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Abstract 20 

Compound droughts and hot events or extremes (CDHEs) may lead to larger 21 

repercussions than do individual dry or hot extremes. Due to the disastrous impacts and 22 

increased risk of these events under global warming, increased attention has been paid 23 

to these events from both research and operational communities. This review provides a 24 

synthesis of the literature on characteristics, physical mechanisms, changes (detection, 25 

attribution, and projection), and the impact of CDHEs. Different characteristics of these 26 

events (e.g., frequency, duration, and spatial extent) are first introduced based on dry 27 

and hot indicators at different time scales. We then summarize multiple physical 28 

mechanisms of CDHEs, including the atmospheric circulation (and modes of 29 

variability) and land-atmosphere feedbacks across different regions. Evidence from 30 

observations shows an overall increase in CDHEs in the past few decades at regional 31 

and global scales, which mainly results from an increase in hot extremes and is likely 32 

attributable to anthropogenic influences. Future projections indicate an increase in 33 

CDHEs over most global land areas. Quantitative assessments of the influence of 34 

CDHEs on different sectors (e.g., water resources, crop yield, vegetation) highlight 35 

their amplified impacts compared with individual droughts or hot extremes. Several 36 

challenges in the data availability, characterization, physical mechanism, simulation, 37 

and impacts of CDHEs and opportunities to address these challenges are then discussed. 38 

This study can be useful for better understanding, modeling and risk analysis of 39 

compound extremes under global warming. 40 

Keywords: compound event; drought; dry and hot; extreme; climate change 41 

 42 
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1 Introduction 43 

Global warming manifests in increased temperature and shifted precipitation regimes, 44 

which are associated with an increase in the frequency and intensity of weather and 45 

climate extremes (Coumou et al., 2013; Hansen et al., 2010; Jones et al., 1999; La 46 

Sorte et al., 2021; Stocker et al., 2013), including droughts and hot extremes (Baldwin 47 

et al., 2019; Dai, 2013; Gebremeskel Haile et al., 2019; Naumann et al., 2018; Perkins 48 

et al., 2012; Trenberth et al., 2014). Increased weather and climate extremes may 49 

induce huge repercussions on the ecosystem and society, hindering progress towards 50 

sustainable development goals. For example, increased droughts and hot extremes 51 

may deplete water resources, impair agriculture production, damage ecosystems, 52 

increase energy demand, amplify wildfire risk, and affect human health (Ciais et al., 53 

2005; Schewe et al., 2019; Vicente-Serrano et al., 2020b; Vogel et al., 2021a; Watts et 54 

al., 2015). Thus, it is important to improve our understanding and modeling of climate 55 

extremes and their impacts. 56 

A plethora of research has shown that combined extremes (e.g., droughts and hot 57 

extremes) may lead to adverse impacts on water supply, crop yield, and livestock 58 

mortality, which can be higher than the sum of their counterparts (Chen et al., 2018; 59 

García-Herrera et al., 2010; Seneviratne et al., 2021; Teuling, 2018; Ward et al., 2022). 60 

This phenomenon of large impacts from multiple variables, which refers to the 61 

extremes occurring at the same or different locations with or without a time lag, is 62 

commonly termed “compound events” (Hao et al., 2013; Leonard et al., 2014; 63 

Seneviratne et al., 2012; Seneviratne et al., 2021; Zscheischler et al., 2018). Note that 64 

there are other terms describing similar phenomena of compound events, including 65 

combined, cascading, contemporaneous, coincident, simultaneous, concurrent, or 66 

consecutive events or extremes (Cutter, 2018; de Ruiter et al., 2020; Drakes and Tate, 67 
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2022; Gill and Malamud, 2014; Hao et al., 2013; Hillier et al., 2020; Kappes et al., 68 

2012; Pescaroli and Alexander, 2018; Schauwecker et al., 2019; Tilloy et al., 2019). 69 

Compound events are first defined in IPCC special report on Managing the Risks of 70 

Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) in 71 

2012, which can be of different types (Seneviratne et al., 2012): 72 

“(1) two or more extreme events occurring simultaneously or successively, (2) 73 

combinations of extreme events with underlying conditions that amplify the impact of 74 

the events, or (3) combinations of events that are not themselves extremes but lead to 75 

an extreme event or impact when combined”. While the first and third component of 76 

the definition is relatively straightforward, the definition of the second type of events 77 

(e.g., underlying conditions) is less clear. Firstly the underlying conditions can be 78 

interpreted as a mere amplification of an existing compound event and secondly they 79 

could also be understood as parts of the compound event (Leonard et al., 2014). 80 

Recently, Zscheischler et al. (2018) defined compound events as “the combination of 81 

multiple drivers and/or hazards that contributes to societal or environmental risk”, 82 

which is used in the latest IPCC AR6. Following Seneviratne et al. (2021), we use this 83 

definition of compound events in this study, as it focuses on the risk framework in 84 

IPCC and highlights the drivers of compound events are not necessary to be 85 

dependent. Here the drivers refer to weather/climate processes, variables, or 86 

phenomena spanning multiple temporal-spatial scales and the hazard (also termed 87 

“climate impact-drivers”) can be potential occurrences of natural or human-induced 88 

events or trends causing health impacts (e.g., losses of life, injury) as well as loss and 89 

damage to the property, infrastructure, ecosystems, environmental resources and other 90 

sectors (Field et al., 2012; Masson-Delmotte et al., 2021). Hazards can be caused by 91 

one or more climate drivers and the risk here is defined as the product of the 92 
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probability of hazards and consequences (unfolding as a combination of the hazard, 93 

vulnerability, and exposure instead) (Seneviratne et al., 2021; Zscheischler et al., 94 

2020). Note that even though the individual component may not be extremes 95 

themselves (or record-breaking events), the combined events with deviation from the 96 

mean state may cause cumulative and amplified extreme impacts (Hegerl et al., 2011; 97 

Leonard et al., 2014; Mitchell et al., 2014; Rummukainen, 2012; Tschumi et al., 98 

2022b).  99 

Droughts and hot extremes, which are among the most disastrous extremes, may occur 100 

at a wide range of time scales and their concurrences can lead to disastrous impacts. 101 

Droughts are often induced by precipitation anomalies or evaporative demand and may 102 

persist from several months to years or decades (Dai, 2013; Hao et al., 2018e; Mishra 103 

and Singh, 2010; Vicente-Serrano et al., 2020a; Zhang et al., 2022a), while high 104 

temperature or heatwaves (usually associated with anticyclones) may last from weeks 105 

to months (Di Luca et al., 2020; Merz et al., 2020). These two extremes usually 106 

co-occur mainly due to land-atmospheric feedbacks (Seneviratne et al., 2021). Many 107 

extreme impacts of droughts and heatwaves in recent decades, such as those during 108 

summer 2003 in Europe and 2010 in Russia 2010 (as shown in Fig. 1), essentially 109 

resulted from their concurrences (or hot droughts, warm droughts) (de Ruiter et al., 110 

2020; Geirinhas et al., 2021; Nguyen et al., 2021; Sedlmeier et al., 2018; Wu et al., 111 

2021e; Zscheischler and Fischer, 2020). In this study, we mainly focus on the 112 

concurrent (simultaneous) occurrences of droughts and hot events at the same 113 

geographical location, which is commonly evaluated in previous studies. Unless 114 

otherwise specified, we will use the term “compound droughts and hot extremes or 115 

events” (abbreviated as CDHEs) to describe this type of compound events throughout 116 
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this manuscript. Here the drought indicator and hot indicator are not necessary to be 117 

extremes.  118 

The amplified impacts of CDHEs have spurred increasing interest in understanding 119 

these events. However, a synthesis of the recent advances and challenges in 120 

understanding and modeling CDHEs is still lacking. Therefore, there is a pressing need 121 

to review current progress in the study of CDHEs, including their characteristics, 122 

drivers, changes (observation, attribution, and projection), and impacts, thereby 123 

identifying research gaps and future opportunities. This synthesis is expected to aid 124 

the scientific and operational communities to cope with CDHEs under global 125 

warming.  126 

2 Identification and characterization of CDHEs 127 

2.1 Identification 128 

Compound events can be identified as a subset of the two-dimensional probability 129 

space defined by the underlying droughts and hot extremes indicators (X,Y), which 130 

can be correlated or not. This subset can be defined in a simple way as (X,Y) in [0, x] 131 

× [y, infinity] or by more complex functional relationships describing the adverse 132 

impact I (loss in crop yield, reduced water resources) in terms of X and Y (using 133 

precipitation and temperature as examples). In the following, we mainly introduce the 134 

two approaches that have been commonly applied for identifying CDHEs in previous 135 

studies.  136 

2.1.1. Combined thresholds approach   137 

The intuitive identification of CDHEs is based on the concurrence of dry and hot 138 

events (e.g., concurrent low precipitation and high temperature) using selected 139 

thresholds of individual variables or indicators. Specifically, the CDHEs based on 140 
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concurrences of exceedance or non-exceedance of two variables are commonly 141 

defined as a binary variable Z: 142 

� = �1, � ≤ �	 ��
 � > �	
 0,  ��ℎ���  (1) 

where X and Y are the indicators of dry conditions and hot conditions with thresholds 143 

x0 and y0, respectively.  144 

A variety of dry indicators (e.g., relative humidity, precipitation, soil moisture, and 145 

related indicators) and hot indicators (e.g., temperature or related indicators) of 146 

different time scales have been employed to define CDHEs. For example, a large 147 

body of drought indicators, such as precipitation, soil moisture, Standardized 148 

Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Meteorological 149 

drought Composite Index (MCI), Standardized Precipitation Evapotranspiration Index 150 

(SPEI), have been used for defining CDHEs at the monthly/seasonal time scale, 151 

weekly time scale (Mukherjee and Mishra, 2021) or daily time scale (Mo and 152 

Lettenmaier, 2020; Tian et al., 2021; Yu and Zhai, 2020a; Yu and Zhai, 2020b). For 153 

the indicator of hot extremes, previous evaluations are commonly based on daily 154 

maximum temperature while nighttime temperature has also been employed (Feng et 155 

al., 2021b; Wang et al., 2020a; Xu and Luo, 2019). In addition, there are different 156 

ways to select the thresholds of individual indicators to define CDHEs, such as the 157 

relative values (e.g., 90th percentile of temperature, 2 standard deviations, 100-year 158 

return period) or absolute values (e.g., precipitation lower than 1mm as dry conditions, 159 

a temperature higher than 35 degrees as hot conditions) (Barrucand et al., 2014; 160 

Beniston, 2009; Estrella and Menzel, 2013; Fortin and Hétu, 2014; Keller et al., 2017; 161 

Lemus-Canovas and Lopez-Bustins, 2021; Martin and Germain, 2017; McPhillips et 162 

al., 2018; Ridder et al., 2020; Tilloy et al., 2021; Vogel et al., 2021a).  163 
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The copula-based joint distribution is an alternative way to define multivariate events 164 

or extremes among multiple variables, such as precipitation and temperature, based on 165 

certain thresholds (Bevacqua et al., 2017; Flach et al., 2017; Rana et al., 2017; 166 

Schoelzel and Friederichs, 2008; Serinaldi, 2016; Singh et al., 2020; Tilloy et al., 167 

2020). It is advantageous in constructing the multivariate distribution independently 168 

of marginal distributions and can be employed to model flexible dependence 169 

structures of multiple variables, including the extremal dependence in the tail (or tail 170 

dependence), temporal dependence, and spatial dependence, based on a wide range of 171 

copula functions, such as Frank, Clayton, Gumbel, t, or Gaussian copula (Sadegh et 172 

al., 2018; Tootoonchi et al., 2022; Zscheischler et al., 2020; Zscheischler and 173 

Seneviratne, 2017). Recently, it has been employed for modeling the dependence of 174 

compound events, including the non-stationarity modeling under a changing climate 175 

(Brunner et al., 2021b; Sarhadi et al., 2018; Singh et al., 2021).  176 

For two random variables X and Y, the copula model can be expressed as (Nelsen, 177 

2006):  178 

�(� ≤ �, � ≤ �) = �(��(�), ��(�);  �) 

(

2) 

where x and y are realizations of X and Y, respectively, which can be specified as 179 

certain thresholds; ��(�) and ��(�) are the marginal probabilities of X and Y, 180 

respectively; θ is the parameter of the copula. Note that the underlying variables (X, Y) 181 

of compound events do not have to be correlated. 182 

For example, the probability of the concurrence of low precipitation (X) and high 183 

temperature (Y) can be computed based on copula C as (Zscheischler and Seneviratne, 184 

2017): 185 
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� = �(� ≤ �, � > �) =  − �( , ") (3) 

where u=��(�) and v=��(�) are marginal probabilities. The probability p in 186 

equation (3) has been commonly employed to evaluate the likelihood of CDHEs at 187 

regional and global scales (AghaKouchak et al., 2014; Alizadeh et al., 2020; Lazoglou 188 

and Anagnostopoulou, 2019; Ribeiro et al., 2020b). 189 

2.1.2. Indicator approach 190 

Compound events or extremes are usually associated with adverse impacts (though not 191 

always). As such, a compound event based on indicators of droughts and 192 

high-temperature extremes (X and Y) can be defined by: 193 

                          I(X,Y) > c 
(

4) 

where I could be the impacts resulting from droughts and hot extremes (e.g., loss in 194 

crop yields, decreased water resources); c can be a critical threshold. This equation 195 

identifies CDHEs based on the adverse impacts of (X,Y) greater than a critical threshold 196 

c. For example, the CDHEs can be defined as the subset in the X-Y space where crop 197 

yields are particularly low (resulting from droughts and hot extremes, but not from 198 

other hazards or extremes). Here the indicator of the impacts I(X,Y) can be obtained 199 

from the crop model, vegetation model, hydrological model, or other impact models. 200 

The indicator approach incorporates the two extremes into one index to assess the 201 

statistical relationships between extremes and impact data (Potopová et al., 2020; 202 

Vogel et al., 2021b; Zampieri et al., 2017; Zscheischler et al., 2017). In essence, the 203 

expression of I can be any functional relationship from droughts and hot extremes (i.e., 204 

X and Y) to impacts.  205 
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In certain cases, the impact data may not be available, and some proxies (e.g., based 206 

on the joint probability or return periods) can be used to develop indicators of 207 

compound events, which turns compound event analysis into the univariate case (Hao 208 

et al., 2020b; Li et al., 2021a; Zscheischler et al., 2017). A variety of indicators have 209 

been developed to characterize CDHEs by integrating both droughts and hot 210 

indicators (Abbasian et al., 2021; Hao et al., 2018d; McKinnon et al., 2021), which 211 

can be constructed by combining multiple properties or events through statistical 212 

approaches, such as linear regression model, Principal Component Analysis (PCA) or 213 

joint distribution (Gallant and Karoly, 2010; Gallant et al., 2014; Hao et al., 2020b; 214 

Zhang et al., 2020a).  215 

2.2 Characterization 216 

Based on the identification of CDHEs, different characteristics can be obtained 217 

accordingly. These characteristics or properties include but are not limited to, 218 

frequency, duration, timing, severity (or magnitude), and spatial extent, which are all 219 

useful to characterize CDHEs, as shown in Fig. 2. Though it is generally 220 

straightforward to define these properties of univariate extremes based on individual 221 

variables or associated indicators (Brunner et al., 2021a; Brunner et al., 2021b; Feng et 222 

al., 2020; Field et al., 2012; McPhillips et al., 2018), the characterization of CDHEs 223 

based on these properties is not straightforward due to the involvement of multiple 224 

contributing variables. In the following, we focus on several properties that have been 225 

commonly assessed in previous studies.  226 

2.2.1. Frequency, duration, timing, severity, and spatial extent 227 

The frequency of CDHEs can be defined by any set A within the joint X-Y space (e.g., 228 

low precipitation and high temperature), where (X, Y) in A is counted as the 229 
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occurrence of a CDHE. These events can then be counted and divided by the length of 230 

the total period considered. It is among the most commonly assessed characteristics of 231 

CDHEs. For example, Fig. 3(a) shows the frequency of concurrent low precipitation 232 

and temperature during the warm season, which is defined as June–July–August (JJA) 233 

in the Northern Hemisphere and December–January–February (DJF) in the Southern 234 

Hemisphere, based on Climatic Research Unit (CRU) data from 1951 to 2018. A high 235 

frequency of CDHEs is shown during warm seasons over land areas, such as central 236 

North America, Europe, and southeast Asia.  237 

The duration of CDHEs is related to the frequency but with a focus on the length of 238 

consecutive occurrences (Manning et al., 2019; Mazdiyasni and AghaKouchak, 2015). 239 

A close concept to the duration is persistence, which has also been employed for the 240 

characterization of compound events (Messori et al., 2021; Pfleiderer et al., 2019). 241 

The impact of climate extremes on ecosystems is closely related to the timing 242 

(Batibeniz et al., 2022; Flach et al., 2021; Sippel et al., 2016b), so as for the CDHEs 243 

(Vogel et al., 2021a). This includes the time for the onset, succession, and recovery. 244 

For example, the onset of CDHEs can be defined as the first day with the occurrence 245 

of heatwaves during a dry period (Zhang et al., 2022c), as shown in Fig. 2.  246 

The frequency, duration, and timing do not fully indicate how severe a compound event 247 

is. The severity level of compound extremes is also of interest (Huang et al., 2021; 248 

Manning et al., 2019; Wu et al., 2019a). For example, a compound event with 249 

precipitation of 5th percentile and temperature of 95th percentile is expected to be more 250 

severe than that with precipitation of 25th percentile and temperature of 75th percentile. 251 

The severity level of CDHEs can be characterized based on the functional relationships 252 

of the properties of dry and hot indicators (shown in Fig. 2), such as the joint 253 

probability (and its standardization) (Hao et al., 2018a; Hao et al., 2020b; Li et al., 254 
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2018a; Li et al., 2020b; Li et al., 2021a), return period (Alizadeh et al., 2020), or 255 

product (Mukherjee and Mishra, 2021; Reddy et al., 2022). This characteristic of 256 

CDHEs is also termed “magnitude” in several studies (e.g., temperature properties 257 

during the dry periods) (Lemus-Canovas and Lopez-Bustins, 2021; Manning et al., 258 

2019; Wu et al., 2019a). For example, a Dry-Hot Magnitude Index (DHMI) of CDHEs 259 

is developed recently by taking into account both the severity level of droughts and 260 

hot extremes, which can be expressed as (Wu et al., 2019a): 261 

DHMI = ' (�()*+)∆-.+/0

+12
 

(

5) 

where M is the number of periods (e.g., months) during which the DHMI is defined; 262 

ΔTm is the temperature above a specific threshold for each period m; P(∆*+) is the 263 

marginal distribution function of ΔTm ; ∆-.+ is the difference between the drought 264 

indicator DI and a specified threshold for the period m with dry conditions. 265 

The spatial extent of compound events at regional or global scales can be defined as 266 

the area coverage of the occurrence of a compound event for each period. It can also 267 

be defined as the spatial extent or area coverage of severity higher than a threshold, 268 

duration longer than several days, or severity higher than certain values. In addition, 269 

there have been certain efforts in developing an extreme index based on the spatial 270 

extent to characterize multivariate extremes, such as the climate extreme index (CEI) 271 

(Karl et al., 1996) or their variants (Gallant and Karoly, 2010; Gleason et al., 2008) 272 

that combine the spatial extent of multiple extremes (e.g., an average of the spatial 273 

extent of different extremes, such as annual maximum temperature, annual PDSI, the 274 

proportion of heavy-rain days in a year, number of wet/dry days in a year)(Gallant et 275 

al., 2014).  276 
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2.2.2. Dependence and joint return periods  277 

Dependence between dry and hot indicators (e.g., correlations between precipitation 278 

and temperature) can affect the occurrence frequency of CDHEs, and thus a 279 

multivariate perspective is important for assessing changes in extremes (Zscheischler 280 

and Seneviratne, 2017). The negative precipitation and temperature correlations 281 

during the warm seasons have been extensively explored in different regions 282 

(Abatzoglou et al., 2020; Adler et al., 2008; Mahony and Cannon, 2018; Trenberth 283 

and Shea, 2005), such as the United States (Koster et al., 2009; Madden and Williams, 284 

1978; Zhao and Khalil, 1993), Canada (Singh et al., 2021; Singh et al., 2020),  Europe 285 

(Crhová and Holtanová, 2018; Lhotka and Kyselý, 2022; Rodrigo, 2015; Rodrigo, 286 

2021), Mediterranean (Russo et al., 2019), and China (Du et al., 2013; He et al., 2015; 287 

Wu et al., 2019b), as shown in Fig. 3(b). We select the monthly precipitation and 288 

temperature data from 1901 to 2018 in southern Africa to demonstrate the dependence 289 

(with the measure of Pearson's correlation coefficient) and joint return period of 290 

CDHEs. The scatterplot of precipitation and temperature during the warm season (i.e., 291 

DJF) in southern Africa is shown in Fig. 4. The negative correlation coefficient 292 

indicates that warm-dry events tend to occur, which results from both the 293 

land-atmosphere interaction and atmosphere circulation anomalies (Feng and Hao, 294 

2021; Lyon, 2009). The low precipitation and high temperature during DJF of 295 

2015-2016 clearly show the concurrence of droughts and hot extremes during this 296 

period (Hao et al., 2019a; Yuan et al., 2018; Zscheischler and Lehner, 2022), which 297 
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results from the influences of multiple factors such as strong El Niño or poleward 298 

expansion of the subtropical anticyclones (or poleward expansion of the tropics) 299 

(Burls et al., 2019; Sousa et al., 2018) . 300 

The joint return period has been used for determining the rarity (or risk) of compound 301 

extremes (including CDHEs), which is commonly achieved based on the joint 302 

probability estimated from the copula-based multivariate distribution (AghaKouchak 303 

et al., 2014; Alizadeh et al., 2020; Hao and Singh, 2020; Ridder et al., 2022a; 304 

Zscheischler and Fischer, 2020). As an example, we use the 10th and 90th percentile 305 

of precipitation and temperature, respectively, to define compound droughts and hot 306 

extremes. The Likelihood Multiplication Factor (LMF), which is defined as the 307 

likelihood of joint exceedance of precipitation and temperature (either estimated from 308 

counting or parameter copula) divided by that of the independence case, is employed 309 

here to demonstrate the impact of dependence on the likelihood and return period of 310 

compound events (Zscheischler and Seneviratne, 2017). If we assume independency, 311 

the joint probability of precipitation lower than 10th percentile and temperature higher 312 

than 90th percentile is 0.01 and the joint return period would be 100 years (Singh et 313 

al., 2021). We then use copula to model the joint distribution of precipitation and 314 

temperature, in which the marginal distribution is estimated with the Gringorten 315 

plotting position formula. Five commonly used copulas (Gaussian, t, Frank, Gumbel, 316 

Clayton) were used as candidates, and the Gaussian copula was selected based on 317 

Bayesian Information Criterion (BIC) in the R package VineCopula (Nagler et al., 318 

2022). Based on the fitted copula, the joint probability of precipitation lower than 319 

10th percentile and temperature higher than 90th percentile is 0.035, resulting in the 320 

LMF=3.5, which is higher than 1 (or higher than that based on independent 321 
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assumption). In addition, the joint return period is estimated as 28 years, which is 322 

much shorter than the independent case. The difference is related to the 323 

precipitation-temperature correlations that reflects the interaction of droughts and hot 324 

extremes.  325 

3 Physical drivers of CDHEs   326 

Persistent dry conditions could result from slow-moving (or stationary) weather 327 

situations or recurrent large-scale circulation patterns that produce less precipitation 328 

(Hao et al., 2018e; Herrera-Estrada et al., 2019; Kingston et al., 2015; Schubert et al., 329 

2016; Seager et al., 2015). Meanwhile, extreme heat is commonly controlled by 330 

high-pressure systems (or anticyclonic circulations) and influenced by land surface 331 

conditions (e.g., soil moisture), which is associated with subsidence of air (adiabatic 332 

compression), clear skies (high insolations), and warm air advections (Horton et al., 333 

2016; Perkins, 2015). The interplay of multiple drivers or processes in the atmosphere, 334 

land, and ocean, as well as the background of global warming manifests in a myriad 335 

of ways in driving the concurrences of droughts and hot extremes (García-Herrera et 336 

al., 2010; Gibson et al., 2017; Miralles et al., 2019; Sousa et al., 2020; Wehrli et al., 337 

2019). In general, CDHEs result from a variety of processes, such as stationary 338 

anticyclones, soil moisture-atmosphere interactions, and large-scale mode of 339 

variability, which spans different time scales (Hao and Singh, 2020; Seneviratne et al., 340 

2021; Zhang et al., 2021a; Zscheischler et al., 2020).  341 

Atmosphere circulation patterns (e.g., high-pressure systems) can induce both 342 

droughts and hot extremes, contributing to the concurrence of the two extremes at 343 

shorter time scales (Fink et al., 2004; Ha et al., 2022; Miralles et al., 2019; Quesada et 344 
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al., 2012; Seager and Hoerling, 2014; Zscheischler et al., 2020). Typically, 345 

high-pressure systems are often associated with descending air or reduced moist air 346 

inflow (i.e., anomalous moisture from local recycling or advection from the ocean), 347 

inhibiting moisture divergence and favoring drought conditions (Dong et al., 2018; 348 

Fischer et al., 2007; Ionita et al., 2021; Liu and Zhou, 2021; Marengo et al., 2022; 349 

Mukherjee et al., 2020; Schubert et al., 2014; Seo et al., 2021; Zampieri et al., 2009; 350 

Zscheischler and Fischer, 2020); meanwhile, they are typically associated with air 351 

subsidence (inducing adiabatic heating), increased clear-sky conditions (little cloud 352 

cover) and shortwave radiations, resulting in surface warming (Berkovic and 353 

Raveh-Rubin, 2022; Chang and Wallace, 1987; Fang and Lu, 2020; Horton et al., 354 

2016; Kornhuber et al., 2020; Kornhuber et al., 2019; Li et al., 2020d; Li et al., 2019a; 355 

Wang et al., 2019a), which collectedly induce concurrences of droughts and 356 

heatwaves. Large-scale circulation patterns, such as blocking highs, planetary wave 357 

patterns, and monsoon failures, have been shown to induce CDHEs depending on 358 

regions or seasons (Zhang et al., 2021a; Zscheischler et al., 2020). In the Northern 359 

Hemisphere or midlatitude, anticyclonic circulation (embedded in large-scale 360 

atmospheric wave trains or as blockings) can induce the occurrence or persistence of 361 

CDHEs in multiple regions (Ali et al., 2021; Coumou et al., 2018; Kautz et al., 2022; 362 

Röthlisberger and Martius, 2019), including North America (Cowan et al., 2017; 363 

Dong et al., 2018), Europe (Ionita et al., 2021; Nagavciuc et al., 2022; Weiland et al., 364 

2021), Russia (Schubert et al., 2014), and northwestern China (Luo et al., 2020). For 365 
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example, in Europe, the hot and dry events during summers are generally associated 366 

with persistent high-pressure systems or atmospheric blocking circulations (i.e., 367 

steering hot and dry air northward) that reduce zonal flows and divert storm tracks 368 

(southward) (Ionita et al., 2021; Kautz et al., 2022; Lansu et al., 2020; Messori et al., 369 

2021; Weiland et al., 2021). A telling example is the 2003 Europe heatwaves 370 

accompanied by droughts, which is shown to result from blocking patterns and warm 371 

horizontal advection (and heat accumulations) in the atmospheric boundary layer, 372 

under which local drying and enhanced sensible heat fluxes further amplify hot 373 

extremes (Hu et al., 2019; Miralles et al., 2014; Sousa et al., 2020; Zampieri et al., 374 

2009). In India, the failure of the summer monsoon and associated atmospheric 375 

conditions (increased geopotential height, weak moisture transport) is shown to 376 

contribute to CDHEs (Mahto and Mishra, 2020; Mishra et al., 2021). In the Yangtze–377 

Huaihe River Basin (YHRB) of China (or central-eastern China), during a strong East 378 

Asia summer monsoon (EASM), the western Pacific Subtropical High (WPSH) is 379 

usually located more to the north, leading to less monsoon rainfall and favoring the 380 

occurrence of CDHEs (Yao et al., 2022).   381 

The large-scale modes of variability, such as El Niño-Southern Oscillation (ENSO), 382 

are closely related to the formation of high-pressure systems or blocking highs and 383 

favor the concurrence of low precipitation and high temperatures (or droughts and hot 384 

extremes) at longer time scales (Hao et al., 2018c; Lyon, 2009; Mukherjee et al., 2020; 385 

Wang et al., 2014; Wu et al., 2021b). Typical modes of climate variability that lead to 386 

CDHEs include those associated with ENSO (seasonal-to-interannual time scales), 387 
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Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) 388 

(decadal and longer time scales) depending on regions and seasons (Hao et al., 2019b; 389 

Lemus-Canovas, 2022; Mukherjee et al., 2020; Wang et al., 2014; Wu et al., 2021b). 390 

ENSO has been shown to affect the seasonal occurrences of CDHEs across multiple 391 

regions (Feng and Hao, 2021; Hao et al., 2018c; Mukherjee et al., 2020), such as 392 

northern South America (Fasullo et al., 2018), southern North America (Livneh and 393 

Hoerling, 2016), southern Africa (Archer et al., 2017; Lyon, 2009), India 394 

(Bandyopadhyay et al., 2016; Mishra et al., 2020), Northeast China (Hao et al., 2021b; 395 

Wu et al., 2021b), Australia, as partly demonstrated in Fig. 5. Other modes of climate 396 

variability (e.g., NAO, PDO, AMO) have been shown to affect CDHEs depending on 397 

regions, such as NAO for the Europe or Mediterranean areas (Bladé et al., 2012; Deng 398 

et al., 2022; Ionita et al., 2017; López-Moreno et al., 2011; Li et al., 2020b; Wright et 399 

al., 2014), AMO for northeastern China (Li et al., 2020b; Wu et al., 2021b), and 400 

combined ENSO and Indian Ocean Dipole (IOD) for Australia (Lim et al., 2019; 401 

Loughran et al., 2019; Min et al., 2013; Reddy et al., 2022).  402 

The soil moisture-temperature feedback can result in concurrent droughts and 403 

high-temperature anomalies, which are connected through the soil moisture and 404 

evaporation (or surface temperature), especially in water-limited areas (Bastos et al., 405 

2021; Benson and Dirmeyer, 2021; Berg et al., 2016; Dirmeyer et al., 2013; 406 

Herrera-Estrada and Sheffield, 2017; Miralles et al., 2019; Osman et al., 2022; 407 

Seneviratne et al., 2012; Zscheischler and Seneviratne, 2017). Soil moisture links the 408 

water and energy cycles through the control of evaporation and affects many 409 

processes relevant to anomalies of temperature (e.g., heat transport, solar radiation, 410 

and sensible/latent heat flux exchange between atmosphere and surface) and 411 

precipitation (e.g., local soil moisture deficits promoting rainfall deficits) (Berg et al., 412 
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2015; Freychet et al., 2021; Gevaert et al., 2018; Schumacher et al., 2022; Seneviratne 413 

et al., 2010; Zhou et al., 2019). The interaction of droughts and heatwaves causing 414 

CDHEs can be summarized as the following two processes (Miralles et al., 2019; 415 

Seneviratne et al., 2010): (1) the drying-out of soil moisture and vegetation can limit 416 

the evapotranspiration (and latent heat flux), which may also lead to precipitation 417 

deficit, and induce increased sensible heat flux and surface temperature; (2) during 418 

heatwaves, increased evapotranspiration resulting from high vapor pressure deficit 419 

(VPD) or radiation could deplete soil moisture, inducing the soil moisture deficits or 420 

dry conditions, as demonstrated in Fig. 6. During this self-amplifying process, 421 

temperature extremes can both be the driver and response of droughts (Kiem et al., 422 

2016; Lockart et al., 2009; Miralles et al., 2019; Nicholls, 2004). At the global scale, 423 

the land-atmosphere coupling between droughts and surface temperature extremes 424 

have been explored from both observations and model simulations (Berg et al., 2016; 425 

Gevaert et al., 2018; Miralles et al., 2012; Seneviratne et al., 2010; Zscheischler and 426 

Seneviratne, 2017). Evidence has shown the important role of soil 427 

moisture-temperature feedbacks in the concurrences of drought and hot extremes, 428 

such as those in the United States (Benson and Dirmeyer, 2021; Su and Dickinson, 429 

2017), Europe (Dirmeyer et al., 2021; Hirschi et al., 2011; Ionita et al., 2021; Liu et 430 

al., 2020; Manning et al., 2018; Sousa et al., 2020; Wang et al., 2022; Whan et al., 431 

2015; Xu et al., 2021), Brazil (Geirinhas et al., 2021; Geirinhas et al., 2022; Libonati 432 

et al., 2022), and Asia (Seo et al., 2021; Shi et al., 2021; Zhang et al., 2020b). 433 

Morever, drought conditions in the upwind can lead to the advection of enhanced 434 

sensible heat (or warmed air mass) downwind, where the land-atmosphere feedback in 435 

nearby regions is stimulated and subsequently causes or enhances heatwaves (i.e., 436 

propagations from upwind droughts to downwind heatwaves)(Miralles et al., 2019; 437 
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Miralles et al., 2014; Schumacher et al., 2022; Schumacher et al., 2019; Sousa et al., 438 

2020; Zhou and Yuan, 2022), which can contribute to the occurrence of CDHEs in 439 

downwind regions. 440 

4 Observed changes of CDHEs 441 

On the global scale, multiple lines of evidence indicate a robust increase in the 442 

frequency of CDHEs defined in multiple time scales, which mainly result from the 443 

increase in high-temperature extremes (Batibeniz et al., 2022; Hao et al., 2013; 444 

Mukherjee et al., 2022; Raymond et al., 2022; Sarhadi et al., 2018; Wu et al., 2021e; 445 

Zhang et al., 2022d). Fig. 7 shows an increase in the annual frequency of CDHEs 446 

across global land areas, including western and southern North America, northern 447 

South America (e.g., Amazon), Europe, central and southern Africa, northern parts of 448 

eastern Asia, southeast Asia, and northeastern Australia, which is consistent with 449 

previous studies (Chiang et al., 2022b; Hao et al., 2013; Wang et al., 2021b; Wu et al., 450 

2021e). Increased severity/spatial extent and lengthened duration of CDHEs are 451 

observed at the global scale as a whole, though there are regional variations (Feng et 452 

al., 2020; Hao et al., 2018a; He et al., 2022a; He et al., 2022b; Lesk and Anderson, 453 

2021; Mukherjee and Mishra, 2021; Wu et al., 2021a; Zhang et al., 2022d). Several 454 

studies provide a systematic analysis of changes in multiple characteristics (frequency, 455 

severity, duration, and magnitude) of CDHEs (Feng et al., 2020; Mukherjee and 456 

Mishra, 2021), which found a higher frequency, long duration, higher severity level, 457 

and larger spatial extent in large regions across the globe. At the continental or 458 

regional scale, assessments of frequency changes of CDHEs point to an overall 459 

increase in CDHEs across most regions. Following Seneviratne et al. (2021), these 460 

assessments are summarized below.  461 
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In Asia, an increase in the frequency, duration, and spatial extent of CDHEs is 462 

observed in recent decades. The frequency of CDHEs presents an overall increase in 463 

East Asia or China (Chen et al., 2019a; Feng et al., 2021b; Hao, 2022; Kong et al., 464 

2020; Seo et al., 2021; Wu et al., 2019b; Yu and Zhai, 2020b). In China, the overall 465 

increase in the frequency of CDHEs is generally consistent based on different 466 

indicators of droughts (such as SPI, SPEI, or PDSI), though some discrepancies do 467 

exist in certain regions (Chen et al., 2019a; Zhang et al., 2022c). Lengthened duration, 468 

higher severity levels (or magnitude), and increased spatial extent of CDHEs are also 469 

observed in China (Wu et al., 2019a; Wu et al., 2020; Zhang et al., 2022c). However, 470 

decreased frequency and duration are observed in some parts of China (e.g., 471 

central-east China) (Chen et al., 2019a; Zhang et al., 2022c; Zhou and Liu, 2018). In 472 

South Asia or India, increased frequency and spatial extent in CDHEs are observed 473 

(Ganguli, 2022; Guntu and Agarwal, 2021; Sharma and Mujumdar, 2017).  474 

In Australia, the increase in the frequency of CDHEs is observed in recent decades, 475 

though the trend may vary for different regions or study periods. An increase in 476 

months with low precipitation and high temperature (or frequency of CDHEs) over 477 

the past 150 years is observed in southeast Australia (Kirono et al., 2017). The 478 

increase in the frequency of CDHEs is more remarkable in recent decades. For 479 

example, the frequency of CDHEs is observed to be relatively stable during1889-1989 480 

but significantly increases between 1990 and 2019 in Australia (Collins, 2021). 481 

Lengthened duration and increased severity are also observed in Australia during 482 

1958-2019, especially in eastern regions (Reddy et al., 2022). 483 

In South America, increased frequency of compound summer droughts and heatwaves 484 

is observed in large regions during the past fourty years, including southeast Brazil 485 

(Geirinhas et al., 2021) and Amazonia (Costa et al., 2022). For example, over 486 
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Amazonia, ten of the most extreme heat waves (longest and most intense) identified in 487 

the southeastern Amazonia during 1979 to 2018 are all accompanied by an extreme 488 

drying conditions (based on relative humidity and evaporative fraction anomalies), 489 

and 9 of these extremes occurred in the last decade, implying increased frequency of 490 

CDHEs (Costa et al., 2022). In the Pantanal, increased occurrences of individual 491 

droughts and heatwaves in recent decades imply an increase in the frequency of 492 

CDHEs during 2001–2020 (Libonati et al., 2022).     493 

In Europe, an increased frequency of CDHEs is observed, especially in the central and 494 

southern regions (Ionita and Nagavciuc, 2021). The probability of long dry periods 495 

(days with precipitation below 1 mm) and high temperatures has increased (with 496 

decreased return period) during 1984–2013 compared with the reference period 1950–497 

1979 in Europe (Manning et al., 2019). Over Spanish mountains, an increase in the 498 

frequency of dry-warm days is observed from 1970 to 2007 (Morán-Tejeda et al., 499 

2013). At the decadal scale, an increase in the frequency of CDHEs is observed in the 500 

period 2011–2020 compared with previous decades from 1951, especially in central 501 

and south-eastern Europe (Ionita et al., 2021), such as Romania (Nagavciuc et al., 502 

2022). Over the Mediterranean region, available evidence indicates an increasing 503 

trend in the frequency of CDHEs (De Luca et al., 2020; Lemus-Canovas, 2022; Vogel 504 

et al., 2021a). However, in parts of northern Europe, a tendency of decrease in the 505 

frequency of CDHEs in noted in several studies, which is likely associated with an 506 

increasing precipitation trend (Bezak and Mikoš, 2020; Ionita et al., 2021; Wang et al., 507 

2021b).  508 

In North America, there is evidence of increased frequency and spatial extent of 509 

CDHEs in recent decades. An overall increase in the frequency of CDHEs (dry 510 

condition based on precipitation) in recent decades from 1960 to 2010 is observed in 511 
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large parts of the United States, with regional differences (Mazdiyasni and 512 

AghaKouchak, 2015). An increase in the frequency CDHEs with dry conditions based 513 

on relative humidity from 1950 to 2019 is observed in the southwestern United States 514 

(McKinnon et al., 2021). The increased frequency of CDHEs is more profound in the 515 

past 50 years based on a long period of analysis (1896–2017) in the western United 516 

States while insignificant changes are shown in eastern regions of the United States 517 

(Alizadeh et al., 2020). The increased spatial extent is also observed in the United 518 

States as a whole for different study periods (Alizadeh et al., 2020; Mazdiyasni and 519 

AghaKouchak, 2015).  520 

The changes in the dry-hot dependence (or correlations) can be just as important as 521 

other properties if not more so. Several lines of investigations have evaluated changes 522 

in the precipitation and temperature correlations (or co-variability) at the global scale 523 

in observational periods (Hao et al., 2019c; Wang et al., 2021b), which is generally 524 

more heterogeneous compared with changes in other properties. These studies 525 

highlight the enhanced negative precipitation-temperature correlations over several 526 

regions, such as western North America, southeast Europe, and parts of northeast Asia 527 

(as shown in Fig. 8). At the regional scale, changed correlations between droughts and 528 

temperature indicators has been evaluated in China (Wu, 2014; Zhang et al., 2022b), 529 

the United States (Hao et al., 2020c), and Europe (Manning et al., 2019), which 530 

contributes to observed changes in the frequency or probability of CDHEs.     531 

The impact of compound extremes depends not only on the hazard but also the 532 

exposure and vulnerability. The impacts from extremes or compound extremes would 533 

be particularly severe if they occurred in main agricultural regions or regions with 534 

higher population density (Vogel et al., 2019). Except for assessing changes in 535 

CDHEs from the hazard perspective (e.g., frequency, severity), increased exposures 536 
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of cropland to CDHEs have been observed at the global scale (Lesk and Anderson, 537 

2021; Sarhadi et al., 2018; Wu et al., 2021c) and regional scales, including China 538 

(Feng et al., 2021b; Lu et al., 2018). Recent studies also found increased exposure of 539 

populations to CDHEs in recent decades at the global scales (Liu et al., 2021) and 540 

regional scales, including China (Wu et al., 2021d) and India (Das et al., 2022).   541 

5 Climate model evaluation 542 

The evaluation of global and regional climate models in simulating the mean state 543 

(i.e., climatology frequency or precipitation-temperature correlations) and historical 544 

changes of CDHEs is important to obtain necessary confidence in the modeling of 545 

chosen events or extremes, including attribution and projection analysis (Hao et al., 546 

2013; Zscheischler and Lehner, 2022). The overall pattern of the frequency of CDHEs 547 

at a large scale can be generally reproduced by global climate models (GCMs) from 548 

the Climate Model Intercomparison Project phase 5/6 (CMIP5/CMIP6) (Wu et al., 549 

2021c). The overall temporal increase in the frequency of CDHEs at large scales from 550 

CMIP5/CMIP6 simulations was found to be consistent with observations (Sarhadi et 551 

al., 2018; Wu et al., 2021e). At the spatial scale, the overall increase in CDHEs over 552 

large land areas can be simulated relatively well from CMIP5 or CMIP6 models; 553 

however, there are discrepancies in changing patterns or magnitude between 554 

simulations and observations, with larger bias in certain land areas, such as Australia 555 

(Hao et al., 2013; Ridder et al., 2021; Wu et al., 2021e). 556 

The observed temperature-precipitation correlations is generally reproduced well by 557 

climate model simulations (Hao et al., 2019c; Wu et al., 2013; Zscheischler and 558 

Seneviratne, 2017). For around 75% of global land areas, the 559 

precipitation-temperature dependence from observations falls within the 10th to 90th 560 
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percentile of that from CMIP5 model simulations (Zscheischler and Seneviratne, 561 

2017). However, stronger seasonal precipitation-temperature dependence during the 562 

warm seasons across land areas has been shown in climate model simulations (Hao et 563 

al., 2019c; Rehfeld and Laepple, 2016; Wu et al., 2013), with large discrepancies in 564 

the Southern Hemisphere, which may result from model biases or observational 565 

uncertainties (Zscheischler and Seneviratne, 2017). Moreover, the observed changes 566 

in the precipitation-temperature correlations is not well reproduced by climate models 567 

(Hao et al., 2019c). The comparisons of the CMIP5 and CMIP6 in simulating the 568 

CDHEs or precipitation-temperature correlations are still limited.  569 

Regional climate models (RCMs) with high resolutions, such as those from the 570 

Coordinated Regional Climate Downscaling Experiment (CORDEX), generally 571 

captured the observed frequency of (or changes in) CDHEs in central Europe 572 

(Sedlmeier et al., 2018) and China (Lu et al., 2018). Based on simulations from 573 

CORDEX over China, RCMs were found to broadly reproduce the spatial pattern of 574 

climatology frequency of compound dry and hot days and also captured the overall 575 

increase in frequency changes (except for southwest China) (Lu et al., 2018). Other 576 

properties of CDHEs may not be captured well by RCMs. Over central Europe, the 577 

duration or temporal succession of CDHEs was not captured well, which may be due 578 

to the misrepresentation of internal variability (Sedlmeier et al., 2018). Though the 579 

direction of precipitation and temperature dependence is generally captured by RCM, 580 

the magnitude or strength of the dependence is not captured well, as shown in Canada 581 

(Singh et al., 2021) and Europe (Crhová and Holtanová, 2018; Lhotka and Kyselý, 582 
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2022) with performance depending on regions and seasons. For the simulation of 583 

precipitation-temperature correlations based on two RCMs from the EURO-CORDEX 584 

project driven by four global climate models in Europe, Crhová and Holtanová (2018) 585 

found that the simulated precipitation-temperature correlation patterns vary more 586 

across the different RCMs than GCMs (Crhová and Holtanová, 2018). These results 587 

highlight the usefulness of RCMs for assessing CDHEs; however, the assessment of 588 

whether RCMs can provide added values in simulating the precipitation-temperature 589 

correlations or likelihoods of CDHEs is still limited. 590 

As shown in previous sections, due to the temporal/spatial discretization and 591 

unresolved/unrepresented physical processes, system biases exist in simulations from 592 

global and regional climate models (Cannon, 2016; Sippel et al., 2016a; Van de Velde 593 

et al., 2022). Statistical bias correction methods (such as the quantile mapping method 594 

that adjusts the full distribution of variables) have been commonly used in these 595 

regional studies to correct simulations from climate models (Hao and Singh, 2020; 596 

Sedlmeier et al., 2018; Sun et al., 2019). In contrast to univariate bias correction 597 

methods with a focus on correcting a single variable, the multivariate bias correction 598 

(MBC) method is capable of correcting the dependence of multiple variables, such as 599 

precipitation and temperature (or other variables) (Cannon, 2016; Cannon, 2018; Li et 600 

al., 2014; Piani and Haerter, 2012; Vrac and Friederichs, 2015; Vrac et al., 2022). 601 

Since the impact of compound events may result from multiple variables, the bias 602 

correction of model simulations needs to consider the dependence among multiple 603 

variables (Cannon, 2018; François et al., 2020; Singh et al., 2021; Villalobos-Herrera 604 

et al., 2021; Whan et al., 2021; Zscheischler et al., 2019). Recent studies have shown 605 
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that the MBC method could provide added values in improving simulations of 606 

precipitation and temperature correlations and likelihoods or properties of CDHEs in 607 

Europe (Lemus-Canovas and Lopez-Bustins, 2021), Canada (Singh et al., 2021), and 608 

China (Meng et al., 2022a). For the impact models (e.g., dynamic vegetation models, 609 

hydrological models) based on the outputs from climate models, a variety of studies 610 

have assessed the performance of different multivariate bias corrections in simulating 611 

impact variables (e.g., runoff simulations based on hydrological models)(Chen et al., 612 

2021a; François et al., 2020; Guo et al., 2020; Meyer et al., 2019; Singh and Reza 613 

Najafi, 2020; Villalobos-Herrera et al., 2021). Albeit promising results in the MBC 614 

compared with univariate bias correction methods, several studies did not find a 615 

superior performance of the MBC, which may result from multiple factors such as the 616 

bias non-stationarity (Meng et al., 2022; Van de Velde et al., 2022). Considering the 617 

influencing factors or potential uncertainties in the simulations from the climate and 618 

impact models, the added values of the MBC method for the compound impact 619 

analysis should be further assessed to improve the impact modeling of compound 620 

events (i.e., performance regarding the assumption, variable, and method). 621 

6 Attribution of changes to anthropogenic climate forcing  622 

Understanding anthropogenic influences on changes in extremes (including 623 

compound extremes) is important for climate policy and adaptation planning (Bindoff 624 

et al., 2013; NAS, 2016; Otto, 2017; Sarojini et al., 2016; Stott et al., 2016; Wang et 625 

al., 2020a). Multiple approaches have been developed for the attribution of the trend 626 

(or changes) in mean or extreme climate and specific events (i.e., event attribution) 627 

(Hulme, 2014; Sun et al., 2022; Zhai et al., 2018). The comparison between 628 

observations of current climate conditions and simulations from CMIP5/CMIP6 with 629 
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different experiments (Eyring et al., 2016), including historical simulations of natural 630 

forcings (NAT) and all forcings (ALL), has been commonly used to evaluate 631 

anthropogenic influences (Chiang et al., 2021; Knutson et al., 2017; NAS, 2016; 632 

Wang et al., 2021a). The optimal fingerprinting method based on multivariate linear 633 

regression is a well-established approach for the detection and attribution of trend in 634 

climate extremes, which help answers the questions of whether climate has changed 635 

in a statistical sense and how much the changes can be attributed to causal factors 636 

with a statistical confidence (Zhai et al., 2018). For the anthropogenic influences on 637 

specific extremes (i.e., event attribution), the commonly used probability-based 638 

approach in the univariate case, including the Probability Ratio (PR) (Fischer and 639 

Knutti, 2015) or Fraction of Attributable Risk (FAR) (Stott et al., 2016), can be 640 

extended to the multivariate case for answering the questions of whether (and to what 641 

extent) anthropogenic influences has changed the likelihood or probability of specific 642 

CDHEs (Chiang et al., 2022b; Seneviratne et al., 2021; Wu et al., 2022; Zhang et al., 643 

2022d; Zscheischler and Lehner, 2022). 644 

Attribution studies have revealed that the observed long-term increase in the 645 

frequency of compound events at the global scale is largely due to anthropogenic 646 

climate forcing (Chiang et al., 2022a; Chiang et al., 2022b; Sarhadi et al., 2018). For 647 

example, based on monthly precipitation and temperature observations, including data 648 

from the CRU, the University of Delaware (UDEL), and the Princeton Global Forcing 649 

(PGF), the temporal change in the annual occurrences of CDHEs across the globe 650 

based on observations and CMIP6 model simulations, which include all forcings (ALL) 651 

and natural forcings (NAT) experiments, is shown in Fig. 9 (Zhang et al., 2022d). The 652 

consistent increase in CDHEs between observations and ALL simulations, which 653 

diverge substantially from the results of NAT simulations, indicates the dominant 654 
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effect of anthropogenic forcing on the increase of CDHEs in the past century. Despite 655 

several challenges in the detection and attribution at regional scales (e.g., large 656 

magnitude of natural variability), a large number of studies have been devoted to 657 

assessing the influence of anthropogenic forcing on the long-term changes in the 658 

likelihood of CDHEs (by comparing results from the historical and natural forcing 659 

experiments ) across different regions, such as China (Li et al., 2020a; Li et al., 2022c; 660 

Wu et al., 2022), the United States (Cheng et al., 2016; Diffenbaugh et al., 2015), and 661 

India (Mishra et al., 2021), which indicate human influences contribute to the 662 

long-term increase in CDHEs at regional scales. For example, based on climate model 663 

simulations of NCAR’s large ensemble (“LENS”), Diffenbaugh et al. (2015) showed 664 

that anthropogenic warming increased the probability of the co-occurrence of 665 

dry-warm years (defined as precipitation lower than –0.5 SDs and positive 666 

temperature anomaly) in California. Based on the definition of indicators of CDHEs, 667 

the detection and attribution analysis of CDHEs can be conducted using the optimal 668 

fingerprinting method, as witnessed in several regions, such as northeast China (Chen 669 

and Sun, 2017; Li et al., 2020a; Li et al., 2022c). Using the joint probability as the 670 

severity indicator of CDHEs, Li et al. (2022c) found that anthropogenic impacts on 671 

increase in CDHEs were robustly detected and anthropogenic forcings dominantly 672 

contributed to observed changes in CDHEs during 1961–2014 over northeast China. 673 

The evidence of human influences on specific CDHEs (or event attribution) in 674 

historical periods has also been explored, highlighting the importance of 675 

anthropogenic influences on the increased likelihoods. Examples of the event 676 

attribution analysis include concurrent droughts and hot events based on specified 677 

thresholds (e.g., precipitation lower than 10th percentile and temperature higher than 678 

90th percentile) (Chiang et al., 2022b; Zhang et al., 2022d) or real cases, such as those 679 
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during 2019 in southwestern China (Wang et al., 2021c) and Western Cape regions 680 

(Zscheischler and Lehner, 2022). Zhang et al. (2022d) found that anthropogenic 681 

forcings caused a more than three-fold increase in the probability of CDHEs in the 682 

tropics during 1951–2010. Zscheischler and Lehner (2022) showed that anthropogenic 683 

climate change contributed at least 40% to the occurrence probability of concurrent 684 

dry and hot conditions in the years 2017 and 2019 in the Western Cape region. The 685 

impact of specific anthropogenic forcings (e.g., greenhouse gases, aerosols, land use) 686 

on CDHEs has also been evaluated (Chiang et al., 2022a; Li et al., 2022c), which can 687 

be achieved based on historical simulations from the Detection and Attribution Model 688 

Intercomparison Project (DAMIP)(Gillett et al., 2016). By comparing simulations of 689 

CDHEs in historical natural-only (hist-nat) experiment with four alternative 690 

experiments (greenhouse gases only, aerosol only, land use-only, and all-forcing) 691 

from the DAMIP of CMIP6, Chiang et al. (2022a) found greenhouse gases alone 692 

amplified the natural frequency of CDHEs (based on 90th percentile of the joint 693 

probability of precipitation and temperature) by 1.5–5 times in tropical and 694 

extratropical regions and the aerosol effects reduced the natural frequency by 695 

60%-100%. Many high-impact, low-probability (HILP) events or extremes related to 696 

droughts or heatwaves (e.g., 2010 Russian heatwave), which can be assessed through 697 

the lens of a compound perspective, have not been investigated based on the 698 

multivariate attribution framework. Overall, these attribution studies indicate the 699 

important role of anthropogenic climate change in the occurrence of many historically 700 

unprecedented CDHEs in many regions across the globe.  701 

7 Future projections of CDHEs 702 

Climate projection of extremes under different emission scenarios provides useful 703 

insights for developing mitigation strategies and climate policy. Projections studies of 704 
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CDHEs are mainly based on simulations from climate models, such as those from the 705 

CMIP5 under different scenarios of Representative Concentration Pathways (RCPs), 706 

including the stringent mitigation scenario (RCP2.6), intermediate scenarios (RCP4.5 707 

and RCP6.0), and the high emission scenarios (RCP8.5)(Taylor et al., 2012). More 708 

recently, projections based on the latest generation of Global Climate Model 709 

simulations from CMIP6 have become available with RCP projections assuming 710 

certain underlying Shared Socioeconomic Pathways (SSPs)(Eyring et al., 2016). 711 

Previous projection studies suggest that the frequency of CDHEs will generally 712 

increase across the globe, which is overall consistent across different time scales, 713 

including daily (Ridder et al., 2022b; Vogel et al., 2020), seasonal (Wu et al., 2021c; 714 

Zhan et al., 2020; Zscheischler and Seneviratne, 2017), and annual time scales (Meng 715 

et al., 2022b; Sarhadi et al., 2018). In many land regions across global land areas, the 716 

frequency of extremely dry and warm seasons (based on 10th and 90th percentile of 717 

precipitation and temperature, respectively) is projected to increase by a factor of 10 718 

between the future period in the 21st century and the historical period 1870-1969 719 

(Zscheischler and Seneviratne, 2017). Fig. 10 shows changes in the frequency of 720 

CDHEs at the annual scale between the future period (2081-2100) and historical 721 

periods (1986-2005) over global land areas, indicating increased frequency in regions 722 

such as western North America, northern South America, Europe, the Mediterranean, 723 

and southern Africa (Meng et al., 2022b). In addition, the enhanced 724 

precipitation-temperature dependence is projected in large areas, such as northern 725 

extra-tropics, Amazon region, and Indonesia (Berg et al., 2015; Mahony and Cannon, 726 

2018; Zscheischler and Seneviratne, 2017), which is associated with increased 727 

frequency of CDHEs in these areas in the future.  728 
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The Paris Agreement sets out the goal of limiting global warming to 2°C with an 729 

inspirational goal to limit it to 1.5 °C. Multiple lines of evidence have indicate that 730 

limiting the warming to 1.5 °C will reduce the risk of droughts and heatwaves 731 

compared with that of 2 °C warming (Hoegh-Guldberg et al., 2019; Pfleiderer et al., 732 

2019). Meanwhile, a large increase in the CDHEs can be avoided by limiting the 733 

increase of temperature to 1.5°C rather than 2°C in many regions across the globe. 734 

For example, over central North America and central Europe, an increase of 10% in 735 

dry–warm persistence was projected for 2 °C warming while no changes were shown 736 

for the 1.5 °C scenario (Pfleiderer et al., 2019). An even higher increase in the 737 

frequency of CDHEs was projected for the warming levels beyond the 2°C warming 738 

(Batibeniz et al., 2022; Vogel et al., 2020). At the 3°C warming above preindustrial 739 

levels, increased frequency of compound drought-heatwave extremes is projected 740 

with a five-fold increase in tropical countries and an even higher increase in 741 

subtropical countries (eight-folds) and northern middle and high latitude countries 742 

(seven-folds) (Batibeniz et al., 2022). 743 

Several regional studies also corroborated an increased frequency or probability of 744 

CDHEs at regional scales. In Africa, an increase in the frequency of CDHEs (and 745 

population exposure) is projected in simulations from regional CORDEX-CORE 746 

models, with a higher increase under RCP8.5 than RCP2.6 (Weber et al., 2020). In 747 

Asia, an increased frequency of concurrent heat waves and droughts is projected in 748 

most regions in China based on simulations from CMIP5 (Lu et al., 2018; Sun et al., 749 

2017; Wu et al., 2021d), CMIP6 (Aihaiti et al., 2021), or other projections (Tang et al., 750 

2022; Zhou and Liu, 2018). Simulations by CMIP5 models project a consistent 751 

pattern of increased frequency of CDHEs during summer seasons in China at global 752 

warming levels of 1.5 °C and 2 °C (under the RCP 8.5 scenario) (Wu et al., 2021d). 753 
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Over India, an increased frequency of CDHEs is also projected (Das et al., 2022; 754 

Mishra et al., 2020). For example, based on CMIP6 model simulations, Das et al. 755 

(2022) projected an increase in the frequency of CDHEs across India for two future 756 

periods (2021-2060 and 2061-2100) under SSP2-4.5, SSP3-7.0, SSP5-8.5 scenarios.  757 

In Australia, CMIP6 models project an increase in the frequency of co-occurring 758 

heatwaves and droughts (decrease in the return periods ) for 2066–2100 under 759 

SSP2-4.5 and SSP5-8.5 scenarios (i.e., moderate and high emission scenarios, 760 

respectively), especially in the south of Australia (Ridder et al., 2022a). In Europe, an 761 

increased frequency of CDHEs is projected in the future in central and southern 762 

regions, such as Germany (Estrella and Menzel, 2013). Over central Europe, the 763 

high-resolution regional climate model COSMO-CLM projected an increase in the 764 

frequency of CDHEs during summer for the future period 2021–2050 under RCP8.5, 765 

with higher changes in the Czech Republic (Sedlmeier et al., 2018). Over the 766 

Pyrenees region (transboundary areas between Andorra, France, and Spain), increased 767 

magnitude and duration in the CDHEs are projected under the RCP8.5 scenario based 768 

on the EURO-CORDEX projection (Lemus-Canovas and Lopez-Bustins, 2021).  769 

8 Impacts of CDHEs 770 

Both droughts and hot extremes have been shown to affect water supply, crop yield, 771 

vegetation (or carbon cycle), and wildfire risk (Bevacqua et al., 2021; Byers et al., 772 

2018; Fink et al., 2004; Niggli et al., 2022; Ribeiro et al., 2019; Russo et al., 2017; 773 

Tschumi and Zscheischler, 2019). Frequent occurrences of these extremes have 774 

spurred interest in the impact of CDHEs on natural and human systems and have 775 

gained increasing public awareness (Raymond et al., 2020a; von Buttlar et al., 2018; 776 

Zscheischler et al., 2018). In the following, we focus on the current understanding of 777 
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the impact of CDHEs on water resources, crop yield, vegetation, and wildfire. We 778 

stress that there is a large body of literature on the impacts of droughts and hot 779 

extremes and we focus on those that specifically refer to CDHEs.  780 

8.1 Water resources 781 

Precipitation deficits (or meteorological droughts) directly cause shortages of water 782 

resource by reducing streamflow or lake/reservoir levels (i.e., hydrological droughts) 783 

(Ault, 2020). Except for precipitation deficits, the role of high-temperature anomalies 784 

(or hot extremes) in causing agricultural droughts (Ault, 2020; Dai et al., 2018; Hao et 785 

al., 2018b; Luo et al., 2017; Manning et al., 2018; Markonis et al., 2021; Weiss et al., 786 

2009) or hydrological droughts (Brunner et al., 2021c; Udall and Overpeck, 2017; 787 

Woodhouse et al., 2016), by different processes such as atmospheric evaporative 788 

demand (AED) or snowmelt seasonality, has received increasing attention. Specifically, 789 

during summers or warm seasons, an increase in temperature leads to increased 790 

atmospheric moisture demand, reducing streamflow through increased evaporation 791 

(from open water bodies) or reduced soil moisture (e.g., increased evapotranspiration 792 

from vegetation depleting soil moisture) (Brunner et al., 2021c; Cook et al., 2014; Dai 793 

et al., 2018; Das et al., 2011; Floriancic et al., 2021; van Vliet et al., 2016). In addition, 794 

the temperature can also affect snow accumulation or snowmelt seasonality in winter, 795 

leading to hydrologic droughts in the following season (e.g., warmth in winter reduces 796 

snow accumulation resulting in a time-lagged streamflow deficit) (Brunner et al., 797 

2021c; Bumbaco and Mote, 2010). Examples of the combined impacts of 798 

precipitation deficits and high-temperature extremes on the decrease of streamflow in 799 

recent decades have been shown in the Missouri River basin (2000-2010) and 800 

Colorado River basin (2000-2014) in the United States (Brunner et al., 2021c; Hartick 801 

et al., 2021; McCabe et al., 2017; Milly and Dunne, 2020; Udall and Overpeck, 2017). 802 
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Consequently, the combined impacts of reduced streamflow (hydrological droughts) 803 

and high-temperature extremes exert pressing challenges to water planning and 804 

management due to the resulting negative impacts on irrigation, water supply, and 805 

water quantity (Martin et al., 2020), which may further affect the electricity supply or 806 

hydropower generation (Qin et al., 2020; Turner et al., 2019; van Vliet et al., 2016). 807 

Note that there are certain cases where dry and warm periods or conditions do not 808 

always lead to negative impacts. For example, in glacier regions, the increased 809 

water-melt due to warm periods can compensate for precipitation deficits (Slosson et 810 

al.; Van Tiel et al., 2021). 811 

The combined impact of the co-occurrence of precipitation deficits and warm periods 812 

has been shown to induce reduced runoff (or river flow, water resources) at annual or 813 

decadal scales (Brunner et al., 2021c; Hettiarachchi et al.; Martin et al., 2020; 814 

Mastrotheodoros et al., 2020; Teuling et al., 2013; Udall and Overpeck, 2017; Van 815 

Tiel et al., 2021; Zappa and Kan, 2007). Udall and Overpeck (2017) found that, for 816 

the reduced annual flows from 2000 and 2014 in the Colorado River (associated with 817 

precipitation deficit), about one-third of flow losses were induced by unprecedented 818 

temperature. Under global warming, the role played by temperature in streamflow or 819 

hydrological droughts has increased in certain areas. Brunner et al. (2021c) showed 820 

that the spatial extent of streamflow droughts during 1981–2018 across the U.S. had 821 

increased, for which the contribution of temperature became more important over 822 

time. These impacts may further induce changes in groundwater. For example, rainfall 823 

deficits and higher evapotranspiration induced by long-lasting heatwaves could lead 824 

to the falling of groundwater levels during the recharge period, which is a 825 

pressing issue in Sweden (Chen et al., 2020). With increased temperature (or 826 

evapotranspiration) continuing in the coming decades, the impacts of increased 827 



36 

 

compound dry and warm years in the future may exacerbate the water scarcity in 828 

certain regions (e.g., Nile Basin), despite a projected increase in precipitation (Coffel 829 

et al., 2019).  830 

8.2 Vegetation   831 

Large impacts of CDHEs on the ecosystem have been reported in the summers 832 

2003/2018/2019 in Europe and 2010 in Russia (Bastos et al., 2021; Buras et al., 2020; 833 

Ciais et al., 2005; Flach et al., 2018; Grossiord et al., 2018; Obladen et al., 2021; 834 

Tschumi et al., 2022b; Wang et al., 2020b). Droughts (or water stresses) affect 835 

vegetation photosynthesis through eco-physiological changes (e.g., reductions in 836 

stomatal conductance and enzymatic activity) or structural changes (e.g., reductions in 837 

leaf area or changes in leaf orientation) (van der Molen et al., 2011; von Buttlar et al., 838 

2018). Temperature directly affects vegetation photosynthesis through carboxylation 839 

and electron transport, both of which first increases with temperature and then 840 

decrease beyond a certain temperature threshold (von Buttlar et al., 2018), and 841 

indirectly affect  vegetation growth through increasing vapor pressure deficit and 842 

soil moisture deficit (Bastos et al., 2014; Wang et al., 2019c). Ample evidence has 843 

suggested amplified impacts of compound droughts and heat stresses on vegetation 844 

(e.g., growth, productivity, phenology) and carbon fluxes based on modeling, 845 

observations, and control experiments (Allen et al., 2015; Ciais et al., 2005; 846 

Dannenberg et al., 2022; Hao et al., 2020a; Li et al., 2020c; Li et al., 2021b; Mittler, 847 

2006; Pan et al., 2020; Reichstein et al., 2007; Suzuki et al., 2014; von Buttlar et al., 848 

2018; Zhang et al., 2021b; Zhu et al., 2017; Zscheischler et al., 2014). For example, 849 

based on the investigation of the forest response to the coincidences of low 850 

precipitation and high temperature by measuring tree ring widths (TRW) in Europe, 851 

Rammig et al. (2015) found that the percentage of years with TRW values below two 852 
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standard deviations was about 6%, 9%, and 13% for those with low precipitation, high 853 

temperatures, and combined dry and hot extremes, respectively.    854 

The impacts of CDHEs on the ecosystem depend on the extreme characteristics (e.g., 855 

duration, timing) (Sippel et al., 2018; Sippel et al., 2016b; von Buttlar et al., 2018), 856 

regions (e.g., climate regimes) (Gampe et al., 2021; Hao et al., 2021; Pan et al., 2020; 857 

Tschumi et al., 2022b), land cover types (e.g., forest and grasslands) (Flach et al., 858 

2021; Gampe et al., 2021; Hammond et al., 2022; Hao et al., 2021; Nicolai-Shaw et 859 

al., 2017; O et al., 2022; Tschumi et al., 2022b) and time scales (Linscheid et al., 860 

2020), which sometimes differ due to differences in datasets (Pan et al., 2020; Stocker 861 

et al., 2019) and models (Chen et al., 2019b). von Buttlar et al (2018) found a 862 

remarkable reduction in gross primary production (GPP) and ecosystem respiration 863 

for combined droughts and heat extremes lasting for more than 18 days, emphasizing 864 

the crucial role of the duration of CDHEs. Based on dynamical vegetation models, 865 

Tschumi et al. (2022b) found that the effect of changes in the frequency of extremes 866 

(including compound drought-heat extremes) was more pronounced in extra-tropics 867 

(or arid and semi-arid zones) than that in tropics (Pan et al., 2020). Considering the 868 

higher increase in CDHEs in the extra-tropics under future global warming (Batibeniz 869 

et al., 2022; Zscheischler and Seneviratne, 2017), vegetation in these regions is 870 

expected to experience a higher risk of CDHEs in the future. The impacts of climate 871 

extremes also depend on the resistance and resilience of different ecosystems 872 

(Papagiannopoulou et al., 2017). Based on in-site and satellite GPP products, Flach et 873 

al. (2021) found reduced GPP in grassland/agricultural areas under combined 874 

droughts and heat conditions, while the GPP in the forest (considered globally) was 875 

not sensitive to drought and heat events. The effect of dry-hot extremes on tropical 876 

trees is relatively small, which may be related to the maintained evaporative cooling 877 
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in the tropical forests (Tschumi et al., 2022b) and trees are capable of obtaining water 878 

from deep soil layers (Mu et al., 2021; Nicolai-Shaw et al., 2017; O et al., 2022). 879 

Uncertainties exist in understanding the impact of CDHEs on vegetation due to 880 

different datasets or models. Chen et al. (2019b) assessed the drivers (including 881 

individual drivers, such as precipitation, temperature, soil moisture, and compound 882 

drivers of compound precipitation and temperature) of negative extreme events on 883 

GPP in China. They found that the GPP deficit driven by CDHEs was shown in most 884 

regions of China based on the TRENDY models but only in Inner Mongolia based on 885 

the Yao-GPP model. 886 

Though a large number of studies have shown the negative impact of CDHEs on 887 

vegetation, CDHEs do not always lead to negative impacts due to modulating effects 888 

from other factors (Flach et al., 2021; Flach et al., 2018; Li et al., 2022b; Wang et al., 889 

2020b). Depending on the vegetation types, during dry periods (with less cloud cover 890 

or rain), the accompanying high temperature and radiation may lead to increased 891 

photosynthesis in certain regions (or precipitation indicates low solar radiation and 892 

temperature, inhibiting vegetation growth), such as Amazon rainforest (Wu et al., 893 

2015; Zhang and Zhang, 2019). Antecedent moisture conditions may also modulate 894 

the response of vegetation to compound dry and hot extremes. During the extreme 895 

droughts and heatwaves across northern and central Europe in the summer 2018, 896 

increased carbon sink was observed in the northern areas (most ecosystems are 897 

forests), which is related to the spring legacy effect (i.e., preceding climate conditions 898 

in the response of ecosystems to summer extremes) that offset the carbon loss during 899 

summer CDHEs (Bastos et al., 2020). The elevated atmospheric CO2 under global 900 

warming may increase terrestrial ecosystem productivity (Alan Williams, 2014). 901 

Recent analyses suggest that the effects of elevated CO2 (and the associated increase 902 
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in water use efficiency) on the physiological responses of vegetation may not alleviate 903 

the negative impacts of droughts and heatwaves (Allen et al., 2015; Birami et al., 904 

2020; Tschumi et al., 2022b).    905 

8.3 Crop yield  906 

Climate variability including precipitation and/or temperature could account for about 907 

32–39% of observed global yield variability, which varies in different regions and 908 

crops (Ray et al., 2015). Droughts and heatwaves are among the most detrimental 909 

environmental factors to crop yield or growth (Ben-Ari et al., 2018; Glotter and Elliott, 910 

2016; Jin et al., 2017; Lesk et al., 2021; Lesk et al., 2016; Luan and Vico, 2021; 911 

Mahrookashani et al., 2017; Schauberger et al., 2021; Toreti et al., 2019; Troy et al., 912 

2015), which has been assessed at global scales (Heinicke et al., 2022) and regional 913 

scales, including Europe (Brás et al., 2021). Based on the EM-DAT record, global 914 

droughts and heat waves have caused a reduction of nationally reported maize yields 915 

by 7% and 12%, respectively (Jägermeyr and Frieler, 2018). While sufficient water 916 

supply is expected to mitigate heat effects on crop yield (Jägermeyr and Frieler, 2018; 917 

Lobell et al., 2013; Schauberger et al., 2017; Schlenker and Roberts, 2009), the 918 

simultaneous occurrences of water stress (droughts) and heat stress can be more lethal 919 

to crops compared to a particular stress condition (Cohen et al., 2021; Goulart et al., 920 

2021; Haqiqi et al., 2021; Lesk and Anderson, 2021; Luan et al., 2021; Mittler, 2006). 921 

The physiological impact pathway of droughts and heatwaves on crop yield differs at 922 

different stages. Droughts can inhibit photosynthesis at the vegetative stage, reduce  923 

peduncle length and slow grain development at the reproductive stage, and shorten 924 

grain-filling period at the grain filling stage, leading to a reduction of carbon uptake 925 

from photosynthesis and decreased crop yields (Kadam et al., 2014; Lesk and 926 

Anderson, 2021). The high-temperature extreme has direct and indirect effects on 927 
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crop yields. The direct impacts refer to damaging photosynthetic machinery and 928 

shorterning vegetative phase at the vegetative stage, decreasing rate of spikelet 929 

production at the reproductive stage, and increasing rate of leaf senescence and 930 

reducing kernel weight during the grain filling stage (Kadam et al., 2014), and the 931 

indirect impacts refer to causing stomata closure (reduction in CO2 uptake) and 932 

enhanced root growth (reduced above-ground biomass) due to increased atmospheric 933 

water demand and depleted soil water (Lesk and Anderson, 2021; Schauberger et al., 934 

2017; Siebert et al., 2017). Several unique physiological, molecular, and biochemical 935 

aspects exist during droughts and heat stresses (Fahad et al., 2017), including the 936 

compounding of high leaf temperature, high respiration, closed stomata, low 937 

photosynthesis, and suppressed level of proline (important for protecting plant during 938 

drought stress) (Matiu et al., 2017; Mittler, 2006; Rizhsky et al., 2002).  939 

Different methods have been explored to quantify the relationship between CDHEs 940 

and crop yield (Hamed et al., 2021; Luan et al., 2021; Zhu and Troy, 2018). A few 941 

studies assessed the combined impact of droughts and hot extremes on crop yield 942 

based on statistical approaches (Hsiao et al., 2019; Jägermeyr and Frieler, 2018; 943 

Potopová et al., 2020), including the empirical analysis (Li et al., 2019b), regression 944 

model (Haqiqi et al., 2021; Leng, 2019; Matiu et al., 2017), indicator approach 945 

(Zampieri et al., 2017), and multivariate distribution (probabilistic approach) (Feng 946 

and Hao, 2020; Hamed et al., 2021; Potopová et al., 2020; Ribeiro et al., 2020a), in 947 

which a higher impact of CDHEs on crop yields is generally found in these studies 948 

depending on seasons and crop varieties. Ribeiro et al. (2020a) quantified the impacts 949 

of dry conditions, hot conditions, and CDHEs on crop yield in Spain based on the 950 

multivariate distribution and found the probability of crop loss increased by 8 to 11% 951 

under compound dry-hot conditions compared with moderate drought conditions only. 952 



41 

 

Fig. 11 demonstrates the compound dry-hot conditions induce higher probability of 953 

crop yield losses that individual dry conditions or hot conditions across top 5 954 

maize-producing countries (Feng et al., 2019). Irrigation has been an important way to 955 

mitigate the negative impacts of droughts and heatwaves on agricultural production or 956 

crop yield. Studies have shown that irrigation can lead to a decrease in compound low 957 

soil moisture and high VPD, which is expected to mitigate the potential negative 958 

impacts of CDHEs on vegetation and crops (Ambika and Mishra, 2021).  959 

8.4 Wildfires 960 

Wildfires can affect the carbon cycles with disastrous impacts on the composition and 961 

function of terrestrial ecosystems and the resulting air pollution, combined with 962 

heatwaves, can negatively affect human health with particular impacts on the 963 

cardiovascular and respiratory systems (Vitolo et al., 2019). Wildfires occur under 964 

three conditions, including fuel availability, fuel aridity (fire weather), and an ignition 965 

source (Ruffault et al., 2020). Low precipitation (or soil moisture deficits) can 966 

increase flammability or fuel aridity (Abatzoglou and Williams, 2016) and high 967 

temperature (or VPD) can induce accelerated plant desiccation and mortality in short 968 

periods (Allen et al., 2015; Ribeiro et al., 2022; Ruffault et al., 2020; Vitolo et al., 969 

2019). Consequently, the concurrence of droughts and hot extremes may amplify the 970 

risk of wildfire (Crockett and Westerling, 2018; Libonati et al., 2022). A telling 971 

example is the 2019–2020 bushfires in Australia, which were shown to be a 972 

consequence of compound droughts and heatwaves (Gissing et al., 2022; Squire et al., 973 

2021), contributing to subsequent floods, soil erosion, and reduced water quality 974 

(Kemter et al., 2021).  975 
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Droughts and hot extremes are important driving factors of wildfire activities in 976 

several regions. For example, in the Mediterranean Basin, the most extreme wildfires 977 

generally occur during periods of compound droughts and heatwaves (Ruffault et al., 978 

2020). Studies have assessed the spatial distribution pattern of wildfires and 979 

compound droughts and heatwaves. Sutanto et al. (2020) explored the compound and 980 

cascading hazards defined as the concurrence of dry conditions, hot conditions, and 981 

fires at the pan-European scale. They identified a higher frequency of the concurrence 982 

of droughts, heatwaves, and fires in the west, central, and east regions of Europe. 983 

Several studies also explored the potential prediction of wildfires with multiple 984 

variables including droughts and heatwaves. For example, combined with other 985 

variables such as wind speed and relative humidity (RH), both drought and heatwaves 986 

are shown to be important predictors for wildfire (Deb et al., 2020). Despite increased 987 

attention to the relationship between wildfires and CDHEs, more efforts are needed to 988 

bridge the gaps in the desiccation of live fuels during CDHEs to mitigate the risks of 989 

wildfires (Allen et al., 2015; Ruffault et al., 2020). 990 

9 Discussions  991 

Albeit recent progress in the characterization, drivers, changes, and impacts of 992 

CDHEs, there are still some conceptual and technical barriers in understanding and 993 

modeling of CDHEs. In the following, we discuss several challenges and future 994 

prospects for investigating CDHEs from the perspective of data, characterizations, 995 

physical mechanisms, improved evaluation and simulations, and impact assessments 996 

(as summarized in Table 1).  997 
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9.1 Data availability and quality  998 

Data availability is an issue in extreme analysis since, without a sufficient sample size 999 

to extract large numbers of events, it is hard to identify long-term changes and 1000 

perform robust statistical inferences (Seneviratne et al., 2012). Compound events or 1001 

extremes are by definition less sampled than individual contributing variables 1002 

(Messori et al., 2021). As such, even larger sample sizes are needed for the compound 1003 

events analysis, since the characterization and modeling are usually conducted in 1004 

higher dimensions (at least 2 dimensions) (Hao and Singh, 2020; Zscheischler and 1005 

Lehner, 2022). For example, large sample sizes are generally needed to characterize 1006 

droughts and high-temperature extremes to place them into a long-term context for 1007 

return period analysis or risk assessments. However, the length of many data products 1008 

are not sufficiently long, which may lead to large uncertainty in the analysis of 1009 

compound events (e.g., change detection and attribution) (Hao and Singh, 2020). 1010 

Moreover, analogues of a certain combination of extremes may be limited or even not 1011 

exist in historical records (Gruber et al., 2021; Yiou and Jézéquel, 2020; Zscheischler 1012 

et al., 2018), which hinders accurate estimation of the probability or risk of CDHEs, 1013 

especially for those with low-probability and high-impacts. Data with finer 1014 

resolutions are also important to characterize CDHEs across multiple time scales. For 1015 

example, for heatwave-related extremes, the analysis is generally based on the 1016 

weather or daily time scale (Seneviratne et al., 2021; Wang et al., 2020a), which is 1017 

also needed for investigating CDHEs. Currently, the availability of high-quality daily 1018 

data is limited in large regions around the world, including parts of Africa, South 1019 

America, and Asia, which hampers the investigation of extremes (Sillmann et al., 1020 

2017; Yin et al., 2014).  1021 
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Overall, the long-term and high-quality data are existing challenges faced in the 1022 

assessment and modeling of compound events from multiple lines of evidence. 1023 

Different approaches (e.g., process-based model simulations, reanalysis data, and 1024 

large model ensembles) have been employed to overcome this problem (Batibeniz et 1025 

al., 2022). For example, large climate model ensemble simulations, such as the single 1026 

model initial-condition large ensemble (SMILE) (Deser et al., 2020), have been 1027 

employed to assess changes in the statistics of weather and climate extremes 1028 

(including compound events) and their impacts (Bevacqua et al., 2022; Lehner et al., 1029 

2020; Raymond et al., 2022; Sippel et al., 2016a; Tschumi et al., 2022b), which can 1030 

cope with the challenge of limited datasets for model evaluation and attribution 1031 

(Zscheischler and Lehner, 2022). Note that the different data sources may lead to 1032 

differences in changes detection in droughts or hot extremes (Hoffmann et al., 2020; 1033 

Mukherjee and Mishra) and attribution analysis (Zhang et al., 2022d), highlighting the 1034 

importance of change assessments with different data sources. Besides the impact data 1035 

in the EM-DAT database, the simulations from hydrologic models, crop models, and 1036 

dynamic vegetation models can be used to address the challenge of the lack of 1037 

long-term impact data. Overall, generating (i.e., mode simulations, expanding 1038 

observation networks, or reconstruction), pooling, or assimilating data of multiple 1039 

sources (e.g., remote sensing) is needed to increase the data length and accuracy to 1040 

improve the modeling of compound events and their impacts (Brunet and Jones, 2011; 1041 

Hao et al., 2018d; Sillmann et al., 2017; Xia et al., 2019; Zscheischler and Lehner, 1042 

2022). 1043 

9.2 Characterizations from different perspectives  1044 

The suitable choices of variables/indicators and thresholds are challenges in 1045 

characterizing and evaluating changes in CDHEs. There is still ambiguity in the 1046 
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definition of droughts, which hinders the characterization of CDHEs (Geirinhas et al., 1047 

2021). Most of the current analysis of concurrent droughts and high-temperature 1048 

extremes is based on meteorological droughts (e.g., precipitation-related). Some 1049 

sensitivities in drought changes resulting from the choice of different drought 1050 

indicators have been shown in previous studies (Dai, 2013; Long et al., 2018; 1051 

Sheffield et al., 2012), which makes the evaluation of CDHEs even more complicated. 1052 

For example, for the frequency of compound meteorological droughts and hot 1053 

extremes, the relative humidity (Yao et al., 2022), precipitation deficit/anomaly (Hao 1054 

et al., 2013; Zhou and Liu, 2018), SPI (Geirinhas et al., 2021; Vogel et al., 2021a), 1055 

and SPEI (Li et al., 2018b; Vogel et al., 2021a) have been employed. The impact of 1056 

CDHEs may be placed on a variety of sectors, such as water supply, agriculture 1057 

management, and human society. As such, CDHEs can be evaluated throughout the 1058 

hydrological cycle by considering a wide range of indicators of different drought 1059 

types (e.g., agricultural droughts, hydrological droughts) based on the impact 1060 

concerned (Feng et al., 2022). For example, soil moisture can be used as a drought 1061 

indicator to define CDHEs if the crop production or yield is of particular interest 1062 

(Hamed et al., 2021; Hao et al., 2018b; Lesk and Anderson, 2021; Muthuvel and 1063 

Mahesha, 2021; Sharma and Mujumdar; Zhang et al., 2019). In addition, though 1064 

different combinations of thresholds have been employed for characterizing CDHEs, 1065 

there is not a consensus on the selection of thresholds to define compound events. 1066 

Previous studies also found certain sensitivities of changes in CDHEs due to selected 1067 

thresholds of each variable (absolute or relative thresholds) or baseline periods to 1068 

define the threshold (Feng et al., 2021a; Kirono et al., 2017; Sedlmeier et al., 2018). 1069 

In addition to the definition of compound events from the statistical perspective (e.g., 1070 

percentile-based thresholds of hydroclimatic variables), it is critical to select the 1071 
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indictor or thresholds in terms of impacts, which can be achieved based on impacts 1072 

models (e.g., crop models, vegetation models, hydrological models) or observational 1073 

data (e.g., EM-DAT). These results imply that it is important to study the CDHEs 1074 

from a multivariate approach or define compound events from an impact perspective.   1075 

9.3 Understanding mechanisms of combined physical processes  1076 

Apart from analogous challenges in understanding individual droughts and hot 1077 

extremes, gaps still exist in the understanding of the underlying physical mechanisms 1078 

of compound extremes (Geirinhas et al., 2021; Sillmann et al., 2017). The analysis of 1079 

underlying mechanisms in previous studies is mostly focused on individual extremes 1080 

while the processes or drivers leading to the concurrent or consecutive occurrences of 1081 

both extremes are rather limited. For example, the summer weather anomalies (e.g., 1082 

hot-dry or cold wet) in Europe are closely associated with jet stream (either 1083 

dominance of blocked flow or persistence of zonal jet); however, gaps still exist in 1084 

our understanding of the dynamics of underlying jet-stream variability during summer 1085 

seasons (a critical period of agricultural production)(Messori et al., 2021). The causing 1086 

mechanism of CDHEs can differ at different time scales. At shorter time scales, the CDHEs 1087 

can results from the blocking of anticyclones and soil moisture–temperature feedbacks, 1088 

while at seasonal or longer time scales, the mode of variability play important roles in 1089 

driving CDHEs (Kautz et al., 2022; Miralles et al., 2019; Röthlisberger et al., 2019; 1090 

Zscheischler et al., 2020). In addition, the simultaneous occurrence of CDHEs across 1091 

multiple regions (connected with economical activities or exporting countries of crop 1092 

yields) can affect food security and deserves future investigations (Feng et al., 2021a; 1093 

Raymond et al., 2022; Sarhadi et al., 2018). As such, the dynamical relationship 1094 

between multiple driving factors and CDHEs at different time scales and spatial 1095 

locations can be complex, posing challenges to the understanding of CDHEs. An 1096 
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integrated analysis of multiple components or process chains regarding the concurrent 1097 

or consecutive droughts and high-temperature extremes across different 1098 

temporal-spatial scales is needed, which relies both on the high quality and 1099 

long-record observations (e.g., capturing historical events) and improved modeling 1100 

strategies (e.g., representing blocking systems) (Kautz et al., 2022). 1101 

9.4 Improved model evaluation and simulations  1102 

Droughts and heatwaves are connected and propagated through a variety of physical 1103 

mechanisms, including synoptic processes, land-atmosphere feedback, and recurring 1104 

large-scale patterns. Good performance in simulating CDHEs necessitates the models 1105 

to capture individual droughts, hot extremes (or heatwaves), and their interactions or 1106 

dependence during the onset, development, and recovery of CDHEs (Hao et al., 2019c; 1107 

Ridder et al., 2021). However, current studies on the evaluation of climate models in 1108 

simulating compound events, including CDHEs, are still limited (Hao, 2022; Ridder 1109 

et al., 2021; Villalobos-Herrera et al., 2021; Zscheischler et al., 2020), which hinders 1110 

the understanding of model performances. This necessitates not only the evaluation of 1111 

model performances in simulating both extremes but also compound events (or the 1112 

interaction of multiple contributing variables) (Zscheischler and Lehner, 2022) and 1113 

the relationship between driving factors and CDHEs as well (Manning et al., 2022; 1114 

Röthlisberger and Martius, 2019). To this end, novel metrics to evaluate the ability of 1115 

climate models in simulating compound events are needed (Messori et al., 2021; 1116 

Zscheischler et al., 2021). Building on the climate model evaluation, the model 1117 

selections based on performance or process-based analysis can aid the attribution or 1118 

future projections of extremes (Fischer et al., 2021; Manning et al., 2022; Vogel et al., 1119 

2018), including CDHEs. 1120 
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In addition, the current capacity to simulate key processes (both regional processes 1121 

and remote climate drivers or variability), such as atmospheric blocking, jet stream 1122 

position and intensity, land-atmosphere interactions, and teleconnections, remains a 1123 

major challenge. Regional changes in large-scale circulation features, such as changes 1124 

in blocking frequency or warm horizontal advection would lead to changes in hot 1125 

extremes; however, underestimation of blocking frequency exists for current climate 1126 

models (Gibson et al., 2017; Scaife et al., 2010). In addition, the representation of the 1127 

impacts of the land surface on precipitation and temperature extremes (or land 1128 

atmosphere feedbacks) in climate models is still immature (Miralles et al., 2019; 1129 

Santanello et al., 2018; Seneviratne et al., 2021; Sillmann et al., 2017). For example, 1130 

previous studies have shown that land surface models tend to underestimate the latent 1131 

heat flux during droughts, which leads to an overestimation of the heat extremes by 1132 

land-atmosphere feedbacks in coupled models (especially in humid regions)(Sippel et 1133 

al., 2017; Ukkola et al., 2016; Ukkola et al., 2018), implying large uncertainties in 1134 

CDHEs characterizations from GCMs. The deficiencies in simulating key processes 1135 

may lead to difficulties or uncertainties in understanding and modeling (e.g., attributing 1136 

and projecting changes) of CDHEs (Bevacqua et al., 2022). For example, the 1137 

uncertainty of precipitation changes attribution is shown to result from the limited 1138 

model simulations (and observations) with impacts of large internal variability (Zhai 1139 

et al., 2018), which add difficulties in the attribution CDHEs with high confidence. 1140 

Overall, the large bias of the climate model in simulating these processes calls for 1141 

theories/models to untangle complicated processes, increased model resolutions, and 1142 

novel approaches for the parameterization of sub-grid scale (or fine-scale) processes 1143 

(Bouwer et al., 2022; Coumou et al., 2018; Diffenbaugh et al., 2005; Meehl et al., 1144 

2021; Mueller and Seneviratne, 2014; Sillmann et al., 2017; Woollings et al., 2018). 1145 
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For example, the plant physiology and response to the CO2 effect are important to be 1146 

included in earth system models to capture land-atmosphere feedbacks and associated 1147 

climate extremes including droughts and heatwaves (Anderegg et al., 2019; 1148 

Lemordant et al., 2016; Miralles et al., 2019; Vicente-Serrano et al., 2022). Moreover, 1149 

the interaction of the human activities with CDHEs (e.g., irrigation, land use changes) 1150 

also calls for improved modeling of related natural processes and human activities in 1151 

the Anthropocene (Hao, 2022; Zscheischler et al., 2018).   1152 

9.5 Impact assessments  1153 

The modeling of the impact of CDHEs relies on both accurate climate modeling and 1154 

impact modeling. The definition of CDHEs could be done from an impact perspective 1155 

by asking: what are the weather/climate conditions leading to extreme impacts? To 1156 

model the complicated relationship between the physical environmental (including 1157 

but not limited to droughts and hot extremes) and biophysical impacts (e.g., crop 1158 

failure, extremely low flow events, wildfires), an integrated climate and impact 1159 

modeling is desired in defining dry-hot events of high impacts (e.g., subsets of the 1160 

T-P space with extreme impacts)(van der Wiel et al., 2020). Though higher impacts of 1161 

CDHEs on different sectors have been highlighted and quantified, the role of 1162 

individual extremes and their interactions causing impacts is largely unquantified. As 1163 

such, disentanglement of the relative effect of individual/compound extremes leading 1164 

to the impacts needs more effort (e.g., how droughts regulate the impact of 1165 

temperature or vice versa) (Basso and Ritchie, 2014; Tschumi et al., 2022b). Building 1166 

on previous studies of impact modeling based on climate simulations and impact 1167 

models, the negative impacts result from different combinations of contributing 1168 

variables can be quantified from statistical methods, process-based impacts models, 1169 

and socio-physical approaches (Raymond et al., 2020a). Statistical methods (e.g., 1170 
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conditional distribution, machine learning, or overlap in occurrences) hinge on the 1171 

empirical relationship between contributing variables and the impact variable, which 1172 

may fall short in characterizing the physical processes causing impacts on different 1173 

sectors (Brunner et al., 2021c; Feng and Hao, 2020; Feng et al., 2019; Li et al., 2022a; 1174 

Ribeiro et al., 2020a; Zhu et al., 2021). Process-based impacts models are established 1175 

tools to estimate the impacts of changes in weather conditions on crop yields, 1176 

vegetation, surface runoff, or river discharge, which can be employed to identify the 1177 

critical hot-dry conditions leading to extreme impacts. For example, Tschumi et al., 1178 

(2022b) employed the dynamic global vegetation model from a large ensemble 1179 

climate modeling experiment (Tschumi et al., 2022a) to disentangle the relative 1180 

importance of extremes (e.g., dry, hot, and hot-dry) on vegetation composition and 1181 

carbon dynamics. The storyline approach, which starts from a given impact and 1182 

constructs a chain of events from the high impact to the driving factors (Pfleiderer et 1183 

al., 2021; Shepherd et al., 2018; Sillmann et al., 2021; Zscheischler et al., 2018), can 1184 

also be explored to disentangle the driving component (Goulart et al., 2021). This 1185 

approach is useful in investigating the event in the tail distribution with the most 1186 

catastrophic impacts (the probability may not be quantifiable in this case)(de Brito, 1187 

2021; Zscheischler et al., 2018).  1188 

10 Conclusions 1189 

Compound droughts and hot events or extremes (CDHEs) have become an area of 1190 

active research in recent decades due to their severe ramifications for hydrology, 1191 

ecology, and natural resources management. These compound events have been 1192 

characterized based on different properties (e.g., frequency, duration, severity, timing, 1193 

spatial extent, and dependence) at different time scales. Multiple physical processes, 1194 
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including atmospheric circulations, modes of variability (or teleconnection patterns), 1195 

and soil moisture-temperature feedback, are important driving factors in the 1196 

occurrences of CDHEs depending on regions and seasons. Observations-based studies 1197 

reveal an overall increase in the frequency and intensity of CDHEs across the globe 1198 

(e.g., western and southern North America, northern South America, Europe, Africa, 1199 

northern parts of eastern Asia, and northeastern Australia), which mainly results from 1200 

the increased hot extremes. Climate model simulations from CMIP5/CMIP6 generally 1201 

perform well in simulating the climatology frequency of CDHEs; however, large 1202 

discrepancies in changing patterns of CDHEs in historical periods between 1203 

simulations and observations are observed in certain regions (e.g., Australia). 1204 

Multivariate bias correction (MBC) of climate model outputs is an useful approach to 1205 

alleviate potential uncertainty or bias in model simulations of CDHEs. The overall 1206 

increase of CDHEs at the global or continental scales can be attributed to 1207 

anthropogenic forcings, which also contributes to increased likelihoods of certain 1208 

specific events or extremes. In the future, increased CDHEs are projected over most 1209 

global land areas, with higher increase in the western/southern North America, 1210 

northern South America (e.g., the Amazon and Brazil), central/southern Europe, the 1211 

Mediterranean region, and southern Africa. Impacts from CDHEs on different sectors, 1212 

including water resources, crop yield, vegetation, and wildfires, have been quantified, 1213 

which highlights the larger impacts of compound extremes than their individual 1214 

counterparts.  1215 

A few challenges exist in the data availability, characterization, mechanism, changes, 1216 

and impacts of CDHEs. A long-term dataset with finer resolutions is needed to fully 1217 

characterize CDHEs at different time scales, which necessitate generating and 1218 
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assimilating data from multiple sources (e.g., process-based model simulations, and 1219 

reanalysis data). A consensus on the variables and thresholds to define CDHEs does 1220 

not exist, which may lead to large uncertainties in the variability assessments of 1221 

CDHEs. Selecting extreme indicators or thresholds based on impact data from model 1222 

simulations (e.g., crop models, vegetation models, hydrological models) or 1223 

observations (e.g., EM-DAT) is a promising and alternative approach. The dynamical 1224 

relationship between multiple driving factors and CDHEs at different time scales and 1225 

spatial locations can be complex and thus integrated analysis of multiple components or 1226 

process chains with respect to droughts and hot extremes is needed to improve the 1227 

physical understanding. The assessment of how climate models simulate CDHEs is 1228 

rather limited, which calls for novel metrics for the model evaluation. In addition, 1229 

deficiencies in simulating key processes of CDHEs still exist in climate models. 1230 

Increased model resolutions and novel parameterizations of sub-grid scale are useful 1231 

endeavors for future research in simulating CDHEs in the anthropocene. Building on 1232 

improved model dynamics and resolutions, modeling complicated climate-impact 1233 

interactions and disentangling the contribution of driving components is useful for 1234 

impact assessments and developing mitigation measures for CDHEs.  1235 

There are some limitations in this study. We focus on the concurrent droughts and hot 1236 

events, while the occurrence of the two extremes at consecutive periods (temporal 1237 

compounding) or at multiple locations (spatial compounding) (Feng et al., 2021a; 1238 

Raymond et al., 2022; Sarhadi et al., 2018; Slater et al., 2021; Zscheischler et al., 1239 

2020) is not considered in this study. In addition, we mainly characterize CDHEs in 1240 

the bivariate case with a focus on precipitation and temperature, while the inclusion of 1241 

other variables, such as VPD, soil moisture, radiation, and wind speed, to assess 1242 
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CDHEs may also be needed (Hao et al., 2018b; Manning et al., 2018; Noguera et al., 1243 

2022; Qing et al., 2022; Tavakol et al., 2020a; Tavakol et al., 2020b). Nevertheless, 1244 

this study bears potential for investigating other types of compound events with 1245 

serious repercussions on agriculture, energy demand, ecosystem, and human health 1246 

(Raymond et al., 2020a; Zscheischler et al., 2020). For example, several types of 1247 

compound events are also related to droughts or hot extremes, such as compound low 1248 

soil moisture-high VPD (Ambika and Mishra, 2021; Zhou et al., 2019), compound 1249 

droughts-floods (He and Sheffield, 2020; Visser-Quinn et al., 2019), compound 1250 

heatwaves-floods (Chen et al., 2021b; Wang et al., 2019b), compound heatwaves- 1251 

tropical cyclones (Matthews et al., 2019), compound warm-wet events (Brouillet and 1252 

Joussaume, 2019; Findell et al., 2017; Raymond et al., 2020b; Rogers et al., 2021; 1253 

Tencer et al., 2016), compound high temperature-ozone pollution (Otero et al., 2022), 1254 

and compound drought-river flow temperature (Liu et al., 2018; van Vliet et al., 2016). 1255 

Results from this study may provide useful insights for investigating these compound 1256 

events or extremes. 1257 

Building on the synthesis in this study, a scientific consensus is emerging that the 1258 

frequency and intensity of CDHEs have been increasing and may continue in the 1259 

future. These results highlight the emergence of the development of buffering 1260 

strategies for CDHEs (Overpeck, 2013), such as irrigation, forestation, or urban 1261 

infrastructures (Ambika and Mishra, 2021; Hao, 2022; Seneviratne et al., 2021; 1262 

Thiery et al., 2020; Wouters et al., 2022). It is therefore paramount to limit 1263 

greenhouse gas emissions to reduce the risk of CDHEs under global warming. This 1264 

study is expected to be useful for research and operational communities of a variety of 1265 
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sectors including climate, forest, agriculture, and human health sectors, to improve the 1266 

resilience to cope with compound extremes under global warming.  1267 
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13 Table 1 Advances, challenges, and future dictions in studying compound dry and hot events.  2859 

Topic Advances Challenges Future directions 

Data Assessment with multi-source data 
(e.g., gauge observations, 
reanalysis, and remote sensing)   

Lack of long-term and high-quality 
data  

Generate or assimilate data from multiple 
sources 

Characterization Based on multiple properties, such 
as frequency, duration, severity, and 
timing 

Lack of consensus on choices of 
indicators and thresholds  

Indicator and threshold selection based on 
impacts 

Drivers Driven by atmospheric circulation 
(modes of variability) and 
land-atmosphere feedbacks  

Complex relationships between 
driving factors and CDHEs at 
different temporal and spatial 
scales   

Integrated analysis of process chains at 
multiple spatial-temporal scales 

Changes Detected, attributed, and projected 
increase in CDHEs across large 
regions    

(1) Limited model evaluation in 
simulating CDHEs; 
(2) Immature representation of key 
processes affecting attribution and 
projection  

(1) Develop metrics for evaluating compound 
events; (2) Performance-based model selection 
in attribution and projection studies; 
(3) improve resolutions and parameterizations 

Impacts Quantify impacts on water 
resources, vegetation, crop yield, 
and wildfires 

Lack of understanding of individual 
extremes or their interactions 
causing impacts 

Disentangle relative effects of individual and 
compound extremes  
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14 Figure  2860 

 2861 

Figure 1 Illustrations of several concurrences of droughts and hot extremes in the past 2862 

few decades across the globe. These events are identified from the Emergency Events 2863 

Database (EM-DAT).   2864 

 2865 

 2866 

 2867 

  2868 
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 2869 

 2870 

Fig. 2 Illustration of different properties of compound droughts and hot events 2871 

(CDHEs) including duration, timing, and severity based on drought indicator (DI) and 2872 

temperature. The severity is defined as the function of properties of drought indicator 2873 

(DI) and temperature (T).  2874 

  2875 
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 2876 

 2877 

Fig. 3 Climatology frequency of CDHEs and precipitation-temperature dependence of 2878 

the warm season (JJA for the Northern Hemisphere and DJF for the Southern 2879 

Hemisphere) based on monthly precipitation and temperature data from Climatic 2880 

Research Unit (CRU) for the period 1951-2018. The 30th percentile and 70th 2881 

percentile of precipitation and temperature, respectively, are used as thresholds to 2882 

define CDHEs. (a) Frequency of CDHEs. (b) Precipitation-temperature dependence.   2883 

  2884 
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 2885 

Fig. 4 Scatterplot of observed average precipitation and temperature for DJF from 2886 

1901 to 2018 in southern Africa based on monthly data from CRU (blue dots). The 2887 

gray dots indicate values with randomly permutated temperature (Zscheischler and 2888 

Seneviratne, 2017). Ro and Rr are correlation coefficients of the observed and random 2889 

permutated precipitation and temperature pairs. * indicates significant correlation 2890 

coefficient at the 0.05 significance level. The low precipitation and high temperature 2891 

during DJF of 2015-2016 are shown in the figure (red dots).   2892 

 2893 

 2894 
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 2895 

Fig. 5. Impact of ENSO on CDHEs during warm seasons (JJA for the Northern 2896 

Hemisphere and DJF for the Southern Hemisphere) based on composite analysis. The 2897 

monthly precipitation and temperature data are obtained from CRU for the period 2898 

1951-2018. The 30th percentile and 70th percentile of precipitation and temperature, 2899 

respectively, are used as thresholds to define CDHEs. Dotted regions indicate 2900 

significant impacts of ENSO on CDHEs at the 0.05 significance level.  2901 
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 2902 

Fig. 6 Illustration of the occurrence of concurrent droughts and heatwaves from the 2903 

soil moisture-temperature feedbacks. Revised from Perkins (2015) and Alexander 2904 

(2011). ET, SH, and LH are the abbreviation of evapotranspiration, sensible heat, and 2905 

latent heat, respectively.    2906 
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 2908 

 2909 

Fig. 7 Changes in the annual frequency of CDHEs between 1951–1984 and 1985–2910 

2018 based on monthly precipitation and temperature data from CRU. The 30th 2911 

percentile and 70th percentile of precipitation and temperature, respectively, are used 2912 

as thresholds to define CDHEs. Revised from Hao et al. (2013).  2913 
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 2915 

 2916 

Fig. 8 Changes in the precipitation-temperature correlations of the warm season (JJA 2917 

for the Northern Hemisphere and DJF for the Southern Hemisphere) for two equal 2918 

periods 1951-1984 and 1985-2018 based on the CRU data. Revised from Hao et al. 2919 

(2019c).   2920 

  2921 
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 2922 

 2923 

Fig. 9 Temporal change in annual occurrences of CDHEs (average number of events 2924 

per years across the globe) based on observations and CMIP6 all forcings (ALL) and 2925 

natural forcings (NAT) simulations for the period from 1901 to 2010. The observations 2926 

of monthly precipitation and temperature data include those from CRU, the University 2927 

of Delaware (UDEL), and the Princeton Global Forcing (PGF), respectively. Revised 2928 

from Zhang et al. (2022d).   2929 
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 2933 

Fig. 10 Relative changes in the annual occurrences of CDHEs between 1986-2005 2934 

and 2081-2100 at the global scale based on CMIP6 simulations under SSP5-8.5. 2935 

Revised from Meng et al. (2022b). 2936 

  2937 
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 2938 

 2939 

Fig. 11 The demonstration of the impact of CDHEs on crop yield for the top five 2940 

maize-producing countries based on Standardized Precipitation Index (SPI), 2941 

Standardized Temperature Index (STI), and Standardized Crop yield Index (SCI). The 2942 

conditional probability of crop yield loss (SCI<0) given different conditions, 2943 

including dry (SPI/STI=-1.6/0), hot (SPI/STI=0/1.6), and dry-hot conditions 2944 

(SPI/STI=-1.6/1.6). Revised from Feng et al. (2019).  2945 
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