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Abstract

Compound droughts and hot events or extremes (CDHEs) may lead to larger
repercussions than do individual dry or hot extremes. Due to the disastrous impacts and
increased risk of these events under global warming, increased attention has been paid
to these events from both research and operational communities. This review provides a
synthesis of the literature on characteristics, physical mechanisms, changes (detection,
attribution, and projection), and the impact of CDHEs. Different characteristics of these
events (e.g., frequency, duration, and spatial extent) are first introduced based on dry
and hot indicators at different time scales. We then summarize multiple physical
mechanisms of CDHEs, including the atmospheric circulation (and modes of
variability) and land-atmosphere feedbacks across different regions. Evidence from
observations shows an overall increase in CDHEs in the past few decades at regional
and global scales, which mainly results from an increase in hot extremes and is likely
attributable to anthropogenic influences. Future projections indicate an increase in
CDHESs over most global land areas. Quantitative assessments of the influence of
CDHE:s on different sectors (e.g., water resources, crop yield, vegetation) highlight
their amplified impacts compared with individual droughts or hot extremes. Several
challenges in the data availability, characterization, physical mechanism, simulation,
and impacts of CDHEs and opportunities to address these challenges are then discussed.
This study can be useful for better understanding, modeling and risk analysis of

compound extremes under global warming.

Keywords: compound event; drought; dry and hot; extreme; climate change
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1 Introduction

Global warming manifests in increased temperature and shifted precipitation regimes,
which are associated with an increase in the frequency and intensity of weather and
climate extremes (Coumou et al., 2013; Hansen et al., 2010; Jones et al., 1999; La
Sorte et al., 2021; Stocker et al., 2013), including droughts and hot extremes (Baldwin
et al., 2019; Dai, 2013; Gebremeskel Haile et al., 2019; Naumann et al., 2018; Perkins
et al., 2012; Trenberth et al., 2014). Increased weather and climate extremes may
induce huge repercussions on the ecosystem and society, hindering progress towards
sustainable development goals. For example, increased droughts and hot extremes
may deplete water resources, impair agriculture production, damage ecosystems,
increase energy demand, amplify wildfire risk, and affect human health (Ciais et al.,
2005; Schewe et al., 2019; Vicente-Serrano et al., 2020b; Vogel et al., 2021a; Watts et
al., 2015). Thus, it is important to improve our understanding and modeling of climate

extremes and their impacts.

A plethora of research has shown that combined extremes (e.g., droughts and hot
extremes) may lead to adverse impacts on water supply, crop yield, and livestock
mortality, which can be higher than the sum of their counterparts (Chen et al., 2018;
Garcia-Herrera et al., 2010; Seneviratne et al., 2021; Teuling, 2018; Ward et al., 2022).
This phenomenon of large impacts from multiple variables, which refers to the
extremes occurring at the same or different locations with or without a time lag, is
commonly termed “compound events” (Hao et al., 2013; Leonard et al., 2014;
Seneviratne et al., 2012; Seneviratne et al., 2021; Zscheischler et al., 2018). Note that
there are other terms describing similar phenomena of compound events, including
combined, cascading, contemporaneous, coincident, simultaneous, concurrent, or

consecutive events or extremes (Cutter, 2018; de Ruiter et al., 2020; Drakes and Tate,
3
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2022; Gill and Malamud, 2014; Hao et al., 2013; Hillier et al., 2020; Kappes et al.,

2012; Pescaroli and Alexander, 2018; Schauwecker et al., 2019; Tilloy et al., 2019).

Compound events are first defined in IPCC special report on Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) in

2012, which can be of different types (Seneviratne et al., 2012):

“(1) two or more extreme events occurring simultaneously or successively, (2)
combinations of extreme events with underlying conditions that amplify the impact of
the events, or (3) combinations of events that are not themselves extremes but lead to
an extreme event or impact when combined”. While the first and third component of
the definition is relatively straightforward, the definition of the second type of events
(e.g., underlying conditions) is less clear. Firstly the underlying conditions can be
interpreted as a mere amplification of an existing compound event and secondly they
could also be understood as parts of the compound event (Leonard et al., 2014).
Recently, Zscheischler et al. (2018) defined compound events as “the combination of
multiple drivers and/or hazards that contributes to societal or environmental risk”,
which is used in the latest [IPCC AR6. Following Seneviratne et al. (2021), we use this
definition of compound events in this study, as it focuses on the risk framework in
IPCC and highlights the drivers of compound events are not necessary to be
dependent. Here the drivers refer to weather/climate processes, variables, or
phenomena spanning multiple temporal-spatial scales and the hazard (also termed
“climate impact-drivers”) can be potential occurrences of natural or human-induced
events or trends causing health impacts (e.g., losses of life, injury) as well as loss and
damage to the property, infrastructure, ecosystems, environmental resources and other
sectors (Field et al., 2012; Masson-Delmotte et al., 2021). Hazards can be caused by

one or more climate drivers and the risk here is defined as the product of the
4
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probability of hazards and consequences (unfolding as a combination of the hazard,
vulnerability, and exposure instead) (Seneviratne et al., 2021; Zscheischler et al.,
2020). Note that even though the individual component may not be extremes
themselves (or record-breaking events), the combined events with deviation from the
mean state may cause cumulative and amplified extreme impacts (Hegerl et al., 2011;
Leonard et al., 2014; Mitchell et al., 2014; Rummukainen, 2012; Tschumi et al.,

2022b).

Droughts and hot extremes, which are among the most disastrous extremes, may occur
at a wide range of time scales and their concurrences can lead to disastrous impacts.
Droughts are often induced by precipitation anomalies or evaporative demand and may
persist from several months to years or decades (Dai, 2013; Hao et al., 2018e; Mishra
and Singh, 2010; Vicente-Serrano et al., 2020a; Zhang et al., 2022a), while high
temperature or heatwaves (usually associated with anticyclones) may last from weeks
to months (Di Luca et al., 2020; Merz et al., 2020). These two extremes usually
co-occur mainly due to land-atmospheric feedbacks (Seneviratne et al., 2021). Many
extreme impacts of droughts and heatwaves in recent decades, such as those during
summer 2003 in Europe and 2010 in Russia 2010 (as shown in Fig. 1), essentially
resulted from their concurrences (or hot droughts, warm droughts) (de Ruiter et al.,
2020; Geirinhas et al., 2021; Nguyen et al., 2021; Sedlmeier et al., 2018; Wu et al.,
2021e; Zscheischler and Fischer, 2020). In this study, we mainly focus on the
concurrent (simultaneous) occurrences of droughts and hot events at the same
geographical location, which is commonly evaluated in previous studies. Unless
otherwise specified, we will use the term “compound droughts and hot extremes or

events” (abbreviated as CDHEs) to describe this type of compound events throughout
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this manuscript. Here the drought indicator and hot indicator are not necessary to be

extremes.

The amplified impacts of CDHEs have spurred increasing interest in understanding
these events. However, a synthesis of the recent advances and challenges in
understanding and modeling CDHEs is still lacking. Therefore, there is a pressing need
to review current progress in the study of CDHEs, including their characteristics,
drivers, changes (observation, attribution, and projection), and impacts, thereby
identifying research gaps and future opportunities. This synthesis is expected to aid
the scientific and operational communities to cope with CDHEs under global
warming.

2 Identification and characterization of CDHEs

2.1 Identification

Compound events can be identified as a subset of the two-dimensional probability
space defined by the underlying droughts and hot extremes indicators (X,Y), which
can be correlated or not. This subset can be defined in a simple way as (X,Y) in [0, x]
x [y, infinity] or by more complex functional relationships describing the adverse
impact / (loss in crop yield, reduced water resources) in terms of X and Y (using
precipitation and temperature as examples). In the following, we mainly introduce the
two approaches that have been commonly applied for identifying CDHEs in previous

studies.
2.1.1. Combined thresholds approach

The intuitive identification of CDHEs is based on the concurrence of dry and hot
events (e.g., concurrent low precipitation and high temperature) using selected

thresholds of individual variables or indicators. Specifically, the CDHEs based on
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concurrences of exceedance or non-exceedance of two variables are commonly

defined as a binary variable Z:

Z:{I,XSxo and Y >y,
0, others

1)
where X and Y are the indicators of dry conditions and hot conditions with thresholds
xo and yo, respectively.

A variety of dry indicators (e.g., relative humidity, precipitation, soil moisture, and
related indicators) and hot indicators (e.g., temperature or related indicators) of
different time scales have been employed to define CDHEs. For example, a large
body of drought indicators, such as precipitation, soil moisture, Standardized
Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Meteorological
drought Composite Index (MCI), Standardized Precipitation Evapotranspiration Index
(SPEI), have been used for defining CDHEs at the monthly/seasonal time scale,
weekly time scale (Mukherjee and Mishra, 2021) or daily time scale (Mo and
Lettenmaier, 2020; Tian et al., 2021; Yu and Zhai, 2020a; Yu and Zhai, 2020b). For
the indicator of hot extremes, previous evaluations are commonly based on daily
maximum temperature while nighttime temperature has also been employed (Feng et
al., 2021b; Wang et al., 2020a; Xu and Luo, 2019). In addition, there are different
ways to select the thresholds of individual indicators to define CDHESs, such as the
relative values (e.g., 90th percentile of temperature, 2 standard deviations, 100-year
return period) or absolute values (e.g., precipitation lower than 1mm as dry conditions,
a temperature higher than 35 degrees as hot conditions) (Barrucand et al., 2014;
Beniston, 2009; Estrella and Menzel, 2013; Fortin and Hétu, 2014; Keller et al., 2017;
Lemus-Canovas and Lopez-Bustins, 2021; Martin and Germain, 2017; McPhillips et
al., 2018; Ridder et al., 2020; Tilloy et al., 2021; Vogel et al., 2021a).
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The copula-based joint distribution is an alternative way to define multivariate events
or extremes among multiple variables, such as precipitation and temperature, based on
certain thresholds (Bevacqua et al., 2017; Flach et al., 2017; Rana et al., 2017;
Schoelzel and Friederichs, 2008; Serinaldi, 2016; Singh et al., 2020; Tilloy et al.,
2020). It is advantageous in constructing the multivariate distribution independently
of marginal distributions and can be employed to model flexible dependence
structures of multiple variables, including the extremal dependence in the tail (or tail
dependence), temporal dependence, and spatial dependence, based on a wide range of
copula functions, such as Frank, Clayton, Gumbel, t, or Gaussian copula (Sadegh et
al., 2018; Tootoonchi et al., 2022; Zscheischler et al., 2020; Zscheischler and
Seneviratne, 2017). Recently, it has been employed for modeling the dependence of
compound events, including the non-stationarity modeling under a changing climate

(Brunner et al., 2021b; Sarhadi et al., 2018; Singh et al., 2021).

For two random variables X and Y, the copula model can be expressed as (Nelsen,

2006):

P(X <x,Y <y) = C(Fx(X),Fy(Y); 6)
2)

where x and y are realizations of X and Y, respectively, which can be specified as
certain thresholds; Fx(X) and Fy(Y) are the marginal probabilities of X and Y,
respectively; 6 is the parameter of the copula. Note that the underlying variables (X, Y)
of compound events do not have to be correlated.

For example, the probability of the concurrence of low precipitation (X) and high

temperature (¥) can be computed based on copula C as (Zscheischler and Seneviratne,

2017):
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p=PX<x,Y>y)=u-—-C(uv)

where u=Fx(X) and v=Fy(Y) are marginal probabilities. The probability p in
equation (3) has been commonly employed to evaluate the likelihood of CDHEs at
regional and global scales (AghaKouchak et al., 2014; Alizadeh et al., 2020; Lazoglou

and Anagnostopoulou, 2019; Ribeiro et al., 2020b).

2.1.2. Indicator approach

Compound events or extremes are usually associated with adverse impacts (though not
always). As such, a compound event based on indicators of droughts and

high-temperature extremes (X and Y) can be defined by:

IX,Y)>c

4)
where I could be the impacts resulting from droughts and hot extremes (e.g., loss in
crop yields, decreased water resources); ¢ can be a critical threshold. This equation
identifies CDHEs based on the adverse impacts of (X,Y) greater than a critical threshold
c. For example, the CDHEs can be defined as the subset in the X-Y space where crop
yields are particularly low (resulting from droughts and hot extremes, but not from
other hazards or extremes). Here the indicator of the impacts /(X,Y) can be obtained
from the crop model, vegetation model, hydrological model, or other impact models.
The indicator approach incorporates the two extremes into one index to assess the
statistical relationships between extremes and impact data (Potopova et al., 2020;
Vogel et al., 2021b; Zampieri et al., 2017; Zscheischler et al., 2017). In essence, the
expression of / can be any functional relationship from droughts and hot extremes (i.e.,

X and Y) to impacts.

3)
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In certain cases, the impact data may not be available, and some proxies (e.g., based
on the joint probability or return periods) can be used to develop indicators of
compound events, which turns compound event analysis into the univariate case (Hao
et al., 2020b; Li et al., 2021a; Zscheischler et al., 2017). A variety of indicators have
been developed to characterize CDHESs by integrating both droughts and hot
indicators (Abbasian et al., 2021; Hao et al., 2018d; McKinnon et al., 2021), which
can be constructed by combining multiple properties or events through statistical
approaches, such as linear regression model, Principal Component Analysis (PCA) or
joint distribution (Gallant and Karoly, 2010; Gallant et al., 2014; Hao et al., 2020b;

Zhang et al., 2020a).

2.2 Characterization

Based on the identification of CDHEs, different characteristics can be obtained
accordingly. These characteristics or properties include but are not limited to,
frequency, duration, timing, severity (or magnitude), and spatial extent, which are all
useful to characterize CDHEs, as shown in Fig. 2. Though it is generally
straightforward to define these properties of univariate extremes based on individual
variables or associated indicators (Brunner et al., 2021a; Brunner et al., 2021b; Feng et
al., 2020; Field et al., 2012; McPhillips et al., 2018), the characterization of CDHEs
based on these properties is not straightforward due to the involvement of multiple
contributing variables. In the following, we focus on several properties that have been

commonly assessed in previous studies.
2.2.1. Frequency, duration, timing, severity, and spatial extent

The frequency of CDHESs can be defined by any set A within the joint X-Y space (e.g.,

low precipitation and high temperature), where (X, Y) in A is counted as the

10
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occurrence of a CDHE. These events can then be counted and divided by the length of
the total period considered. It is among the most commonly assessed characteristics of
CDHE:s. For example, Fig. 3(a) shows the frequency of concurrent low precipitation
and temperature during the warm season, which is defined as June—July—August (JJA)
in the Northern Hemisphere and December—January—February (DJF) in the Southern
Hemisphere, based on Climatic Research Unit (CRU) data from 1951 to 2018. A high
frequency of CDHEs is shown during warm seasons over land areas, such as central

North America, Europe, and southeast Asia.

The duration of CDHEs is related to the frequency but with a focus on the length of
consecutive occurrences (Manning et al., 2019; Mazdiyasni and AghaKouchak, 2015).
A close concept to the duration is persistence, which has also been employed for the
characterization of compound events (Messori et al., 2021; Pfleiderer et al., 2019).

The impact of climate extremes on ecosystems is closely related to the timing
(Batibeniz et al., 2022; Flach et al., 2021; Sippel et al., 2016b), so as for the CDHEs
(Vogel et al., 2021a). This includes the time for the onset, succession, and recovery.
For example, the onset of CDHESs can be defined as the first day with the occurrence

of heatwaves during a dry period (Zhang et al., 2022c), as shown in Fig. 2.

The frequency, duration, and timing do not fully indicate how severe a compound event
is. The severity level of compound extremes is also of interest (Huang et al., 2021;
Manning et al., 2019; Wu et al., 2019a). For example, a compound event with
precipitation of 5th percentile and temperature of 95th percentile is expected to be more
severe than that with precipitation of 25th percentile and temperature of 75th percentile.
The severity level of CDHEs can be characterized based on the functional relationships
of the properties of dry and hot indicators (shown in Fig. 2), such as the joint

probability (and its standardization) (Hao et al., 2018a; Hao et al., 2020b; Li et al.,
11



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

2018a; Li et al., 2020b; Li et al., 2021a), return period (Alizadeh et al., 2020), or
product (Mukherjee and Mishra, 2021; Reddy et al., 2022). This characteristic of
CDHE:s is also termed “magnitude” in several studies (e.g., temperature properties
during the dry periods) (Lemus-Canovas and Lopez-Bustins, 2021; Manning et al.,
2019; Wu et al., 2019a). For example, a Dry-Hot Magnitude Index (DHMI) of CDHEs
is developed recently by taking into account both the severity level of droughts and

hot extremes, which can be expressed as (Wu et al., 2019a):

DHMI = ZM [P(AT,,)ADI,,]
m=1 5)

where M is the number of periods (e.g., months) during which the DHMI is defined;
AT, is the temperature above a specific threshold for each period m; P(AT,,) is the
marginal distribution function of AT, ; ADI,, is the difference between the drought

indicator DI and a specified threshold for the period m with dry conditions.

The spatial extent of compound events at regional or global scales can be defined as
the area coverage of the occurrence of a compound event for each period. It can also
be defined as the spatial extent or area coverage of severity higher than a threshold,
duration longer than several days, or severity higher than certain values. In addition,
there have been certain efforts in developing an extreme index based on the spatial
extent to characterize multivariate extremes, such as the climate extreme index (CEI)
(Karl et al., 1996) or their variants (Gallant and Karoly, 2010; Gleason et al., 2008)
that combine the spatial extent of multiple extremes (e.g., an average of the spatial
extent of different extremes, such as annual maximum temperature, annual PDSI, the
proportion of heavy-rain days in a year, number of wet/dry days in a year)(Gallant et

al., 2014).
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2.2.2. Dependence and joint return periods

Dependence between dry and hot indicators (e.g., correlations between precipitation

and temperature) can affect the occurrence frequency of CDHEs, and thus a

multivariate perspective is important for assessing changes in extremes (Zscheischler

and Seneviratne, 2017). The negative precipitation and temperature correlations

during the warm seasons have been extensively explored in different regions

(Abatzoglou et al., 2020; Adler et al., 2008; Mahony and Cannon, 2018; Trenberth

and Shea, 2005), such as the United States (Koster et al., 2009; Madden and Williams,

1978; Zhao and Khalil, 1993), Canada (Singh et al., 2021; Singh et al., 2020), Europe

(Crhova and Holtanov4, 2018; Lhotka and Kysely, 2022; Rodrigo, 2015; Rodrigo,

2021), Mediterranean (Russo et al., 2019), and China (Du et al., 2013; He et al., 2015;

Wu et al., 2019b), as shown in Fig. 3(b). We select the monthly precipitation and

temperature data from 1901 to 2018 in southern Africa to demonstrate the dependence

(with the measure of Pearson's correlation coefficient) and joint return period of

CDHE:s. The scatterplot of precipitation and temperature during the warm season (i.e.,

DIJF) in southern Africa is shown in Fig. 4. The negative correlation coefficient

indicates that warm-dry events tend to occur, which results from both the

land-atmosphere interaction and atmosphere circulation anomalies (Feng and Hao,

2021; Lyon, 2009). The low precipitation and high temperature during DJF of

2015-2016 clearly show the concurrence of droughts and hot extremes during this

period (Hao et al., 2019a; Yuan et al., 2018; Zscheischler and Lehner, 2022), which

13
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results from the influences of multiple factors such as strong El Nifio or poleward

expansion of the subtropical anticyclones (or poleward expansion of the tropics)

(Burls et al., 2019; Sousa et al., 2018) .

The joint return period has been used for determining the rarity (or risk) of compound
extremes (including CDHESs), which is commonly achieved based on the joint
probability estimated from the copula-based multivariate distribution (AghaKouchak
et al., 2014; Alizadeh et al., 2020; Hao and Singh, 2020; Ridder et al., 2022a;
Zscheischler and Fischer, 2020). As an example, we use the 10th and 90th percentile
of precipitation and temperature, respectively, to define compound droughts and hot
extremes. The Likelihood Multiplication Factor (LMF), which is defined as the
likelihood of joint exceedance of precipitation and temperature (either estimated from
counting or parameter copula) divided by that of the independence case, is employed
here to demonstrate the impact of dependence on the likelihood and return period of
compound events (Zscheischler and Seneviratne, 2017). If we assume independency,
the joint probability of precipitation lower than 10th percentile and temperature higher
than 90th percentile is 0.01 and the joint return period would be 100 years (Singh et
al., 2021). We then use copula to model the joint distribution of precipitation and
temperature, in which the marginal distribution is estimated with the Gringorten
plotting position formula. Five commonly used copulas (Gaussian, t, Frank, Gumbel,
Clayton) were used as candidates, and the Gaussian copula was selected based on
Bayesian Information Criterion (BIC) in the R package VineCopula (Nagler et al.,
2022). Based on the fitted copula, the joint probability of precipitation lower than
10th percentile and temperature higher than 90th percentile is 0.035, resulting in the
LMF=3.5, which is higher than 1 (or higher than that based on independent

14
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assumption). In addition, the joint return period is estimated as 28 years, which is
much shorter than the independent case. The difference is related to the
precipitation-temperature correlations that reflects the interaction of droughts and hot

extremes.
3 Physical drivers of CDHEs

Persistent dry conditions could result from slow-moving (or stationary) weather
situations or recurrent large-scale circulation patterns that produce less precipitation
(Hao et al., 2018e; Herrera-Estrada et al., 2019; Kingston et al., 2015; Schubert et al.,
2016; Seager et al., 2015). Meanwhile, extreme heat is commonly controlled by
high-pressure systems (or anticyclonic circulations) and influenced by land surface
conditions (e.g., soil moisture), which is associated with subsidence of air (adiabatic
compression), clear skies (high insolations), and warm air advections (Horton et al.,
2016; Perkins, 2015). The interplay of multiple drivers or processes in the atmosphere,
land, and ocean, as well as the background of global warming manifests in a myriad
of ways in driving the concurrences of droughts and hot extremes (Garcia-Herrera et
al., 2010; Gibson et al., 2017; Miralles et al., 2019; Sousa et al., 2020; Wehrli et al.,
2019). In general, CDHEs result from a variety of processes, such as stationary
anticyclones, soil moisture-atmosphere interactions, and large-scale mode of
variability, which spans different time scales (Hao and Singh, 2020; Seneviratne et al.,

2021; Zhang et al., 2021a; Zscheischler et al., 2020).

Atmosphere circulation patterns (e.g., high-pressure systems) can induce both

droughts and hot extremes, contributing to the concurrence of the two extremes at

shorter time scales (Fink et al., 2004; Ha et al., 2022; Miralles et al., 2019; Quesada et

15



345  al., 2012; Seager and Hoerling, 2014; Zscheischler et al., 2020). Typically,

346  high-pressure systems are often associated with descending air or reduced moist air

347  inflow (i.e., anomalous moisture from local recycling or advection from the ocean),

348  inhibiting moisture divergence and favoring drought conditions (Dong et al., 2018;

349  Fischer et al., 2007; Ionita et al., 2021; Liu and Zhou, 2021; Marengo et al., 2022;

350  Mukherjee et al., 2020; Schubert et al., 2014; Seo et al., 2021; Zampieri et al., 2009;

351  Zscheischler and Fischer, 2020); meanwhile, they are typically associated with air

352  subsidence (inducing adiabatic heating), increased clear-sky conditions (little cloud

353  cover) and shortwave radiations, resulting in surface warming (Berkovic and

354  Raveh-Rubin, 2022; Chang and Wallace, 1987; Fang and Lu, 2020; Horton et al.,

355  2016; Kornhuber et al., 2020; Kornhuber et al., 2019; Li et al., 2020d; Li et al., 2019a;

356  Wang et al., 2019a), which collectedly induce concurrences of droughts and

357  heatwaves. Large-scale circulation patterns, such as blocking highs, planetary wave

358  patterns, and monsoon failures, have been shown to induce CDHEs depending on

359  regions or seasons (Zhang et al., 2021a; Zscheischler et al., 2020). In the Northern

360  Hemisphere or midlatitude, anticyclonic circulation (embedded in large-scale

361  atmospheric wave trains or as blockings) can induce the occurrence or persistence of

362  CDHE:s in multiple regions (Ali et al., 2021; Coumou et al., 2018; Kautz et al., 2022;

363  Rothlisberger and Martius, 2019), including North America (Cowan et al., 2017;

364 Dong et al., 2018), Europe (Ionita et al., 2021; Nagavciuc et al., 2022; Weiland et al.,

365 2021), Russia (Schubert et al., 2014), and northwestern China (Luo et al., 2020). For

16



366 example, in Europe, the hot and dry events during summers are generally associated

367  with persistent high-pressure systems or atmospheric blocking circulations (i.e.,

368  steering hot and dry air northward) that reduce zonal flows and divert storm tracks

369  (southward) (Ionita et al., 2021; Kautz et al., 2022; Lansu et al., 2020; Messori et al.,

370  2021; Weiland et al., 2021). A telling example is the 2003 Europe heatwaves

371  accompanied by droughts, which is shown to result from blocking patterns and warm

372 horizontal advection (and heat accumulations) in the atmospheric boundary layer,

373  under which local drying and enhanced sensible heat fluxes further amplify hot

374  extremes (Hu et al., 2019; Miralles et al., 2014; Sousa et al., 2020; Zampieri et al.,

375  2009). In India, the failure of the summer monsoon and associated atmospheric

376  conditions (increased geopotential height, weak moisture transport) is shown to

377  contribute to CDHEs (Mahto and Mishra, 2020; Mishra et al., 2021). In the Yangtze—

378  Huaihe River Basin (YHRB) of China (or central-eastern China), during a strong East

379  Asia summer monsoon (EASM), the western Pacific Subtropical High (WPSH) is

380  wusually located more to the north, leading to less monsoon rainfall and favoring the

381  occurrence of CDHEs (Yao et al., 2022).

382  The large-scale modes of variability, such as El Nifio-Southern Oscillation (ENSO),
383  are closely related to the formation of high-pressure systems or blocking highs and
384  favor the concurrence of low precipitation and high temperatures (or droughts and hot
385  extremes) at longer time scales (Hao et al., 2018c; Lyon, 2009; Mukherjee et al., 2020;
386  Wang et al., 2014; Wu et al., 2021b). Typical modes of climate variability that lead to

387 CDHEs include those associated with ENSO (seasonal-to-interannual time scales),
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Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO)
(decadal and longer time scales) depending on regions and seasons (Hao et al., 2019b;
Lemus-Canovas, 2022; Mukherjee et al., 2020; Wang et al., 2014; Wu et al., 2021Db).
ENSO has been shown to affect the seasonal occurrences of CDHESs across multiple
regions (Feng and Hao, 2021; Hao et al., 2018c; Mukherjee et al., 2020), such as
northern South America (Fasullo et al., 2018), southern North America (Livneh and
Hoerling, 2016), southern Africa (Archer et al., 2017; Lyon, 2009), India
(Bandyopadhyay et al., 2016; Mishra et al., 2020), Northeast China (Hao et al., 2021b;
Wu et al., 2021b), Australia, as partly demonstrated in Fig. 5. Other modes of climate
variability (e.g., NAO, PDO, AMO) have been shown to affect CDHEs depending on
regions, such as NAO for the Europe or Mediterranean areas (Bladé et al., 2012; Deng
et al., 2022; Ionita et al., 2017; Lépez-Moreno et al., 2011; Li et al., 2020b; Wright et
al., 2014), AMO for northeastern China (Li et al., 2020b; Wu et al., 2021b), and
combined ENSO and Indian Ocean Dipole (IOD) for Australia (Lim et al., 2019;

Loughran et al., 2019; Min et al., 2013; Reddy et al., 2022).

The soil moisture-temperature feedback can result in concurrent droughts and
high-temperature anomalies, which are connected through the soil moisture and
evaporation (or surface temperature), especially in water-limited areas (Bastos et al.,
2021; Benson and Dirmeyer, 2021; Berg et al., 2016; Dirmeyer et al., 2013;
Herrera-Estrada and Sheffield, 2017; Miralles et al., 2019; Osman et al., 2022;
Seneviratne et al., 2012; Zscheischler and Seneviratne, 2017). Soil moisture links the
water and energy cycles through the control of evaporation and affects many
processes relevant to anomalies of temperature (e.g., heat transport, solar radiation,
and sensible/latent heat flux exchange between atmosphere and surface) and

precipitation (e.g., local soil moisture deficits promoting rainfall deficits) (Berg et al.,
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2015; Freychet et al., 2021; Gevaert et al., 2018; Schumacher et al., 2022; Seneviratne
et al., 2010; Zhou et al., 2019). The interaction of droughts and heatwaves causing
CDHEs can be summarized as the following two processes (Miralles et al., 2019;
Seneviratne et al., 2010): (1) the drying-out of soil moisture and vegetation can limit
the evapotranspiration (and latent heat flux), which may also lead to precipitation
deficit, and induce increased sensible heat flux and surface temperature; (2) during
heatwaves, increased evapotranspiration resulting from high vapor pressure deficit
(VPD) or radiation could deplete soil moisture, inducing the soil moisture deficits or
dry conditions, as demonstrated in Fig. 6. During this self-amplifying process,
temperature extremes can both be the driver and response of droughts (Kiem et al.,
2016; Lockart et al., 2009; Miralles et al., 2019; Nicholls, 2004). At the global scale,
the land-atmosphere coupling between droughts and surface temperature extremes
have been explored from both observations and model simulations (Berg et al., 2016;
Gevaert et al., 2018; Miralles et al., 2012; Seneviratne et al., 2010; Zscheischler and
Seneviratne, 2017). Evidence has shown the important role of soil
moisture-temperature feedbacks in the concurrences of drought and hot extremes,
such as those in the United States (Benson and Dirmeyer, 2021; Su and Dickinson,
2017), Europe (Dirmeyer et al., 2021; Hirschi et al., 2011; Ionita et al., 2021; Liu et
al., 2020; Manning et al., 2018; Sousa et al., 2020; Wang et al., 2022; Whan et al.,
2015; Xu et al., 2021), Brazil (Geirinhas et al., 2021; Geirinhas et al., 2022; Libonati
et al., 2022), and Asia (Seo et al., 2021; Shi et al., 2021; Zhang et al., 2020b).
Morever, drought conditions in the upwind can lead to the advection of enhanced
sensible heat (or warmed air mass) downwind, where the land-atmosphere feedback in
nearby regions is stimulated and subsequently causes or enhances heatwaves (i.e.,

propagations from upwind droughts to downwind heatwaves)(Miralles et al., 2019;
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Miralles et al., 2014; Schumacher et al., 2022; Schumacher et al., 2019; Sousa et al.,
2020; Zhou and Yuan, 2022), which can contribute to the occurrence of CDHEs in

downwind regions.
4 Observed changes of CDHESs

On the global scale, multiple lines of evidence indicate a robust increase in the
frequency of CDHESs defined in multiple time scales, which mainly result from the
increase in high-temperature extremes (Batibeniz et al., 2022; Hao et al., 2013;
Mukherjee et al., 2022; Raymond et al., 2022; Sarhadi et al., 2018; Wu et al., 2021e;
Zhang et al., 2022d). Fig. 7 shows an increase in the annual frequency of CDHEs
across global land areas, including western and southern North America, northern
South America (e.g., Amazon), Europe, central and southern Africa, northern parts of
eastern Asia, southeast Asia, and northeastern Australia, which is consistent with
previous studies (Chiang et al., 2022b; Hao et al., 2013; Wang et al., 2021b; Wu et al.,
2021e). Increased severity/spatial extent and lengthened duration of CDHEs are
observed at the global scale as a whole, though there are regional variations (Feng et
al., 2020; Hao et al., 2018a; He et al., 2022a; He et al., 2022b; Lesk and Anderson,
2021; Mukherjee and Mishra, 2021; Wu et al., 2021a; Zhang et al., 2022d). Several
studies provide a systematic analysis of changes in multiple characteristics (frequency,
severity, duration, and magnitude) of CDHEs (Feng et al., 2020; Mukherjee and
Mishra, 2021), which found a higher frequency, long duration, higher severity level,
and larger spatial extent in large regions across the globe. At the continental or
regional scale, assessments of frequency changes of CDHEs point to an overall
increase in CDHEs across most regions. Following Seneviratne et al. (2021), these

assessments are summarized below.

20



462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

In Asia, an increase in the frequency, duration, and spatial extent of CDHE:s is
observed in recent decades. The frequency of CDHESs presents an overall increase in
East Asia or China (Chen et al., 2019a; Feng et al., 2021b; Hao, 2022; Kong et al.,
2020; Seo et al., 2021; Wu et al., 2019b; Yu and Zhai, 2020b). In China, the overall
increase in the frequency of CDHE:s is generally consistent based on different
indicators of droughts (such as SPI, SPEI, or PDSI), though some discrepancies do
exist in certain regions (Chen et al., 2019a; Zhang et al., 2022¢). Lengthened duration,
higher severity levels (or magnitude), and increased spatial extent of CDHEs are also
observed in China (Wu et al., 2019a; Wu et al., 2020; Zhang et al., 2022c). However,
decreased frequency and duration are observed in some parts of China (e.g.,
central-east China) (Chen et al., 2019a; Zhang et al., 2022c; Zhou and Liu, 2018). In
South Asia or India, increased frequency and spatial extent in CDHEs are observed

(Ganguli, 2022; Guntu and Agarwal, 2021; Sharma and Mujumdar, 2017).

In Australia, the increase in the frequency of CDHE:s is observed in recent decades,
though the trend may vary for different regions or study periods. An increase in
months with low precipitation and high temperature (or frequency of CDHEs) over
the past 150 years is observed in southeast Australia (Kirono et al., 2017). The
increase in the frequency of CDHEs is more remarkable in recent decades. For
example, the frequency of CDHEs is observed to be relatively stable during1889-1989
but significantly increases between 1990 and 2019 in Australia (Collins, 2021).
Lengthened duration and increased severity are also observed in Australia during

1958-2019, especially in eastern regions (Reddy et al., 2022).

In South America, increased frequency of compound summer droughts and heatwaves
is observed in large regions during the past fourty years, including southeast Brazil

(Geirinhas et al., 2021) and Amazonia (Costa et al., 2022). For example, over
21
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Amazonia, ten of the most extreme heat waves (longest and most intense) identified in
the southeastern Amazonia during 1979 to 2018 are all accompanied by an extreme
drying conditions (based on relative humidity and evaporative fraction anomalies),
and 9 of these extremes occurred in the last decade, implying increased frequency of
CDHEs (Costa et al., 2022). In the Pantanal, increased occurrences of individual
droughts and heatwaves in recent decades imply an increase in the frequency of

CDHE:s during 2001-2020 (Libonati et al., 2022).

In Europe, an increased frequency of CDHE:s is observed, especially in the central and
southern regions (Ionita and Nagavciuc, 2021). The probability of long dry periods
(days with precipitation below 1 mm) and high temperatures has increased (with
decreased return period) during 1984-2013 compared with the reference period 1950-
1979 in Europe (Manning et al., 2019). Over Spanish mountains, an increase in the
frequency of dry-warm days is observed from 1970 to 2007 (Moran-Tejeda et al.,
2013). At the decadal scale, an increase in the frequency of CDHEs is observed in the
period 2011-2020 compared with previous decades from 1951, especially in central
and south-eastern Europe (Ionita et al., 2021), such as Romania (Nagavciuc et al.,
2022). Over the Mediterranean region, available evidence indicates an increasing
trend in the frequency of CDHEs (De Luca et al., 2020; Lemus-Canovas, 2022; Vogel
et al., 2021a). However, in parts of northern Europe, a tendency of decrease in the
frequency of CDHEs in noted in several studies, which is likely associated with an
increasing precipitation trend (Bezak and Mikos, 2020; Ionita et al., 2021; Wang et al.,

2021b).

In North America, there is evidence of increased frequency and spatial extent of
CDHE:s in recent decades. An overall increase in the frequency of CDHEs (dry

condition based on precipitation) in recent decades from 1960 to 2010 is observed in
22
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large parts of the United States, with regional differences (Mazdiyasni and
AghaKouchak, 2015). An increase in the frequency CDHEs with dry conditions based
on relative humidity from 1950 to 2019 is observed in the southwestern United States
(McKinnon et al., 2021). The increased frequency of CDHEs is more profound in the
past 50 years based on a long period of analysis (1896-2017) in the western United
States while insignificant changes are shown in eastern regions of the United States
(Alizadeh et al., 2020). The increased spatial extent is also observed in the United
States as a whole for different study periods (Alizadeh et al., 2020; Mazdiyasni and

AghaKouchak, 2015).

The changes in the dry-hot dependence (or correlations) can be just as important as
other properties if not more so. Several lines of investigations have evaluated changes
in the precipitation and temperature correlations (or co-variability) at the global scale
in observational periods (Hao et al., 2019¢c; Wang et al., 2021b), which is generally
more heterogeneous compared with changes in other properties. These studies
highlight the enhanced negative precipitation-temperature correlations over several
regions, such as western North America, southeast Europe, and parts of northeast Asia
(as shown in Fig. 8). At the regional scale, changed correlations between droughts and
temperature indicators has been evaluated in China (Wu, 2014; Zhang et al., 2022b),
the United States (Hao et al., 2020c), and Europe (Manning et al., 2019), which

contributes to observed changes in the frequency or probability of CDHEs.

The impact of compound extremes depends not only on the hazard but also the
exposure and vulnerability. The impacts from extremes or compound extremes would
be particularly severe if they occurred in main agricultural regions or regions with
higher population density (Vogel et al., 2019). Except for assessing changes in

CDHEs from the hazard perspective (e.g., frequency, severity), increased exposures
23
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of cropland to CDHEs have been observed at the global scale (Lesk and Anderson,
2021; Sarhadi et al., 2018; Wu et al., 2021c) and regional scales, including China
(Feng et al., 2021b; Lu et al., 2018). Recent studies also found increased exposure of
populations to CDHE:s in recent decades at the global scales (Liu et al., 2021) and

regional scales, including China (Wu et al., 2021d) and India (Das et al., 2022).

S Climate model evaluation

The evaluation of global and regional climate models in simulating the mean state
(i.e., climatology frequency or precipitation-temperature correlations) and historical
changes of CDHEs is important to obtain necessary confidence in the modeling of
chosen events or extremes, including attribution and projection analysis (Hao et al.,
2013; Zscheischler and Lehner, 2022). The overall pattern of the frequency of CDHEs
at a large scale can be generally reproduced by global climate models (GCMs) from
the Climate Model Intercomparison Project phase 5/6 (CMIP5/CMIP6) (Wu et al.,
2021c). The overall temporal increase in the frequency of CDHEs at large scales from
CMIP5/CMIP6 simulations was found to be consistent with observations (Sarhadi et
al., 2018; Wu et al., 2021e). At the spatial scale, the overall increase in CDHESs over
large land areas can be simulated relatively well from CMIPS5 or CMIP6 models;
however, there are discrepancies in changing patterns or magnitude between
simulations and observations, with larger bias in certain land areas, such as Australia

(Hao et al., 2013; Ridder et al., 2021; Wu et al., 2021e).

The observed temperature-precipitation correlations is generally reproduced well by
climate model simulations (Hao et al., 2019¢; Wu et al., 2013; Zscheischler and
Seneviratne, 2017). For around 75% of global land areas, the

precipitation-temperature dependence from observations falls within the 10th to 90th
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percentile of that from CMIP5 model simulations (Zscheischler and Seneviratne,
2017). However, stronger seasonal precipitation-temperature dependence during the
warm seasons across land areas has been shown in climate model simulations (Hao et
al., 2019c; Rehfeld and Laepple, 2016; Wu et al., 2013), with large discrepancies in
the Southern Hemisphere, which may result from model biases or observational
uncertainties (Zscheischler and Seneviratne, 2017). Moreover, the observed changes
in the precipitation-temperature correlations is not well reproduced by climate models
(Hao et al., 2019c¢). The comparisons of the CMIP5 and CMIP6 in simulating the

CDHE:s or precipitation-temperature correlations are still limited.

Regional climate models (RCMs) with high resolutions, such as those from the

Coordinated Regional Climate Downscaling Experiment (CORDEX), generally

captured the observed frequency of (or changes in) CDHEs in central Europe

(Sedlmeier et al., 2018) and China (Lu et al., 2018). Based on simulations from

CORDEX over China, RCMs were found to broadly reproduce the spatial pattern of

climatology frequency of compound dry and hot days and also captured the overall

increase in frequency changes (except for southwest China) (Lu et al., 2018). Other

properties of CDHEs may not be captured well by RCMs. Over central Europe, the

duration or temporal succession of CDHEs was not captured well, which may be due

to the misrepresentation of internal variability (Sedlmeier et al., 2018). Though the

direction of precipitation and temperature dependence is generally captured by RCM,

the magnitude or strength of the dependence is not captured well, as shown in Canada

(Singh et al., 2021) and Europe (Crhova and Holtanov4, 2018; Lhotka and Kysely,
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2022) with performance depending on regions and seasons. For the simulation of
precipitation-temperature correlations based on two RCMs from the EURO-CORDEX
project driven by four global climate models in Europe, Crhova and Holtanova (2018)
found that the simulated precipitation-temperature correlation patterns vary more
across the different RCMs than GCMs (Crhova and Holtanova, 2018). These results
highlight the usefulness of RCMs for assessing CDHEs; however, the assessment of
whether RCMs can provide added values in simulating the precipitation-temperature

correlations or likelihoods of CDHE:s is still limited.

As shown in previous sections, due to the temporal/spatial discretization and
unresolved/unrepresented physical processes, system biases exist in simulations from
global and regional climate models (Cannon, 2016; Sippel et al., 2016a; Van de Velde
et al., 2022). Statistical bias correction methods (such as the quantile mapping method
that adjusts the full distribution of variables) have been commonly used in these
regional studies to correct simulations from climate models (Hao and Singh, 2020;
Sedlmeier et al., 2018; Sun et al., 2019). In contrast to univariate bias correction
methods with a focus on correcting a single variable, the multivariate bias correction
(MBC) method is capable of correcting the dependence of multiple variables, such as
precipitation and temperature (or other variables) (Cannon, 2016; Cannon, 2018; Li et
al., 2014; Piani and Haerter, 2012; Vrac and Friederichs, 2015; Vrac et al., 2022).
Since the impact of compound events may result from multiple variables, the bias
correction of model simulations needs to consider the dependence among multiple
variables (Cannon, 2018; Francois et al., 2020; Singh et al., 2021; Villalobos-Herrera

et al., 2021; Whan et al., 2021; Zscheischler et al., 2019). Recent studies have shown
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that the MBC method could provide added values in improving simulations of
precipitation and temperature correlations and likelihoods or properties of CDHEs in
Europe (Lemus-Canovas and Lopez-Bustins, 2021), Canada (Singh et al., 2021), and
China (Meng et al., 2022a). For the impact models (e.g., dynamic vegetation models,
hydrological models) based on the outputs from climate models, a variety of studies
have assessed the performance of different multivariate bias corrections in simulating
impact variables (e.g., runoff simulations based on hydrological models)(Chen et al.,
2021a; Frangois et al., 2020; Guo et al., 2020; Meyer et al., 2019; Singh and Reza
Najafi, 2020; Villalobos-Herrera et al., 2021). Albeit promising results in the MBC
compared with univariate bias correction methods, several studies did not find a
superior performance of the MBC, which may result from multiple factors such as the
bias non-stationarity (Meng et al., 2022; Van de Velde et al., 2022). Considering the
influencing factors or potential uncertainties in the simulations from the climate and
impact models, the added values of the MBC method for the compound impact
analysis should be further assessed to improve the impact modeling of compound

events (i.e., performance regarding the assumption, variable, and method).

6 Attribution of changes to anthropogenic climate forcing

Understanding anthropogenic influences on changes in extremes (including
compound extremes) is important for climate policy and adaptation planning (Bindoff
et al., 2013; NAS, 2016; Otto, 2017; Sarojini et al., 2016; Stott et al., 2016; Wang et
al., 2020a). Multiple approaches have been developed for the attribution of the trend
(or changes) in mean or extreme climate and specific events (i.e., event attribution)
(Hulme, 2014; Sun et al., 2022; Zhai et al., 2018). The comparison between

observations of current climate conditions and simulations from CMIP5/CMIP6 with
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630 different experiments (Eyring et al., 2016), including historical simulations of natural
631  forcings (NAT) and all forcings (ALL), has been commonly used to evaluate

632  anthropogenic influences (Chiang et al., 2021; Knutson et al., 2017; NAS, 2016;

633  Wang et al., 2021a). The optimal fingerprinting method based on multivariate linear
634  regression is a well-established approach for the detection and attribution of trend in
635 climate extremes, which help answers the questions of whether climate has changed
636  in a statistical sense and how much the changes can be attributed to causal factors
637  with a statistical confidence (Zhai et al., 2018). For the anthropogenic influences on
638  specific extremes (i.e., event attribution), the commonly used probability-based

639  approach in the univariate case, including the Probability Ratio (PR) (Fischer and
640  Knutti, 2015) or Fraction of Attributable Risk (FAR) (Stott et al., 2016), can be

641  extended to the multivariate case for answering the questions of whether (and to what
642  extent) anthropogenic influences has changed the likelihood or probability of specific
643  CDHEs (Chiang et al., 2022b; Seneviratne et al., 2021; Wu et al., 2022; Zhang et al.,

644  2022d; Zscheischler and Lehner, 2022).

645  Attribution studies have revealed that the observed long-term increase in the

646  frequency of compound events at the global scale is largely due to anthropogenic

647  climate forcing (Chiang et al., 2022a; Chiang et al., 2022b; Sarhadi et al., 2018). For
648  example, based on monthly precipitation and temperature observations, including data
649  from the CRU, the University of Delaware (UDEL), and the Princeton Global Forcing
650 (PGF), the temporal change in the annual occurrences of CDHEs across the globe

651  based on observations and CMIP6 model simulations, which include all forcings (ALL)
652  and natural forcings (NAT) experiments, is shown in Fig. 9 (Zhang et al., 2022d). The
653  consistent increase in CDHEs between observations and ALL simulations, which

654  diverge substantially from the results of NAT simulations, indicates the dominant
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effect of anthropogenic forcing on the increase of CDHEs in the past century. Despite
several challenges in the detection and attribution at regional scales (e.g., large
magnitude of natural variability), a large number of studies have been devoted to
assessing the influence of anthropogenic forcing on the long-term changes in the
likelihood of CDHESs (by comparing results from the historical and natural forcing
experiments ) across different regions, such as China (Li et al., 2020a; Li et al., 2022c;
Wu et al., 2022), the United States (Cheng et al., 2016; Diffenbaugh et al., 2015), and
India (Mishra et al., 2021), which indicate human influences contribute to the
long-term increase in CDHEs at regional scales. For example, based on climate model
simulations of NCAR’s large ensemble (“LENS”), Diffenbaugh et al. (2015) showed
that anthropogenic warming increased the probability of the co-occurrence of
dry-warm years (defined as precipitation lower than —0.5 SDs and positive
temperature anomaly) in California. Based on the definition of indicators of CDHEs,
the detection and attribution analysis of CDHEs can be conducted using the optimal
fingerprinting method, as witnessed in several regions, such as northeast China (Chen
and Sun, 2017; Li et al., 2020a; Li et al., 2022c¢). Using the joint probability as the
severity indicator of CDHEs, Li et al. (2022¢) found that anthropogenic impacts on
increase in CDHEs were robustly detected and anthropogenic forcings dominantly

contributed to observed changes in CDHEs during 1961-2014 over northeast China.

The evidence of human influences on specific CDHEs (or event attribution) in
historical periods has also been explored, highlighting the importance of
anthropogenic influences on the increased likelihoods. Examples of the event
attribution analysis include concurrent droughts and hot events based on specified
thresholds (e.g., precipitation lower than 10th percentile and temperature higher than

90th percentile) (Chiang et al., 2022b; Zhang et al., 2022d) or real cases, such as those
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during 2019 in southwestern China (Wang et al., 2021c) and Western Cape regions
(Zscheischler and Lehner, 2022). Zhang et al. (2022d) found that anthropogenic
forcings caused a more than three-fold increase in the probability of CDHEs in the
tropics during 1951-2010. Zscheischler and Lehner (2022) showed that anthropogenic
climate change contributed at least 40% to the occurrence probability of concurrent
dry and hot conditions in the years 2017 and 2019 in the Western Cape region. The
impact of specific anthropogenic forcings (e.g., greenhouse gases, aerosols, land use)
on CDHEs has also been evaluated (Chiang et al., 2022a; Li et al., 2022c), which can
be achieved based on historical simulations from the Detection and Attribution Model
Intercomparison Project (DAMIP)(Gillett et al., 2016). By comparing simulations of
CDHE:s in historical natural-only (hist-nat) experiment with four alternative
experiments (greenhouse gases only, aerosol only, land use-only, and all-forcing)
from the DAMIP of CMIP6, Chiang et al. (2022a) found greenhouse gases alone
amplified the natural frequency of CDHEs (based on 90™ percentile of the joint
probability of precipitation and temperature) by 1.5-5 times in tropical and
extratropical regions and the aerosol effects reduced the natural frequency by
60%-100%. Many high-impact, low-probability (HILP) events or extremes related to
droughts or heatwaves (e.g., 2010 Russian heatwave), which can be assessed through
the lens of a compound perspective, have not been investigated based on the
multivariate attribution framework. Overall, these attribution studies indicate the
important role of anthropogenic climate change in the occurrence of many historically

unprecedented CDHESs in many regions across the globe.
7 Future projections of CDHESs

Climate projection of extremes under different emission scenarios provides useful

insights for developing mitigation strategies and climate policy. Projections studies of
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CDHEs are mainly based on simulations from climate models, such as those from the
CMIPS under different scenarios of Representative Concentration Pathways (RCPs),
including the stringent mitigation scenario (RCP2.6), intermediate scenarios (RCP4.5
and RCP6.0), and the high emission scenarios (RCP8.5)(Taylor et al., 2012). More
recently, projections based on the latest generation of Global Climate Model
simulations from CMIP6 have become available with RCP projections assuming
certain underlying Shared Socioeconomic Pathways (SSPs)(Eyring et al., 2016).
Previous projection studies suggest that the frequency of CDHEs will generally
increase across the globe, which is overall consistent across different time scales,
including daily (Ridder et al., 2022b; Vogel et al., 2020), seasonal (Wu et al., 2021c;
Zhan et al., 2020; Zscheischler and Seneviratne, 2017), and annual time scales (Meng
et al., 2022b; Sarhadi et al., 2018). In many land regions across global land areas, the
frequency of extremely dry and warm seasons (based on 10th and 90th percentile of
precipitation and temperature, respectively) is projected to increase by a factor of 10
between the future period in the 21st century and the historical period 1870-1969
(Zscheischler and Seneviratne, 2017). Fig. 10 shows changes in the frequency of
CDHE:s at the annual scale between the future period (2081-2100) and historical
periods (1986-2005) over global land areas, indicating increased frequency in regions
such as western North America, northern South America, Europe, the Mediterranean,
and southern Africa (Meng et al., 2022b). In addition, the enhanced
precipitation-temperature dependence is projected in large areas, such as northern
extra-tropics, Amazon region, and Indonesia (Berg et al., 2015; Mahony and Cannon,
2018; Zscheischler and Seneviratne, 2017), which is associated with increased

frequency of CDHEs in these areas in the future.
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729  The Paris Agreement sets out the goal of limiting global warming to 2°C with an
730  inspirational goal to limit it to 1.5 °C. Multiple lines of evidence have indicate that
731  limiting the warming to 1.5 °C will reduce the risk of droughts and heatwaves

732 compared with that of 2 °C warming (Hoegh-Guldberg et al., 2019; Pfleiderer et al.,
733 2019). Meanwhile, a large increase in the CDHESs can be avoided by limiting the
734 increase of temperature to 1.5°C rather than 2°C in many regions across the globe.
735  For example, over central North America and central Europe, an increase of 10% in
736  dry—warm persistence was projected for 2 °C warming while no changes were shown
737  for the 1.5 °C scenario (Pfleiderer et al., 2019). An even higher increase in the

738  frequency of CDHEs was projected for the warming levels beyond the 2°C warming
739  (Batibeniz et al., 2022; Vogel et al., 2020). At the 3°C warming above preindustrial
740  levels, increased frequency of compound drought-heatwave extremes is projected
741  with a five-fold increase in tropical countries and an even higher increase in

742 subtropical countries (eight-folds) and northern middle and high latitude countries

743  (seven-folds) (Batibeniz et al., 2022).

744 Several regional studies also corroborated an increased frequency or probability of
745  CDHE:s at regional scales. In Africa, an increase in the frequency of CDHEs (and

746 population exposure) is projected in simulations from regional CORDEX-CORE

747  models, with a higher increase under RCP8.5 than RCP2.6 (Weber et al., 2020). In

748  Asia, an increased frequency of concurrent heat waves and droughts is projected in
749  most regions in China based on simulations from CMIP5 (Lu et al., 2018; Sun et al.,
750  2017; Wu et al., 2021d), CMIP6 (Aihaiti et al., 2021), or other projections (Tang et al.,
751  2022; Zhou and Liu, 2018). Simulations by CMIP5 models project a consistent

752  pattern of increased frequency of CDHEs during summer seasons in China at global

753  warming levels of 1.5 °C and 2 °C (under the RCP 8.5 scenario) (Wu et al., 2021d).
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754 Over India, an increased frequency of CDHEs is also projected (Das et al., 2022;
755  Mishra et al., 2020). For example, based on CMIP6 model simulations, Das et al.
756  (2022) projected an increase in the frequency of CDHESs across India for two future

757  periods (2021-2060 and 2061-2100) under SSP2-4.5, SSP3-7.0, SSP5-8.5 scenarios.

758  In Australia, CMIP6 models project an increase in the frequency of co-occurring

759  heatwaves and droughts (decrease in the return periods ) for 2066-2100 under

760  SSP2-4.5 and SSP5-8.5 scenarios (i.e., moderate and high emission scenarios,

761  respectively), especially in the south of Australia (Ridder et al., 2022a). In Europe, an
762 increased frequency of CDHE:s is projected in the future in central and southern

763  regions, such as Germany (Estrella and Menzel, 2013). Over central Europe, the

764 high-resolution regional climate model COSMO-CLM projected an increase in the
765  frequency of CDHEs during summer for the future period 2021-2050 under RCP8.5,
766 with higher changes in the Czech Republic (Sedlmeier et al., 2018). Over the

767  Pyrenees region (transboundary areas between Andorra, France, and Spain), increased
768  magnitude and duration in the CDHEs are projected under the RCP8.5 scenario based

769  on the EURO-CORDEX projection (Lemus-Canovas and Lopez-Bustins, 2021).
770 8 Impacts of CDHESs

771  Both droughts and hot extremes have been shown to affect water supply, crop yield,
772  vegetation (or carbon cycle), and wildfire risk (Bevacqua et al., 2021; Byers et al.,
773  2018; Fink et al., 2004; Niggli et al., 2022; Ribeiro et al., 2019; Russo et al., 2017;
774  Tschumi and Zscheischler, 2019). Frequent occurrences of these extremes have

775  spurred interest in the impact of CDHESs on natural and human systems and have
776  gained increasing public awareness (Raymond et al., 2020a; von Buttlar et al., 2018;

777  Zscheischler et al., 2018). In the following, we focus on the current understanding of
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the impact of CDHEs on water resources, crop yield, vegetation, and wildfire. We
stress that there is a large body of literature on the impacts of droughts and hot

extremes and we focus on those that specifically refer to CDHE:s.
8.1 Water resources

Precipitation deficits (or meteorological droughts) directly cause shortages of water
resource by reducing streamflow or lake/reservoir levels (i.e., hydrological droughts)
(Ault, 2020). Except for precipitation deficits, the role of high-temperature anomalies
(or hot extremes) in causing agricultural droughts (Ault, 2020; Dai et al., 2018; Hao et
al., 2018b; Luo et al., 2017; Manning et al., 2018; Markonis et al., 2021; Weiss et al.,
2009) or hydrological droughts (Brunner et al., 2021c; Udall and Overpeck, 2017;
Woodhouse et al., 2016), by different processes such as atmospheric evaporative
demand (AED) or snowmelt seasonality, has received increasing attention. Specifically,
during summers or warm seasons, an increase in temperature leads to increased
atmospheric moisture demand, reducing streamflow through increased evaporation
(from open water bodies) or reduced soil moisture (e.g., increased evapotranspiration
from vegetation depleting soil moisture) (Brunner et al., 2021c; Cook et al., 2014; Dai
et al., 2018; Das et al., 2011; Floriancic et al., 2021; van Vliet et al., 2016). In addition,
the temperature can also affect snow accumulation or snowmelt seasonality in winter,
leading to hydrologic droughts in the following season (e.g., warmth in winter reduces
snow accumulation resulting in a time-lagged streamflow deficit) (Brunner et al.,
2021c; Bumbaco and Mote, 2010). Examples of the combined impacts of

precipitation deficits and high-temperature extremes on the decrease of streamflow in
recent decades have been shown in the Missouri River basin (2000-2010) and
Colorado River basin (2000-2014) in the United States (Brunner et al., 2021c; Hartick

et al., 2021; McCabe et al., 2017; Milly and Dunne, 2020; Udall and Overpeck, 2017).
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Consequently, the combined impacts of reduced streamflow (hydrological droughts)
and high-temperature extremes exert pressing challenges to water planning and
management due to the resulting negative impacts on irrigation, water supply, and
water quantity (Martin et al., 2020), which may further affect the electricity supply or
hydropower generation (Qin et al., 2020; Turner et al., 2019; van Vliet et al., 2016).
Note that there are certain cases where dry and warm periods or conditions do not
always lead to negative impacts. For example, in glacier regions, the increased
water-melt due to warm periods can compensate for precipitation deficits (Slosson et

al.; Van Tiel et al., 2021).

The combined impact of the co-occurrence of precipitation deficits and warm periods
has been shown to induce reduced runoff (or river flow, water resources) at annual or
decadal scales (Brunner et al., 2021c; Hettiarachchi et al.; Martin et al., 2020;
Mastrotheodoros et al., 2020; Teuling et al., 2013; Udall and Overpeck, 2017; Van
Tiel et al., 2021; Zappa and Kan, 2007). Udall and Overpeck (2017) found that, for
the reduced annual flows from 2000 and 2014 in the Colorado River (associated with
precipitation deficit), about one-third of flow losses were induced by unprecedented
temperature. Under global warming, the role played by temperature in streamflow or
hydrological droughts has increased in certain areas. Brunner et al. (2021c) showed
that the spatial extent of streamflow droughts during 1981-2018 across the U.S. had
increased, for which the contribution of temperature became more important over
time. These impacts may further induce changes in groundwater. For example, rainfall
deficits and higher evapotranspiration induced by long-lasting heatwaves could lead
to the falling of groundwater levels during the recharge period, which is a

pressing issue in Sweden (Chen et al., 2020). With increased temperature (or

evapotranspiration) continuing in the coming decades, the impacts of increased
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828  compound dry and warm years in the future may exacerbate the water scarcity in
829  certain regions (e.g., Nile Basin), despite a projected increase in precipitation (Coffel

830 etal., 2019).
831 8.2 Vegetation

832  Large impacts of CDHESs on the ecosystem have been reported in the summers

833  2003/2018/2019 in Europe and 2010 in Russia (Bastos et al., 2021; Buras et al., 2020;
834  Ciais et al., 2005; Flach et al., 2018; Grossiord et al., 2018; Obladen et al., 2021;

835  Tschumi et al., 2022b; Wang et al., 2020b). Droughts (or water stresses) affect

836  vegetation photosynthesis through eco-physiological changes (e.g., reductions in

837  stomatal conductance and enzymatic activity) or structural changes (e.g., reductions in
838 leaf area or changes in leaf orientation) (van der Molen et al., 2011; von Buttlar et al.,
839  2018). Temperature directly affects vegetation photosynthesis through carboxylation
840  and electron transport, both of which first increases with temperature and then

841  decrease beyond a certain temperature threshold (von Buttlar et al., 2018), and

842  indirectly affect vegetation growth through increasing vapor pressure deficit and
843  soil moisture deficit (Bastos et al., 2014; Wang et al., 2019¢). Ample evidence has
844  suggested amplified impacts of compound droughts and heat stresses on vegetation
845  (e.g., growth, productivity, phenology) and carbon fluxes based on modeling,

846  observations, and control experiments (Allen et al., 2015; Ciais et al., 2005;

847  Dannenberg et al., 2022; Hao et al., 2020a; Li et al., 2020c; Li et al., 2021b; Mittler,
848  2006; Pan et al., 2020; Reichstein et al., 2007; Suzuki et al., 2014; von Buttlar et al.,
849  2018; Zhang et al., 2021b; Zhu et al., 2017; Zscheischler et al., 2014). For example,
850  based on the investigation of the forest response to the coincidences of low

851  precipitation and high temperature by measuring tree ring widths (TRW) in Europe,

852  Rammig et al. (2015) found that the percentage of years with TRW values below two
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standard deviations was about 6%, 9%, and 13% for those with low precipitation, high

temperatures, and combined dry and hot extremes, respectively.

The impacts of CDHEs on the ecosystem depend on the extreme characteristics (e.g.,
duration, timing) (Sippel et al., 2018; Sippel et al., 2016b; von Buttlar et al., 2018),
regions (e.g., climate regimes) (Gampe et al., 2021; Hao et al., 2021; Pan et al., 2020;
Tschumi et al., 2022b), land cover types (e.g., forest and grasslands) (Flach et al.,
2021; Gampe et al., 2021; Hammond et al., 2022; Hao et al., 2021; Nicolai-Shaw et
al., 2017; O et al., 2022; Tschumi et al., 2022b) and time scales (Linscheid et al.,
2020), which sometimes differ due to differences in datasets (Pan et al., 2020; Stocker
et al., 2019) and models (Chen et al., 2019b). von Buttlar et al (2018) found a
remarkable reduction in gross primary production (GPP) and ecosystem respiration
for combined droughts and heat extremes lasting for more than 18 days, emphasizing
the crucial role of the duration of CDHEs. Based on dynamical vegetation models,
Tschumi et al. (2022b) found that the effect of changes in the frequency of extremes
(including compound drought-heat extremes) was more pronounced in extra-tropics
(or arid and semi-arid zones) than that in tropics (Pan et al., 2020). Considering the
higher increase in CDHEs in the extra-tropics under future global warming (Batibeniz
et al., 2022; Zscheischler and Seneviratne, 2017), vegetation in these regions is
expected to experience a higher risk of CDHEs in the future. The impacts of climate
extremes also depend on the resistance and resilience of different ecosystems
(Papagiannopoulou et al., 2017). Based on in-site and satellite GPP products, Flach et
al. (2021) found reduced GPP in grassland/agricultural areas under combined
droughts and heat conditions, while the GPP in the forest (considered globally) was
not sensitive to drought and heat events. The effect of dry-hot extremes on tropical

trees is relatively small, which may be related to the maintained evaporative cooling
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in the tropical forests (Tschumi et al., 2022b) and trees are capable of obtaining water
from deep soil layers (Mu et al., 2021; Nicolai-Shaw et al., 2017; O et al., 2022).
Uncertainties exist in understanding the impact of CDHEs on vegetation due to
different datasets or models. Chen et al. (2019b) assessed the drivers (including
individual drivers, such as precipitation, temperature, soil moisture, and compound
drivers of compound precipitation and temperature) of negative extreme events on
GPP in China. They found that the GPP deficit driven by CDHEs was shown in most
regions of China based on the TRENDY models but only in Inner Mongolia based on

the Yao-GPP model.

Though a large number of studies have shown the negative impact of CDHEs on
vegetation, CDHEs do not always lead to negative impacts due to modulating effects
from other factors (Flach et al., 2021; Flach et al., 2018; Li et al., 2022b; Wang et al.,
2020b). Depending on the vegetation types, during dry periods (with less cloud cover
or rain), the accompanying high temperature and radiation may lead to increased
photosynthesis in certain regions (or precipitation indicates low solar radiation and
temperature, inhibiting vegetation growth), such as Amazon rainforest (Wu et al.,
2015; Zhang and Zhang, 2019). Antecedent moisture conditions may also modulate
the response of vegetation to compound dry and hot extremes. During the extreme
droughts and heatwaves across northern and central Europe in the summer 2018,
increased carbon sink was observed in the northern areas (most ecosystems are
forests), which is related to the spring legacy effect (i.e., preceding climate conditions
in the response of ecosystems to summer extremes) that offset the carbon loss during
summer CDHEs (Bastos et al., 2020). The elevated atmospheric CO> under global
warming may increase terrestrial ecosystem productivity (Alan Williams, 2014).

Recent analyses suggest that the effects of elevated CO> (and the associated increase
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in water use efficiency) on the physiological responses of vegetation may not alleviate
the negative impacts of droughts and heatwaves (Allen et al., 2015; Birami et al.,

2020; Tschumi et al., 2022b).
8.3 Crop yield

Climate variability including precipitation and/or temperature could account for about
32-39% of observed global yield variability, which varies in different regions and
crops (Ray et al., 2015). Droughts and heatwaves are among the most detrimental
environmental factors to crop yield or growth (Ben-Ari et al., 2018; Glotter and Elliott,
2016; Jin et al., 2017; Lesk et al., 2021; Lesk et al., 2016; Luan and Vico, 2021;
Mahrookashani et al., 2017; Schauberger et al., 2021; Toreti et al., 2019; Troy et al.,
2015), which has been assessed at global scales (Heinicke et al., 2022) and regional
scales, including Europe (Brés et al., 2021). Based on the EM-DAT record, global
droughts and heat waves have caused a reduction of nationally reported maize yields
by 7% and 12%, respectively (Jigermeyr and Frieler, 2018). While sufficient water
supply is expected to mitigate heat effects on crop yield (Jigermeyr and Frieler, 2018;
Lobell et al., 2013; Schauberger et al., 2017; Schlenker and Roberts, 2009), the
simultaneous occurrences of water stress (droughts) and heat stress can be more lethal
to crops compared to a particular stress condition (Cohen et al., 2021; Goulart et al.,
2021; Hagqiqi et al., 2021; Lesk and Anderson, 2021; Luan et al., 2021; Mittler, 2006).
The physiological impact pathway of droughts and heatwaves on crop yield differs at
different stages. Droughts can inhibit photosynthesis at the vegetative stage, reduce
peduncle length and slow grain development at the reproductive stage, and shorten
grain-filling period at the grain filling stage, leading to a reduction of carbon uptake
from photosynthesis and decreased crop yields (Kadam et al., 2014; Lesk and

Anderson, 2021). The high-temperature extreme has direct and indirect effects on
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crop yields. The direct impacts refer to damaging photosynthetic machinery and
shorterning vegetative phase at the vegetative stage, decreasing rate of spikelet
production at the reproductive stage, and increasing rate of leaf senescence and
reducing kernel weight during the grain filling stage (Kadam et al., 2014), and the
indirect impacts refer to causing stomata closure (reduction in CO; uptake) and
enhanced root growth (reduced above-ground biomass) due to increased atmospheric
water demand and depleted soil water (Lesk and Anderson, 2021; Schauberger et al.,
2017, Siebert et al., 2017). Several unique physiological, molecular, and biochemical
aspects exist during droughts and heat stresses (Fahad et al., 2017), including the
compounding of high leaf temperature, high respiration, closed stomata, low
photosynthesis, and suppressed level of proline (important for protecting plant during

drought stress) (Matiu et al., 2017; Mittler, 2006; Rizhsky et al., 2002).

Different methods have been explored to quantify the relationship between CDHESs
and crop yield (Hamed et al., 2021; Luan et al., 2021; Zhu and Troy, 2018). A few
studies assessed the combined impact of droughts and hot extremes on crop yield
based on statistical approaches (Hsiao et al., 2019; Jagermeyr and Frieler, 2018;
Potopova et al., 2020), including the empirical analysis (Li et al., 2019b), regression
model (Haqiqi et al., 2021; Leng, 2019; Matiu et al., 2017), indicator approach
(Zampieri et al., 2017), and multivariate distribution (probabilistic approach) (Feng
and Hao, 2020; Hamed et al., 2021; Potopova et al., 2020; Ribeiro et al., 2020a), in
which a higher impact of CDHESs on crop yields is generally found in these studies
depending on seasons and crop varieties. Ribeiro et al. (2020a) quantified the impacts
of dry conditions, hot conditions, and CDHESs on crop yield in Spain based on the
multivariate distribution and found the probability of crop loss increased by 8 to 11%

under compound dry-hot conditions compared with moderate drought conditions only.
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Fig. 11 demonstrates the compound dry-hot conditions induce higher probability of
crop yield losses that individual dry conditions or hot conditions across top 5
maize-producing countries (Feng et al., 2019). Irrigation has been an important way to
mitigate the negative impacts of droughts and heatwaves on agricultural production or
crop yield. Studies have shown that irrigation can lead to a decrease in compound low
soil moisture and high VPD, which is expected to mitigate the potential negative

impacts of CDHEs on vegetation and crops (Ambika and Mishra, 2021).
8.4 Wildfires

Wildfires can affect the carbon cycles with disastrous impacts on the composition and
function of terrestrial ecosystems and the resulting air pollution, combined with
heatwaves, can negatively affect human health with particular impacts on the
cardiovascular and respiratory systems (Vitolo et al., 2019). Wildfires occur under
three conditions, including fuel availability, fuel aridity (fire weather), and an ignition
source (Ruffault et al., 2020). Low precipitation (or soil moisture deficits) can
increase flammability or fuel aridity (Abatzoglou and Williams, 2016) and high
temperature (or VPD) can induce accelerated plant desiccation and mortality in short
periods (Allen et al., 2015; Ribeiro et al., 2022; Ruffault et al., 2020; Vitolo et al.,
2019). Consequently, the concurrence of droughts and hot extremes may amplify the
risk of wildfire (Crockett and Westerling, 2018; Libonati et al., 2022). A telling
example is the 2019-2020 bushfires in Australia, which were shown to be a
consequence of compound droughts and heatwaves (Gissing et al., 2022; Squire et al.,
2021), contributing to subsequent floods, soil erosion, and reduced water quality

(Kemter et al., 2021).
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Droughts and hot extremes are important driving factors of wildfire activities in
several regions. For example, in the Mediterranean Basin, the most extreme wildfires
generally occur during periods of compound droughts and heatwaves (Ruffault et al.,
2020). Studies have assessed the spatial distribution pattern of wildfires and
compound droughts and heatwaves. Sutanto et al. (2020) explored the compound and
cascading hazards defined as the concurrence of dry conditions, hot conditions, and
fires at the pan-European scale. They identified a higher frequency of the concurrence
of droughts, heatwaves, and fires in the west, central, and east regions of Europe.
Several studies also explored the potential prediction of wildfires with multiple
variables including droughts and heatwaves. For example, combined with other
variables such as wind speed and relative humidity (RH), both drought and heatwaves
are shown to be important predictors for wildfire (Deb et al., 2020). Despite increased
attention to the relationship between wildfires and CDHEs, more efforts are needed to
bridge the gaps in the desiccation of live fuels during CDHEs to mitigate the risks of

wildfires (Allen et al., 2015; Ruffault et al., 2020).
9 Discussions

Albeit recent progress in the characterization, drivers, changes, and impacts of
CDHEs, there are still some conceptual and technical barriers in understanding and
modeling of CDHE:s. In the following, we discuss several challenges and future
prospects for investigating CDHESs from the perspective of data, characterizations,
physical mechanisms, improved evaluation and simulations, and impact assessments

(as summarized in Table 1).
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9.1 Data availability and quality

Data availability is an issue in extreme analysis since, without a sufficient sample size
to extract large numbers of events, it is hard to identify long-term changes and
perform robust statistical inferences (Seneviratne et al., 2012). Compound events or
extremes are by definition less sampled than individual contributing variables
(Messori et al., 2021). As such, even larger sample sizes are needed for the compound
events analysis, since the characterization and modeling are usually conducted in
higher dimensions (at least 2 dimensions) (Hao and Singh, 2020; Zscheischler and
Lehner, 2022). For example, large sample sizes are generally needed to characterize
droughts and high-temperature extremes to place them into a long-term context for
return period analysis or risk assessments. However, the length of many data products
are not sufficiently long, which may lead to large uncertainty in the analysis of
compound events (e.g., change detection and attribution) (Hao and Singh, 2020).
Moreover, analogues of a certain combination of extremes may be limited or even not
exist in historical records (Gruber et al., 2021; Yiou and Jézéquel, 2020; Zscheischler
et al., 2018), which hinders accurate estimation of the probability or risk of CDHE:s,
especially for those with low-probability and high-impacts. Data with finer
resolutions are also important to characterize CDHESs across multiple time scales. For
example, for heatwave-related extremes, the analysis is generally based on the
weather or daily time scale (Seneviratne et al., 2021; Wang et al., 2020a), which is
also needed for investigating CDHESs. Currently, the availability of high-quality daily
data is limited in large regions around the world, including parts of Africa, South
America, and Asia, which hampers the investigation of extremes (Sillmann et al.,

2017; Yin et al., 2014).
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Overall, the long-term and high-quality data are existing challenges faced in the
assessment and modeling of compound events from multiple lines of evidence.
Different approaches (e.g., process-based model simulations, reanalysis data, and
large model ensembles) have been employed to overcome this problem (Batibeniz et
al., 2022). For example, large climate model ensemble simulations, such as the single
model initial-condition large ensemble (SMILE) (Deser et al., 2020), have been
employed to assess changes in the statistics of weather and climate extremes
(including compound events) and their impacts (Bevacqua et al., 2022; Lehner et al.,
2020; Raymond et al., 2022; Sippel et al., 2016a; Tschumi et al., 2022b), which can
cope with the challenge of limited datasets for model evaluation and attribution
(Zscheischler and Lehner, 2022). Note that the different data sources may lead to
differences in changes detection in droughts or hot extremes (Hoffmann et al., 2020;
Mukherjee and Mishra) and attribution analysis (Zhang et al., 2022d), highlighting the
importance of change assessments with different data sources. Besides the impact data
in the EM-DAT database, the simulations from hydrologic models, crop models, and
dynamic vegetation models can be used to address the challenge of the lack of
long-term impact data. Overall, generating (i.e., mode simulations, expanding
observation networks, or reconstruction), pooling, or assimilating data of multiple
sources (e.g., remote sensing) is needed to increase the data length and accuracy to
improve the modeling of compound events and their impacts (Brunet and Jones, 2011;
Hao et al., 2018d; Sillmann et al., 2017; Xia et al., 2019; Zscheischler and Lehner,

2022).
9.2 Characterizations from different perspectives

The suitable choices of variables/indicators and thresholds are challenges in

characterizing and evaluating changes in CDHEs. There is still ambiguity in the
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definition of droughts, which hinders the characterization of CDHEs (Geirinhas et al.,
2021). Most of the current analysis of concurrent droughts and high-temperature
extremes is based on meteorological droughts (e.g., precipitation-related). Some
sensitivities in drought changes resulting from the choice of different drought
indicators have been shown in previous studies (Dai, 2013; Long et al., 2018;
Sheffield et al., 2012), which makes the evaluation of CDHEs even more complicated.
For example, for the frequency of compound meteorological droughts and hot
extremes, the relative humidity (Yao et al., 2022), precipitation deficit/anomaly (Hao
et al., 2013; Zhou and Liu, 2018), SPI (Geirinhas et al., 2021; Vogel et al., 2021a),
and SPEI (Li et al., 2018b; Vogel et al., 2021a) have been employed. The impact of
CDHESs may be placed on a variety of sectors, such as water supply, agriculture
management, and human society. As such, CDHEs can be evaluated throughout the
hydrological cycle by considering a wide range of indicators of different drought
types (e.g., agricultural droughts, hydrological droughts) based on the impact
concerned (Feng et al., 2022). For example, soil moisture can be used as a drought
indicator to define CDHE:s if the crop production or yield is of particular interest
(Hamed et al., 2021; Hao et al., 2018b; Lesk and Anderson, 2021; Muthuvel and
Mahesha, 2021; Sharma and Mujumdar; Zhang et al., 2019). In addition, though
different combinations of thresholds have been employed for characterizing CDHEs,
there is not a consensus on the selection of thresholds to define compound events.
Previous studies also found certain sensitivities of changes in CDHESs due to selected
thresholds of each variable (absolute or relative thresholds) or baseline periods to
define the threshold (Feng et al., 2021a; Kirono et al., 2017; Sedlmeier et al., 2018).
In addition to the definition of compound events from the statistical perspective (e.g.,

percentile-based thresholds of hydroclimatic variables), it is critical to select the
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indictor or thresholds in terms of impacts, which can be achieved based on impacts
models (e.g., crop models, vegetation models, hydrological models) or observational
data (e.g., EM-DAT). These results imply that it is important to study the CDHEs

from a multivariate approach or define compound events from an impact perspective.
9.3 Understanding mechanisms of combined physical processes

Apart from analogous challenges in understanding individual droughts and hot
extremes, gaps still exist in the understanding of the underlying physical mechanisms
of compound extremes (Geirinhas et al., 2021; Sillmann et al., 2017). The analysis of
underlying mechanisms in previous studies is mostly focused on individual extremes
while the processes or drivers leading to the concurrent or consecutive occurrences of
both extremes are rather limited. For example, the summer weather anomalies (e.g.,
hot-dry or cold wet) in Europe are closely associated with jet stream (either
dominance of blocked flow or persistence of zonal jet); however, gaps still exist in
our understanding of the dynamics of underlying jet-stream variability during summer
seasons (a critical period of agricultural production)(Messori et al., 2021). The causing
mechanism of CDHEs can differ at different time scales. At shorter time scales, the CDHEs
can results from the blocking of anticyclones and soil moisture—temperature feedbacks,
while at seasonal or longer time scales, the mode of variability play important roles in
driving CDHEs (Kautz et al., 2022; Miralles et al., 2019; Rothlisberger et al., 2019;
Zscheischler et al., 2020). In addition, the simultaneous occurrence of CDHEs across
multiple regions (connected with economical activities or exporting countries of crop
yields) can affect food security and deserves future investigations (Feng et al., 2021a;
Raymond et al., 2022; Sarhadi et al., 2018). As such, the dynamical relationship
between multiple driving factors and CDHEs at different time scales and spatial

locations can be complex, posing challenges to the understanding of CDHEs. An
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integrated analysis of multiple components or process chains regarding the concurrent
or consecutive droughts and high-temperature extremes across different
temporal-spatial scales is needed, which relies both on the high quality and
long-record observations (e.g., capturing historical events) and improved modeling

strategies (e.g., representing blocking systems) (Kautz et al., 2022).
9.4 Improved model evaluation and simulations

Droughts and heatwaves are connected and propagated through a variety of physical
mechanisms, including synoptic processes, land-atmosphere feedback, and recurring
large-scale patterns. Good performance in simulating CDHEs necessitates the models
to capture individual droughts, hot extremes (or heatwaves), and their interactions or
dependence during the onset, development, and recovery of CDHEs (Hao et al., 2019c;
Ridder et al., 2021). However, current studies on the evaluation of climate models in
simulating compound events, including CDHEs, are still limited (Hao, 2022; Ridder
et al., 2021; Villalobos-Herrera et al., 2021; Zscheischler et al., 2020), which hinders
the understanding of model performances. This necessitates not only the evaluation of
model performances in simulating both extremes but also compound events (or the
interaction of multiple contributing variables) (Zscheischler and Lehner, 2022) and
the relationship between driving factors and CDHEs as well (Manning et al., 2022;
Rothlisberger and Martius, 2019). To this end, novel metrics to evaluate the ability of
climate models in simulating compound events are needed (Messori et al., 2021;
Zscheischler et al., 2021). Building on the climate model evaluation, the model
selections based on performance or process-based analysis can aid the attribution or
future projections of extremes (Fischer et al., 2021; Manning et al., 2022; Vogel et al.,

2018), including CDHEs.
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In addition, the current capacity to simulate key processes (both regional processes
and remote climate drivers or variability), such as atmospheric blocking, jet stream
position and intensity, land-atmosphere interactions, and teleconnections, remains a
major challenge. Regional changes in large-scale circulation features, such as changes
in blocking frequency or warm horizontal advection would lead to changes in hot
extremes; however, underestimation of blocking frequency exists for current climate
models (Gibson et al., 2017; Scaife et al., 2010). In addition, the representation of the
impacts of the land surface on precipitation and temperature extremes (or land
atmosphere feedbacks) in climate models is still immature (Miralles et al., 2019;
Santanello et al., 2018; Seneviratne et al., 2021; Sillmann et al., 2017). For example,
previous studies have shown that land surface models tend to underestimate the latent
heat flux during droughts, which leads to an overestimation of the heat extremes by
land-atmosphere feedbacks in coupled models (especially in humid regions)(Sippel et
al., 2017; Ukkola et al., 2016; Ukkola et al., 2018), implying large uncertainties in
CDHEs characterizations from GCMs. The deficiencies in simulating key processes
may lead to difficulties or uncertainties in understanding and modeling (e.g., attributing
and projecting changes) of CDHEs (Bevacqua et al., 2022). For example, the
uncertainty of precipitation changes attribution is shown to result from the limited
model simulations (and observations) with impacts of large internal variability (Zhai
et al., 2018), which add difficulties in the attribution CDHEs with high confidence.
Overall, the large bias of the climate model in simulating these processes calls for
theories/models to untangle complicated processes, increased model resolutions, and
novel approaches for the parameterization of sub-grid scale (or fine-scale) processes
(Bouwer et al., 2022; Coumou et al., 2018; Diffenbaugh et al., 2005; Meehl et al.,

2021; Mueller and Seneviratne, 2014; Sillmann et al., 2017; Woollings et al., 2018).
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For example, the plant physiology and response to the CO2 effect are important to be
included in earth system models to capture land-atmosphere feedbacks and associated
climate extremes including droughts and heatwaves (Anderegg et al., 2019;
Lemordant et al., 2016; Miralles et al., 2019; Vicente-Serrano et al., 2022). Moreover,
the interaction of the human activities with CDHEs (e.g., irrigation, land use changes)
also calls for improved modeling of related natural processes and human activities in

the Anthropocene (Hao, 2022; Zscheischler et al., 2018).
9.5 Impact assessments

The modeling of the impact of CDHE:s relies on both accurate climate modeling and
impact modeling. The definition of CDHEs could be done from an impact perspective
by asking: what are the weather/climate conditions leading to extreme impacts? To
model the complicated relationship between the physical environmental (including
but not limited to droughts and hot extremes) and biophysical impacts (e.g., crop
failure, extremely low flow events, wildfires), an integrated climate and impact
modeling is desired in defining dry-hot events of high impacts (e.g., subsets of the
T-P space with extreme impacts)(van der Wiel et al., 2020). Though higher impacts of
CDHE:s on different sectors have been highlighted and quantified, the role of
individual extremes and their interactions causing impacts is largely unquantified. As
such, disentanglement of the relative effect of individual/compound extremes leading
to the impacts needs more effort (e.g., how droughts regulate the impact of
temperature or vice versa) (Basso and Ritchie, 2014; Tschumi et al., 2022b). Building
on previous studies of impact modeling based on climate simulations and impact
models, the negative impacts result from different combinations of contributing
variables can be quantified from statistical methods, process-based impacts models,

and socio-physical approaches (Raymond et al., 2020a). Statistical methods (e.g.,
49



1171  conditional distribution, machine learning, or overlap in occurrences) hinge on the
1172  empirical relationship between contributing variables and the impact variable, which
1173  may fall short in characterizing the physical processes causing impacts on different
1174  sectors (Brunner et al., 2021c; Feng and Hao, 2020; Feng et al., 2019; Li et al., 2022a;
1175  Ribeiro et al., 2020a; Zhu et al., 2021). Process-based impacts models are established
1176  tools to estimate the impacts of changes in weather conditions on crop yields,

1177  vegetation, surface runoff, or river discharge, which can be employed to identify the
1178  critical hot-dry conditions leading to extreme impacts. For example, Tschumi et al.,
1179  (2022b) employed the dynamic global vegetation model from a large ensemble

1180  climate modeling experiment (Tschumi et al., 2022a) to disentangle the relative

1181  importance of extremes (e.g., dry, hot, and hot-dry) on vegetation composition and
1182  carbon dynamics. The storyline approach, which starts from a given impact and

1183  constructs a chain of events from the high impact to the driving factors (Pfleiderer et
1184  al., 2021; Shepherd et al., 2018; Sillmann et al., 2021; Zscheischler et al., 2018), can
1185  also be explored to disentangle the driving component (Goulart et al., 2021). This
1186  approach is useful in investigating the event in the tail distribution with the most
1187  catastrophic impacts (the probability may not be quantifiable in this case)(de Brito,

1188  2021; Zscheischler et al., 2018).

1189 10 Conclusions

1190  Compound droughts and hot events or extremes (CDHEs) have become an area of
1191  active research in recent decades due to their severe ramifications for hydrology,

1192  ecology, and natural resources management. These compound events have been

1193 characterized based on different properties (e.g., frequency, duration, severity, timing,

1194  spatial extent, and dependence) at different time scales. Multiple physical processes,

50



1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

including atmospheric circulations, modes of variability (or teleconnection patterns),
and soil moisture-temperature feedback, are important driving factors in the
occurrences of CDHEs depending on regions and seasons. Observations-based studies
reveal an overall increase in the frequency and intensity of CDHESs across the globe
(e.g., western and southern North America, northern South America, Europe, Africa,
northern parts of eastern Asia, and northeastern Australia), which mainly results from
the increased hot extremes. Climate model simulations from CMIP5/CMIP6 generally
perform well in simulating the climatology frequency of CDHEs; however, large
discrepancies in changing patterns of CDHE:s in historical periods between
simulations and observations are observed in certain regions (e.g., Australia).
Multivariate bias correction (MBC) of climate model outputs is an useful approach to
alleviate potential uncertainty or bias in model simulations of CDHEs. The overall
increase of CDHEs at the global or continental scales can be attributed to
anthropogenic forcings, which also contributes to increased likelihoods of certain
specific events or extremes. In the future, increased CDHEs are projected over most
global land areas, with higher increase in the western/southern North America,
northern South America (e.g., the Amazon and Brazil), central/southern Europe, the
Mediterranean region, and southern Africa. Impacts from CDHEs on different sectors,
including water resources, crop yield, vegetation, and wildfires, have been quantified,
which highlights the larger impacts of compound extremes than their individual

counterparts.

A few challenges exist in the data availability, characterization, mechanism, changes,
and impacts of CDHEs. A long-term dataset with finer resolutions is needed to fully

characterize CDHEs at different time scales, which necessitate generating and
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assimilating data from multiple sources (e.g., process-based model simulations, and
reanalysis data). A consensus on the variables and thresholds to define CDHEs does
not exist, which may lead to large uncertainties in the variability assessments of
CDHE:s. Selecting extreme indicators or thresholds based on impact data from model
simulations (e.g., crop models, vegetation models, hydrological models) or
observations (e.g., EM-DAT) is a promising and alternative approach. The dynamical
relationship between multiple driving factors and CDHEs at different time scales and
spatial locations can be complex and thus integrated analysis of multiple components or
process chains with respect to droughts and hot extremes is needed to improve the
physical understanding. The assessment of how climate models simulate CDHEs is
rather limited, which calls for novel metrics for the model evaluation. In addition,
deficiencies in simulating key processes of CDHE:s still exist in climate models.
Increased model resolutions and novel parameterizations of sub-grid scale are useful
endeavors for future research in simulating CDHEs in the anthropocene. Building on
improved model dynamics and resolutions, modeling complicated climate-impact
interactions and disentangling the contribution of driving components is useful for

impact assessments and developing mitigation measures for CDHE:s.

There are some limitations in this study. We focus on the concurrent droughts and hot
events, while the occurrence of the two extremes at consecutive periods (temporal
compounding) or at multiple locations (spatial compounding) (Feng et al., 2021a;
Raymond et al., 2022; Sarhadi et al., 2018; Slater et al., 2021; Zscheischler et al.,
2020) is not considered in this study. In addition, we mainly characterize CDHEs in
the bivariate case with a focus on precipitation and temperature, while the inclusion of

other variables, such as VPD, soil moisture, radiation, and wind speed, to assess
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CDHESs may also be needed (Hao et al., 2018b; Manning et al., 2018; Noguera et al.,
2022; Qing et al., 2022; Tavakol et al., 2020a; Tavakol et al., 2020b). Nevertheless,
this study bears potential for investigating other types of compound events with
serious repercussions on agriculture, energy demand, ecosystem, and human health
(Raymond et al., 2020a; Zscheischler et al., 2020). For example, several types of
compound events are also related to droughts or hot extremes, such as compound low
soil moisture-high VPD (Ambika and Mishra, 2021; Zhou et al., 2019), compound
droughts-floods (He and Sheffield, 2020; Visser-Quinn et al., 2019), compound
heatwaves-floods (Chen et al., 2021b; Wang et al., 2019b), compound heatwaves-
tropical cyclones (Matthews et al., 2019), compound warm-wet events (Brouillet and
Joussaume, 2019; Findell et al., 2017; Raymond et al., 2020b; Rogers et al., 2021;
Tencer et al., 2016), compound high temperature-ozone pollution (Otero et al., 2022),
and compound drought-river flow temperature (Liu et al., 2018; van Vliet et al., 2016).
Results from this study may provide useful insights for investigating these compound

events or extremes.

Building on the synthesis in this study, a scientific consensus is emerging that the
frequency and intensity of CDHEs have been increasing and may continue in the
future. These results highlight the emergence of the development of buffering
strategies for CDHEs (Overpeck, 2013), such as irrigation, forestation, or urban
infrastructures (Ambika and Mishra, 2021; Hao, 2022; Seneviratne et al., 2021;
Thiery et al., 2020; Wouters et al., 2022). It is therefore paramount to limit
greenhouse gas emissions to reduce the risk of CDHESs under global warming. This

study is expected to be useful for research and operational communities of a variety of
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sectors including climate, forest, agriculture, and human health sectors, to improve the

resilience to cope with compound extremes under global warming.
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13 Table 1 Advances, challenges, and future dictions in studying compound dry and hot events.

Topic Advances Challenges Future directions
Data Assessment with multi-source data ~ Lack of long-term and high-quality =~ Generate or assimilate data from multiple
(e.g., gauge observations, data sources
reanalysis, and remote sensing)
Characterization Based on multiple properties, such ~ Lack of consensus on choices of Indicator and threshold selection based on
as frequency, duration, severity, and indicators and thresholds impacts
timing
Drivers Driven by atmospheric circulation Complex relationships between Integrated analysis of process chains at
(modes of variability) and driving factors and CDHEs at multiple spatial-temporal scales
land-atmosphere feedbacks different temporal and spatial
scales
Changes Detected, attributed, and projected (1) Limited model evaluation in (1) Develop metrics for evaluating compound
increase in CDHEs across large simulating CDHEs; events; (2) Performance-based model selection
regions (2) Immature representation of key  in attribution and projection studies;
processes affecting attribution and  (3) improve resolutions and parameterizations
projection
Impacts Quantify impacts on water Lack of understanding of individual Disentangle relative effects of individual and

resources, vegetation, crop yield,
and wildfires

extremes or their interactions
causing impacts

compound extremes
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2862  Figure 1 Illustrations of several concurrences of droughts and hot extremes in the past
2863  few decades across the globe. These events are identified from the Emergency Events

2864  Database (EM-DAT).
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2870

2871  Fig. 2 lllustration of different properties of compound droughts and hot events

2872  (CDHEs) including duration, timing, and severity based on drought indicator (DI) and
2873  temperature. The severity is defined as the function of properties of drought indicator

2874  (DI) and temperature (T).
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2878  Fig. 3 Climatology frequency of CDHEs and precipitation-temperature dependence of
2879  the warm season (JJA for the Northern Hemisphere and DJF for the Southern

2880  Hemisphere) based on monthly precipitation and temperature data from Climatic
2881  Research Unit (CRU) for the period 1951-2018. The 30th percentile and 70th

2882  percentile of precipitation and temperature, respectively, are used as thresholds to

2883  define CDHEs. (a) Frequency of CDHE:s. (b) Precipitation-temperature dependence.
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Fig. 4 Scatterplot of observed average precipitation and temperature for DJF from
1901 to 2018 in southern Africa based on monthly data from CRU (blue dots). The
gray dots indicate values with randomly permutated temperature (Zscheischler and
Seneviratne, 2017). Ro and Rr are correlation coefficients of the observed and random
permutated precipitation and temperature pairs. * indicates significant correlation

coefficient at the 0.05 significance level. The low precipitation and high temperature

during DJF of 2015-2016 are shown in the figure (red dots).
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Fig. 5. Impact of ENSO on CDHEs during warm seasons (JJA for the Northern
Hemisphere and DJF for the Southern Hemisphere) based on composite analysis. The
monthly precipitation and temperature data are obtained from CRU for the period
1951-2018. The 30th percentile and 70th percentile of precipitation and temperature,
respectively, are used as thresholds to define CDHEs. Dotted regions indicate

significant impacts of ENSO on CDHEs at the 0.05 significance level.
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Fig. 6 Illustration of the occurrence of concurrent droughts and heatwaves from the
soil moisture-temperature feedbacks. Revised from Perkins (2015) and Alexander

(2011). ET, SH, and LH are the abbreviation of evapotranspiration, sensible heat, and

latent heat, respectively.
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Fig. 7 Changes in the annual frequency of CDHEs between 1951-1984 and 1985-
2018 based on monthly precipitation and temperature data from CRU. The 30th
percentile and 70th percentile of precipitation and temperature, respectively, are used

as thresholds to define CDHEs. Revised from Hao et al. (2013).
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Fig. 8 Changes in the precipitation-temperature correlations of the warm season (JJA
for the Northern Hemisphere and DJF for the Southern Hemisphere) for two equal
periods 1951-1984 and 1985-2018 based on the CRU data. Revised from Hao et al.

(2019¢).
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Fig. 9 Temporal change in annual occurrences of CDHESs (average number of events
per years across the globe) based on observations and CMIP6 all forcings (ALL) and
natural forcings (NAT) simulations for the period from 1901 to 2010. The observations
of monthly precipitation and temperature data include those from CRU, the University
of Delaware (UDEL), and the Princeton Global Forcing (PGF), respectively. Revised

from Zhang et al. (2022d).
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Fig. 10 Relative changes in the annual occurrences of CDHEs between 1986-2005
and 2081-2100 at the global scale based on CMIP6 simulations under SSP5-8.5.

Revised from Meng et al. (2022b).
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2940  Fig. 11 The demonstration of the impact of CDHEs on crop yield for the top five
2941  maize-producing countries based on Standardized Precipitation Index (SPI),

2942  Standardized Temperature Index (STI), and Standardized Crop yield Index (SCI). The
2943  conditional probability of crop yield loss (SCI<0) given different conditions,

2944  including dry (SPI/STI=-1.6/0), hot (SPI/STI=0/1.6), and dry-hot conditions

2945  (SPI/STI=-1.6/1.6). Revised from Feng et al. (2019).
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