
McEachran Zac (Orcid ID: 0000-0002-7221-8047) 
Karwan Diana (Orcid ID: 0000-0002-4529-0369) 
 
 
Effects of forest disturbance on water yield and peak flow in low-relief glaciated catchments 
assessed with Bayesian parameter estimation 
 
McEachran, Zachary P.1*, Reese, Gordon C.2; Karwan, Diana L.3; Slesak, Robert A.4; Vogeler, Jody5 

 
1 NOAA National Weather Service North Central River Forecast Center, Chanhassen, MN 55317 
2 USDA Forest Service, Northern Research Station, Rhinelander, WI, USA 54501 
3 University of Minnesota, Department of Forest Resources, St. Paul, MN 55108 
4 USDA Forest Service, Pacific Northwest Research Station, Olympia, WA 98512 
5 Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO 80526 

 

 

* zachary.mceachran@noaa.gov 

 

Data Availability 

All data utilized are publicly available and are cited in the paper, including where these datasets may be 
obtained. The exception is the annual-scale forest disturbance maps used in the St. Louis Basin analysis, 
which are part of an in-preparation paper led by Dr. Vogeler and will be available upon its publication. 

Conflict of Interest 

None of the authors have a conflict of interest to disclose 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but
has not been through the copyediting, typesetting, pagination and proofreading process, which
may lead to differences between this version and the Version of Record. Please cite this article as
doi: 10.1002/hyp.14956

This article is protected by copyright. All rights reserved.

http://orcid.org/0000-0002-7221-8047
http://orcid.org/0000-0002-4529-0369
mailto:zachary.mceachran@noaa.gov
http://dx.doi.org/10.1002/hyp.14956
http://dx.doi.org/10.1002/hyp.14956


Abstract 

 

Empirical assessment of how forest disturbance affects streamflow has been traditionally limited to small, 
experimental catchments. However, larger catchments where landscape management occurs have 
emergent drivers of streamflow at scale, and thus may exhibit novel responses to land cover disturbance. 
We used statistical models of water yield and annual maximum peak streamflow for multiple large (> 50 
km2) forested catchments in the low-relief glaciated region of central North America to investigate how 
forest disturbance and climatic variability affect water yield and peak flows in similar landscapes. We 
used linear models, linear mixed effects models, and probabilistic flood-frequency analysis with Bayesian 
parameter estimation in two case studies. These included: 1) a wildfire that burned ~30% of the 650 km2 
wilderness Upper Kawishiwi catchment, and 2) 11 catchments within the St. Louis River Basin ranging 
from 56 to 8,880 km2 with a patchwork disturbance regime wherein ~0.25% to 1% of the catchment is 
harvested or converted to non-forest land use each year. We also assessed the most likely hydrological 
recovery year after forest disturbance, and the relative importance of stationary and nonstationary drivers 
of streamflow. We found forest disturbance correlated with declines in water yield for low-level 
disturbance regimes in some catchments, but that water yield increased in response to the large-scale 
wildfire. Positive and negative associations of forest disturbance with peak flows were observed. 
Hydrologic recovery time ranged from 5 to 13 years for water yield and peak flows following 
disturbance. Despite these effects of forest disturbance on streamflow, effects of climatic variability and 
stationary catchment size factors were more prominent streamflow drivers. Basins larger than ~50 km2 in 
low-relief glaciated regions can be impacted by forest cover change even on < 30% of basin area, but 
climatic variability and catchment spatial scale has a larger effect than forest disturbance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Some landscapes are managed as forest in part to maintain high-quality water supply for societal 

and ecosystem benefits (Andréassian, 2004). Forest disturbance, including anthropogenic and natural 

processes, can affect a catchment’s water balance through decreases in evapotranspiration associated with 

loss of tree cover or tree mortality associated with the disturbance event (McEachran et al., 2020; 

Stednick, 1996). What effect forest cover change has on streamflow has been a key question widely 

investigated using empirical statistical analyses of catchment-scale data, often using a Before-After-

Control-Impact (BACI) and paired watershed design focusing on experimental forest harvesting regimes 

(Neary, 2016). Key metrics of hydrologic change common in the literature include annual water yield and 

peak flows (Buttle, 2011), often defined as the annual maximum peak streamflow (Green & Alila, 2012; 

McEachran et al., 2021). Forest harvesting is the disturbance most often investigated, because of the 

experimental control in how the forest disturbance is implemented, in addition to relevance for forest and 

watershed management. In relatively small catchments, for each additional one percent that a catchment is 

harvested, annual water yield increases 0.5-7 mm/year (Bosch & Hewlett, 1982; Brown et al., 2005; Sahin 

& Hall, 1996; Stednick, 1996; Zhang et al., 2017).  When forest land cover is converted to non-forest 

cover (or to another forest species composition), it takes several years (5-20+ years) to reach a new 

equilibrium water balance, while forest that is allowed to regenerate following disturbance utilizes water 

differently as it regrows through its life cycle (Brown et al., 2005). Often, 10-50% of a catchment has to 

be disturbed for discernible responses in water yield, but effects for much lower disturbance percentages 

have been found in some cases (Jones & Grant, 1996; Stednick, 1996). At all spatial scales, peak flow 

responses to forest harvesting are much more diverse and variable compared to effects on annual water 

yield including peak flows increasing, decreasing, or showing no effect (Alila et al., 2009; Buttle, 2011; 

Green & Alila, 2012; Guillemette et al., 2005; Jones & Grant, 1996; Thomas & Megahan, 1998). Some 

divergent results stem from methodological disagreement about the most appropriate framework within 

which to analyze peak flows (Bathurst et al., 2020; Alila et al., 2009; Jones & Grant, 1996; Thomas & 



Megahan, 1998). Several review papers have described past empirical studies (e.g. Stednick 1996, Brown 

et al., 2005, Zhang et al 2017), but a full review is beyond the scope of our paper. 

North American forest hydrology literature has mostly focused on the effect of forest harvesting 

in relatively steep, mountainous catchments (e.g., the Pacific Mountain System or Appalachian regions) 

(Goeking & Tarboton, 2020; Green & Alila, 2012; Hewlett & Hibbert, 1961; Jones & Grant, 1996; 

McEachran et al., 2020; Safeeq et al., 2020). Studies in central North America and Scandinavia have 

found forest harvesting to generally increase annual water yield, peak flows, and quickflow (Buttle et al., 

2018; Buttle et al., 2019; Ide et al., 2013; McEachran et al., 2021; Sebestyen et al., 2011), but some 

variability has been found. For example, seasonal summer runoff can decrease in response to forest 

harvesting after a year of recovery, even while spring runoff remains elevated (Ide et al., 2013). Recovery 

to pre-treatment conditions for metrics of water yield and peak flows has been found to be between 10 

and 20 years after harvest (Sebestyen et al., 2011), but some studies have not found a length of hydrologic 

recovery, with effects still detectable 15+ years after harvesting treatment (Buttle et al., 2018; Ide et al., 

2013; McEachran et al., 2021). These results have supported management paradigms in the Great Lakes 

region of the north central USA to consider any forest that is less than or equal to 15 years old “young 

forest” that is potentially affecting water yield and peak flows, and any older forest as “hydrologically 

recovered” and effectively behaving as mature forest with respect to water balance components (Verry, 

2004; Sebestyen et al, 2011). It is unclear how the paradigm-shaping literature developed in different 

biophysical regions apply to low-relief glaciated regions found in central North America and Eurasia, 

where hydrologic functioning differs substantially in part due to differences in soil moisture storage, 

wetland extent, and groundwater exchange. 

Studies on the effects of forests on streamflow have historically focused on catchment spatial 

scales of < 10 km2 (Stednick, 1996;  Andréassian, 2004; Hewlett et al., 1969; Likens, 2001; Loftis et al., 

2001). In particular, “detectability thresholds” derived from the traditional paired catchment literature 

have unclear application to larger basins where cumulative forest disturbances occur over several years 

(Wei et al., 2021).  Experimental catchments are specifically designed with statistical requirements for the 



attribution of causal mechanisms in mind, which rely on small, relatively homogeneous catchments. 

However, at larger spatial scales where landscapes are heterogeneous and data collection networks are 

less dense, there are difficulties in applying empirical approaches.  

At larger catchment scales, different streamflow generation processes may emerge compared to 

the headwaters catchments on which the catchment science literature focuses (Blöschl, 2022; Blöschl et 

al., 2007; Rogger et al., 2017). Emergent properties of streamflow generation at large scales include the 

importance of regional groundwater, increasing catchment heterogeneity, catchment storage and channel 

routing processes, and the importance of large-scale climate variability (Laudon and Sponseller, 2018; 

Viglione et al., 2016). As catchments scale up in size, structure and function of relevant flow-generating 

units in the catchment can shift. For example, heterogeneity in catchment structure and physical 

characteristics, such as surficial geologic deposits, increases with catchment area. Catchments large 

enough to include multiple geologic units often have areas of disproportional hydrologic function at the 

boundaries of different deposits (e.g., flow along fault lines: Bense et al., 2013).  Additionally, climate 

variability is expected to be a dominant signal in large as opposed to small (e.g. headwater) catchments 

(Rogger et al., 2017). Because structure and other drivers differ, there is a need to conduct studies in large 

catchments instead of inferring large catchment responses from previously conducted small catchment 

studies.  

Empirical approaches are commonly used to assess the effects of forest disturbance on 

streamflow processes, allowing for the testing of hypotheses not constrained by an a priori conception of 

the physical processes at work. Many studies have utilized the Before-After-Control-Impact (BACI) 

design (Andréassian, 2004; Hewlett et al., 1969; Neary, 2016). Regression analysis, nonparametric tests, 

and timeseries analysis have been used to empirically test for streamflow response to harvesting in large 

catchments (Hou et al., 2022; Jones & Grant, 1996; Lin & Wei, 2008). A key step in these types of 

analyses is the quantification of cumulative forest disturbance, which serves as the independent variable 

to assess the cumulative effect of many small disturbance events over time. Associated with this approach 

is the concept of “hydrological recovery” which is the time period required for the disturbed portion of 



the catchment to function similar to its pre-disturbance condition. Estimating hydrologic recovery time 

has been approached by using: 1) considerations from silviculture (e.g., when does that species of tree 

exceed a certain maturity threshold?) (Giles-Hansen et al., 2019; Lin & Wei, 2008), 2) the pairing of 

catchments and assessing based on relative disturbance intensity (Jones & Grant, 1996), and 3) past 

empirical paired-catchment results to constrain recovery time (McEachran et al., 2021). Alternative 

approaches include controlled plot-scale studies (Pierson et al., 2007), meta-analysis of catchment studies 

across regions (Ali et al., 2015), and using models, either physically-based, statistical, or their 

combination (Zégre et al., 2010). The ability to generate long synthetic streamflow records is a key 

advantage of modeling-based studies (Green & Alila, 2012), but the use of empirical data still offers a 

distinct advantage in its lack of reliance on a particular physical-science paradigm, and complements 

modeling studies as validation and advancement of the physical paradigms used in process-based models.  

In this paper, we utilize probabilistic approaches to empirically assess the effect of forest 

disturbance on water yield and peak streamflow at a range of catchment sizes in the low-relief, glaciated 

Minnesota, USA. We investigated the hypothesis that forest cover loss through harvesting and/or fire 

results in increased water yield and increased peak streamflow, and that discernible signals of spatial scale 

are detectable in the relationship of streamflow to forest disturbance across catchments 50-9000 km2. 

 

2. Methods 

2.1: Study Area 

2.1.1:  Upper Kawishiwi Basin.   

The Kawishiwi River starts in a small lake in the Hudson Bay drainage, and flows entirely on the 

southern Canadian Shield. The Upper Kawishiwi Basin has an area of 650 square kilometers, and is 

almost completely in the Boundary Waters Canoe Area Wilderness. The catchment has thus been largely 

protected from development since 1964. In August of 2011, a lightning strike ignited the Pagami Creek 

Fire, and burned 27% of the catchment area (200 sq km) (Figure 1).  



Crystalline bedrock is often <1 m from the soil surface (Jirsa et al., 2011), although deeper peat 

deposits and deep lakes in bedrock depressions are common. Soils are generally coarse-textured, but 

perched wetlands over lacustrine clay confining layers are common (Prettyman, 1978). Approximately 

29% of the watershed area in the Upper Kawishiwi Basin comprises lakes and wetlands (Minnesota 

National Wetlands Inventory, 2019), with ~13% of the watershed area in open-water storage. In-channel 

lakes constitute 82% of the channel length of the Kawishiwi River (Minnesota Department of Natural 

Resources, 2022). The Upper Kawishiwi catchment was 83% forested before the fire, with mostly 

evergreen and woody wetland forest types (28% and 24%, respectively) (NLCD 2011: Homer et al., 

2015). The climate in the Upper Kawishiwi catchment is continental, with moist warm summers and dry, 

cold winters. Since 1895, the average annual precipitation is 693 mm, about 27% of which occurs in the 

winter largely as snow (PRISM Climate Group, 2020).  

2.1.2:  St. Louis River Basin.  

  

 The St. Louis River begins in a region of shallow lakes and peatlands, and flows through 

extensive glacial deposits before draining into Lake Superior in Duluth, Minnesota (Figure 1). It is the 

largest river to drain into the Great Lakes, with a drainage area of 8,880 km2 at the most downstream gage 

at Scanlon, Minnesota. The St. Louis River flows through material of multiple glacial provenances, 

intersecting with areas of glacial lake, till plain, morainal, and drumlin landforms (Hobbs and Goebel, 

1982). A large portion of the basin is wetlands (60% of the area at the Scanlon gage) particularly where 

lacustrine sediments constitute the parent material (Figure 1). There are few open-water lakes in the 

catchment, in contrast to the Kawishiwi catchment. All catchments contain about 1/3 upland forest and 

~50% woody wetlands (2019 NLCD: Dewitz and USGS, 2021). Mining land use is common in the 

northern portion of the basin, but land use/land cover has not changed substantially since the formal 

NLCD record began in 2001, indicating largely stationary non-forest land cover patterns at the basin 



scale. Primary disturbances were broadly distributed and associated with a patchwork on the scale of <1 

km2 per disturbance.  

 

2.2: Data Sources and Aggregation 

 

We used two contrasting case studies to investigate how forest disturbance affects water yield and 

annual maximum peak flows. First, the Upper Kawishiwi River catchment (Figure 1) was a single 

catchment analyzed over a 53 year time period with a wildfire that burned ~1/3 of the catchment area. 

Second, the St. Louis River Basin case study involved 11 catchments, some of which were nested, over a 

shorter period of time (Figure 1; Table 1). The two case studies were used to assess the effect of forest 

disturbance on streamflow for two common disturbance regimes: in the Kawishiwi, a rapid and large-

scale disturbance over a large area, and for the St. Louis, a patchwork cumulative disturbance of various 

sources, but mostly forest harvesting.  

Published streamflow records were compiled from federal and state government agencies. The 

Kawishiwi case study utilized daily flow records from a United States Geological Survey (USGS) gage 

(USGS 05124480) from 1967-2019. The St. Louis River Basin case study used data from 11 gages 

managed by USGS, the Minnesota Department of Natural Resources, and Minnesota Pollution Control 

Agency, collectively housed at the Minnesota Cooperative Streamgaging Network 

(https://www.dnr.state.mn.us/waters/csg/index.html; Last accessed January, 2022). Gages within the St. 

Louis utilized available data from 1986-2018. Daily streamflow records were used when available, while 

sub-daily streamflow records were converted to daily records using standard numerical methods (see 

Supplemental Section 1 for data processing notes). Catchments for each gage location (Table 1) were 

delineated using Streamstats v.4 (USGS, 2016), which relies on a 10 m elevation model to delineate 

catchment boundaries.  

We defined a streamflow water year as between March and February of the next year after 

Sebestyen et al. (2011). This definition encapsulates streamflow seasonality in northern climates, which is 

https://www.dnr.state.mn.us/waters/csg/index.html


greatly reduced in winter and starts to increase with early spring warming in March. We defined the water 

year for all non-streamflow variables (such as precipitation) as between November and October of the 

following year (also as per Sebestyen et al., 2011), to reflect the contribution of snowpack to the 

streamflow water year. Winter was defined as November through April, and spring was defined as May 

through June, based on snowpack trends at the Winton, MN NOAA weather station (NOAA-NCEI, 2020; 

Menne et al., 2012a; Menne et al., 2012b). Regional maximum flows are most often either the spring 

freshet, or the result of spring rains on a saturated catchment in late spring or early summer; summer 

rainstorms occasionally produce annual maximums (McEachran et al., 2021). 

Meteorological data were derived from Oregon State’s PRISM database of monthly values (4km 

resolution; PRISM Climate Group, 2020) and aggregated across a 1 km raster cell resampling of the 

catchment, either through addition (summing annual, winter, and spring precipitation), or averaging 

across the entire year (temperature, dew point, etc.). The meteorological variables used to analyze annual 

water yield and peak flows can be found in Table 2, in addition to using large-scale climatic indices 

(namely, the Atlantic Multidecadal Oscillation). 

Two Minnesota forest disturbance data sources were used for the St. Louis analysis: a single map 

layer representing the “Most Recent Fast Forest Disturbance” for a given area, wherein forest patches that 

had been detected as disturbed at any time in 1975-2018 were identified with the year of their most recent 

disturbance (Vogeler et al., 2020; Vogeler, 2019), and an additional set of annual forest disturbance maps 

spanning 1986-2018 (unpublished data, J. Vogeler). Disturbance pixels were identified using the Landsat 

time series trend fitting algorithm, LandTrendr (Kennedy et al., 2010), grouped into change patches 

representing a shared change event, and then classified by disturbance agent using random forest 

modeling. The random forest agent attribution model was trained on a set of patches where the 

disturbance agent was known through photo-interpretations, local knowledge, field visits, or additional 

spatial data sets (e.g., Monitoring Trends in Burn Severity). Disturbance categories were aggregated as 

“regenerating” and “permanent” (i.e., conversion) for the purposes of the hydrologic analysis. 

Regenerating disturbances included stand change categories of harvest, windthrow, fire, and other. 



Because of the possibility of patches being disturbed more than once in the period of record, the annual 

maps were used for the extent of their record. The annual maps were produced using similar Landsat time 

series change detection and patch attribution approaches as presented in Vogeler et al. (2020) across the 

state of Minnesota, with the exception that changes were identified on an annual basis from the time 

series as opposed to focusing only on the most recent event for a given area, and only included the 

Landsat data beginning in 1984 (with change maps starting in 1986). The most recent change map 

included information from the early Landsat MSS sensors which require additional pre-processing and 

calibration to incorporate with the rest of the Landsat archive that begins in 1984 (Vogeler et al., 2020). 

The longer-running “most recent” map product was used to fill in data 1975-1985. To explore potential 

recovery time for forest disturbances ranging between 1 and 20 years, we extrapolated the most recent 

forest disturbance map product back to 1967, with 1967-1975 being set equal to the mean annual 

regenerating disturbance within the first 15 years of the most recent fast forest disturbance layer. At the 

catchment scale we created an aggregated “disturbed” metric with the percentage of catchment area 

disturbed by a regenerating forest disturbance in a given year (plus N prior years within a recovery 

window). Forest conversion was added to the annual catchment-scale “disturbed” metric as a cumulative 

sum of areal percentage converted since 1986 (year 1 of water yield modeling where there was 

streamgage data, and of the annual forest disturbance mapping product). This representation of 

disturbance assumes all converted forest, and regenerating disturbance before the recovery year, behaves 

differently than pre-disturbance with respect to hydrology; once the recovery year is met, that formerly 

disturbed patch returns to the pre-disturbance hydrological baseline (for non-conversion disturbances). 

Thus, in 1986, the 1-year forest disturbance metric includes the regenerating forest disturbance that 

occurred in 1986, plus the conversion that occurred in 1986. In 1990, the 11-year forest disturbance 

metric included the sum of the regenerating forest disturbance that occurred in 1980-1990, plus the 

cumulative forest conversion that had occurred since 1986. Total forest conversion in the basins was low, 

with a basin maximum annual conversion rate of 0.25% of basin area, and a maximum cumulative sum 



(1986-2018) of 1.56% of basin area. This compares to the regenerating forest disturbance maximum 

annual value of 2.38% in a single year. Finally, the rest of the landscape was treated as stationary. 

2.3: Modeling Methods 

Our overarching modeling approach uses linear models for water yield and peak flows, in addition to 

probabilistic flood-frequency models for peak flows. Linear modeling approaches are commonly used to 

assess the effect of forest disturbance on water yield and peak flows (Jones & Grant, 1996; Lin & Wei, 

2008). However, recent literature has shown the importance of also analyzing peak flows using 

probabilistic flood-frequency frameworks to draw inferences about how forest disturbance and climate 

factors influence the peak flow at particular return intervals (Alila et al., 2009; McEachran et al., 2021). 

The modeling workflow is outlined in Figure 2. The first step in each analysis was data exploration and 

variable selection. More detailed information on variable selection and modeling approach can be found 

in Supplemental Section 2; manual and automated techniques were both used. The general approach for 

the Kawishiwi basin was to first model the pre-fire streamflow using climate variables alone, then 

compare the actual observed streamflow with the predicted streamflow after the fire based on the pre-fire 

models. This process included selecting climate variables using manual techniques and then analyzing 

water yield and peak flows using a linear model. Peak flows were also modeled in a nonstationary flood-

frequency analysis, the structure of which was chosen via formal/automated model selection. For the St. 

Louis basin analysis, climate effects on water yield and peak flows were assessed using five to six 

candidate Linear Mixed Effects (LME) models per streamflow variable. LME was used because of 

catchments’ biophysical similarity, while allowing a unique response to climate drivers for each 

catchment. The “fixed effect” represented an overall region-specific mean effect of the climate driver on 

streamflow, while the “random effect” allowed each basin to modify the fixed effect according to its 

specific hydrologic response to that climate driver. Manual variable selection informed the candidate 

LMEs, with the final LME chosen using automated selection. The streamflow residuals from the selected 

best-fit LME, representing climate-detrended streamflow, were then modeled with forest disturbance as a 



linear predictor. Detrending a variable by using the residuals from a regression analysis is a common 

practice (Iler et al., 2017), and modeling the climate-only variability in streamflow first ensures no 

multicollinearity with forest disturbance predictors when those are modeled based on the climate-only 

residuals. This is a conservative choice with respect to our hypotheses insofar as any collinearity between 

climate and forest disturbance is attributed to climate drivers. Peak flows in the St. Louis basin were also 

analyzed in a nonstationary flood-frequency framework that parsed the peak flow distribution into 

stationary and nonstationary components; from this flood-frequency model, we obtained the annual 

maximum peak flow with a 50% annual exceedance probability (the Q2). We then modeled the 

nonstationary component of the Q2 with climate and forest disturbance predictors. The Q2 was chosen 

because it is critical for the average channel-forming flow for alluvial river systems (Wolman and Miller, 

1960; Phillips and Jerolmack, 2016), and streamflow records were <5 years in some basins. 

For all models, we used Bayesian-based Markov chain Monte Carlo (McMC) sampling (Gelman 

and Rubin, 1992) to generate a full probabilistic estimate for the parameters conditioned on the observed 

annual water yield and annual maximum flow, except where explicitly stated. For the McMC sampling, 

we implemented the JAGS (“Just Another Gibbs Sampler”) algorithm (Plummer, 2003) with the “R2jags” 

package (Su and Yajima, 2015) in R (R Core Team, 2022). We used noninformative priors, including 

normal distributions with wide standard deviations, or uniform distributions where parameters were 

defined only when greater than zero. Model appropriateness was assessed by visually inspecting residuals 

versus fitted and normal QQ plots, and posterior-predictive checks (Gelman et al., 1996). We reported the 

confidence we have for an hypothesized positive or negative relationship between streamflow and forest 

disturbance as represented by the sign (+/-) of “effects” parameters within the models, based on their 

modeled posterior density distributions (Gelman and Tuerlinckx, 2000). There is no strict threshold for 

“significance”, but rather our confidence is the weight of evidence corresponding to an effect parameter 

of forest disturbance on streamflow as being positive or negative (McShane et al., 2019). While we 

consider confidence to be a continuous quantity, where hypotheses have ~10:1 odds in favor (which is 

where we would be 91% confident), they are often considered to have substantial to strong support (Kass 



and Rafferty, 1995), so we consider >90% confidence as “high confidence” effects. Finally, for all 

models, McMC convergence was supported by the Gelman-Rubin statistic and visual inspection of 

traceplots. 

 

2.3.1: Upper Kawishiwi Methods 

Before the fire (2011), we selected the annual precipitation and the annual average monthly 

Atlantic Multidecadal Oscillation (AMO) index as the dominant climate drivers of streamflow in the 

Upper Kawishiwi catchment, after selecting for variables shown in Table 2 and assessing spectral trends 

in the hydrometerological data using the Fast Fourier Transform (NOAA – PSL, 2020; Supplemental 

Section 2). There was also a clear piecewise change point at AMO = 0, consistent with regional literature 

(Mengistu et al., 2013). Thus, the effects of the 2011 fire on water yield were assessed with respect to 

Equation 1: 

 

 𝑄𝑄𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1 ∗ 𝑃𝑃𝑖𝑖 +  𝑏𝑏2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝑏𝑏3 ∗ 𝛼𝛼𝑖𝑖 + 𝑏𝑏4 ∗ 𝐴𝐴𝐴𝐴𝑂𝑂𝑖𝑖 ∗ 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖 

 

𝜀𝜀𝑖𝑖 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎2) 

 

(1) 

Where 𝑄𝑄𝑖𝑖 is the annual water yield in year i [mm],  𝑃𝑃𝑖𝑖 is the annual precipitation in year i [mm], 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is 

the annual average monthly AMO index value in year i [dimensionless], and 𝛼𝛼𝑖𝑖 = 0 when 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ≤ 0 and 

𝛼𝛼𝑖𝑖 = 1 when 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 > 0. For the annual maximum flow regression, we utilized Equation 1, but Qi 

represented the annual maximum streamflow, and Pi represented the winter precipitation. 

 Each year j after the fire (2012-2019), we sampled the distribution of expected Qj based on that 

year’s climate forcings by sampling the posterior densities of the regression parameters and the error term 

𝜀𝜀𝑖𝑖. The proportion of the distribution of expected Qj values in each year below the observed value was our 

confidence that water yield increased more than would be expected after the fire.   



The probabilistic flood-frequency approach for annual maximum flow utilized the same driving 

climate variables used in the regression analysis. We used the Gumbel distribution (Gumbel, 1958; Lima 

and Lall, 2010) to describe the annual maximum streamflow. The Gumbel distribution is parameterized 

by a location (µ) and scale (σ), which were modeled linearly by winter precipitation and AMO index in a 

nonstationary framework. After fitting models for all combinations of linear dependence of location and 

scale on winter precipitation and AMO index, Equation 2 was chosen as the most probable model for the 

1967-2011 time period (degree-of-belief = 0.339) (Supplemental Table 3.1).  

 

 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ( 𝜇𝜇𝑖𝑖  ,𝜎𝜎𝑖𝑖 ) 

 𝜇𝜇𝑖𝑖 =  𝑎𝑎1 +  𝑎𝑎2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 +  𝑎𝑎3 ∗ 𝑃𝑃𝑖𝑖 

𝜎𝜎𝑖𝑖 =  𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

(2) 

 

In Equation 2, 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 is the annual maximum daily discharge in pre-fire year i;  𝜇𝜇𝑖𝑖 and 𝜎𝜎𝑖𝑖 are the location 

and scale parameters in year i, respectively; 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the stationary pre-fire scale parameter; a1, a2, and 

a3 are hyperparameters describing how  𝜇𝜇𝑖𝑖 varies with AMO and winter precipitation; and Pi is the winter 

precipitation in year i. 

To assess the effect of the fire, we added constant effects hyperparameters to allow the fire to 

impact peak flows either through the location, scale, or both parameters (Equation 3):  

 

 𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚,𝑗𝑗 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ( 𝜇𝜇𝑗𝑗  ,𝜎𝜎𝑗𝑗 ) 

 𝜇𝜇𝑗𝑗 =  𝑎𝑎1 +  𝑎𝑎2 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 +  𝑎𝑎3 ∗ 𝑃𝑃𝑗𝑗 +  𝜇𝜇𝑜𝑜 

𝜎𝜎𝑗𝑗 =  𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜎𝜎𝑜𝑜 

 

 

(3) 



In equation 3, variables remain the same as in 2, except for the year indexing which is over post-fire years 

j, and the constant effects hyperparameters 𝜇𝜇𝑜𝑜 and 𝜎𝜎𝑜𝑜, which represent the changes to the location and 

scale parameters due to the fire, respectively. Cumulative Distribution Functions (CDFs) through the 2% 

exceedance probability were compared when the effects hyperparameters were set to zero, versus allowed 

to be non-zero in Equation 3.5, representing “expected” and “treated” conditions, respectively. We chose 

the 2% exceedance probability because the approximate level of information we have from the system 

was commensurate with the 2% exceedance probability event (i.e., ~50 years of data). 

2.3.2: St. Louis Methods 

2.3.2.1: Linear Mixed Effects and Linear Regression Analysis 

We selected the water yield candidate regressions through considering the pooled correlation 

matrix on all streamflow data in the basin, water balance considerations, and the results from the 

Kawishiwi analysis (Supplemental Table 2.1). Because of multicollinearity between many of the 

predictors, we also used the first principal component of the ET-driving variables as a possible predictor 

(see Table 2 for details).  

 

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑗𝑗 

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 ,𝑗𝑗 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑞𝑞�𝑖𝑖,𝑗𝑗,𝑠𝑠,𝜎𝜎𝑠𝑠) 

𝑞𝑞�𝑖𝑖,𝑗𝑗,1 = �𝑏𝑏0,1 + 𝑏𝑏𝑏𝑏0,𝑗𝑗,1� + �𝑏𝑏1,1 + 𝑏𝑏𝑏𝑏1,𝑗𝑗,1� ∗ 𝑃𝑃𝑖𝑖 

𝑞𝑞�𝑖𝑖,𝑗𝑗,2 = �𝑏𝑏0,2 + 𝑏𝑏𝑏𝑏0,𝑗𝑗,2� + �𝑏𝑏1,2 + 𝑏𝑏𝑏𝑏1,𝑗𝑗,2� ∗ 𝑃𝑃𝑖𝑖 + �𝑏𝑏2,2 + 𝑏𝑏𝑏𝑏2,𝑗𝑗,2� ∗ 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖   

𝑞𝑞�𝑖𝑖,𝑗𝑗,3 = �𝑏𝑏0,3 + 𝑏𝑏𝑏𝑏0,𝑗𝑗,3� + �𝑏𝑏1,3 + 𝑏𝑏𝑏𝑏1,𝑗𝑗,3� ∗ 𝑃𝑃𝑖𝑖 + �𝑏𝑏2,3 + 𝑏𝑏𝑏𝑏2,𝑗𝑗,3� ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 

𝑞𝑞�𝑖𝑖,𝑗𝑗,4 = �𝑏𝑏0,2 + 𝑏𝑏𝑏𝑏0,𝑗𝑗,2� + �𝑏𝑏1,2 + 𝑏𝑏𝑏𝑏1,𝑗𝑗,2� ∗ 𝑃𝑃𝑖𝑖 + 𝑏𝑏2,4 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝑏𝑏𝑏𝑏0 ∗ 𝛼𝛼𝑖𝑖 + 𝑏𝑏𝑏𝑏1 ∗ 𝛼𝛼𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 

𝑞𝑞�𝑖𝑖,𝑗𝑗,5 = �𝑏𝑏0,5 + 𝑏𝑏𝑏𝑏0,𝑗𝑗,5� + �𝑏𝑏1,5 + 𝑏𝑏𝑏𝑏1,𝑗𝑗,5� ∗ 𝑃𝑃𝑖𝑖 + �𝑏𝑏2,5 + 𝑏𝑏𝑏𝑏2,𝑗𝑗,5� ∗ 𝐸𝐸𝐸𝐸.𝑃𝑃𝑃𝑃𝑃𝑃1𝑖𝑖 

𝑠𝑠 ~ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(5; 𝑝𝑝1 , … , 𝑝𝑝5) 

(4) 

 



In Equation 4, the b’s are fixed effects, bc’s are random (catchment) effects, and σ is pooled model 

variance. The other climate variables are annual aggregations of the variables in Table 2. The AMO 

model was a breakpoint regression as in the Kawishiwi regressions. The selected final model s was that 

which had the highest probability ps after conditioning on the data.  

The candidate LMEs for peak flows had the same structure as Equation 4, but with different 

terms, with predictors of 1) spring precipitation only, 2) winter precipitation and spring precipitation (no 

interaction), 3) spring precipitation plus winter/spring precipitation interaction, 4) spring precipitation 

plus AMO index as in the Kawishiwi regression, 5) spring precipitation and fall precipitation, and 6) 

spring precipitation, and winter precipitation and winter mean temperature interaction (Supplemental 

Table 2.2). These candidate variables were selected due to considering the overall correlation matrix, and 

considering the dominant mechanisms of regional flooding as rapidly melting snowpack or rain-on-snow 

in the spring after a wet fall (Verry et al., 1983). Additional rationale for each candidate model is given in 

Supplemental Table 2.2, and the equations are written out explicitly in Supplemental Equation 2.1. We 

divided each annual maximum streamflow (m3/s) by 100 times each basin’s area to get a per-area value 

(m3/s per 100 km2) so we could pool residual variance across catchments and to support McMC 

convergence. 

 The residuals from the best-fit climate-only LME, at the mean posterior density for the 

parameters and with the highest ps (Equation 4) were then modeled with forest disturbance as a linear 

predictor. To incorporate recovery, 20 regressions were fit with recovery year ranging from 1 to 20 years.  

 𝑟𝑟𝑖𝑖,𝑗𝑗

= 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  

𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑞𝑞�𝑖𝑖,𝑗𝑗,𝑠𝑠 𝑖𝑖𝑖𝑖 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑗𝑗 

𝑟𝑟𝑖𝑖,𝑗𝑗 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟𝚤𝚤,𝚥𝚥,𝑁𝑁�,𝜎𝜎) 

𝑟𝑟𝚤𝚤,𝚥𝚥,1� =  𝑏𝑏𝑏𝑏0,1 +  𝑏𝑏𝑏𝑏1,1 ∗ 𝑑𝑑𝑖𝑖,𝑗𝑗,1 

(5) 



𝑟𝑟𝚤𝚤,𝚥𝚥,2� =  𝑏𝑏𝑏𝑏0,2 +  𝑏𝑏𝑏𝑏1,2 ∗ 𝑑𝑑𝑖𝑖,𝑗𝑗,2 

… 

𝑟𝑟𝚤𝚤,𝚥𝚥,20� =  𝑏𝑏𝑏𝑏0,20 +  𝑏𝑏𝑏𝑏1,20 ∗ 𝑑𝑑𝑖𝑖,𝑗𝑗,20 

 

𝑟𝑟𝚤𝚤,𝚥𝚥,𝑁𝑁�~ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(20;  𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝20) 

 

Where 𝑟𝑟𝚤𝚤,𝚥𝚥,𝑁𝑁� is the expected climate-detrended water yield or peak flow in year i in catchment j with a 

forest recovery time of N years, with 𝑑𝑑𝑖𝑖,𝑗𝑗,𝑅𝑅 representing forest disturbance in year i in catchment j with a 

recovery time of R ranging from 1 to 20 years. The highest pN represents the most-likely recovery year N. 

Our confidence in the sign of b1,N (i.e., X% confidence that b1,N > 0) represents our confidence in an 

effect.  

2.3.2.2: Probabilistic analysis of annual maximum streamflow 

We used a nonstationary Gumbel model for annual maximum streamflow (Lima and Lall, 2010). 

The location and scale parameters had a stationary mean determined by basin spatial scale: both 

parameters of the Gumbel distribution increase linearly in log-log space with spatial scale (Lima and Lall, 

2010; Equation 6). We also allowed the location and scale to vary year-to-year, thus incorporating 

potential nonstationarities (Lima and Lall, 2010). Thus, the location and scale parameters of the Gumbel 

distribution, as modeled, are comprised of 1) a stationary component determined solely by the log-log 

scaling of these parameters with basin spatial scale, and 2) a nonstationary component determined by the 

annual variability of these parameters, varying according to some variance σ2.  

 

 

 𝑚𝑚𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑗𝑗 

𝑚𝑚𝑚𝑚𝑖𝑖,𝑗𝑗~ Gumbel� 𝑙𝑙𝑙𝑙𝑖𝑖,𝑗𝑗 , 𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗 � 
(6) 



 

ln �𝑙𝑙𝑙𝑙𝑖𝑖,𝑗𝑗�~ Normal (𝑏𝑏0 + 𝑏𝑏1 ∗ 𝑥𝑥𝑗𝑗 ,𝜎𝜎𝑙𝑙𝑙𝑙) 

ln (𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗) ~ Normal (𝑏𝑏2 + 𝑏𝑏3 ∗ 𝑥𝑥𝑗𝑗 ,𝜎𝜎𝑠𝑠𝑠𝑠) 

 

 

 

𝑞𝑞2𝚤𝚤,𝚥𝚥����� =  𝑙𝑙𝑙𝑙𝑖𝑖,𝑗𝑗 −  𝑠𝑠𝑠𝑠𝑖𝑖,𝑗𝑗 ∗ ln (− ln(0.5))  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑞𝑞2𝚥𝚥����������� =  (𝑏𝑏0 + 𝑏𝑏1 ∗ 𝑥𝑥𝑗𝑗) − (𝑏𝑏2 + 𝑏𝑏3 ∗ 𝑥𝑥𝑗𝑗) ∗ ln (− ln(0.5))  

 

 

Following Lima and Lall (2010), we transformed our catchment sizes to a zero-mean predictor to 

facilitate model convergence. The Q2 was estimated using the quantile function of the Gumbel 

distribution at a quantile of 0.5, which is defined as lo – sc*ln(-ln(0.5)). Thus, the stationary Q2 is the 

50% quantile of the Gumbel distribution defined by the log-log scaling regression of the location and 

scale parameter that only relies on the basin spatial size. In addition to this, in each individual year, the 

Q2 “randomly” varies according to some variance of the location and scale parameters. However, because 

Bayesian parameter estimation is used, we can actually estimate the value of the Q2 in those years (Lima 

and Lall, 2010). Thus, we can compare the actual best-estimate Q2 in each individual year against what 

would have been predicted as the Q2 in the absence of the nonstationary variability. The difference 

between 𝑞𝑞2𝚤𝚤,𝚥𝚥����� (the nonstationary q2) and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑞𝑞2𝚥𝚥����������� (the stationary q2 determined solely by catchment size) 

represented the component of the Q2 attributable to nonstationary processes. We modeled the mean 

posterior density value of the nonstationary component of the Q2 against forest disturbance and a 

winter/spring precipitation interaction using a linear model. We chose the winter/spring interaction term 

because of a correlation analysis, the results of the peak flow LMEs, and attempting to encapsulate the 

key peak flow drivers of the region in a single variable (Verry et al., 1983).  



 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 𝑞𝑞2𝑖𝑖,𝑗𝑗 = 𝑞𝑞2𝚤𝚤,𝚥𝚥����� −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑞𝑞2𝚥𝚥����������� 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 𝑞𝑞2𝑖𝑖,𝑗𝑗 ~ Normal ( � 𝑎𝑎0,𝑗𝑗 +  𝑎𝑎1,𝑗𝑗 ∗ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑗𝑗 +  𝑎𝑎2,𝑗𝑗 ∗ 𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗 �  , 𝜎𝜎𝑗𝑗 ) 

(7) 

 

Where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖,𝑗𝑗 is the N-year forest disturbance that was selected in the peak flow LME analysis, 

𝑤𝑤𝑤𝑤.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗 is the winter precipitation multiplied by spring precipitation, centered on the mean and 

divided by standard deviation to align the magnitude of variability with forest disturbance, and in year i in 

catchment j, a’s are regression parameters, and 𝜎𝜎𝑗𝑗 is a catchment-specific standard deviation. The sign of 

the effect hyperparameter a1 was assessed as direction of the effect of forest disturbance on the Q2. 

Finally, to assess how much overall variability in the Q2 is explainable by nonstationary processes, we 

compared the mean ratio of the magnitude of 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 𝑞𝑞2𝑖𝑖,𝑗𝑗 to 𝑞𝑞2𝚤𝚤,𝚥𝚥����� for each catchment. Because some years 

the Q2 is lower than that expected due to stationary processes alone, and some years it is higher (and thus 

can “cancel out” the overall magnitude of nonstationarity), to assess the relative importance of stationary 

versus nonstationary drivers, we took the root squared difference between the nonstationary and 

stationary Q2 components as the magnitude of the nonstationary effect, and compared this to the overall 

magnitude of the Q2. 

 

3. Results 

 

3.1: Kawishiwi  

 

Expected and observed water yield after the fire are shown in Table 3. Water yield was elevated 

in years 2-6 after the fire. In all eight post-fire years, the climate variables accounted for 58% of the 

variability in water yield. There were only three years where water yield increased more than 10 mm after 

the fire (years 2-4). We were >90% confident in this effect in year two, 83% confident in year three, and 



≤ 80% confident in both yield increases or yield decreases in all other post-fire years. Water yield 

recovered to pre-fire conditions within 5 years of the fire: the hydrologic effect of fire to surface water 

was short-lived compared to the regional guidelines of 15-year hydrologic recovery after forest harvesting 

disturbance. 

The regression results for annual maximum flow showed no increases or decreases for which we 

were greater than 90% confident (Table 4). However, we were 88% confident that the annual maximum 

flow increased in year 3 after the fire, and 86% confident that the annual maximum flow decreased in 

year 5 after the fire. Overall, the annual maximum flow regression gave lower confidence for any fire 

effects, and a lack of consistent effect direction, if one existed. The dominance of climate factors is also 

apparent via the regression results for annual maximum flows. The winter precipitation and AMO index 

accounted for 32% of the variability in post-fire annual maximum flows. Although this is less than one 

half, annual maximum flows were much more variable even in the pre-fire time period, with a residual 

standard error of 1.1 mm/day. The climate variables were even better predictors in describing post-fire 

annual maximum discharges than during the pre-fire years: after the fire, the residual standard error 

between the predicted values and the observed values according to the ANCOVA had a residual standard 

error of 0.80 mm/day. Despite this variability, climate trends via winter precipitation and AMO index 

were detectable and significant for describing the annual maximum flow, while the 2011 fire was not a 

detectable signal (with confidence) in the annual maximum flow series. 

There was no effect for which we were confident of the fire on Gumbel distribution location or 

scale parameters (μo = -0.10 ± 0.35 (p = 0.62); σo = -0.13 ± 0.31 (p = 0.72)). We found no changes in the 

annual maximum daily streamflow in any year for which we were greater than 80% confident across the 

entire CDF, from the 2-year to 50-year return interval event (i.e., all Type-S p > 0.20). Annual maximum 

flows at any given return interval actually decreased relative to what we would expect based on the pre-

fire predictions, but with low (<80%) confidence. Climatic drivers were much more apparent than fire 

effects for peak flows in the frequency analysis as well: while the effect of the fire on the location 

parameter for the Gumbel distribution was -0.10, a change in the AMO index of one standard deviation of 



that observed 1967-2019 changed the location parameter by 0.33. In a year with average winter 

precipitation (195 mm), and the AMO is at the minimum observed 1967-2019, the 1.5-year annual 

maximum flow is 3.5 mm/day, versus when AMO is at a maximum it is 2.2 mm/day, causing a difference 

of over 1 mm/day (> 50% difference). However, when the AMO is at its mean value for 1967-2019, as is 

winter precipitation, the 1.5-year flow on the burned catchment is 2.7 mm/day, versus an expected (i.e., 

projected based on pre-fire relationships) 2.8 mm/day, a difference of only approximately -4%. 

 

 

3.2: St Louis Results 

Of the five potential equations for water yield from Equation 4, the equation including both 

precipitation and the first ET-principal component was chosen in 92% of samples, indicating a high 

degree of belief that this was the best climate-only model. This model had the highest r2 value (0.79) and 

lowest standard residual error (41mm). The “fixed effect” runoff ratio, or mm of water yield per 

additional mm of precipitation, was 0.69 ± 0.11; all precipitation parameters were greater than 0 (Type S 

p < 0.001). The first ET principal component fixed effect was inversely correlated with water yield – as 

factors that increase ET (vapor pressure deficit, PET, etc.) increased,  water yield decreased. However, 

confidence in this relationship was generally low (p = 0.33). Other fixed effects parameters for the 

selected model are available in Supplemental Table 3.2. Precipitation was the dominant explanatory 

variable in the regression, with a precipitation-only regression having an r2 of 0.70.  

The recovery time for the effect of forest disturbance on climate-detrended water yield was 11 

years (Figure 3). We were ~9.3 times more confident that when a forest disturbance occurred and was 

allowed to regenerate, that forest returned to a pre-disturbance impact on water yield in 10 or 11 years, 

rather than any other recovery year window between 1 and 20 years. The effect of the 11-year forest 

disturbance on climate-adjusted annual water yield is shown in Table 5. A majority of catchments did not 

show water yield changing substantially in response to forest disturbance (8 of 11 catchments had 



confidence of effect < 90%). For three of the 11 catchments, including the smallest and largest 

catchments, we were >99% confident that increasing the proportion of forest that was disturbed within the 

previous 11 years was associated with lower climate-detrended water yield. For each additional 

percentage of the basin that had been disturbed within the previous 11 years, water yield decreased 5 to 

25 mm (including the 90% credible interval), depending on the basin (Table 5). Size of the disturbance 

effect was inversely related to basin size where we were >90% confident in the effect. However, the 

amount of overall variability explained by forest disturbance was low. While the climate-only model of 

water yield had an r2 of 0.79, the r2 of the regression of climate-detrended water yield versus 11-year 

forest disturbance was 0.13. Thus, the variability of the overall water yield that may be attributable to 

forest disturbance was ~3%, as only 21% of the variability in water yield remained after controlling for 

the climate, and 13% of that was attributable to forest disturbance.  

For peak flows, the spring precipitation plus winter precipitation and winter temperature 

interaction model was chosen 99% of the time. This model had an R2 of 0.63, and a residual standard 

error of 2.1 [m3/s / 100 km2]. However, the parameters had much higher uncertainty compared to the 

water yield model, with none of the fixed effect parameters being greater than or less than zero with any 

confidence (Type S p’s ~ 0.5). Other fixed effects parameters for the selected model are available in 

Supplemental Table 3.3. The best-choice forest recovery model of the climate-detrended peak flows was 

13 years of forest disturbance (Figure 4). Using the 13-year recovery model, forest disturbance was 

positively or negatively correlated with climate-detrended annual maximum streamflow residuals in four 

of the 11 basins with >90% confidence (Table 6). There was no consistent directionality for an effect, 

with two catchments showing a negative correlation, and two catchments a positive correlation. However, 

the 13-year forest disturbance only explained 22% of the variance of the climate-detrended peak flows 

and peak flows still had a residual error of 1.8 [m3/s / 100 km2]. Therefore, of the remaining 37% of the 

variability in peak flows remaining after climate detrending, 22% of that was explained by forest 

disturbance variables. This portion, then, totals 8% of the variability in peak flows explained by forest 



disturbance. The forest disturbance only contributed 0.3 [m3/s / 100 km2] more information to the peak 

flow estimation of the model.  

 

The 13-year forest disturbance and winter*spring precipitation explained 44% of the variability in 

the nonstationary component of the Q2, with effects hyperparameters shown in Table 7. The St Louis 

River near Forbes (1791 km2) indicated that as 13-year forest disturbance increased, the expected Q2 

actually decreased (confidence = 98%). Furthermore, in all basins, when the winter*spring precipitation 

increased, the Q2 also increased with >90% confidence in 5 of 11 basins. The magnitude of the annual 

nonstationary fluctuations in the Q2 comprised 20% of the overall Q2 estimate (Figure 5). This means 

that changing land cover and changing climate variables in the 1986-2018 time period, even if 

significantly affecting the Q2, only could influence up to 20% of the relative magnitude of the Q2. The 

remaining variability in Q2 basin-to-basin was solely modeled via scaling its basin parameters according 

to basin spatial scale. Of this unexplained variation in Q2 year-to-year, the winter*spring precipitation 

term explains 49% of the variability if the forest disturbance is held at the mean level, while if the 

winter*spring precipitation is held at its mean level, the forest disturbance term only explains 2% of the 

variability in nonstationary Q2. Thus, climate and basin spatial scale have a substantially higher impact 

on Q2 at these scales.  

 

 

4. Discussion 

 

Forest disturbance had a discernible correlation with water yield in both case studies, but in 

different directions. In the Kawishiwi, forest disturbance was associated with a water yield increase (30% 

increase maximum), but this effect disappeared after 5 years, and we were only >90% confident of an 

effect existing in year 2 after the fire. In the St. Louis Basin, we observed that more forest disturbance 

was associated with a water yield decline compared to what was expected based on climate alone 



(accounting for uncertainty, between -10% and -2% of the basin mean water yield for each percentage 

point of additional forest disturbance within the previous 11 years). Effects of forest disturbance on 

annual maximum peak streamflows were mixed, with some increases and some decreases observed. 

Catchments in the boreal-temperate transition zone have high storage capacity which may attenuate 

effects of forest disturbance on peak flows.  

 

4.1: Disturbance Type, Recovery Time, and Streamflow Effects 

 

 Differences in disturbance regime influenced the effects of forest disturbance on streamflow. The 

Kawishiwi case study focused on a “catastrophic” forest disturbance regime, in which a large portion 

(~30%) of a catchment was deforested by fire within a single year. The foundational paradigm in which 

“forest disturbance increases water yield” is largely based on stand-clearing forest harvesting experiments 

at the small catchment scale (Brown et al., 2005; Stednick, 1996; Bosch and Hewlett, 1982). The 

Kawishiwi case study represented an analogue to this approach but at a larger scale, and our results were 

consistent with the literature (e.g., the response plots well within Buttle 2011: Figure 33.1a). However, 

the effect decayed more rapidly than in small catchment studies in the region (e.g., Sebestyen et al., 

2011). Furthermore, the temporal pattern of the effect indicated basin scaling and storage impacts on 

streamflow unique to large catchments (discussed in Section 4.2). 

When more disturbance types were considered across multiple years (i.e., the St. Louis case 

study), however, we found that more disturbance was associated with lower water yield. This disturbance 

measure was focused on a distributed multi-year aggregation of harvesting, fire, conversion, and 

windthrow. There is a growing catchment sciences literature examining the effect of incremental 

disturbances that do not clear the entire canopy in a single event (Bart et al., 2021; Goeking & Tarboton, 

2020; Brantley et al., 2013). Forest disturbance, especially at sub-catchment scales, has been shown to 

reduce water yield due to compensatory evapotranspiration (ET) from other, nearby, trees and 

undergrowth vegetation or higher ET rates in disturbed areas arising from vigorous early regeneration, 



increased surface evaporation, or increased ET by remaining species when a forest is thinned but not 

cleared (Goeking & Tarboton, 2020; Bart et al., 2021; Segura et al., 2020). In a recent review of the 

literature from western North America focusing on widespread tree mortality occurring after the year 

2000, non-stand-replacing disturbance was more likely to have been associated with a decrease in water 

yield compared to stand-replacing disturbance (Goeking & Tarboton, 2020). In Minnesota, rapid regrowth 

of young aspen (Populus spp.), common in the St. Louis catchments, has been documented as vigorous, 

with 2m+ tall sucker growth within two years of aspen harvesting (Verry et al., 1983). In a paired 

catchment experiment at the Marcell Experimental Forest (MEF) in north-central Minnesota, in a similar 

wetland-rich biophysical environment, water yield remained elevated in the 10 years after a forest harvest 

where ~70% of a small catchment was harvested, with the effect size decaying each year. However, in the 

10th year after harvest, observed water yield was less than expected based on the pre-harvest calibration 

regression (Sebestyen et al., 2011), showing evidence that young forest in regional conditions can use 

more water than commercially mature forests. Finally, using catchment-aggregated USGS SSEBop 

remotely-sensed actual ET for 2000-2018 (Senay, 2018; Senay and Kagone, 2019), we found a significant 

(p<0.10, least-squares regression) positive correlation between AET and catchment-scale 11-year forest 

disturbance, indicating that catchments with more disturbance in the prior 11 years had higher AET. This 

is consistent with the streamflow decreases observed. 

Hydrological recovery in this region is often considered ~15 years of regrowth based on research 

conducted at the MEF (Verry, 2004), and our recovery analysis found a similar time horizon at ~11 years, 

with decreased flows in the recovery period. Another related explanation for the decreased water yield 

associated with increased forest disturbance is the definition of “recovery” used. Our method of 

calculating recovery was based on whether a particular area with a forest disturbance was considered 

“disturbed” or not. Although conversion and regenerating disturbance was lumped, regenerating forest 

disturbance was often more important to the disturbance metric than conversion, especially when 

aggregated over the prior 11-13 years (Table 1). For the 11-year recovery window, forest harvested 1 year 

ago versus 10 years ago was considered as affecting water yield in the same way. If disturbed sites began 



to use more water after the first few years following disturbance, then those years for which the young 

forest is using more water is lumped with those years in which it is using less into an aggregated metric. 

Supporting this, the general correlation of forest disturbance with streamflow is positive when recovery 

time is 1-3 years, but negative after that, for the St. Louis at Scanlon catchment. Thus, the 11 to 13-year 

disturbance recovery metric may be more aptly described as a “young forest” metric, grouping those 

portions of the catchment that have elevated ET post-disturbance. However, the Kawishiwi analysis found 

return to pre-disturbance streamflow after 5 years; it remains unclear what the effect could be >8 years 

after the fire, as effects were only estimated from 2012-2019. 

Peak flows showed an inconsistent response to disturbance. The flood-frequency analysis for the 

Kawishiwi showed peak flows decreasing after the fire, but we were not confident in that effect; the 

regression analysis showed some increases and some decreases, but with no confidence >90%. For the St. 

Louis analysis, we were not confident in the effects of the forest disturbance on the Q2 peak flow in the 

flood-frequency framework, except for at the St. Louis near Forbes catchment, where we showed that 

increased forest disturbance was associated with decreased Q2 peak flows; this is consistent with the 

direction of effect in the Kawishiwi flood-frequency analysis, and with the water yield results. Reductions 

in peak flows have been found in the region due to desynchronization of snowmelt within a catchment, 

resulting in smaller peak flows after forest disturbance, which would be consistent with where reductions 

in peak flows were indicated in both frequency analyses (Verry et al., 1983; Sebestyen et al., 2011). For 

the St. Louis peak flow regression analysis, we were confident in some effects: two catchments showing a 

positive correlation between peak flows and forest disturbance, and two catchments showing a negative 

correlation with >90% confidence. In general, our findings are consistent with other studies that show the 

effect of forest disturbance on peak flows being more variable than the effect on water yield (Buttle, 

2011).  

Finally, only fast forest disturbances were considered in our analysis. There were several 

defoliation events associated with forest tent caterpillar in the St. Louis catchments within the study 

period (Malacosoma disstria; Cooke et al., 2022). However, defoliation due to tent caterpillar occurs in 



the spring of the year when ET is generally energy-limited in the region, and affected trees re-foliate after 

invasion within the same year. Annually aggregated impacts of forest tent caterpillar on actual ET has 

been shown negligible in similar environments (Stephens et al., 2018). At the Scanlon gage where water 

yield data were available for the entire record, annual water yield climate-only model residuals were not 

well-correlated with tent caterpillar defoliation area (correlation = 0.06).  

 

4.2: Effect of Catchment Size 

 

The low relief of the landscape introduces some uncertainty into the analysis as well: the use of 

the 10m digital elevation model used by the version of StreamStats we used may not adequately have 

captured all basin boundaries. However, this effect is expected to be minor at these large scales, and 

because we did not conduct a strict “water balance” analysis where the tracking of accurate volumes is 

key, these delineation errors would likely just introduce additional variability accounted for in our 

regressions.  

Our hypothesis that distinctive patterns associated with catchment spatial scale will be discernible 

in the catchment response to forest disturbance is supported: the lack of a strong effect of forest cover 

change on water yield and peak flows was due to climate variables comprising a majority of the runoff 

signal, and the small effects observed were likely attenuated by large-scale basin storage capacity in lakes 

and wetlands. This was illustrated in both the Kawishiwi and St. Louis catchments to varying degrees. In 

both catchments, a relative resiliency to forest disturbance was exhibited, as streamflow responses did not 

last long (<13 years in all instances, <5 years in the Kawishiwi), and total effects were small and difficult 

to observe with confidence. Most of the catchments in the St. Louis Basin did not have a confident 

correlation between water yield or peak flows and forest disturbance. 

In the Kawishiwi catchment, in all 8 post-fire years, the climate variables accounted for 58% of 

the variability in post-fire water yield. Water yield increased at least 10mm above expected in only three 

post-fire years: years 2-4, and predicted streamflow variables were much more sensitive to climatic 



variation.  The lagged water yield response to the 2011 fire indicates a streamflow response strongly 

modulated by catchment storage dynamics (Table 3). Water yield did not significantly increase until year 

2 after the fire (by 82 mm). The two driest years on record since streamgaging began in 1966 were 2010 

and 2011 – the year before and the year of the fire. These dry conditions contributed to the large extent of 

the fire and the difficulty in extinguishing the Pagami Creek Fire (Kolka et al., 2014; Srock et al., 2018). 

Thus, there was likely a storage deficit that had to be replenished before the extra water in the catchment 

could be discharged as streamflow. In boreal Canadian Shield lake-dominated headwater catchments, lake 

storage deficit has been found to be a co-dominant driver of streamflow along with climate (Mielko and 

Woo, 2006; Spence, 2000), consistent with our findings where fire effects on streamflow show evidence 

of modulation by catchment storage demands.  

In the St. Louis case study, even if there was a strongly correlated relationship between forest 

disturbance and peak flows, it could only account for up to ~20% of the variability in the Q2 through 

time. In fact, ~80% of the Q2 was explainable simply by basin spatial scale, and of the ~20% that was 

nonstationary, 49% was explained by winter*spring precipitation and only 2% by the 13-year forest 

disturbance. The mixed results of the peak flow regression, even where there was a >90% confidence 

correlation between forest disturbance and climate-detrended peak flows, had a much higher amount of 

variability explained by climate factors. The breakdown of stationary versus nonstationary components 

did not have a relationship with basin scale (Figure 5). However, the minimum basin scale was ~50 km2, 

which is still two orders of magnitude larger than the experimental catchments at the Marcell 

Experimental Forest. Additionally, high confidence effects of forest disturbance on water yield in the St. 

Louis catchments decreased in magnitude with increasing basin size. There were only three catchments 

for which this condition applied, so it is unclear if this trend is generalizable. In general, streamflow in 

forested catchments with spatial area greater than 50 km2 in low-relief glaciated regions is primarily 

influenced by climate variability and factors associated with basin spatial scale, while forest disturbance 

can have a detectable effect even at large catchment scales while being largely muted by fluctuations in 

climate drivers of streamflow. Overall, only marginal improvement (<10% variability explanation) is 



granted by including forest disturbance as an explicit predictor of water yield and peak flows in the St. 

Louis case study.  

 

5. Conclusion 

 

We conclude that streamflow in large northern catchments is primarily controlled by climate 

drivers in the face of forest cover change at levels below the 30% areal disturbance analyzed in this study, 

but impacts can occur. Our work found that forest disturbance at low levels (<10%) within the prior 11-13 

years can decrease water yield, possibly due to vigorous regrowth, but somewhere between 10-30% areal 

disturbance there is a shift where water yields increase following disturbance. Recovery time, or the time 

it takes for a regenerating forest to function hydrologically as it did before disturbance is likely ~5-13 

years in the northern Lake States. This was illustrated in the Kawishiwi with a return to pre-fire water 

yields within 5 years, extending to a 13-year recovery for St. Louis basin peak flows. Effects of forest 

disturbance on the Q2 peak flows in the St. Louis basins are outweighed 4:1 by the effects of climate and 

basin size (Figure 5). In response to our hypotheses, we found that forest disturbance can both increase or 

decrease water yield depending on the disturbance regime, and equivocal evidence indicated that peak 

flows may increase or decrease, but peak flow results were less consistent and confident than water yield 

results. Where forest disturbance areas were small (approximately 1-10% of basin area) in the St. Louis 

catchments, < 10% of variability explanation was granted by including forest disturbance in models. 

However, consistent with a growing literature on the effects of partial forest disturbance in a catchment 

(e.g., Goeking & Tarboton, 2020; Bart et al., 2021, Segura et al., 2020), we found water yield decreases 

in response to higher forest disturbance levels under 10% of the basin area. Finally, our hypothesis that 

we would see clear signals of basin spatial scale within the streamflow response to forest disturbance was 

supported, in that the timing and relative size of climate versus forest disturbance effects pointed to the 

overall importance of climate variation and distributed catchment storage to streamflow generation. 

 



6. Acknowledgements 
 
This work was funded in part by the Great Lakes Restoration Initiative (GLRI, Focus Area 5; Project 
Template #936: Planning Informed by Alternative Future Watershed Ecosystem Services). The authors 
thank Jeffrey Suvada for GIS support, and all internal reviewers: Brian Sturtevant, Deahn Donnerwright, 
Jeff Manion, Brian Connelly, and especially Mark Green. 
 
Works Cited 
 

Ali, G, D. Tetzlaff, J.J. McDonnell, C. Soulsby, S. Carey, H. Laudon, K. McGuire, J. Buttle, J. Seibert, 
and J. Shanley. 2015. "Comparison of threshold hydrologic response across northern 
catchments." Hydrological Processes 29 (16): 3575-3591. doi:https://doi.org/10.1002/hyp.10527. 

Alila, Y., Kuraś, P. K., Schnorbus, M., & Hudson, R. (2009). Forests and floods: A new paradigm sheds 
light on age-old controversies. Water Resources Research, 45(8). 
https://doi.org/10.1029/2008wr007207  

 
Andréassian, Vazken. 2004. "Waters and forests: from historical controversy to scientific debate." 

Journal of Hydrology 291 (1-2): 1-27. doi:https://doi.org/10.1016/j.jhydrol.2003.12.015. 

Bart, R.R., R.L. Ray, M.H. Conklin, M. Safeeq, P.C. Saksa, C.L. Tague, and R.C. Bales. 2021. 
"Assessing the effects of forest biomass reductions on forest health and streamflow." 
Hydrological Processes 35 (3): e14114. doi:https://doi.org/10.1002/hyp.14114. 

Bathurst, J.C., Fahey B, Iroumé A, and Jones J. 2020. "Forests and floods: using field evidence to 
reconcile analysis methods." Hydrological Processes 34 (15): 3295-3310. 
doi:https://doi.org/10.1002/hyp.13802. 

Beguería S, Vicente-Serrano SM (2023). _SPEI: Calculation of the Standardized Precipitation-Evapotranspiration 
 Index_. R package version 1.8.1, Available at https://CRAN.R-project.org/package=SPEI. 
 
Bense, VF, T Gleeson, SE Loveless, O Bour, and J Scibek. 2013. "Fault zone hydrogeology." Earth-

Science Reviews 127: 171-192. doi:https://doi.org/10.1016/j.earscirev.2013.09.008. 

Blöschl, G. (2022). Three hypotheses on changing river flood hazards. Hydrology and Earth System 
Sciences, 26(19), 5015-5033. https://doi.org/10.5194/hess-26-5015-2022  

 
Blöschl, G., Ardoin-Bardin, S., Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., Matamoros, D., 

Merz, B., Shand, P., & Szolgay, J. (2007). At what scales do climate variability and land cover 
change impact on flooding and low flows? Hydrological Processes, 21(9), 1241-1247. 
https://doi.org/10.1002/hyp.6669  

 
Bosch, J.M., and J.D. Hewlett. 1982. "A Review of Catchment Experiments to Determine the Effect of 

Vegetation Changes on Water Yield and Evapotranspiration." Journal of Hydrology 55: 3-23. 
doi:https://doi.org/10.1016/0022-1694(82)90117-2. 

Brantley, S., C.R. Ford, and J.M. Vose. 2013. "Future species composition will affect forest water use 
after loss of eastern hemlock from southern Appalachian forests." Ecological Applications 23 (4): 
777-790. doi:https://doi.org/10.1890/12-0616.1. 

https://doi.org/10.1029/2008wr007207
https://doi.org/10.5194/hess-26-5015-2022
https://doi.org/10.1002/hyp.6669


Brown, A.E., L. Zhang, T.A. McMahon, A.W. Western, and R.A. Vertessy. 2005. "A review of paired 
catchment studies for determining changes in water yield resulting from alterations in 
vegetation." Journal of Hydrology 310: 28-61. doi:https://doi.org/10.1016/j.jhydrol.2004.12.010. 

Buttle, JM. 2011. "The effects of forest harvesting on forest hydrology and biogeochemistry." In Forest 
Hydrology and Biogeochemistry, edited by DF Levia, D Carlyle-Moses and T Tanaka, 659-677. 
Dordrecht: Springer. 

Buttle, J. M., Beall, F. D., Webster, K. L., Hazlett, P. W., Creed, I. F., Semkin, R. G., & Jeffries, D. S. 
(2018). Hydrologic response to and recovery from differing silvicultural systems in a deciduous 
forest landscape with seasonal snow cover. Journal of Hydrology, 557, 805-825. 
https://doi.org/10.1016/j.jhydrol.2018.01.006  

Buttle, J. M., Webster, K. L., Hazlett, P. W., & Jeffries, D. S. (2019). Quickflow response to forest 
 harvesting and recovery in a northern hardwood forest landscape. Hydrological Processes, 33(1), 
 47-65. https://doi.org/10.1002/hyp.13310 

Cooke, B.J., B.R. Sturtevant, and L.-E. Robert. 2022. "The Forest Tent Caterpillar in Minnesota: 
Detectability, Impact, and Cycling Dynamics." Forests 13: 601. 
doi:https://doi.org/10.3390/f13040601. 

Dewitz, J, and U.S. Geological Survey. 2021. "National Land Cover Database (NLCD) 2019 Products 
(ver. 2.0, June 2021)." doi:10.5066/P9KZCM54. 

Gelman, A., and D.B. Rubin. 1992. "Inference from Iterative Simulation Using Multiple Sequences." Stat. 
Sci. 7: 457-511. 

Gelman, A., and F. Tuerlinckx. 2000. "Type S error rates classical and Bayesian single and multiple 
compparison procedures." Comput. Stat. 15: 373-390. 
doi:https://doi.org/10.1007/s001800000040. 

Gelman, A., X. Meng, and H. Stern. 1996. "Posterior Predictive Assessment of Model Fitness via 
Realized Discrepancies." Stat. Sin. 6: 733-807. 

Giles-Hansen, K., Li, Q., & Wei, X. (2019). The Cumulative Effects of Forest Disturbance and Climate 
Variability on Streamflow in the Deadman River Watershed. Forests, 10(2). 
https://doi.org/10.3390/f10020196  

 
Goeking, S.A., and D.G. Tarboton. 2020. "Forests and water yield: A synthesis of disturbance effects on 

streamflow and snowpack in western coniferous forests." Journal of Forestry 118 (2): 172-192. 
doi:https://doi.org/10.1093/jofore/fvz069. 

Green, K. C., & Alila, Y. (2012). A paradigm shift in understanding and quantifying the effects of forest 
harvesting on floods in snow environments. Water Resources Research, 48(10). 
https://doi.org/10.1029/2012wr012449  

 
Guillemette, F., Plamondon, A. P., Prévost, M., & Lévesque, D. (2005). Rainfall generated stormflow 

response to clearcutting a boreal forest: peak flow comparison with 50 world-wide basin studies. 
Journal of Hydrology, 302(1-4), 137-153. https://doi.org/10.1016/j.jhydrol.2004.06.043 

 
Gumbel, EJ. 1958. Statistics of Extremes. New York: Columbia University Press. 

https://doi.org/10.1016/j.jhydrol.2018.01.006
https://doi.org/10.1002/hyp.13310
https://doi.org/10.3390/f10020196
https://doi.org/10.1029/2012wr012449
https://doi.org/10.1016/j.jhydrol.2004.06.043


Hewlett, J., Lull, H., & Reinhart, K. (1969). In Defense of Experimental Watersheds. Water Resources 
Research, 5(1). https://doi.org/https://doi.org/10.1029/WR005i001p00306 

 
Hewlett, J. D., & Hibbert, A. R. (1961). Increases in Water Yield after Several Types of Forest Cutting. 

International Association of Scientific Hydrology. Bulletin, 6(3), 5-17. 
https://doi.org/10.1080/02626666109493224  

 
Hobbs, H.C., and J.E. Goebel. 1982. "Geologic Map of Minnesota - Quaternary Geology. MGS Map S-

1." 

Homer, C.G., Dewitz, J.A., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N.D., 
Wickham, J.D., Megown, K. 2015. "Completion of the 2011 National Land Cover Database for 
the coterminous United States-Representing a Decade of Land Cover Information." 
Photogrammetric Engineering & Remote Sensing 81 (5): 345-354. 

Hou, Y., Wei, X., Vore, M., Déry, S. J., Pypker, T., & Giles-Hansen, K. (2022). Cumulative forest 
disturbances decrease runoff in two boreal forested watersheds of the northern interior of British 
Columbia, Canada. Journal of Hydrology, 605. https://doi.org/10.1016/j.jhydrol.2021.127362  

 
Ide, J. i., Finér, L., Laurén, A., Piirainen, S., & Launiainen, S. (2013). Effects of clear-cutting on annual 

and seasonal runoff from a boreal forest catchment in eastern Finland. Forest Ecology and 
Management, 304, 482-491. https://doi.org/10.1016/j.foreco.2013.05.051  

 
Iler, A. M., Inouye, D. W., Schmidt, N. M., & Hoye, T. T. (2017). Detrending phenological time series 

improves climate-phenology analyses and reveals evidence of plasticity. Ecology, 98(3), 647-655. 
https://doi.org/10.1002/ecy.1690  

 
Jirsa, M.A., T.J. Boerboom, V.W. Chandler, J.H. Mossler, A.C. Runkel, and D.R. Setterholm. 2011. "S-

21 Geologic Map of Minnesota-Bedrock Geology." 

Jones, J., & Grant, G. E. (1996). Peak Flow Responses to Clear-Cutting and Roads in Small and Large 
 Basins, western Cascades, Oregon. Water Resources Research, 32(4), 959-974. 
 https://doi.org/https://doi.org/10.1029/95WR03493 

Kass, R.E., and A. Rafferty. 1995. "Bayes ratios." Journal of American Statistical Association 90: 773-
795. 

Kennedy, R.E., Yang, Z. and Cohen, W.B., 2010. Detecting trends in forest disturbance and recovery 
 using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote 
 Sensing of Environment, 114(12), pp.2897-2910. 

Kolka, R., B. Sturtevant, P. Townsend, J. Miesel, P. Wolter, S. Fraver, and T. DeSutter. 2014. "Post-Fire 
Comparisons of Forest Floor and Soil Carbon, Nitrogen, and Mercury Pools with Fire Severity 
Indices." Soil Sci. Soc. Am. J. North Am. For. Soils Conf. Proc. 78 S58-S65. 
doi:https://doi.org/10.2136/sssaj2013.08.0351nafsc. 

Laudon, H. and Sponseller, R.A., 2018. How landscape organization and scale shape catchment 
 hydrology and biogeochemistry: Insights from a long‐term catchment study.  Wiley 
 Interdisciplinary Reviews: Water, 5(2), p.e1265. 

Likens, Gene E. 2001. "Biogeochemistry, the watershed approach: some uses and limitations." Marine 
and Freshwater Research 52 (1): 5-12. doi:https://doi.org/10.1071/MF99188. 

https://doi.org/https:/doi.org/10.1029/WR005i001p00306
https://doi.org/10.1080/02626666109493224
https://doi.org/10.1016/j.jhydrol.2021.127362
https://doi.org/10.1016/j.foreco.2013.05.051


Lima, C.H., and U. Lall. 2010. "Spatial scaling in a changing climate: A hierarchical bayesian model for 
non-stationary multi-site annual maximum and monthly streamflow." Journal of Hydrology 383 
(3-4): 307-318. doi:https://doi.org/10.1016/j.jhydrol.2009.12.045. 

Lin, Y., & Wei, X. (2008). The impact of large-scale forest harvesting on hydrology in the Willow 
 watershed of Central British Columbia. Journal of Hydrology, 359(1-2), 141-149. 
 https://doi.org/10.1016/j.jhydrol.2008.06.023 

Loftis, J. C, L. H. MacDonald, S. Streett, H.K. Iyer, and K. Bunte. 2001. "Detecting cumulative 
watershed effects: the statistical power of pairing." Journal of Hydrology 251 (1-2): 49-64. 
doi:https://doi.org/10.1016/S0022-1694(01)00431-0. 

McEachran, Z.P., D.L. Karwan, S.D. Sebestyen, R.A. Slesak, and G.H.C. Ng. 2021. "Nonstationary 
flood-frequency analysis to assess effects of harvest and cover type conversion on peak flows at 
the Marcell Experimental Forest, Minnesota, USA." Journal of Hydrology 596: 126054. 
doi:https://doi.org/10.1016/j.jhydrol.2021.126054. 

McEachran, Z. P., Karwan, D. L., & Slesak, R. A. (2020). Direct and Indirect Effects of Forest 
Harvesting on Sediment Yield in Forested Watersheds of the United States. JAWRA Journal of 
the American Water Resources Association, 57(1), 1-31. https://doi.org/10.1111/1752-
1688.12895  

 
McShane, B.B., D. Gal, A. Gelman, C. Robert, and J.L. Tackett. 2019. "Abandon Statistical 

Significance." Am. Stat. 73: 235-245. doi:https://doi.org/10.1080/00031305.2018.1527253. 

Mengistu, S.G., I.F. Creed, R.J. Kulperger, and C.G. Quick. 2013. "Russian nesting dolls effect – Using 
wavelet analysis to reveal non-stationary and nested stationary signals in water yield from 
catchments on a northern forested landscape." Hydrological Processes 27: 669-686. 
doi:https://doi.org/10.1002/hyp.9552. 

Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, et al. 2012. Global 
Historical Climatology Network - Daily (GHCN-Daily), Version 3.26. NOAA National Climatic 
Data Center. Accessed December 2019. doi:http://doi.org/10.7289/V5D21VHZ. 

Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston. 2012. "An overview of the global 
historical climatology network-daily database." J. Atmos. Ocean. Technol. 29: 897-910. 
doi:https://doi.org/10.1175/JTECH-D-11-00103.1. 

Mielko, C., and M.K. Woo. 2006. "Snowmelt runoff processes in a headwater lake and its catchment, 
subarctic Canadian Shield." Hydrological Processes 20: 987-1000. 
doi:https://doi.org/10.1002/hyp.6117. 

Minnesota Department of Natural Resources. 2022. "Minnesota DNR Hydrography Dataset." Accessed 
10 4, 2022. 
https://resources.gisdata.mn.gov/pub/gdrs/data/pub/us_mn_state_dnr/water_dnr_hydrography/met
adata/metadata.html. 

Minnesota National Wetlands Inventory. 2019. Accessed 06 18, 2019. 
https://gisdata.mn.gov/dataset/water-nat-wetlands-inv-2009-2014. 

Neary, D. (2016). Long-Term Forest Paired Catchment Studies: What Do They Tell Us That Landscape-
Level Monitoring Does Not? Forests, 7(12). https://doi.org/10.3390/f7080164  

https://doi.org/10.1111/1752-1688.12895
https://doi.org/10.1111/1752-1688.12895
https://doi.org/10.3390/f7080164


 
NOAA-NCEI. 2020. "Weather Data for Winton Power Plant, Station #USC00219101, Period of Record 

1966-1995." Accessed 12 2019. https://www.ncdc.noaa.gov/cdo-web/datasets. 

National Oceanic and Atmospheric Administration – Physical Sciences Laboratory (NOAA-PSL) (2020). 
 Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation, North Atlantic Oscillation, and 
 Multivariate El Niño Southern Oscillation (ENSO) Index (MEI) data. AMO data accessed from 
 https://psl.noaa.gov/data/timeseries/AMO/  on 07/07/2020. 

Phillips, C.B., and D.J. Jerolmack. 2016. "Self-organization of river channels as a critical filter on climate 
signals." Science 352: 694-698. doi:https://doi.org/10.1126/science.aad3348. 

Pierson, F.B., J.D. Bates, T.C Svejcar, and S.P. Hardegree. 2007. "Runoff and erosion after cutting 
western Juniper." Rangeland Ecology and Management 60 (3): 285-292. 
doi:https://doi.org/10.2111/1551-5028(2007)60[285:RAEACW]2.0.CO;2. 

Plummer, M. 2003. "JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling." 
Proc. 3rd Int. Work. Distrib. Stat. Comput. (DSC 2003) 20-22. doi:https://doi.org/10.1.1.13.3406. 

Prettyman, D.H. 1978. "Soil Survey of Kawishiwi Area, Minnesota: Parts of Lake and Cook Counties in 
Superior National Forest." 

PRISM Climate Group. 2020. http://prism.oregonstate.edu, created 4 Feb 2004. Update: 07/15/2020. 
Accessed 07/18/2020. Oregon State University. 

R Core Team. 2022. "R: A language and environment for statistical computing." 

Rogger, M., M. Agnoletti, A. Alaoui, J. C. Bathurst, G. Bodner, M. Borga, V. Chaplot, et al. 2017. "Land 
use change impacts on floods at the catchment scale: Challenges and opportunities for future 
research." Water Resources Research 53 (7): 5209-5219. 
doi:https://doi.org/10.1002/2017WR020723. 

Safeeq, M., Grant, G. E., Lewis, S. L., & Hayes, S. K. (2020). Disentangling effects of forest harvest on 
 long-term hydrologic and sediment dynamics, western Cascades, Oregon. Journal of Hydrology, 
 580. https://doi.org/10.1016/j.jhydrol.2019.124259 

Sahin, V., & Hall, M. J. (1996). The effects of afforestation and deforestation on water yields. Journal of 
 Hydrology, 178(1-4), 293-309. https://doi.org/https://doi.org/10.1016/0022-1694(95)02825-0 

Sebestyen, SA, ES Verry, and KN Brooks. 2011. "Hydrological Responses to Changes in Forest Cover on 
Uplands and Peatlands." In Peatland Biogeochemistry and Watershed Hydrology at the Marcell 
Experimental Forest, edited by RK Kolka, SD Sebestyen, ES Verry and KN Brooks, 401-432. 
Boca Raton, FL: CRC Press. 

Segura, C., Bladon, K. D., Hatten, J. A., Jones, J. A., Hale, V. C., & Ice, G. G. (2020). Long-term effects 
of forest harvesting on summer low flow deficits in the Coast Range of Oregon. Journal of 
Hydrology, 585. https://doi.org/10.1016/j.jhydrol.2020.124749  

 
Senay, G. 2018. "Satellite Psychrometric Formulation of the Operational Simplified Surface Energy 

Balance (SSEBop) Model for Quantifying and Mapping Evapotranspiration." Applied 
Engineering in Agriculture 34 (3): 555-566. doi:https://doi.org/10.13031/aea.12614 . 

https://doi.org/10.1016/j.jhydrol.2019.124259
https://doi.org/https:/doi.org/10.1016/0022-1694(95)02825-0


Senay, G.B., and S. Kagone. 2019. Daily SSEBop Evapotranspiration: U. S. Geological Survey Data 
Release. US Geological Survey. doi:https://doi.org/10.5066/P9L2YMV. 

Spence, C. 2000. "The Effect of Storage on Runoff from a Headwater Subarctic Shield Basin." Arctic 53: 
237-247. 

Srock, A.F., J.J. Charney, B.E. Potter, and S.L. Goodrick. 2018. "The Hot-Dry-Windy Index : A New Fire 
Weather Index." Atmosphere 9 (11). doi:https://doi.org/10.3390/atmos9070279. 

Stednick, JD. 1996. "Monitoring the effects of timber harvest on annual water yield." Journal of 
Hydrology 176: 79-95. doi:https://doi.org/10.1016/0022-1694(95)02780-7. 

Stephens JJ, Black TA, Jassal RS, Nesic Z, Grant NJ, Barr AG, Helgason WD, Richardson AD, Johnson 
MS, and Christen A. 2018. "Effects of forest tent caterpillar defoliation on carbon and water 
fluxes in a boreal aspen stand." Agricultural and Forest Meteorology 253-254: 176-189. 
doi:https://doi.org/10.1016/j.agrformet.2018.01.035. 

Su, Y.-S., and M. Yajima. 2015. "R2jags: Using R to Run “JAGS”." 

Thomas, R. B., & Megahan, W. F. (1998). Peak flow responses to clear-cutting and roads in small and 
 large basins, Western Cascades, Oregon: A second opinion. Water Resources Research, 34(12), 
 3393-3403. https://doi.org/10.1029/98wr02500 

U.S. Geological Survey. 2016. "The StreamStats program, Version 4." Accessed 9 2018. 
http://streamstats.usgs.gov. 

Verry, E.S. 2004. "Land Fragmentation and Impacts to Streams and Fish in the Central and Upper 
Midwest." In A Century of Forest and Wildland Watershed Lessons, edited by G.G. Ice and J.D. 
Stednick, 129-154. Bethesda, MD: Society of American Foresters. 

Verry, E.S., J.R. Lewis, and K.N. Brooks. 1983. "Aspen Clearcutting increases Snowmelt and Storm 
Flow Peaks in North Central Minnesota." Water Resources Bulletin 19: 59-67. 

Viglione, A., Merz, B., Viet Dung, N., Parajka, J., Nester, T. and Blöschl, G., 2016. Attribution of 
 regional flood changes based on scaling fingerprints. Water resources research, 52(7), pp.5322-
 5340. 

Vogeler, J.C., 2019. "Most recent fast forest disturbances in Minnesota, Version 3.0." Accessed 2019. 
https://resources.gisdata.mn.gov/pub/gdrs/data/pub/us_mn_state_dnr/env_fast_forest_disturbance
s/metadata/metadata.html. 

Vogeler, J.C., R.A. Slesak, P.A. Fekety, and M.J. Falkowski. 2020. "Characterizing over Four Decades of 
Forest Disturbance in Minnesota , USA." Forests 11: 1-18. 
doi:https://doi.org/10.3390/f11030362. 

Wei, X., Hou, Y., Zhang, M., Li, Q., Giles‐Hansen, K ., &  Liu, W . (2021). R eexamining forest 
disturbance thresholds for managing cumulative hydrological impacts. Ecohydrology, 14(8). 
https://doi.org/10.1002/eco.2347  

 
Wolman, MG, and JP Miller. 1960. "Magnitude and Frequency of Forces in Geomorphic Processes." 

Journal of Geology 68: 54-74. 

https://doi.org/10.1029/98wr02500
https://doi.org/10.1002/eco.2347


Zégre, Nicolas, Arne N. Skaugset, Nicholas A. Som, Jeffery J. McDonnell, and Lisa M. Ganio. 2010. "In 
lieu of the paired catchment approach: Hydrologic model change detection at the catchment 
scale." Water Resources Research 46 (11). doi:https://doi.org/10.1029/2009WR008601. 

Zhang, M, Liu N, Harper R, Li Q, Liu K, Wei X, Ning D, Hou Y, and Liu S. 2017. "A global review on 
hydrological responses to forest change across multiple spatial scales: Importance of scale, 
climate, forest type and hydrological regime." Journal of Hydrology 546: 44-59. 
doi:https://doi.org/10.1016/j.jhydrol.2016.12.040. 

 

Table 1: Catchment characteristics for the St. Louis Basin catchments. Note that some basins had an extra 1-2 years of data for 
annual maximum flow due to records being available during spring freshet, while water yield record periods are reported in the 
table. 

Catchment Size 
[Km2] 

Years 
Streamflow 

Record 

Upland 
Forest 

[% 
catchment 

area] 

Woody 
Wetlands 

[% 
catchment 

area] 

Herbaceous 
Wetlands + 
Open Water 

[% 
catchment 

area] 

Average 
Annual 

Regenerating 
Forest 

Disturbance 
[% catchment 

area] 

Cumulative 
Conversion 
since 1986 

[% 
catchment 

area] 

Second Creek 
near Aurora 56 2009-2018 34 22 19 0.27 1.3 

Colvin Creek near 
Hoyt Lakes 58 2015-2018 38 52 7 0.43 0.02 

Stoney Brook 
near Brookston 192 2007-2018 23 63 10 0.32 0.31 

Partridge River at 
Hoyt Lakes 270 1986-1988; 

2002 37 52 5 0.40 0.03 

Partridge River 
near Hoyt Lakes 333 2010-2018 37 48 7 0.40 0.21 

Swan River near 
Toivola 620 2011-2018 32 43 7 0.26 1.2 

St Louis River 
near Aurora 756 1986-1987; 

2014-2015 32 53 8 0.36 0.27 

Whiteface River 
near 

Meadowlands 
1354 2012-2018 26 62 7 0.41 0.15 

St Louis River 
near Forbes 1791 1986-1989; 

2010-2018 34 49 7 0.38 0.49 

Cloquet River 
near Burnett 2028 2009-2017 39 46 7 0.48 0.37 

St Louis River at 
Scanlon 8884 1986-2018 30 53 7 0.35 0.45 

 

 

Table 2: Data used in the analysis of annual water yield and annual maximum peak daily streamflow. 

Annual Water Yield Basins 
Used 

Equation 
5 Key Data Citation Annual Maximum Daily Streamflow Basins 

Used Data Source 

Annual 
precipitation* K, STL P PRISM Climate 

Group, 2020 Winter precipitation K, STL PRISM Climate 
Group, 2020 

Previous year’s 
runoff ratio (to K  

USGS, 2016; 
PRISM Climate 
Group, 2020 

Spring precipitation K, STL PRISM Climate 
Group, 2020 



capture antecedent 
wetness) 

September-October 
Precipitation (for 

antecedent 
wetness) 

STL  PRISM Climate 
Group, 2020 

September-October Precipitation (for 
antecedent wetness) STL PRISM Climate 

Group, 2020  

Annual average 
monthly 

temperature* 
K, STL  PRISM Climate 

Group, 2020 Average monthly winter temperature K, STL PRISM Climate 
Group, 2020 

Annual average 
monthly dew point 

temperature* 
K, STL  PRISM Climate 

Group, 2020    

Annual average 
minimum monthly 

vapor pressure 
deficit* 

K, STL  PRISM Climate 
Group, 2020    

Annual average 
maximum monthly 

vapor pressure 
deficit* 

K, STL VPD PRISM Climate 
Group, 2020    

 
First principal 

component of:  
 

monthly maximum, 
minimum vapor 
pressure deficit, 

monthly mean air 
and dewpoint 

temperatures, and 
annual total 

Thornthwaite PET.  
 

Explained 62.6% of 
the total variance in 

those terms. 

STL ET.PCA1 
PRISM Climate 

Group, 2020; SPEI 
Package in R 

   

Thornthwaite PET K, STL PET 

PRISM Climate 
Group, 2020  

SPEI package in R 
(Beguería & 

Vicente-Serrano, 
2023) 

   

 

Table 3: Water yield on the Upper Kawishiwi catchment after the Pagami Creek Fire, N years after the fire. Years with > 90% 
confidence in water yield increases are marked with *. Expected water yield was that based on the pre-fire model. Confidence 
that the water yield decreased equals one minus the confidence that water yield increased. 

Years after the fire 1 2 3 4 5 6 7 8 

Expected (sd) [mm] 263 (58) 274 (58) 312 (59) 175 (59) 309 (64) 346 (66) 256 (56) 295 (58) 

Observed [mm] 212 356 367 210 312 351 251 286 

Confidence that Water Yield Increased 19% 92% * 83% 73% 52% 54% 46% 44% 

 

 



Table 4: ANCOVA-based annual maximum flows on the Upper Kawishiwi catchment after the Pagami Creek Fire. Expected peak 
flow was that based on the pre-fire model. Confidence that the peak flow decreased equals one minus the confidence that peak 
flow increased. 

Years after the fire 1 2 3 4 5 6 7 8 

Expected (sd) [mm/day] 2.88 
(1.16) 

3.27 
(1.16) 

3.57 
(1.19) 

2.36 
(1.19) 

4.76 
(1.39) 

3.87 
(1.33) 

2.11 
(1.17) 

3.69 
(1.17) 

Observed [mm/day] 2.90 3.56 4.97 2.25 3.31 3.35 2.01 3.16 

Confidence that Peak Flow 
Increased 

51% 60% 88% 47% 14% 35% 46% 32% 

 

 

Table 5: Water Yield effect parameter for the St. Louis catchments LME-residuals model. Where our confidence that the water 
yield decreased is greater than 90%, we marked with * . 

Catchment 

Effect Parameter br 
[mm of water yield change from 

expected, per additional percentage of 
forest disturbed in last 11 years or 

permanently converted] 

P(br < 0) [%] 

Second Creek near Aurora -19 [-25 to -12] 100% * 
Colvin Creek near Hoyt Lakes 2 [-20 to 22] 44% 
Stoney Brook near Brookston -4 [-31 to 22] 59% 
Partridge River at Hoyt Lakes 3 [-6 to 12] 28% 

Partridge River near Hoyt Lakes -2 [-13 to 10] 59% 
Swan River near Toivola -9 [-34 to 17] 73% 

St Louis River near Aurora 3 [-7 to 12] 33% 
Whiteface River near Meadowlands 4 [-17 to 24] 38% 

St Louis River near Forbes -13 [-18 to -8] 100% * 
Cloquet River near Burnett 1 [-17 to 20] 45% 

St Louis River at Scanlon -9 [-13 to -5] 100% * 
 

 

Table 6: Peak Flow effects for the St. Louis catchments LME-residuals model. Where confidence in peak flow decreases, or 
increases, were >90%, we marked with a * . 

Catchment 

Effect Parameter br 
[m3/s / 100km2 peak flow change from 
expected, per additional percentage of 

forest disturbed in last 11 years or 
permanently converted] 

P(br < 0) [%] 

Second Creek near Aurora -0.3 [-0.7 to 0.05] 92% * 
Colvin Creek near Hoyt Lakes 0.4 [-1.9 to 2.7] 38% 
Stoney Brook near Brookston 3.3 [1.7 to 4.9] <1% (>99% confidence br > 0) * 
Partridge River at Hoyt Lakes 0.3 [-0.1 to 0.6] 13% 

Partridge River near Hoyt Lakes -0.3 [-1.2 to 0.6] 73% 
Swan River near Toivola -1.4 [-3.5 to 0.7] 86% 

St Louis River near Aurora -0.4 [-0.7 to -0.08] 98% * 
Whiteface River near Meadowlands 1.9 [1.0 to 2.8] < 1% (>99% confidence br > 0)* 

St Louis River near Forbes -0.2 [-0.4 to -0.01] 96% * 
Cloquet River near Burnett 7.2 [2.0 to 12.2] 1% (99% confidence br > 0) * 



St Louis River at Scanlon -0.1 [-0.2 to 0.08] 81% 
 

 

 

Table 7: Forest disturbance and winter*spring precipitation effects parameters, for the probabilistic model of Q2 streamflow on 
the St. Louis Basin. * indicate high-confidence effects parameters where confidence in the effect being greater than or less than 
zero is >90%. 

Catchment 
Forest disturbance effect 

parameter [m3/s per additional 
percentage forest disturbance] 

Precipitation effect parameter 
[m3/s per standard deviation of 

winter times spring precipitation] 
Second Creek near Aurora -0.13 (-0.33 to 0.08) 0.19 (-0.25 to 0.67) 

Colvin Creek near Hoyt Lakes -0.37 (-1.1 to 0.38) -0.01 (-4.1 to 4.6) 
Stoney Brook near Brookston 1.7 (-0.71 to 3.9) 2.5 (1.2 to 3.8) * 
Partridge River at Hoyt Lakes -0.29 (-9.4 to 8.1) 3.0 (-29 to 39) 

Partridge River near Hoyt Lakes -0.09 (-2.4 to 1.9) 3.4 (1.4 to 5.5) * 
Swan River near Toivola -4.3 (-12 to 3.2) 7.5 (0.56 to 14.4) * 

St Louis River near Aurora -1.5 (-5.4 to 1.8) 2.6 (-6.0 to 12) 

Whiteface River near Meadowlands -0.91 (-17 to 14) 11.1 (-22 to 47) 

St Louis River near Forbes -2.3 (-4.3 to -0.37) * 13.3 (7.6 to 19) * 

Cloquet River near Burnett -10.7 (-27.7 to 5.8) 23 (-31 to 80)  

St Louis River at Scanlon -9.0 (-21 to 3.0) 92 (59 to 125) * 
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Figure 1: Basins and geographic setting.  
 
Figure 2: Workflow diagram for the analysis techniques used to assess effects of forest disturbance on 
streamflow on the Kawishiwi and St. Louis River
 
Figure 3: Hydrologic recovery year for water yield after forest disturbance, after adjusting for the effects of 
climate. The Degree-of-Belief represents how confident we are that the N year recovery year is the best-fitting 
model for recovery years 1-20. Recovery year represents the number of years after a forest disturbance such as 
fire, harvest, or windthrow when that parcel no longer influences the water yield regression as a “disturbed” 
parcel, and was selected according to best-fit of the regression. 
 
Figure 4: Hydrologic recovery year for peak flow after forest disturbance, after adjusting for the effects of 
climate. The Degree-of-Belief represents how confident we are that the N year recovery year is the best-fitting 
model for recovery years 1-20. Recovery year represents the number of years after a forest disturbance such as 
fire, harvest, or windthrow when that parcel no longer influences the peak flow regression as a “disturbed” 
parcel, and was selected according to best-fit of the regression. 

 
Figure 5: a) Nonstationary component of the Q2, or 50% exceedance probability annual maximum streamflow, 
that can vary year-to-year, as a proportion of the overall magnitude of the Q2 across all years, for each 
catchment; b) overall average across catchments, across years, variability in the Q2 attributable to stationary 
versus nonstationary processes. 
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Table 1: Catchment characteristics for the St. Louis Basin catchments. Note that some basins had an extra 1-2 years of data for annual maximum 
flow due to records being available during spring freshet, while water yield record periods are reported in the table. 

Catchment Size 
[Km2] 

Years 
Streamflow 

Record 

Upland 
Forest 

[% 
catchment 

area] 

Woody 
Wetlands 

[% catchment 
area] 

Herbaceous 
Wetlands + 
Open Water 

[% 
catchment 

area] 

Average Annual 
Regenerating 

Forest 
Disturbance 

[% catchment 
area] 

Cumulative 
Conversion 
since 1986 

[% catchment 
area] 

Second Creek near 
Aurora 56 2009-2018 34 22 19 0.27 1.3 

Colvin Creek near Hoyt 
Lakes 58 2015-2018 38 52 7 0.43 0.02 

Stoney Brook near 
Brookston 192 2007-2018 23 63 10 0.32 0.31 

Partridge River at Hoyt 
Lakes 270 1986-1988; 

2002 37 52 5 0.40 0.03 

Partridge River near 
Hoyt Lakes 333 2010-2018 37 48 7 0.40 0.21 

Swan River near 
Toivola 620 2011-2018 32 43 7 0.26 1.2 

St Louis River near 
Aurora 756 1986-1987; 

2014-2015 32 53 8 0.36 0.27 

Whiteface River near 
Meadowlands 1354 2012-2018 26 62 7 0.41 0.15 

St Louis River near 
Forbes 1791 1986-1989; 

2010-2018 34 49 7 0.38 0.49 

Cloquet River near 
Burnett 2028 2009-2017 39 46 7 0.48 0.37 

St Louis River at 
Scanlon 8884 1986-2018 30 53 7 0.35 0.45 

 

 



Table 2: Data used in the analysis of annual water yield and annual maximum peak daily streamflow. 

Annual Water Yield Basins 
Used 

Equation 
5 Key Data Citation Annual Maximum Daily Streamflow Basins 

Used Data Source 

Annual 
precipitation* K, STL P PRISM Climate 

Group, 2020 Winter precipitation K, STL PRISM Climate 
Group, 2020 

Previous year’s 
runoff ratio (to 

capture antecedent 
wetness) 

K  
USGS, 2016; 

PRISM Climate 
Group, 2020 

Spring precipitation K, STL PRISM Climate 
Group, 2020 

September-October 
Precipitation (for 

antecedent 
wetness) 

STL  PRISM Climate 
Group, 2020 

September-October Precipitation (for 
antecedent wetness) STL PRISM Climate 

Group, 2020  

Annual average 
monthly 

temperature* 
K, STL  PRISM Climate 

Group, 2020 Average monthly winter temperature K, STL PRISM Climate 
Group, 2020 

Annual average 
monthly dew point 

temperature* 
K, STL  PRISM Climate 

Group, 2020    

Annual average 
minimum monthly 

vapor pressure 
deficit* 

K, STL  PRISM Climate 
Group, 2020    

Annual average 
maximum monthly 

vapor pressure 
deficit* 

K, STL VPD PRISM Climate 
Group, 2020    

 
First principal 

component of:  
 

monthly maximum, 
minimum vapor 
pressure deficit, 

monthly mean air 
and dewpoint 

temperatures, and 
annual total 

Thornthwaite PET.  
 

Explained 62.6% of 
the total variance in 

those terms. 

STL ET.PCA1 
PRISM Climate 

Group, 2020; SPEI 
Package in R 

   

Thornthwaite PET K, STL PET 

PRISM Climate 
Group, 2020  

SPEI package in R 
(Beguería & 

Vicente-Serrano, 
2023) 

   

 



Table 3: Water yield on the Upper Kawishiwi catchment after the Pagami Creek Fire, N years after the fire. Years with > 90% confidence in water 
yield increases are marked with *. Expected water yield was that based on the pre-fire model. Confidence that the water yield decreased equals one 
minus the confidence that water yield increased. 

Years after the fire 1 2 3 4 5 6 7 8 

Expected (sd) [mm] 263 (58) 274 (58) 312 (59) 175 (59) 309 (64) 346 (66) 256 (56) 295 (58) 

Observed [mm] 212 356 367 210 312 351 251 286 

Confidence that Water Yield Increased 19% 92% * 83% 73% 52% 54% 46% 44% 

 

 



Table 4: ANCOVA-based annual maximum flows on the Upper Kawishiwi catchment after the Pagami Creek Fire. Expected peak flow was that based 
on the pre-fire model. Confidence that the peak flow decreased equals one minus the confidence that peak flow increased. 

Years after the fire 1 2 3 4 5 6 7 8 

Expected (sd) [mm/day] 2.88 
(1.16) 

3.27 
(1.16) 

3.57 
(1.19) 

2.36 
(1.19) 

4.76 
(1.39) 

3.87 
(1.33) 

2.11 
(1.17) 

3.69 
(1.17) 

Observed [mm/day] 2.90 3.56 4.97 2.25 3.31 3.35 2.01 3.16 

Confidence that Peak Flow 
Increased 

51% 60% 88% 47% 14% 35% 46% 32% 

 

 



Table 5: Water Yield effect parameter for the St. Louis catchments LME-residuals model. Where our confidence that the water yield decreased is 
greater than 90%, we marked with * . 

Catchment 

Effect Parameter br 
[mm of water yield change from 

expected, per additional percentage of 
forest disturbed in last 11 years or 

permanently converted] 

P(br < 0) [%] 

Second Creek near Aurora -19 [-25 to -12] 100% * 
Colvin Creek near Hoyt Lakes 2 [-20 to 22] 44% 
Stoney Brook near Brookston -4 [-31 to 22] 59% 
Partridge River at Hoyt Lakes 3 [-6 to 12] 28% 

Partridge River near Hoyt Lakes -2 [-13 to 10] 59% 
Swan River near Toivola -9 [-34 to 17] 73% 

St Louis River near Aurora 3 [-7 to 12] 33% 
Whiteface River near Meadowlands 4 [-17 to 24] 38% 

St Louis River near Forbes -13 [-18 to -8] 100% * 
Cloquet River near Burnett 1 [-17 to 20] 45% 

St Louis River at Scanlon -9 [-13 to -5] 100% * 
 

 



Table 6: Peak Flow effects for the St. Louis catchments LME-residuals model. Where confidence in peak flow decreases, or increases, were >90%, we 
marked with a * . 

Catchment 

Effect Parameter br 
[m3/s / 100km2 peak flow change from 
expected, per additional percentage of 

forest disturbed in last 11 years or 
permanently converted] 

P(br < 0) [%] 

Second Creek near Aurora -0.3 [-0.7 to 0.05] 92% * 
Colvin Creek near Hoyt Lakes 0.4 [-1.9 to 2.7] 38% 
Stoney Brook near Brookston 3.3 [1.7 to 4.9] <1% (>99% confidence br > 0) * 
Partridge River at Hoyt Lakes 0.3 [-0.1 to 0.6] 13% 

Partridge River near Hoyt Lakes -0.3 [-1.2 to 0.6] 73% 
Swan River near Toivola -1.4 [-3.5 to 0.7] 86% 

St Louis River near Aurora -0.4 [-0.7 to -0.08] 98% * 
Whiteface River near Meadowlands 1.9 [1.0 to 2.8] < 1% (>99% confidence br > 0)* 

St Louis River near Forbes -0.2 [-0.4 to -0.01] 96% * 
Cloquet River near Burnett 7.2 [2.0 to 12.2] 1% (99% confidence br > 0) * 

St Louis River at Scanlon -0.1 [-0.2 to 0.08] 81% 
 

 

 



Table 7: Forest disturbance and winter*spring precipitation effects parameters, for the probabilistic model of Q2 streamflow on the St. Louis Basin. * 
indicate high-confidence effects parameters where confidence in the effect being greater than or less than zero is >90%. 

Catchment 
Forest disturbance effect 

parameter [m3/s per additional 
percentage forest disturbance] 

Precipitation effect parameter 
[m3/s per standard deviation of 

winter times spring precipitation] 
Second Creek near Aurora -0.13 (-0.33 to 0.08) 0.19 (-0.25 to 0.67) 

Colvin Creek near Hoyt Lakes -0.37 (-1.1 to 0.38) -0.01 (-4.1 to 4.6) 
Stoney Brook near Brookston 1.7 (-0.71 to 3.9) 2.5 (1.2 to 3.8) * 
Partridge River at Hoyt Lakes -0.29 (-9.4 to 8.1) 3.0 (-29 to 39) 

Partridge River near Hoyt Lakes -0.09 (-2.4 to 1.9) 3.4 (1.4 to 5.5) * 
Swan River near Toivola -4.3 (-12 to 3.2) 7.5 (0.56 to 14.4) * 

St Louis River near Aurora -1.5 (-5.4 to 1.8) 2.6 (-6.0 to 12) 

Whiteface River near Meadowlands -0.91 (-17 to 14) 11.1 (-22 to 47) 

St Louis River near Forbes -2.3 (-4.3 to -0.37) * 13.3 (7.6 to 19) * 

Cloquet River near Burnett -10.7 (-27.7 to 5.8) 23 (-31 to 80)  

St Louis River at Scanlon -9.0 (-21 to 3.0) 92 (59 to 125) * 
 

 




