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Highlights

* The NOAA airborne gamma radiation surveys provide unique SM and SWE records

* Airborne gamma SWE estimate biases result when SM changed after fall SM surveys
*  SMAP SM has the best agreement with gamma SM as compared to other SM products
* Operational gamma SWE improved by updating antecedent SM prior to freeze onset

*  SMAP-updated SWE showed better agreement with two independent SWE observations
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Abstract

Knowledge of snow water equivalent (SWE) magnitude and spatial distribution are keys
to improving snowmelt flood predictions. Since the 1980s, the operational National Oceanic and
Atmospheric Administration’s (NOAA) airborne gamma radiation soil moisture (SM) and SWE
survey has provided over 20,000 SWE observations to regional National Weather Service
(NWS) River Forecast Centers (RFCs). Because the gamma SWE algorithm is based on the
difference in natural gamma emission measurements from the soil between bare (fall) and snow-
covered (winter) conditions, it requires a baseline fall SM for each flight line. The operational
approach assumes the fall SM remains constant throughout that winter’s SWE survey. However,
early-winter snowmelt and rainfall events after the fall SM surveys have the potential to
introduce large biases into airborne gamma SWE estimates. In this study, operational airborne
gamma radiation SWE measurements were improved by updating the baseline fall SM with Soil
Moisture Active Passive (SMAP) enhanced SM measurements immediately prior to winter onset
over the north-central and eastern United States and southern Canada from September 2015 to
April 2018. The operational airborne gamma SM had strong agreement with the SMAP SM
(Pearson’s correlation coefficient, R = 0.69, unbiased root mean square difference, ubRMSD =
0.057 m3/m?), compared to the Advanced Microwave Scanning Radiometer 2 (AMSR2) SM (R
= 0.45, ubRMSD = 0.072 m*/m?) and the North American Land Data Assimilation System Phase
2 (NLDAS-2) Mosaic SM products (R = 0.53, ubRMSD = 0.069 m?*/m?) in non-forested regions.
The SMAP-enhanced gamma SWE was evaluated with satellite-based SWE (R = 0.57, ubRMSD
= 34 mm) from the Special Sensor Microwave Imager Sounder (SSMIS) and in-situ SWE (R =
0.71 - 0.96) from the Soil Climate Analysis Network and United States Army Corps of Engineer

(USACE) St. Paul District, which had better agreement than the operational gamma SWE (R =
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0.48, ubRMSD = 36 mm for SSMIS and R = 0.65 - 0.75 for in-situ SWE). The results contribute
to improving snowmelt flood predictions as well as the accuracy of the NOAA SNOw Data

Assimilation System.

Keywords

Snow water equivalent, Airborne gamma radiation, Soil moisture, SSMIS, SMAP, AMSR2,
NLDAS-2
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1 Introduction

In snowmelt-dominated regions, water resources management and flood predictions rely
on accurate snowpack measurements (De Roo et al., 2003; Liu et al., 2012). The most important
snowpack measure for streamflow prediction is snow water equivalent (SWE), which is the
depth of liquid water that would result if the entire snowpack melted (Bergeron et al., 2016). In
the north-central U.S. and southern Canada, accurate flood predictions are needed to help
communities prepare for flood events and allocate flood management resources. However, flood
prediction is hampered by insufficient information about the magnitude and spatial distribution
of SWE and snowmelt across the landscape (Tuttle et al., 2017; Schroeder et al., 2019). In the
flood-prone Red River of the North in Minnesota and North Dakota in U.S and Manitoba in
Canada (Rannie, 2015; Stadnyk et al., 2016; Todhunter, 2001; Wazney and Clark, 2015), the
National Weather Service (NWS) North Central River Forecasting Center (NCRFC)
overestimated a peak flow by 70% of the observed 2013 flow in the region. The flood forecasters
indicate that uncertainties in SWE spatial distribution as well as antecedent soil moisture
estimates were potential causes of the forecasting’s failure (personnel communication, Mike

DeWeese NOAA NCRFC).

Since the late 1970s, satellite passive microwave sensors such as the Scanning
Multichannel Microwave Radiometer (SMMR) aboard the NASA Nimbus-7 satellite (temporal
coverage: 1978 — 1987), and the Special Sensor Microwave/Imager (SSM/I) and SSMIS aboard
the Defense Meteorological Satellite Program (DMSP) series of satellites (F8, F11, F13, and
F17: 1987 — current) have provided useful snowpack information globally (Armstrong et al.,
1994; Derksen et al., 2005; Foster et al., 2005; Pulliainen and Hallikainen, 2001; Tait, 1998). The

Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) aboard the
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NASA Aqua satellite and AMSR?2, a follow-on instrument of AMSR-E onboard the Japan
Aerospace Exploration Agency (JAXA) Global Change Observation Mission 1-Water (GCOM-
W1) satellite, have successfully provided snow depth and SWE for the past two decades (Dai et
al., 2012; Kelly et al., 2003; Kelly, 2009; Cho et al., 2017). SWE from current satellite-based
microwave sensors has proven to be a valuable asset for improving snowmelt streamflow
predictions at a watershed scale (approximately 47,000 km?; Vuyovich and Jacobs, 2011).
Accurate SWE information at smaller scales remains challenging due to the coarse spatial
resolution (e.g. 25 km by 25 km; 625 km?) of passive microwave satellite observations. In
addition, wet snow and variations in snow grain size make the microwave satellite retrieval of

SWE difficult (Armstrong et al., 1993; Tuttle et al., 2017; Vuyovich et al., 2017).

Snow observations from airborne platforms can fill the knowledge gap between ground
and satellite microwave remote sensing observations of snow (Painter et al., 2016). Airborne
gamma-ray spectrometry supports operational snowpack monitoring efforts (Bland et al., 1997;
Carroll, 2001; Grasty, 1982; Ishizaki et al., 2016). Since the 1980s, airborne gamma radiation
snow surveys conducted by the NOAA’s Office of Water Prediction (OWP; and formerly by the
National Operational Hydrologic Remote Sensing Center [NOHRSC]) have provided SWE
observations to regional NWS RFCs across the U.S. (Carroll, 2001; Mote et al., 2003). The
historical 40 years gamma SWE record was proven as reliable long-term reference SWE
observations across the U.S. and southern Canada (Cho et al., 2019). The SWE data are also
assimilated into NOAA NWS's NOHRSC SNOw Data Assimilation System (SNODAS) (Barrett,

2003; Clow et al., 2012; Hedrick et al., 2015).

Terrestrial gamma-ray emission from radioisotopes in surface soils (~ top 20 cm) is

attenuated by water in the liquid or solid form (Carroll, 2001; Peck et al., 1980). The difference
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between gamma radiation measurements taken in the fall (without snow) and in the winter (with
snow) forms the basis of gamma-ray based airborne SWE measurements. Each flight line’s
footprint is approximately 4.5 — 6 km? (15 — 20 km long and about 300 m wide). Flight lines are
measured once in the fall (in October or November) and then revisited several times throughout
the winter (January to April) to estimate SWE (Carroll, 2001). The operational gamma SWE
measurements are considered to be accurate assuming that SM conditions measured during the
fall survey remain unchanged prior to winter surveys. However, SM conditions can change due
to late-season rainfall events and early-winter snowmelt, which can result in large gamma SWE
errors (e.g. NASA SnowEx Science Plan; Durand et al., 2019). Tuttle et al. (2018), for example,
found a root mean square difference of 42.7 mm between AMSR-E SWE and airborne gamma
SWE in the Northern Great Plains, including parts of the North Dakota, South Dakota,
Minnesota, and Iowa, the United States and southern Canadian prairies. They mentioned that a
large portion of the error was likely due to the assumption that SM remains constant from fall

into winter.

Beginning with the SMMR from 1978 to 1987, satellite active and passive microwave
sensors such as AMSR-E (2002 —2011), ASCAT (Advanced Scatterometer; 2007, 2012, and
2018 — present, from Metop-A, B, and C, respectively) and SMOS (Soil Moisture and Ocean
Salinity; 2010 — present) have provided surface SM. Two recent instruments are the AMSR2
(2012 — present) and SMAP (Soil Moisture Active Passive; 2015 - present). The L-band
radiometer aboard the National Aeronautics and Space Administration’s (NASA) SMAP satellite
is well suited for measuring surface SM (Entekhabi et al., 2010). SMAP was launched in January
2015 and provides SM measurements globally every 2-3 days. SMAP SM observations have

been used to study soil moisture dynamics (Akbar et al., 2018; Kim et al., 2019; McColl et al.,
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2017), which are important for hydrological and agricultural applications, such as flood detection
(Fournier et al., 2016), irrigation signals (Lawston et al., 2017), and drought monitoring (Mishra
et al., 2017), at both global and regional scales. However, satellite microwave-based SM
products have well-known limitations for representative depths (~ upper few centimeters) and
high uncertainties over dense-vegetated areas (Jackson & Schmugge, 1991; Entekhabi et al.

2014; Chan et al., 2018).

The physics used to estimate SM differ between gamma radiation and satellite microwave
sensing. The gamma radiation method uses the difference between the naturally occurring
terrestrial gamma radiation flux from wet and dry soils (Carroll, 1981; Jones & Carroll, 1983).
The gamma flux from the ground is a function of the water mass and constant radioisotope
concentration near the surface. The mass of the moisture regardless of any phase of water affects
the attenuation. Increasing SM increases the gamma radiation flux attenuation and decreases the
gamma flux at the ground surface. Passive microwave sensors estimate the soil dielectric
constant using the observed brightness temperature (Tb) of the land surface (Jackson et al.,
1993). Using the estimated dielectric constant, a dielectric mixing model leverages the large
difference between the dielectric constants of the soil particles (~4) and water (~80) to obtain the
amount of SM with soil texture information. In the single channel algorithm (SCA) in the NASA
SMAP standard products, the vertically polarized Tb observations by SMAP L-band are
converted to emissivity using ancillary physical temperature (Chan et al., 2018; Dong et al.,
2018; O’Neill et al., 2015; updated 2019). The derived emissivity is corrected for surface
roughness and vegetation to obtain soil emissivity. The soil emissivity is related to the dielectric
properties of the soil and the incidence angle. The Fresnel reflection equation (Ulaby et al., 1986)

is then used to determine the dielectric constant.
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Land surface model (LSM) provides an alternative source of simulated SM products and
have been vetted in weather and climate models as well as hydrological extreme monitoring (e.g.
drought and floods) (Koster et al., 2009). The North American Land Data Assimilation System
Phase 2 (NLDAS-2) provides simulated SM products for central North America using four land
surface models, Noah (Ek et al., 2003; Wood et al., 1997), Mosaic (Koster and Suarez, 1996),
Sacramento soil moisture accounting (SAC, Burnash, 1995), and the Variable Infiltration
Capacity (VIC, Liang et al., 1994), which have high spatial (12.5 km by 12.5 km) and temporal

(hourly) resolution (Xia et al., 2014).

This study seeks to identify which of the aforementioned SM products can improve
airborne gamma SWE estimates by updating the (“baseline”) fall operational gamma SM
estimates to account for changes in SM conditions after baseline gamma flights. This study aims

to answer the following four research questions:

1. Are temporal changes in SM from satellite and LSM model products similar to each other

after baseline gamma flights?

2. Which satellite and LSM SM products have strong agreement with operational airborne

gamma SM?

3. How much does updating the baseline operational gamma SM change gamma SWE

estimates?

4. Does the updated gamma SWE improve agreement with independent SWE observations?

2 Study Concept

Operational airborne gamma radiation snow surveys rely on the assumption that the SM

measured during the fall survey remains constant prior to winter SWE surveys. When SM
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conditions evolve due to drying, rainfall events, and/or early-winter snowmelt, gamma SWE
estimates biases result. Figure 1 shows an example of a SMAP soil moisture time series from the
“ND440” flight line footprint, the gamma SM estimate for the flight line, and the daily rainfall
and soil temperature data in Mooreton, North Dakota from North Dakota Agricultural Weather
Network (NDAWN, https://ndawn.ndsu.nodak.edu) are also shown. The figure illustrates the soil
moisture changes after the fall baseline gamma SM survey and their potential influence on the
winter gamma SWE estimates. From the 9 November 2016 baseline gamma SM survey, SMAP
SM evolves until 1 December 2017 with a net 0.12 m3/m? increase. The gamma SWE estimated
on 18 January 2017 using the baseline gamma SM value attributes all the additional gamma
radiation attenuation in the winter measurement to SWE rather than accounting for the increase
in soil moisture post-baseline survey. If the baseline gamma SM were updated to reflect the fall
SM changes, then the operational gamma SWE should be reduced to reflect that portion of the
attenuation of gamma radiation due to an increase in SM. Thus, gamma SWE estimates may be

improved using an updated gamma SM estimate.
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Flight line: ND440 (Mooreton, ND)
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Figure 1. An example time series of satellite/model soil moisture (SMAP enhanced
products in this figure) within the given flight line footprint and NOAA operational
gamma soil moisture along with daily rainfall and air temperature in 2016 to 2017 from a
North Dakota Agricultural Weather Network (NDAWN) station at Mooreton, ND. The
ND440 flight line was flown over the Mooreton station. The increase in SMAP soil
moisture in December was due to early snowmelt from 26 to 30, November. The errors of
the SMAP product (ubRMSE < 0.04 m*/m?) meet the mission performance criteria from
previous studies (Chen et al., 2018; Colliander et al., 2018).

3 Study Area

The study area comprises parts of the north-central and northeast United States and
southern Canada (Figure 2), including parts of four RFCs (Missouri Basin RFC (MBRFC),
North-Central RFC (NCRFC), North-East RFC (NERFC), and Mid-Atlantic RFC (MARFC))
and two Canadian Provinces including Saskatchewan (SK) and Manitoba (Winnipeg). The RFC
boundaries (black lines) were designated by the NOAA NWS Integrated Hydrologic Automated
Basin Boundary System to support river flow and flood forecasting throughout the United States.
Gamma surveys occur in each regional RFC. The gamma flight lines in Figure 2 were flown

10
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222 from September 2015 to April 2018 (black lines). The flight times range from 9 AM to 6 PM

223 according to weather conditions and operations schedule

224 (https://www.nohrsc.noaa.gov/snowsurvey/photos/). The region is dominated by three land cover
225 types, forest (19%, Deciduous broadleaf forest and Mixed forest), croplands (77%, Croplands
226 and Cropland/Natural vegetation mosaic), and grasslands (4%) from Global Mosaics of the

227  Moderate Resolution Image Spectroradiometer (MODIS) land cover type data (MCD12Q1)

228  using the International Geosphere-Biosphere Programme (IGBP) Land Cover Type

229  Classification (Channan et al., 2014). Airborne gamma surveys in the western U.S. were

230  excluded because most of there SM estimates from 2015 to 2018 used a subjective estimate

231 (‘SE’) or unknown type (‘0’) (https://www.nohrsc.noaa.gov/snowsurvey).

™Y

T P o =4 : US state or Canadian Province Boundaries
saskatthetan G g 4 —— River Forecasting Center Boundaries
el — Gamma flight line - :

)
Yo}
z A} = .- o b
o e . - ' -5
) E ' " 2 Wiskorsit
N = H WMD‘” Min.neapolis Lo > ' -

g | [cere 18
z
)
<

110°W 100°W 90°W 80°W 70°W

. Mixed forest . Deciduous Broadleaf forest . Urban and built-up
[:l Croplands D Cropland/Natural vegetation mosaic D Grasslands

B water

232

11



233
234
235
236
237
238

239

240

241

242
243

244

245

246

247

248

249

250

251

Confidential manuscript submitted to Remote Sensing of Environment

Figure 2. Land cover map of the study area of the north-central and eastern United States and
southern Canada with the NOAA airborne gamma flight lines surveyed from 2015 to 2018 (N =
574, blue lines with cyan borders) with River Forecasting Center (RFC) boundaries (black lines)
along with U.S. states and Canadian province boundaries (gray lines). The land cover map is
from Global Mosaics of the Moderate Resolution Image Spectroradiometer (MODIS) land cover
type product (MCD12Q1).

4 Data and Methodology
This study uses a number of SM and SWE products (Table 1). The details of each data

product appear in the following sections.

Table 1 Summary of soil moisture and snow water equivalent products including data type,
period, footprint/grid size, and source used in this study

Data Product Type Period lz;)r(i)zlpg;g Source

SM & SWE  NOAA gamma Airborne gamma radiation 2015-2018  5-7 km? NOAA

SM SMAP enhanced Satellite passive microwave 2015-2017 9 km NASA

SM NLDAS-2 Mosaic Land surface model 2015-2017 125km  NOAA

SM AMSR2 LPRM Satellite passive microwave 2015-2017 25 km NASA

SWE SSMIS Satellite passive microwave 2016-2018 25 km NASA
SWE GlobSnow Assimilation 2016-2018 25 km ESA

SWE SCAN In-situ station 2017-2018 point USDA

SWE USACE In-situ field survey 2017-2018 point USACE

4.1 NOAA Airborne gamma survey

The NWS gamma flight line network includes over 2,400 flight lines covering 29 U.S.
states and seven Canadian provinces (Carroll, 2001; Peck et al., 1980). Since 1979, the NWS
gamma radiation snow survey program has made about 27,000 gamma SWE measurements over
North America via the NOHRSC website (http://www.nohrsc.noaa.gov/snowsurvey/). This study
uses the 770 airborne SWE observations made from 2015 to 2018 with 413 flight lines in the

study area including 648 observations in non-forested areas. A typical flight line is

12
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approximately 300 m wide and 16 km long (5 km? footprint). The gamma survey SM and SWE
observations are areal-average values for each flight line footprint, while satellite and model

products used in this study are provided as pixel values.

The airborne gamma radiation technique measures the attenuation of the terrestrial
gamma radiation signal due to the intervening water mass (Carroll, 2001; Peck et al.,1971). The
gamma flux near the ground surface originates primarily from the 4°K, 28Tl, and 23U
radioisotopes in the soil. In a typical soil, 91% of the gamma radiation signal is emitted from the
top 10 cm of the soil and 96% and 99% from the top 20 cm and 30 cm, respectively (Zotimov,
1968). Airborne gamma fall SM measurements can be made for a given flight line if background
terrestrial gamma count rates (*°Ko, 2°®Tly, and gross count, GCo) and coincident background SM
(SMo), and gamma count rates are available. Ground-sampled SM data collected over calibration
flight lines are used to determine background SM (Jones and Carroll, 1983). Three independent
SM values are calculated using the attenuation of the gamma radiation counts. SM values are
calculated using gamma count rates from the “°K window (1.36 - 1.56 MeV), 2Tl (2.41 — 2.81

MeV) window, and GC spectrum (0.41 to 3.0 MeV) by the following equations (Carroll, 1981;

2001)
0
0 10—1(2(100+1.115M0)—100
SM(*°k,) = — Eq. (1)
222;i0(100+1.115M0)—100
SM(**°Tl,) = ———— Eq. (2)
GCo
—=(100+1.11SM;)—100
SM(GC,) = Se— ° Eq. (3)
SM, = 0.346 - SM(*°K,) + 0.518 - SM(*°°T1,) + 0.136 - SM(GC,) Eq. (4)

13



272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

Confidential manuscript submitted to Remote Sensing of Environment

where “K., 2%8Tl., and GC. are current uncollided gamma count rates in windows “°K, 2%8T1, and
GC, respectively, and 4°Ky, 28Tly, and GCy are background uncollided gamma count rates. A
single current SM estimate (SMc, in units of percent by weight) is calculated by multiplying the
three current SM estimates by weighting factors, 0.346, 0.518, and 0.136 for *°K, 2°8Tl, and GC,
respectively (Jones & Carroll, 1983). Only the single, weighted SM (SM.) is reported as
antecedent fall SM which is used in this study. The fall SM survey data are available as Standard
Hydrometeorological Exchange Format (SHEF) product through the NWS NOHRSC website

(https://www.nohrsc.noaa.gov/snowsurvey/).
The operational gamma SWE measurements are made using the following equations:

4—0K

40, _ 1 b) 100+1.11-SM(4°K5))'
SWE( K) A [ln (401{5) n <1oo+1.11-5M(4°Kb) ] Eq. ()
208 1 2087y, _ 100+1.11-5M(2°8Tls))'
SWE( Tl) T a [ln <2°8Tls) In <1oo+1.11-5M(2°8le) ] Eq. (6)
_ 1 GCp) 100+1.11-SM(GCs) \ |
SWE(GC) = A [ln (GCS) In (100+1.11~SM(GCb))_ Eq. (7)
SWEgameype, = 0346 - SWE(*°K) + 0518 - SWE (*°°T1) + 0.136 - SWE(GC) Eq. (8)

where SM(40KD), SM(ZOBTID), and SM(GC,) are SM values by weight (%) over bare ground
and SM(4°KS), SM(ZongS), and SM(GC) are SM values over snow-cover ground. “°Kj,, 25Tl
and GC) are uncollided gamma count rates over bare ground and “’K;, %371, and GC; for snow-
covered ground. SWE gamoper is the operational gamma radiation SWE estimate (g/cm?) reported
in the SHEF product (Carroll and Schaake Jr, 1983; Carroll, 2001). Based on previous studies,
errors of the airborne gamma SM measurement range from - 9.9 to 2.9% of percent bias (Carroll,

1981). Errors of the gamma SWE were about 12.1% over agricultural areas in the Upper

14
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Midwest U.S. and 1.3 — 24% over forested areas of the Lake Superior basin, U.S. and Saint John
River basin, Canada. (Carroll and Carroll, 1989a; Carroll, 2001; Glynn et al., 1988). Glynn et al.
(1988) indicate that the potential sources of errors in gamma SWE estimates include gamma

count statistics, navigation, and biomass.

The airborne gamma SM estimate is provided as “percent SM by weight” which is the
weight of SM divided by the weight of dry soil multiplied by 100 from approximately the top 20
cm of soil. To compare the gamma SM (by weight, %) to the gridded SM products (volumetric
content, m*/m?), the units of SM were matched. The percent airborne gamma SM by weight was
converted to volumetric SM contents (m?/m?®) using the constant bulk density (1.295 g/cm?)
based on a dominant soil bulk density in this study area (Dobson et al., 1985). Our results show
that using a constant bulk density as compared to individual bulk density for each gamma
footprint using the 1-km POLARIS soil datasets (available at www.polaris.earth; Chaney et al.,
2016) does not generate additional residual errors in the comparison between gamma SM and

other SM products (Figure S1 & S2).
4.2 Soil moisture (SM)
4.2.1 SMAP enhanced SM

The NASA’s SMAP satellite’s L-band radiometer has provided global SM measurements
at 6:00 A.M./P.M. local time at 2-3 days revisit time since March 31, 2015 (Chan et al., 2016;
Entekhabi et al., 2010). The SMAP SM product has been validated using ground-based
observations and various assimilation products at a global scale (Kim et al., 2018; Colliander et

al., 2017; Ma et al., 2019; Zhang et al., 2019; Zwieback et al., 2018).

15
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The SMAP enhanced L3 SM, released in December 2016, is derived from SMAP Level-
1C (L1C) interpolated brightness temperatures using Backus-Gilbert optimal interpolation
techniques (O'Neill et al., 2018). The SMAP enhanced SM product (9 x 9 km?) retrieved by the
SCA (V-pol) has a finer grid posting relative to the SMAP native products (36 x 36 km?)
although the enhanced footprint’s contributing domain is ~ 33km is similar to the native 36 km
resolution (Chan et al., 2018). In this study, the SMAP level 3 radiometer global daily EASE-
Grid 2.0 (Equal-Area Scalable Earth Grid 2.0) enhanced soil moisture (V002) for the
descending overpass (6 A.M.) is used from September 2015 to March 2018. This product (V002)
has an improved depth correction for effective soil temperature, which reduced the dry bias in

the initial version product (VOO1) (O'Neill et al., 2018).
4.2.2 AMSR2 SM

The AMSR?2 passive microwave sensor, a follow-on of the AMSR-E sensor aboard the

Aqua satellite, was launched on the GCOM-WI1 satellite in May 2012 (Imaoka et al., 2010). The
AMSR?2 provides daily scans at 1:30 A.M. (descending) / P.M. (ascending) local time with 1-2
days revisit time. There are three widely used AMSR?2 surface SM products generated from
different algorithms, the LPRM (Land Parameter Retrieval Model) (Owe et al., 2008), the JAXA
algorithm (Koike, 2013; Cho et al., 2015) and the SCA (Single Channel Algorithm; Bindlish et
al., 2018). The LPRM uses the dual-polarization Tb observations at individual (C or X) bands to
retrieve surface SM and vegetation optical depth via a forward radiative transfer model (Owe et
al., 2008). This study uses the LPRM AMSR2, Level 3 gridded X-band (10.7 GHz) SM from the

ascending overpass, expressed on a regular 1/4° spatial grid (25 km).

4.2.3 NLDAS-2 Mosaic SM
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The NLDAS-2 is an offline modeling system, running four land surface models [Noah,
Mosaic, Sacramento soil moisture accounting (SAC), and the Variable Infiltration Capacity
(VIC) model] on a 1/8° spatial grid (12.5 km) over the continental United States (CONUS).
NLDAS-2 uses meteorological forcing data (e.g. downward short/longwave radiation,
precipitation, 2-m air temperature, 2-m specific humidity, and 10-m wind speed) to run the land
surface models to produce water and energy fluxes and state variables (Xia et al., 2012). The
NLDAS-2 has SM products from four land surface models (Mosaic, Noah, SAC, and VIC) (Xia
et al., 2014). The Mosaic model has three soil layers: 0—10 cm, 10—60 cm, and 60—200 cm
(Koster & Suarez, 1996). In this study, the Mosaic 12:00 PM SM at a depth of 0-10 cm is used to
represent modeled SM values, because the Mosaic SM had a stronger agreement with the
airborne gamma SM than the Noah and VIC SM products from the surface soil layer [0-10 cm]
(Figure S3). The SAC SM was not compared because it uses a single soil layer with no surface

soil moisture.

In summary, this study uses SMAP and AMSR2 SM products as well as the NLDAS-2
Mosaic SM product. Active microwave satellite (e.g. ASCAT) SM is not included because recent
studies found that passive microwave SM (e.g. SMAP/SMOS) products generally have a
stronger agreement with in-situ observations or reanalysis SM products than ASCAT SM over

our study region (Al-Yaari et al., 2014; Kim et al., 2018).

4.3 Snow water equivalent (SWE)

4.3.1 SSMIS SWE

The SSMIS sensor onboard the Defense Meteorological Satellite Program (DMSP) F17

platform has provided daily brightness temperature (Tb) measurements with near-complete
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global coverage from December 2006 to the present. In this study, F17 SSMIS SWE (SWE,,,,s )
was estimated using the Chang-type algorithm (Armstrong and Brodzik, 2001; Chang et al.,

1987) with modified coefficients developed by Brodzik (2014) as follows:
SWEgssmis = @ Tby oz — b - Tbu 3760z — € Eq. (9)

where a, b, and ¢ are given as 4.807 mm/K, 4.792 mm/K, and 6.036 mm, respectively. Tby 1964
and Tby 376h, are the brightness temperature at 19 and 37 GHz horizontal polarization,
respectively. The DMSP SSM/I-SSMIS Pathfinder Daily EASE-Grid Brightness Temperatures
(Version 2) are provided on a 25-km grid on the National Snow & Ice Data Center website
(https://nsidc.org/data/nsidc-0032; Armstrong et al., 1994). SSMIS Tb data from the descending

overpass (6 A.M.) were used to minimize the potential error by wet snow (Derksen et al., 2000).
4.3.2 GlobSnow SWE

The European Space Agency GlobSnow project provides long-term gridded daily SWE
maps with 25 km x 25 km spatial resolution from 1979 to current for the Northern Hemisphere,
except for glaciers and mountainous regions (Takala et al., 2011). The GlobSnow SWE utilizes
an assimilation approach, which combines ground-based synoptic snow depth station data (using
constant snow density, 0.24 kg/m?) with passive microwave satellite measurements via the
Helsinki University of Technology (HUT) snow emission model (Takala et al., 2011; Pulliainen,
2006). Ground-based point snow depth measurements are from the World Meteorological
Organization weather stations. The GlobSnow SWE has two versions, GlobSnow-2 from 1979 to
2016 (archive_v2.0; http://www.globsnow.info/swe/archive_v2.0/) and GlobSnow-1 from 2011
to current (near-real-time; http://www.globsnow.info/swe/nrt/). The retrieval accuracy is the

same between the GlobSnow-1 and 2, but the GlobSnow-2 SWE was improved for northern
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boreal forest and tundra regions (Luojus et al., 2014). Due to the current study period from 2015

to 2018, the daily GlobSnow-1 SWE was used to evaluate the updated gamma SWE.
4.3.3 Ground-based SWE

Compared to the western U.S., there are few SWE stations in the north-central and
northeastern U.S. Daily SWE measurements at the Glacial Ridge, Minnesota (ID: 2050;
Latitude/Longitude: 47.72°/96.26°; Elevation: 343 m) operated by the
United States Department of Agriculture (USDA) Soil Climate Analysis Network (SCAN) were
compared to the updated gamma SWE measurements. The SCAN site land cover is “croplands”
with a “prairie” snow classification. Two gamma flight lines, MN119 and MN120, are located
near the SCAN site with the flight lines’ midpoints approximately 9.8 km (northwards) and 29.7
km (southwards), respectively, from the SCAN site. The two flight lines’ land cover is also
“cropland” and their elevations are about the same (Figure S4). Further details can be found on

the SCAN website (https://wcc.sc.egov.usda.gov/nwec/site?sitenum=2050).

The United States Army Corps of Engineer (USACE) ground-based snow survey data
were collected by the USACE St. Paul District to determine snowpack SWE for spring flood risk
assessment and water resources management. Their survey measurements sampled the snowpack
at representative locations. At each site and date, at least four SWE samples were taken, each
approximately 3—4 m apart, using a snow tube (3.81 cm diameter), then averaged to a single
mean SWE value. This study uses the weekly USACE SWE observations from 2017 to 2018 at
Baldhill, ND (Latitude/Longitude: 47.03°/-98.08"), Orwell, MN (46.22°/-96.18°), and Traverse,
MN (45.86/-96.57"). The gamma flight lines closest to each site with a distance between the
midpoint of flight line and the site are ND432 and ND433 (10.6 km and 26.3 km from Baldhill),

MN126 and MN129 (24.8 km and 19.2 km from Orwell), and ND441 and MN124 (13.8 km and

19



402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Confidential manuscript submitted to Remote Sensing of Environment

22.6 km from Orwell). The detailed gamma flight line locations are provided in Supplementary

material (Figure S4).
4.4 Methodology

For comparison to the airborne gamma SWE data, the satellite or model pixels
overlapped by the given flight line footprint were weighted according to a portion of the
footprint within each pixel. Only flight lines having more than 50% of the footprint covered by
satellite observations were used in this analysis. For a detailed process with a schematic diagram,

please refer to Tuttle et al. (2018).

After one SM product (in this case, the SMAP enhanced SM) was selected based on the
statistical agreement (e.g. correlation coefficient and unbiased root mean square difference) with
operational baseline gamma SM, a linear regression model that minimizes the sum of squared

residuals (g;) was developed to relate coincident gamma SM (SMy 4y, ;) and the satellite (or

model) SM (SM;,; ;) measurements.
SMygmi = a-SMsqr; + b L g Eq. (10)

where i is flight line number, a is the slope and b is the y-intercept of the linear regression
equation. & is a residual error (m*/m?) between operational gamma SM and satellite (or model)
SM for each flight line. Based on the model, new, updated gamma SM estimates were calculated
by applying the latest antecedent SM of the chosen product into the linear regression model. It is
assumed that the residual, &;, is largely generated from differences between the two products’
representative areas and land surface characteristics for each flight line. Thus, the residuals are

included in the updated gamma SM.
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The change in airborne gamma SWE, ASWE g, ;, resulting from a change in antecedent

SM in the unit of percentage (%) in soil was calculated using Carroll (2001) as follows:

ASWE g = 22 |In {2 gamoper Eq. (11)
am,i . :
9 A 100+1.11-SMgam,, . .i

where ASWE 4, is the change in snow water equivalent (mm), A is a radiation attenuation
coefficient of water which is equal to 0.1482 (Carroll, 2001). 25.4 is used to convert “inches” to
“mm” from Equation 3 in Carroll (2001). 1.11 represents the ratio of gamma radiation
attenuation in water to air (Carroll, 1981). SMgqm,, i 1s operational gamma SM by weight (%)
measured in the fall survey and S Mgamypq,i is the updated gamma SM by weight (%). A
schematic diagram of the methodology is provided in the Supplementary materials (Figure S5).
The agreement between airborne gamma survey and satellite/model SM (or SWE) products was
quantified by the Pearson’s linear correlation coefficient, R, the mean bias, Bias, the root mean
square difference, RMSD, and the unbiased RMSD, ubRMSD. The equations are available in the

Supplementary material (Text S1).
5 Results

5.1 Change in the soil moisture after baseline gamma flights from satellite and model

products

Figure 3 compares the change in NLDAS-2, SMAP, and AMSR?2 regional SM maps from
the dates of the baseline fall gamma flights until the last observation before freeze onset. As an
example, in 2016 most gamma SM flights occurred about 25 October and the latest observation
available prior to freezing onset was on 29 November. After the fall gamma flights, SM changes

vary by year and location. These changes are typically caused by later rainfall, early-winter
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snowmelt, and/or freeze/thaw events, suggesting that an adjustment of the baseline gamma SM is
necessary for accurate gamma SWE survey.

In 2015, the change in NLDAS-2 and SMAP SM from November 25 to December 12
show similar spatial patterns. Surface soils became wetter in the north-central U.S. and drier in
the northeastern U.S. The increases in SMAP SM are greater than NLDAS in Minnesota, North
Dakota, and South Dakota where many of the gamma flights occurred. The AMSR2 SM change
is remarkably different from NLDAS-2 and SMAP SM. AMSR2 shows drying in Minnesota and
most Canadian provinces. In 2016, SM changes clearly differ by data source between 25 October
and 29 November. SMAP has a strong drying signal of up to -0.17 m*/m?in north-central and
eastern U.S. as well as Saskatchewan and Manitoba, Canada. However, NLDAS-2 and AMSR2
SM in the same regions get wetter by up to 0.12 and 0.25 m*/m?, respectively. In the Midwest,
AMSR?2 shows that SM increases exceed 0.25 m3/m?3. In 2017, there are clear decreases in
NLDAS-2 and SMAP SM from 25 October to 13 December in the Midwest. The drying of
SMAP (~0.20 m3/m?) is stronger than that of NLDAS-2 (~0.10 m*/m?). NLDAS-2 captures
modest wetting in Canada, which is not seen by SMAP and AMSR?2 SM because these datasets
are provided for only limited areas in Canada, due to data masking from soil freeze or snow
cover.

In general, SMAP SM changes are spatially similar to NLDAS-2 SM changes but have
amplified drying (and wetting). AMSR2 has extreme SM changes considering the normal range
of volumetric SM and differs spatially from SMAP and NLDAS-2, which may reflect the much
thinner and closer-to-the-surface sensing depth of AMSR2 as compared to SMAP and NLDAS-

2’s deeper sensing depths.
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Figure 3. SM difference maps for NLDAS-2, SMAP, and AMSR?2 for the years 2015 to
2017. SM differences are calculated between the date of the fall baseline gamma flights and the
date of the last SM observation prior to freezing onset. A past 5-day composite SM map was
used to eliminate spatial gaps.

5.2 Airborne gamma SM versus satellite and model SM products

To identify which satellite or model SM product agrees best with gamma SM, the gamma
SM data were compared to NLDAS-2, SMAP, and AMSR2 SM products. Because the
performance of the microwave SM products typically weakens with increasing vegetation
density (Jackson & Schmugge, 1991; Wang et al., 1982; Mladenova et al., 2014), the comparison
is conducted with and without forest areas. When forested areas are included, NLDAS-2 SM has
better agreement with operational gamma SM than the two satellite SM products (Table 1).
There is little difference in agreement between NLDAS-2 mosaic SM and operational gamma
SM with/without forest classes (Figure 4a & b). However, the agreement between SMAP and

gamma SM clearly differs by a land cover (Figure 4c & d). A majority of the SMAP SM values
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with a wet bias occur for flights over forests. For the Deciduous broadleaf forest and Mixed
forest classes, there are large errors with SMAP SM compared to gamma SM (Bias: 0.11 and
0.19 m*m? and RMSD: 0.17 and 0.21 m3/m?, respectively). For the AMSR2 comparison, most
SM values over forested areas were excluded due to poor data quality before the analysis, but the
remaining SM values show a wet bias, similar to SMAP SM, in forested regions (Figure 4e).
AMSR2 SM has an extreme wet bias (0.13 m3/m?) even in non-forested areas. In non-forested
regions, SMAP SM shows very strong agreement with gamma SM as compared to AMSR?2 and
NLDAS-2 SM (Table 2). The results indicate that SMAP SM values from forested areas (e.g.
Deciduous broadleaf forest and Mixed forest) do not agree with the gamma observations and
these land uses should be excluded if updating gamma SWE with SMAP SM. A linear regression
model between SMAP and operational gamma SM [Eq. (10)] was developed using only the
values from non-forested regions for the next step. Comparison between operational gamma SM
and SMAP, AMSR2, and NLDAS-2 SM products for forested regions only, are provided in

Figure S6.

Table 2 Agreement between NOAA airborne gamma SM and NLDAS-2 Mosaic SM, SMAP
enhanced SM, and AMSR2 SM with/without the SM values from forested areas

with forested areas without forested areas

Data N R ubRMSD RMSD  Bias N R ubRMSD RMSD  Bias
(m’m’)  (m>m’)  (mPim’) (m’m’)  (m’md)  (m/md)

NLDAS-2 342 0.53 0.07 0.08 -0.03 277  0.53 0.07 0.08 -0.03
SMAP 342 0.52 0.10 0.10 0.02 277 0.69 0.06 0.06 -0.02
AMSR2 287 0.43 0.08 0.15 0.13 278 045 0.07 0.15 0.13
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Figure 4. Comparison of NOAA airborne gamma soil moisture with (a, b) Phase 2 of the North
American Land Data Assimilation System (NLDAS-2) Mosaic SM, (c, d) Soil Moisture Active
Passive (SMAP) Level 3 enhanced soil moisture, and (e, f) Advanced Microwave Scanning
Radiometer 2 (AMSR2) SM within the given flight line footprints with/without the SM values
from forested areas.
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5.3 Enhancement of gamma SWE by updating baseline SM

When the operational, baseline gamma SM in non-forested regions from 2015 to 2017 are
updated using SMAP SM, the gamma SWE values change. Figure 5a displays SMAP SM
changes measured between the date of the fall baseline gamma flights and the date of the last SM
observation before freeze-up as well as the corresponding operational and SMAP-updated
airborne gamma SM estimates. The SMAP-updated gamma SM were calculated using the linear
regression model between airborne gamma and SMAP SM, slope (a) = 0.69 and y-intercept (b) =
0.083 [Eq. (10)]. The slope indicates that SMAP SM is more sensitive than gamma SM.
Considering the two methods’ different representative soil depths, it is reasonable that SMAP’s

surface SM would tend to have higher variability than the deeper gamma SM.

a b
° 200+
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g 8
< | e o b —
1 == £ 5
< \ i 150 1
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€ 3 b !
> e 1 }
= \ 4 o =
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S 501
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- : »
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bt - - 04
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SMAP SMAP  Gamma  Gamma Gamma Gamma
SM SM SM SM SWE SWE

Figure 5. (a) Boxplots of SMAP SM at original (operational) and latest available dates and
original and updated gamma SM for entire flight lines in the non-forested region from 2015 to
2017, along with (b) the corresponding original and updated gamma SWE. (a) The small circles
are individual SM data (no meaning for a spread in the horizontal direction) and the larger circles
are outliers. The bold line within each colored box is median, and the upper and bottom sides of
the box are the upper (75%) and lower (25%) quantiles of the data. (b) The width of the leaf-
shape boxplot shows the relative amount of the SWE data at that magnitude.
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The SMAP SM immediately before freeze-up (mean: 0.16 m*/m?, median: 0.12 m*/m?) is
typically lower than the SM on the date of the fall baseline gamma flights (mean: 0.21 m*/m?,
median: 0.20 m*/m?®), indicating that for this study period most of the region dried in late fall to
early winter. Note: a large portion of the gamma SM flights (193 of total 277 flight lines)
occurred in fall 2016 when there was an average of 0.05 m*/m? (median: 0.09 m3*/m?) decrease in
SMAP SM. As the SMAP SM differences between the baseline and latest available SM decrease,
the gamma SM differences should also decrease following the linear regression model [Eq. (10)].
The SMAP-updated gamma SM is drier by an average of 0.03 m?/m? than the operational
baseline gamma SM. The SMAP-updated gamma SM also appears to have a greater interquartile
range (IQR; total: 0.12 m3*/m?) than the operational baseline gamma SM (0.08 m3/m?). This

indicates that the residual values ( &, ) in the linear regression model comprise a considerable

proportion of the variation in SMAP-updated gamma SM.

Using the SMAP-updated SM for each flight footprint, a new, SMAP-updated gamma
SWE was calculated using Eq. (10). The original, operational gamma SWE values (mean: 72
mm, median: 69 mm) were adjusted upward by 15% (mean: 82 mm, median: 79 mm) when
accounting for the changes in baseline SM (Figure 5b). In summary, decreases in the baseline
SM by an average of 0.03 m*/m? (gamma) and 0.05 m?*/m? (SMAP) generate average increases in
gamma SWE of about 10 mm. Individual gamma SWE estimates have different SM changes due
to the variations by year and flight line as presented in Figure 6. 75% of the SM values became
drier and the remaining 25% became wetter, but with SM differences ranging from 0.22 to -0.25

m?/m? and gamma SWE changes ranging from -30 to 41 mm.

27



Confidential manuscript submitted to Remote Sensing of Environment

545

Max: 0.22 m¥m3

Min: -0.25 m3¥m?
Mean: -0.04 m¥m3
MAD: 0.08 m¥m?

N: 277 (+: 209, -: 68)

25

20
1

15
1

10
1

Number of Gamma lines (N)

o MII 1 T ED nu
0.2

-0.3 -0.2 -0.1 0.0 0.1 0.3
b | Change in SMAP SM (m3/m?)
=~ Max: 41 mm .
Min: -39 mm ; —
o | Mean: 9.4 mm ;
= MAD: 12 mm :
N: 648 (+: 523, -2 125) + [][]
Z 8- !
£ s L
€ =
T ' —
o ' H
S 8 P I
z : i
€ H
2 |- ]
o |
S 0 T ; T T
-40 -20 0 20 40

Change in Gamma SWE (mm)

546  Figure 6. Histogram of (a) changes in SMAP SM and (b) NOAA airborne gamma SWE from the

547  date of the baseline fall gamma flights to the date immediately before winter freeze-up
548

549 5.4 Evaluation of the updated gamma SWE

550 To evaluate the SMAP-updated gamma SWE, satellite-based SWE measurements from

551  SSMIS passive microwave sensors were used. Flight lines in forest-dominant regions were
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excluded because SSMIS underestimates SWE compared to airborne gamma SWE over the
forested areas (Figure S7). Figure 7 shows that the SSMIS SWE has better agreement with
SMAP-updated gamma SWE than with the operational gamma SWE. When the SSMIS SWE
exceeds 125 mm, the SMAP-updated gamma SWE values with high DOY converge toward the
1:1 line. The agreement between the two SWE estimates was improved for each land cover type
when gamma SWE was updated with SMAP SM (Figure S8). In grassland, the SSMIS SWE had
a higher correlation and lower ubRMSD with SMAP-updated gamma SWE as compared to the
agreement with the operational SWE. There were also modest improvements in the agreement

statistics in croplands, except for Bias, which increases from -1.8 to -11 mm.
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Figure 7. Comparison between operational and SMAP-updated NOAA airborne gamma
snow water equivalent with (a, b) satellite-based snow water equivalent from Special Sensor
Microwave Imager Sounder (SSMIS) and (c, d) ESA GlobSnow assimilation SWE within the
given flight line footprint. The points are colored by day of year (DOY).

To further validate the SMAP-updated gamma SWE, ground-based SWE measurements
were obtained from the Glacial Ridge SCAN site snow pillow. Even though there are only five

coincident gamma SWE observations, the gamma SWE captures the SWE evolution of the in-
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situ data for the two years (Figure 8). In 2017, gamma SWE updates were only 3 mm because of
the limited changes in the baseline SM. In 2018, the operational gamma SWE values are updated
by about 20 mm due to the large decrease in the antecedent SM. The updated gamma SWE
shows a higher correlation (R = 0.95 with p < 0.01) with in-situ SWE than the operational
gamma SWE (R = 0.75 with p = 0.15; Figure 8b). The slope and y-intercept of the updated SWE
are also much closer to the 1:1 line. While the operational gamma SWE overestimated SWE by 8
mm in 2017, it underestimated SWE by 12 mm in 2018. The updated gamma SWE biases are
consistent for both years.

A final comparison was conducted using the weekly SWE samples from the United
States Army Corps of Engineer (USACE) at three sites (Baldhill, ND, Orwell, MN, and
Traverse, MN) in the north-central U.S. (see Figure S4). The USACE SWE shows better
agreement with the SMAP-updated SWE (R = 0.71 with p = 0.075) than the operational gamma

SWE (R = 0.65 with p = 0.12; Figure 9).
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Figure 8. (a) Time series of in-situ SM and SWE measurements with the operational and SMAP-
updated gamma SWE at the Glacial Ridge Station, Minnesota (ID: 2050) from the Soil Climate
Analysis Network (SCAN) and (b) agreement between the in-situ SWE and the operational and
SMAP-updated gamma SWE. The red points in both plots indicate the operational gamma SWE,
while the green points indicate SMAP-updated gamma SWE.
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Figure 9. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated
gamma SWE at three sites (Baldhill, ND, Orwell, MN, and Traverse, MN) from the United
States Army Corps of Engineers (USACE) and (b) agreement between the in-situ USACE SWE
and the operational and SMAP-updated gamma SWE. The red points in both plots indicate the
operational gamma SWE, while the green points indicate SMAP-updated gamma SWE.

6 Discussion
6.1 Evaluation of soil moisture

The superior agreement of SMAP products with gamma SM in non-forested areas could
be caused by its finer spatial resolution (9 km x 9 km) as compared to AMSR2 (25 km x 25 km)
and NLDAS-2 (12.5 km x 12.5 km). Considering that the typical gamma flight line has a 5-7

km? footprint, the finer resolution of the SMAP enhanced SM may lead to less spatial
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heterogeneity error within the pixels (Loew, 2008; Chan et al., 2018). However, Cho et al.
(2018) found that the gamma SM also had better agreement with SMAP standard SM (36 km x
36 km; SPL3SMP) than with either the AMSR?2 or the NLDAS-2 mosaic SM products. This
result is similar to Kim et al.’s (2018) finding that in-situ SM showed better agreement with the
SMAP standard SM than with either AMSR?2 or Global Land Data Assimilation System
(GLDAS) SM products (25 km x 25 km). This suggests that the L-band frequency (1.4 GHz) of
the SMAP radiometer might lead to better performance regardless of spatial resolution (Chan et
al., 2018). The greater penetration depth of the L-band could be also more representative of the
~20 cm depth of the gamma SM. In dense-forested areas with high vegetation canopy, it is
extremely difficult to obtain accurate SM retrievals using the SMAP L-band and AMSR?2 X-
band frequencies. The AMSR2 X-band SM product over the Deciduous broadleaf forest and
Mixed forest regions are typically masked with the data quality flag. In non-forested regions with
bare ground or low vegetation canopy, the L-band SM performs better than X-band because the
L-band frequency can partly penetrate low vegetation canopy while the higher-frequency X-band

experiences greater attenuation (Kim et al., 2018; Jackson & Schmugge, 1991).

In the Deciduous broadleaf forest and Mixed forest classes, the operational gamma SM
had a poorer agreement with SMAP SM than with NLDAS-2 SM, which agrees with previous
validation studies of passive microwave SM products, including the SMAP radiometer. A known
limitation of passive microwave soil moisture retrievals is that dense vegetation canopy over the
soil surface reduces the sensitivity of the relationship between emissivity and SM (Jackson &
Schmugge, 1991; Wigneron et al., 2003), even though the L-band microwave frequency yields
relatively good results under vegetation covers relative to other, higher frequencies because of its

higher penetration depth (Vittucci et al., 2016; Entekhabi et al., 2010). Due to the extremely high
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optical depth of forests, there is little chance of reliably estimating SM conditions. For forest
types, Chan et al. (2016) found larger biases and ubRMSD between SMAP and in-situ SM

measurements at core validation sites (CVS), relative to other land cover types.

While SMAP SM has a wet bias in forest areas, there is no bias between operational
gamma SM and NLDAS-2 SM due to land cover. Considering that NLDAS-2 Mosaic SM is
estimated based on a physical land surface model (Koster & Suarez, 1996), it is likely that
gamma SM is less affected by vegetation effects than passive microwave (SMAP and AMSR?2)
SM. The airborne gamma radiation technique depends on historical data to establish the
relationship between gamma count rates and SM and determine a standardized gamma count rate
at 35% gravimetric SM values for each calibration flight line (Carroll, 1980; 2001; Jones and
Carroll, 1983). This suggests that the vegetation effect on airborne gamma radiation observations
is minimal. Change in vegetation conditions by season are also minor because most gamma SM
observations — to estimate antecedent SM prior to soil freezing — are measured in late fall (e.g.
October or November) (Carroll, 2001). For these reasons, the gamma SM appears to be reliable
in forested regions and has the potential to be used beyond its operational estimates of SWE.
However, further investigation is still required to determine how gamma fluxes from the soil are
attenuated by vegetation characteristics (e.g. type, height, and density) and how much the
attenuation impacts SM estimates (Woods 1965; Schetselaar & Rencz, 1997; Ahl and Bieber,

2010).

Previous studies typically evaluated airborne gamma radiation SM with ground-based
SM observations. With an average of 25 samples gravimetric SM measurements per flight line,

Carroll (1981) and Jones and Carroll (1983) found airborne gamma SM had strong agreement
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(R?=0.87 and 0.84, RMSD = 3.2 and 3.9%, respectively). The airborne gamma radiation

technique is considered to be a reliable method to estimate areal mean SM measurements.

No previous studies have compared gamma SM observations to satellite-based active and
passive microwave or LSM SM, even though there are a series of satellite-based microwave
sensors (e.g. SSM/I, AMSR-E/2, ASCAT, SMOS, and SMAP) and numerous evaluation studies
since the early 1980s (e.g., Al-Yaari et al., 2014; Babaeian et al., 2019; Mladenova et al., 2014;
Kim et al., 2018; Xia et al., 2014). This may be due to the operational mission of the airborne
gamma program. As mentioned earlier, the airborne gamma radiation SM data collected by the
NOAA NWS’s Airborne Gamma Radiation Snow Survey Program is intended primarily to
estimate SWE, not SM itself, and to provide the SWE data to the RFCs for use in the snowmelt
flood forecasts. In light of the gamma radiation SM performance forests, gamma SM may help
estimate SM in forested-dominated regions; one of the current challenges in the SM remote
sensing community. As an independent asset, the airborne gamma radiation SM dataset can be
utilized to evaluate current and future SM products from various satellites and land surface

models to improve hydrological models.
6.2 Evaluation of SWE

The SMAP-updated gamma SWE agreement with satellite SWE is better than the
previous findings by Tuttle et al. (2018). Tuttle et al. (2018) compared the operational gamma
SWE to AMSR-E SWE estimates over the Northern Great Plains from 2002 to 2011. Their
correlation coefficient (0.36) and RMSD (43 mm) is relatively poor compared to the SMAP-
updated gamma SWE results and even the operational SWE. This may be due to different study
periods between the two studies (2002-2011 versus 2015-2018). Their statistics could include a

few erroneous SWE values during 2009 and 2011 when there were snowmelt floods. The
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improved agreement of the SMAP-updated SWE with in-situ SWE, satellite microwave SWE,
and GlobSnow SWE suggest that a portion of the error in operational gamma SWE caused by

antecedent SM can be reduced using this proposed method.

Compared to the operational gamma SWE, the SMAP-updated SWE has better
agreement with the limited available datasets including in-situ, satellite-based SSMIS, and
GlobSnow assimilated SWE, but positive biases with in-situ and SSMIS SWE (10.4% and 11.8%
respectively). Carroll and Schaake Jr (1983) also found that the airborne gamma SWE data tend
to overestimate the ground-based data by approximately 10%. This may be due to the airborne
gamma radiation method detecting water in all phases, including ground ice, standing water, and
superimposed SM in the soil surface (Carroll, 2001), which might not be included in SWE
observations from ground samples and snow stations. A snow pillow measures only the mass of
the overlaying snowpack (Goodison et al., 1981) and has inherent limitations because the heat
exchange between the snow and soil is disrupted, likely causing SWE underestimation (Bland et
al., 1997). The current study suggests the method improves gamma SWE estimates but further

validation with purposefully designed in-situ SWE measurements is needed.
6.3 Limitations

When the linear regression model between operational airborne gamma SM and SMAP

SM was developed, the residual errors ( &, ) for each flight line were included in the model,

assuming that the errors reflect the physical properties of the land surface within each line
footprint (e.g. soil properties, elevation, slope, and inner spatial heterogeneity) (Clark et al.,
2011). A residual analysis conducted with land surface characteristics (clay percentage, saturated
hydraulic conductivity, and mean elevation and slope) to identify physical properties related to

the errors and to assess the appropriateness of the model did not find any statistically significant
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relationships. Carroll and Carroll (1989b) found that gamma SWE is systematically
underestimated when large SWE variability occurs within a flight footprint. Because the gamma
technique principles, measuring water mass by attenuation, are the same for SM and SWE, it
possible that SM variability could cause gamma SM to be underestimated. High-resolution soil
properties and SM-related variables (e.g. land surface temperature / Sentinel-1 SAR backscatter)
could be used to understand spatial heterogeneity impacts and to improve the operational gamma

SM methodology (Das et al., 2019).

A well-known issue when validating gridded satellite products with in-situ (or different
platform) measurements is the difference in spatial scales between the observations and the
ability of the sub-grid scale measurements to capture the variability within the satellite footprint
(Gruber et al., 2013; Colliander et al., 2017). Tuttle et al. (2018) noted that SWE spatial
variability affects the gamma versus satellite SWE comparison because of the different spatial
scales for the gamma footprint and the satellite pixel. The different observation scales may
contribute to the residual errors in the linear regression model between the gamma and SMAP
SM. The gamma SM lines often comprise parts of multiple SMAP pixels. The weighted mean
SMAP SM was found for the given flight footprint. However, the weighted mean SM 1is derived
from Tb observations that are partly from outside of the flight line footprint, thus introducing
representativeness errors into the linear model. Further studies are required to identify physical

characteristics that might be related to the residual errors in the model.

There may be temporal differences between airborne gamma radiation observations and
the satellite and model products in this study for SM and SWE comparisons. The gamma flight
overpass times range from 9 AM to 6 PM while the sun-synchronous SMAP, AMSR?2, and

SSMIS sensors have constant local overpass times. Recognizing that SM has diurnal changes
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(Jackson, 1973), the linear regression model between the operational airborne gamma and SMAP
SM could be improved if the measurement time of the gamma flight data were known and the
comparison included only those observations where measurement times were similar. It is also
possible that this approach would improve if NLDAS-2 SM were used instead of SMAP SM

because hourly NLDAS-2 SM values are available (Xia et al., 2015).

The different representative depths among the SM data sources also add error. The
passive microwave sensors measure surface SM from the top few centimeters, with a depth that
varies with the amount of soil moisture and its distribution (Njoku and Kong, 1977; Escorihuela
et al., 2010). The L-band SMAP SM captures approximately the top 5 cm of the soil (O'Neill et
al., 2018; McColl et al., 2017) whereas the X-band AMSR?2 penetration depth is close to 1 cm
(Bindlish et al., 2017) because lower-frequency microwave radiation generally penetrates soil
and vegetation canopy more effectively than higher-frequency bands (Jackson & Schmugge,
1991). However, airborne gamma SM is derived from a larger depth range than the penetration
depth of any current passive microwave satellite instrument (Carroll, 2001) with 91% of the
gamma flux emitted from the upper 10 cm of the soil, and 96% from the upper 20 cm (Zotimov,
1968; Jones and Carroll, 1983). While the different sensors’ representative depths are not
dissimilar, the modest difference in representative depths could still cause errors, especially

during dynamic wetting or drying (e.g., right after rainfall events).

7 Conclusion

In this study, a linear regression method was developed to improve operational airborne
gamma SWE estimates in non-forested regions by updating the fall baseline SM using the SMAP
enhanced SM product. Based on limited comparisons, the SMAP-updated SWE improves
agreement with satellite and in-situ SWE observations. This preliminary study identified the
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739 need to further test the approach as well as opportunities to improve the approach using higher-
740  resolution/evolving independent products. For example, the Copernicus Sentinel-1 Synthetic
741 Aperture Radar (SAR) provides 1-km C-band backscatter data. Because the SAR backscatter is
742 directly related to surface SM condition, the Sentinel-1 SAR-based information could improve
743 antecedent SM estimates over the gamma flight lines. However, current satellite SM

744  observations offer little value for improving the gamma estimates in forested areas. In densely
745  vegetated regions SM from LSMs, applied using this study’s approach, could improve the

746  operational gamma SWE regardless of land cover type. In the United States, snowmelt flood
747  predictions are challenged by limited ground observations and rely heavily on the airborne

748 gamma SWE product which is also used to support the operational SNODAS product. This study
749 shows that the typical SWE corrections are on the order of 10 mm. Thus, the soil moisture

750  corrections would be most important for regions having shallow snowpacks and snowmelt-

751  driven flooding that is highly sensitive to modest SWE differences. Finally, gamma SWE

752 estimates also serve as independent SWE measurements that are useful for evaluating satellite
753 and modeled SWE products. An updated airborne gamma SWE with reduced errors will better
754  support the evaluation of SWE products from current and future satellite missions and

755  regional/global land surface or climate models.
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Figure 1. An example time series of satellite/model soil moisture (SMAP enhanced products in
this figure) within the given flight line footprint and NOAA operational gamma soil moisture
along with daily rainfall and air temperature in 2016 to 2017 from a North Dakota Agricultural
Weather Network (NDAWN) station at Mooreton, ND. The ND440 flight line was flown over
the Mooreton station. The increase in SMAP soil moisture in December was due to early
snowmelt from 26 to 30, November. The errors of the SMAP product (ubRMSE < 0.04 m3/m3)
meet the mission performance criteria from previous studies (Chen et al., 2018; Colliander et al.,
2018).

Figure 2. Land cover map of the study area of the north-central and eastern United States and
southern Canada with the NOAA airborne gamma flight lines surveyed from 2015 to 2018 (N =
574, blue lines with cyan borders) with River Forecasting Center (RFC) boundaries (black lines)
along with U.S. states and Canadian province boundaries (gray lines). The land cover map is
from Global Mosaics of the Moderate Resolution Image Spectroradiometer (MODIS) land cover
type product (MCD12Q1).

Figure 3. SM difference maps for NLDAS-2, SMAP, and AMSR?2 for the years 2015 to 2017.
SM differences are calculated between the date of the fall baseline gamma flights and the date of
the last SM observation prior to freezing onset. A past 5-day composite SM map was used to
eliminate spatial gaps.

Figure 4. Comparison of NOAA airborne gamma soil moisture with (a, b) Phase 2 of the North
American Land Data Assimilation System (NLDAS-2) Mosaic SM, (c, d) Soil Moisture Active
Passive (SMAP) Level 3 enhanced soil moisture, and (e, f) Advanced Microwave Scanning
Radiometer 2 (AMSR2) SM within the given flight line footprints with/without the SM values
from forested areas.

Figure 5. (a) Boxplots of SMAP SM at original (operational) and latest available dates and
original and updated gamma SM for entire flight lines in the non-forested region from 2015 to
2017, along with (b) the corresponding original and updated gamma SWE. (a) The small circles
are individual SM data (no meaning for a spread in the horizontal direction) and the larger circles
are outliers. The bold line within each colored box is median, and the upper and bottom sides of
the box are the upper (75%) and lower (25%) quantiles of the data. (b) The width of the leaf-
shape boxplot shows the relative amount of the SWE data at that magnitude.

Figure 6. Histogram of (a) changes in SMAP SM and (b) NOAA airborne gamma SWE from the
date of the baseline fall gamma flights to the date immediately before winter freeze-up

Figure 7. Comparison between operational and SMAP-updated NOAA airborne gamma snow
water equivalent with (a, b) satellite-based snow water equivalent from Special Sensor
Microwave Imager Sounder (SSMIS) and (c, d) ESA GlobSnow assimilation SWE within the
given flight line footprint. The points are colored by day of year (DOY).

Figure 8. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated
gamma SWE at the Glacial Ridge Station, Minnesota (ID: 2050) from the Soil Climate Analysis
Network (SCAN) and (b) agreement between the in-situ SWE and the operational and SMAP-
updated gamma SWE. The red points in both plots indicate the operational gamma SWE, while
the green points indicate SMAP-updated gamma SWE.

Figure 9. (a) Time series of in-situ SWE measurements with the operational and SMAP-updated
gamma SWE at three sites (Baldhill, ND, Orwell, MN, and Traverse, MN) from the United
States Army Corps of Engineers (USACE) and (b) agreement between the in-situ USACE SWE
and the operational and SMAP-updated gamma SWE. The red points in both plots indicate the
operational gamma SWE, while the green points indicate SMAP-updated gamma SWE.
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