2 (12.5 km x 12.5 km). Considering that the typical gamma flight line has a 5–7 600 

km2 footprint, the finer resolution of the SMAP enhanced SM may lead to less spatial 601 
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heterogeneity error within the pixels (Loew, 2008; Chan et al., 2018). However, Cho et al. 602 

(2018) found that the gamma SM also had better agreement with SMAP standard SM (36 km x 603 

36 km; SPL3SMP) than with either the AMSR2 or the NLDAS-2 mosaic SM products. This 604 

result is similar to Kim et al.’s (2018) finding that in-situ SM showed better agreement with the 605 

SMAP standard SM than with either AMSR2 or Global Land Data Assimilation System 606 

(GLDAS) SM products (25 km x 25 km). This suggests that the L-band frequency (1.4 GHz) of 607 

the SMAP radiometer might lead to better performance regardless of spatial resolution (Chan et 608 

al., 2018). The greater penetration depth of the L-band could be also more representative of the 609 

~20 cm depth of the gamma SM. In dense-forested areas with high vegetation canopy, it is 610 

extremely difficult to obtain accurate SM retrievals using the SMAP L-band and AMSR2 X-611 

band frequencies. The AMSR2 X-band SM product over the Deciduous broadleaf forest and 612 

Mixed forest regions are typically masked with the data quality flag. In non-forested regions with 613 

bare ground or low vegetation canopy, the L-band SM performs better than X-band because the 614 

L-band frequency can partly penetrate low vegetation canopy while the higher-frequency X-band 615 

experiences greater attenuation (Kim et al., 2018; Jackson & Schmugge, 1991). 616 

In the Deciduous broadleaf forest and Mixed forest classes, the operational gamma SM 617 

had a poorer agreement with SMAP SM than with NLDAS-2 SM, which agrees with previous 618 

validation studies of passive microwave SM products, including the SMAP radiometer. A known 619 

limitation of passive microwave soil moisture retrievals is that dense vegetation canopy over the 620 

soil surface reduces the sensitivity of the relationship between emissivity and SM (Jackson & 621 

Schmugge, 1991; Wigneron et al., 2003), even though the L-band microwave frequency yields 622 

relatively good results under vegetation covers relative to other, higher frequencies because of its 623 

higher penetration depth (Vittucci et al., 2016; Entekhabi et al., 2010). Due to the extremely high 624 
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optical depth of forests, there is little chance of reliably estimating SM conditions. For forest 625 

types, Chan et al. (2016) found larger biases and ubRMSD between SMAP and in-situ SM 626 

measurements at core validation sites (CVS), relative to other land cover types.  627 

While SMAP SM has a wet bias in forest areas, there is no bias between operational 628 

gamma SM and NLDAS-2 SM due to land cover. Considering that NLDAS-2 Mosaic SM is 629 

estimated based on a physical land surface model (Koster & Suarez, 1996), it is likely that 630 

gamma SM is less affected by vegetation effects than passive microwave (SMAP and AMSR2) 631 

SM. The airborne gamma radiation technique depends on historical data to establish the 632 

relationship between gamma count rates and SM and determine a standardized gamma count rate 633 

at 35% gravimetric SM values for each calibration flight line (Carroll, 1980; 2001; Jones and 634 

Carroll, 1983). This suggests that the vegetation effect on airborne gamma radiation observations 635 

is minimal. Change in vegetation conditions by season are also minor because most gamma SM 636 

observations – to estimate antecedent SM prior to soil freezing – are measured in late fall (e.g. 637 

October or November) (Carroll, 2001). For these reasons, the gamma SM appears to be reliable 638 

in forested regions and has the potential to be used beyond its operational estimates of SWE. 639 

However, further investigation is still required to determine how gamma fluxes from the soil are 640 

attenuated by vegetation characteristics (e.g. type, height, and density) and how much the 641 

attenuation impacts SM estimates (Woods 1965; Schetselaar & Rencz, 1997; Ahl and Bieber, 642 

2010).  643 

Previous studies typically evaluated airborne gamma radiation SM with ground-based 644 

SM observations. With an average of 25 samples gravimetric SM measurements per flight line, 645 

Carroll (1981) and Jones and Carroll (1983) found airborne gamma SM had strong agreement 646 
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(R2 = 0.87 and 0.84, RMSD = 3.2 and 3.9%, respectively). The airborne gamma radiation 647 

technique is considered to be a reliable method to estimate areal mean SM measurements.  648 

No previous studies have compared gamma SM observations to satellite-based active and 649 

passive microwave or LSM SM, even though there are a series of satellite-based microwave 650 

sensors (e.g. SSM/I, AMSR-E/2, ASCAT, SMOS, and SMAP) and numerous evaluation studies 651 

since the early 1980s (e.g., Al-Yaari et al., 2014; Babaeian et al., 2019; Mladenova et al., 2014; 652 

Kim et al., 2018; Xia et al., 2014). This may be due to the operational mission of the airborne 653 

gamma program. As mentioned earlier, the airborne gamma radiation SM data collected by the 654 

NOAA NWS’s Airborne Gamma Radiation Snow Survey Program is intended primarily to 655 

estimate SWE, not SM itself, and to provide the SWE data to the RFCs for use in the snowmelt 656 

flood forecasts. In light of the gamma radiation SM performance forests, gamma SM may help 657 

estimate SM in forested-dominated regions; one of the current challenges in the SM remote 658 

sensing community. As an independent asset, the airborne gamma radiation SM dataset can be 659 

utilized to evaluate current and future SM products from various satellites and land surface 660 

models to improve hydrological models.  661 

6.2 Evaluation of SWE  662 

   The SMAP-updated gamma SWE agreement with satellite SWE is better than the 663 

previous findings by Tuttle et al. (2018). Tuttle et al. (2018) compared the operational gamma 664 

SWE to AMSR-E SWE estimates over the Northern Great Plains from 2002 to 2011. Their 665 

correlation coefficient (0.36) and RMSD (43 mm) is relatively poor compared to the SMAP-666 

updated gamma SWE results and even the operational SWE. This may be due to different study 667 

periods between the two studies (2002-2011 versus 2015-2018). Their statistics could include a 668 

few erroneous SWE values during 2009 and 2011 when there were snowmelt floods. The 669 
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improved agreement of the SMAP-updated SWE with in-situ SWE, satellite microwave SWE, 670 

and GlobSnow SWE suggest that a portion of the error in operational gamma SWE caused by 671 

antecedent SM can be reduced using this proposed method. 672 

Compared to the operational gamma SWE, the SMAP-updated SWE has better 673 

agreement with the limited available datasets including in-situ, satellite-based SSMIS, and 674 

GlobSnow assimilated SWE, but positive biases with in-situ and SSMIS SWE (10.4% and 11.8% 675 

respectively). Carroll and Schaake Jr (1983) also found that the airborne gamma SWE data tend 676 

to overestimate the ground-based data by approximately 10%. This may be due to the airborne 677 

gamma radiation method detecting water in all phases, including ground ice, standing water, and 678 

superimposed SM in the soil surface (Carroll, 2001), which might not be included in SWE 679 

observations from ground samples and snow stations. A snow pillow measures only the mass of 680 

the overlaying snowpack (Goodison et al., 1981) and has inherent limitations because the heat 681 

exchange between the snow and soil is disrupted, likely causing SWE underestimation (Bland et 682 

al., 1997). The current study suggests the method improves gamma SWE estimates but further 683 

validation with purposefully designed in-situ SWE measurements is needed.  684 

6.3 Limitations  685 

When the linear regression model between operational airborne gamma SM and SMAP 686 

SM was developed, the residual errors ( iε ) for each flight line were included in the model, 687 

assuming that the errors reflect the physical properties of the land surface within each line 688 

footprint (e.g. soil properties, elevation, slope, and inner spatial heterogeneity) (Clark et al., 689 

2011). A residual analysis conducted with land surface characteristics (clay percentage, saturated 690 

hydraulic conductivity, and mean elevation and slope) to identify physical properties related to 691 

the errors and to assess the appropriateness of the model did not find any statistically significant 692 
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relationships. Carroll and Carroll (1989b) found that gamma SWE is systematically 693 

underestimated when large SWE variability occurs within a flight footprint. Because the gamma 694 

technique principles, measuring water mass by attenuation, are the same for SM and SWE, it 695 

possible that SM variability could cause gamma SM to be underestimated. High-resolution soil 696 

properties and SM-related variables (e.g. land surface temperature / Sentinel-1 SAR backscatter) 697 

could be used to understand spatial heterogeneity impacts and to improve the operational gamma 698 

SM methodology (Das et al., 2019). 699 

A well-known issue when validating gridded satellite products with in-situ (or different 700 

platform) measurements is the difference in spatial scales between the observations and the 701 

ability of the sub-grid scale measurements to capture the variability within the satellite footprint 702 

(Gruber et al., 2013; Colliander et al., 2017). Tuttle et al. (2018) noted that SWE spatial 703 

variability affects the gamma versus satellite SWE comparison because of the different spatial 704 

scales for the gamma footprint and the satellite pixel. The different observation scales may 705 

contribute to the residual errors in the linear regression model between the gamma and SMAP 706 

SM. The gamma SM lines often comprise parts of multiple SMAP pixels. The weighted mean 707 

SMAP SM was found for the given flight footprint. However, the weighted mean SM is derived 708 

from Tb observations that are partly from outside of the flight line footprint, thus introducing 709 

representativeness errors into the linear model. Further studies are required to identify physical 710 

characteristics that might be related to the residual errors in the model. 711 

There may be temporal differences between airborne gamma radiation observations and 712 

the satellite and model products in this study for SM and SWE comparisons. The gamma flight 713 

overpass times range from 9 AM to 6 PM while the sun-synchronous SMAP, AMSR2, and 714 

SSMIS sensors have constant local overpass times. Recognizing that SM has diurnal changes 715 
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(Jackson, 1973), the linear regression model between the operational airborne gamma and SMAP 716 

SM could be improved if the measurement time of the gamma flight data were known and the 717 

comparison included only those observations where measurement times were similar. It is also 718 

possible that this approach would improve if NLDAS-2 SM were used instead of SMAP SM 719 

because hourly NLDAS-2 SM values are available (Xia et al., 2015). 720 

The different representative depths among the SM data sources also add error. The 721 

passive microwave sensors measure surface SM from the top few centimeters, with a depth that 722 

varies with the amount of soil moisture and its distribution (Njoku and Kong, 1977; Escorihuela 723 

et al., 2010). The L-band SMAP SM captures approximately the top 5 cm of the soil (O'Neill et 724 

al., 2018; McColl et al., 2017) whereas the X-band AMSR2 penetration depth is close to 1 cm 725 

(Bindlish et al., 2017) because lower-frequency microwave radiation generally penetrates soil 726 

and vegetation canopy more effectively than higher-frequency bands (Jackson & Schmugge, 727 

1991). However, airborne gamma SM is derived from a larger depth range than the penetration 728 

depth of any current passive microwave satellite instrument (Carroll, 2001) with 91% of the 729 

gamma flux emitted from the upper 10 cm of the soil, and 96% from the upper 20 cm (Zotimov, 730 

1968; Jones and Carroll, 1983). While the different sensors’ representative depths are not 731 

dissimilar, the modest difference in representative depths could still cause errors, especially 732 

during dynamic wetting or drying (e.g., right after rainfall events).   733 

7 Conclusion 734 

In this study, a linear regression method was developed to improve operational airborne 735 

gamma SWE estimates in non-forested regions by updating the fall baseline SM using the SMAP 736 

enhanced SM product. Based on limited comparisons, the SMAP-updated SWE improves 737 

agreement with satellite and in-situ SWE observations. This preliminary study identified the 738 
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need to further test the approach as well as opportunities to improve the approach using higher-739 

resolution/evolving independent products. For example, the Copernicus Sentinel-1 Synthetic 740 

Aperture Radar (SAR) provides 1-km C-band backscatter data. Because the SAR backscatter is 741 

directly related to surface SM condition, the Sentinel-1 SAR-based information could improve 742 

antecedent SM estimates over the gamma flight lines. However, current satellite SM 743 

observations offer little value for improving the gamma estimates in forested areas. In densely 744 

vegetated regions SM from LSMs, applied using this study’s approach, could improve the 745 

operational gamma SWE regardless of land cover type. In the United States, snowmelt flood 746 

predictions are challenged by limited ground observations and rely heavily on the airborne 747 

gamma SWE product which is also used to support the operational SNODAS product. This study 748 

shows that the typical SWE corrections are on the order of 10 mm. Thus, the soil moisture 749 

corrections would be most important for regions having shallow snowpacks and snowmelt-750 

driven flooding that is highly sensitive to modest SWE differences. Finally, gamma SWE 751 

estimates also serve as independent SWE measurements that are useful for evaluating satellite 752 

and modeled SWE products. An updated airborne gamma SWE with reduced errors will better 753 

support the evaluation of SWE products from current and future satellite missions and 754 

regional/global land surface or climate models. 755 
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Figure 1. An example time series of satellite/model soil moisture (SMAP enhanced products in 1068 

this figure) within the given flight line footprint and NOAA operational gamma soil moisture 1069 
along with daily rainfall and air temperature in 2016 to 2017 from a North Dakota Agricultural 1070 

Weather Network (NDAWN) station at Mooreton, ND. The ND440 flight line was flown over 1071 

the Mooreton station. The increase in SMAP soil moisture in December was due to early 1072 

snowmelt from 26 to 30, November. The errors of the SMAP product (ubRMSE < 0.04 m3/m3) 1073 

meet the mission performance criteria from previous studies (Chen et al., 2018; Colliander et al., 1074 

2018). 1075 

Figure 2. Land cover map of the study area of the north-central and eastern United States and 1076 

southern Canada with the NOAA airborne gamma flight lines surveyed from 2015 to 2018 (N = 1077 

574, blue lines with cyan borders) with River Forecasting Center (RFC) boundaries (black lines) 1078 
along with U.S. states and Canadian province boundaries (gray lines). The land cover map is 1079 

from Global Mosaics of the Moderate Resolution Image Spectroradiometer (MODIS) land cover 1080 

type product (MCD12Q1). 1081 

Figure 3. SM difference maps for NLDAS-2, SMAP, and AMSR2 for the years 2015 to 2017.  1082 
SM differences are calculated between the date of the fall baseline gamma flights and the date of 1083 

the last SM observation prior to freezing onset. A past 5-day composite SM map was used to 1084 

eliminate spatial gaps. 1085 

Figure 4. Comparison of NOAA airborne gamma soil moisture with (a, b) Phase 2 of the North 1086 

American Land Data Assimilation System (NLDAS-2) Mosaic SM, (c, d) Soil Moisture Active 1087 

Passive (SMAP) Level 3 enhanced soil moisture, and (e, f) Advanced Microwave Scanning 1088 

Radiometer 2 (AMSR2) SM within the given flight line footprints with/without the SM values 1089 

from forested areas. 1090 

Figure 5. (a) Boxplots of SMAP SM at original (operational) and latest available dates and 1091 

original and updated gamma SM for entire flight lines in the non-forested region from 2015 to 1092 

2017, along with (b) the corresponding original and updated gamma SWE. (a) The small circles 1093 

are individual SM data (no meaning for a spread in the horizontal direction) and the larger circles 1094 
are outliers. The bold line within each colored box is median, and the upper and bottom sides of 1095 

the box are the upper (75%) and lower (25%) quantiles of the data. (b) The width of the leaf-1096 

shape boxplot shows the relative amount of the SWE data at that magnitude. 1097 

Figure 6. Histogram of (a) changes in SMAP SM and (b) NOAA airborne gamma SWE from the 1098 

date of the baseline fall gamma flights to the date immediately before winter freeze-up 1099 

Figure 7. Comparison between operational and SMAP-updated NOAA airborne gamma snow 1100 
water equivalent with (a, b) satellite-based snow water equivalent from Special Sensor 1101 

Microwave Imager Sounder (SSMIS) and (c, d) ESA GlobSnow assimilation SWE within the 1102 

given flight line footprint. The points are colored by day of year (DOY). 1103 

Figure 8. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated 1104 

gamma SWE at the Glacial Ridge Station, Minnesota (ID: 2050) from the Soil Climate Analysis 1105 

Network (SCAN) and (b) agreement between the in-situ SWE and the operational and SMAP-1106 

updated gamma SWE. The red points in both plots indicate the operational gamma SWE, while 1107 

the green points indicate SMAP-updated gamma SWE.    1108 

Figure 9. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated 1109 

gamma SWE at three sites (Baldhill, ND, Orwell, MN, and Traverse, MN) from the United 1110 

States Army Corps of Engineers (USACE) and (b) agreement between the in-situ USACE SWE 1111 

and the operational and SMAP-updated gamma SWE.  The red points in both plots indicate the 1112 

operational gamma SWE, while the green points indicate SMAP-updated gamma SWE.       1113 




