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Abstract

Recent developments in global dynamical climate prediction systems have allowed for
skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale
useful to understanding and managing LMRs. Such predictions present opportunities for
improved LMR management and industry operations, as well as new research avenues in
fisheries science. LMRs respond to climate variability via changes in physiology and behavior.
For species and systems where climate-fisheries links are well established, forecasted LMR
responses can lead to anticipatory and more effective decisions, benefitting both managers and
stakeholders. Here, we provide an overview of climate prediction systems and advances in
seasonal to decadal prediction of marine-resource relevant environmental variables. We then
describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to
decades, before highlighting a range of pioneering case studies using climate predictions to
inform LMR decisions. The success of these case studies suggests that many additional
applications are possible. Progress, however, is limited by observational and modeling
challenges. Priority developments include strengthening of the mechanistic linkages between
climate and marine resource responses, development of LMR models able to explicitly represent
such responses, integration of climate driven LMR dynamics in the multi-driver context within
which marine resources exist, and improved prediction of ecosystem-relevant variables at the
fine regional scales at which most marine resource decisions are made. While there are
fundamental limits to predictability, continued advances in these areas have considerable
potential to make LMR managers and industry decision more resilient to climate variability and
help sustain valuable resources. Concerted dialog between scientists, LMR managers and

industry is essential to realizing this potential.

1. Introduction

Paleoecological and contemporary analyses demonstrate that large fluctuations in fish
populations are associated with variations in climate (Baumgartner et al., 1992; Finney et al.,
2002; Lehodey et al., 2006; Finney et al., 2010; Brander, 2010; Holsman et al., 2012; Barange et
al., 2014). Clearly, climate-driven variability has always been part of the fisher and fisheries
manager experience. However, the management response to climate variability has often been

reactionary, and enacting efficient coping strategies has, at times, been difficult (McGoodwin,
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2007; Chang et al., 2013; Hodgkinson et al., 2014). For instance, unrecognized periods of
environmentally- or climate-driven reduction in productivity contributed to the demise of Pacific
sardine (Sardinops sagax) fishery in California in the 1950s (Murphy 1966; Lindegren et al.,
2013; Essington et al., 2015), the collapse of the Peruvian anchoveta (Engraulis ringens) fishery
in the 1970s (Clark, 1977; Sharp, 1987), and overfishing of cod (Gadus morhua) in the Gulf of
Maine (Pershing et al., 2015, Palmer et al. 2016). Unanticipated temperature-induced changes in
the timing of Gulf of Maine Atlantic lobster (Homarus americanus) life-cycle transitions resulted
in an extended 2012 fishing season and record landings, but outstripped processing capacity and
market demand, leading to a collapse in prices and an economic crisis in the lobster fishery
(Mills et al., 2013). Similarly, an unforeseen extreme low water temperature event resulted in a
$10-million-dollar loss to the Taiwanese mariculture industry in 2008 (Chang et al., 2013).
Failure to prepare for inevitable climate variability on seasonal to decadal scales can also alter
the rebuilding times of stocks that have previously been overfished (Holt and Punt, 2009; Punt
2011; Pershing et al., 2015) and break down international cooperative harvesting agreements for
border straddling stocks and highly migratory species (Miller and Munro, 2004; Hannesson,
2006; Hannesson, 2012).

Negative impacts of climate variability on coastal economies can be exacerbated when
fishers, aquaculturists, and fisheries managers make decisions about future harvests, harvest
allocations, and operational planning based on previous experience alone, without consideration
of potential novel climate states (Hamilton, 2007). For instance, current fisheries abundance
forecasts are largely based on historical recruitment (i.e. addition of new individuals to the
fishery) estimates, and aquaculture harvests on the basis of historical growth patterns. While this
approach makes harvest decisions robust to a range of historical uncertainty, it may be
insufficient when an ecosystem shifts to a new productivity state, when a productivity trend
moves beyond historical observations, or when the degree of variation in productivity changes
(Wayte, 2013; Audzijonyte et al., 2016). Past patterns may not always be a good indication of
future patterns, especially under anthropogenic climate change (Milly et al., 2008). Species will
experience new conditions across multiple ecologically significant climate variables (Williams et
al., 2007; Rodgers et al., 2015), challenging our ability to manage living marine resources
(LMRs) under the assumption of stationarity. Adapting our decision frameworks to climate

variability at seasonal to decadal scales can serve as an effective step towards improving our
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long-term planning ability under future climate change (Link et al., 2015).

Incorporating environmental forcing into management frameworks for LMRs is
challenging because the emergent effects of climate on marine ecosystems are complex. For
example, atmospheric forcing can drive changes in ecologically significant physical or chemical
variables that directly affect organismal physiology and behavior (e.g. temperature-driven
changes in oxygen demand; Portner and Farrell, 2008), species distribution (e.g. Portner and
Knust, 2007), phenology (e.g. Asch, 2015), and vital rates, such as growth (e.g. Kristiansen et al.,
2011; Audzijonyte et al., 2013; Audzijonyte et al., 2014; Audzijonyte et al., 2016). Additionally,
climate can indirectly impact LMR productivity by atfecting key biotic processes, such as
variation in prey fields and energy transfer in response to fluctuations in alongshore and cross-
shelf transport (e.g. Bi et al., 2011; Keister et al., 2011; Combes et al., 2013; Wilderbuer et al.,
2013) or to climate-driven changes in primary productivity and phytoplankton size-structure
(Daufresne et al., 2009). Climate-related variations in the abundance of predators, competitors,
and parasites can also have an indirect effect on LMRs (e.g. Boudreau et al., 2015), and
concurrent responses to fishing, habitat loss, and pollution may further complicate observed
responses (Brander, 2007; Halpern et al., 2008; Andrews et al., 2015; Fuller et al., 2015; Halpern
etal., 2015).

While such biophysical complexities challenge efforts to implement climate-informed
fisheries management frameworks, concerted observational and modelling efforts across decades
have led to some improved understanding of climate-ecosystem interactions in many regions
(Lehodey et al., 2006; Alheit et al., 2010; Ainsworth et al., 2011; Hunt et al., 2011; Di Lorenzo et
al., 2013; Bograd et al., 2014). These gains have been mirrored by improved climate predictions
at the temporal and spatial scales relevant to LMRs and their management, e.g. days to decades
(Hobday and Lough, 2011; Stock et al., 2011). Operational seasonal predictions have now
enabled development of climate services for a range of applications relevant to society (Vaughan
and Dessai, 2014). For example, improvements in model spatial resolution have allowed skillful
prediction of hurricane activity at a sub-basin scale relevant to climate risk management (Vecchi
et al., 2014). Seasonal climate forecasts have also reduced vulnerability of the agricultural sector
to climate variability (Meinke and Stone, 2005; Meza et al., 2008; Hansen et al., 2011;
Zinyengere et al., 2011; Takle et al., 2014, Zebiak et al., 2015 and references therein) and have

informed water resources decision making (Hamlet et al., 2002; Abawi et al., 2007).
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Furthermore, seasonal climate forecasts have been incorporated into human health early warning
systems for diseases, such as malaria, that are influenced by climatic conditions (Abawi et al.,
2007) and for outbreaks of noxious jellyfish (Gershwin et al., 2014). Enhanced capability has
also made possible skillful seasonal forecasts of LMR-relevant variables at fine spatial and
temporal scales useful to industry (defined here to include fisheries and aquaculture industries)
and management (Stock et al., 2015; Siedlecki et al., 2016). While multi-annual to decadal
predictions are at an initial stage of development and are not yet operational (Meehl et al., 2014),
in specific ocean regions, particularly the North Atlantic, multi-annual forecasts appear skillful
over several years (Yang et al., 2013; Msadek et al., 2014a; Keenlyside et al., 2015), and may
show promise for some LMR applications (Salinger et al., 2016).

The objective of this paper is to assess present and potential uses of these advances in
climate predictions to facilitate improved management of wild and cultured LMRs. This effort
was initiated at the workshop "Applications of Seasonal to Decadal Climate Predictions for
Marine Resource Management" held at Princeton University on June 3-5 2015, which brought
together 60 scientists spanning climate and marine resource disciplines. This resulting synthesis
establishes a common understanding of the prospects and challenges of seasonal to decadal
forecasts for LMRs to support further innovative and effective application of climate predictions
to management decisions. In Section 2, we describe climate prediction systems and discuss their
strengths and limitations. In Section 3, we briefly summarize climate-sensitive decisions made
within management of commercially exploited species, protected and endangered species, and
for fishing and aquaculture industry applications. Section 4 presents case studies drawn from
peer-reviewed literature highlighting the scope of past and present applications. Sections 5 and 6
distill successful components across these existing applications and identify priority
developments based on the material in Sections 2-4. Section 7 offers concluding remarks on

prospects for expanded use of climate predictions for marine resource management.

2. Predicting environmental change across space and time scales

Advances in global dynamic climate prediction systems raise the prospect of skillful
environmental prediction at the time scales relevant to LMR management and industry decisions.
In this section, we first describe these prediction systems (Section 2.1), emphasizing

characteristics relevant to informing the management decisions which will be described in



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

Section 3, and then discuss evaluation of forecast skill (Section 2.2). Lastly, we provide a brief

overview of existing studies of prediction skill for LMR-relevant climate variables (Section 2.3).

2.1. Overview of climate prediction systems

There exist two types of climate prediction models: dynamical models based on knowledge of
the underlying physics of the climate system, and statistical models based on empirical
relationships. The focus here is on dynamical seasonal to decadal prediction systems derived
from Global Climate Models (GCMs), but it is important to note that statistical climate
prediction models have also been used with success at seasonal time scales (Xue et al., 2000; van
den Dool, 2007; Mufoz et al., 2010; Newman et al., 2011; Barnston et al., 2012; Ho et al., 2013;
Barnston and Tippett, 2014; Chapman et al., 2015). Statistical climate predictions require
considerably less computing resources than dynamical prediction systems and are used by
climate offices throughout the world, particularly where high-performance computing facilities
are not available. However, when developing a statistical forecast, care must be taken to not
impart artificial skill through the method used to select predictors (DelSole and Shukla, 2009) or
through the forecast sets used for training and skill assessment not being sufficiently independent
of each other. Statistical predictions are also limited by the assumption that historically observed
statistical relationships between climate variables will be maintained in the future (Mason and
Baddour, 2007). By contrast, dynamical seasonal to decadal climate predictions arise more
directly from fundamental physical principles expected to hold under novel climate states
(Randall et al., 2007). Dynamical models can also forecast quantities that are difficult to observe
and thus develop statistical models for (e.g., bottom temperature). We note, however, that many
small-scale processes, such as cloud microphysics or submesoscale fronts and eddies, are not
resolved by most GCMs and uncertainty connected to the parameterization of such “sub-grid
scale” processes within GCMs can impact prediction skill (Warner, 2011).

Dynamical climate predictions on seasonal to decadal time scales rest on the premise that
knowledge of the present climate and the dynamic principles governing its evolution may yield
useful predictions of future climate states. Four core components are thus required to make such
predictions at global scales and translate them for users: 1) global dynamical climate models, 2)

global observing systems, 3) a data assimilation system, and 4) analysis and dissemination
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systems to provide predictions to stakeholders across sectors. We provide a brief overview of

each of these components below.

2.1.1. Dynamical coupled global climate models for seasonal to decadal prediction

GCMs are comprised of atmospheric, ocean, sea-ice and land physics and hydrology
components, each governed by dynamical laws of motion and thermodynamics solved
numerically on a global grid. GCMs used for seasonal to decadal prediction are largely
analogous to those used for century-scale climate change projection (e.g. Stock et al. 2011), but
the simulation design is different (Fig. 1). In the climate change case (Fig. 1, bottom), the goal is
to track the evolution of the climate over multi-decadal time scales as it responds to
accumulating greenhouse gases (GHGs) and other anthropogenic forcing. The simulations have
three components: a pre-industrial control of several hundred to several thousand years where the
model comes to quasi-equilibrium with preindustrial GHGs and aerosol concentrations, a
historical segment where GHGs increase in accordance with observed trends, and a projection
following one of several future GHGs scenarios (Moss et al., 2010; van Vuuren et al., 2011).
Because initial conditions at the start of the preindustrial period are largely “forgotten” except
possibly in the abyssal ocean, the only aspects linking historical and future simulations to a
specific year are the GHGs, land cover changes, solar forcing, land use changes, and other
radiatively active atmospheric constituents (e.g. aerosols). Internal climate variations arising
from interactions in the components of the climate system itself such as the El Nifio Southern
Oscillation (ENSO) are represented in climate simulations, but their timing/chronology does not
and is not expected to agree with past observations. The objective is to obtain an accurate
representation of the evolving climate statistics over multiple decades, including the statistics of
internal climate variation, rather than precise predictions of the climate state at a given time.
Indeed, ensembles of historical and future simulations begun from different initial conditions,
and containing different realizations of internal climate variations, are often employed in
obtaining these statistics (Kay et al., 2015).

On the other hand, seasonal (months to a year) prediction skill (Fig. 1, top) largely
depends on initializing the model using information specific to the current climate state. Owing
to the chaotic nature of the atmosphere, daily weather has a deterministic predictability limit of

5-10 days (e.g. Lorentz, 1963; Goddard et al., 2001). In seasonal forecasts, the predictability
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horizon is extended by forecasting monthly or seasonally-integrated statistics rather than daily
weather, and by exploiting the more slowly evolving elements of the climate system, such as the
ocean. It is assumed that the initial climate state sufficiently determines the future evolution of
internal climate variations so that skillful predictions of climate states within the forthcoming
months are possible. The presence of ENSO in June, for example, will impact extra-tropical sea-
surface temperature (SST) in September via teleconnections that are now substantially captured
by many GCMs, albeit some important biases remain (Deser et al., 2010).

In today's coupled dynamical prediction systems, seasonal prediction is thus classified as
an initial value problem rather than a boundary value problem. As the response to changes in
external forcing like GHGs occurs over much longer time scales, their predictive skill is more
dependent on initialization to current climate conditions rather than boundary conditions (i.e.
external forcing). Although external forcing changes are typically small over periods spanned by
individual seasonal forecasts, they can be significant over the multi-decadal periods spanned by
successive real time forecasts and the accompanying retrospective forecasts discussed in Section
2.1.3, and therefore should ideally remain included in seasonal forecast models (Doblas-Reyes et
al., 2006; Liniger et al., 2007). Annual to decadal predictability (1 to 30 years), in contrast, arises
from both predictable internal climate variations following model initialization and external
forcing, presenting a hybrid problem (Fig. 1, middle panel, Meehl et al., 2014).

Another difference between GCMs configured for climate projections and seasonal to
decadal predictions systems has been the successful expansion of the climate change GCM
configuration to earth system models (ESMs) that include biogeochemistry (e.g. Bopp et al.,
2013). ESMs can simulate biological and chemical properties (e.g. oxygen, pH, nutrients,
primary and secondary production) strongly linked to LMRs (Stock et al., 2011), and thus they
have been broadly applied to assess climate change impacts on LMRs (e.g. Cheung et al., 2009;
Barange et al., 2014). While incorporation of earth system dynamics in global seasonal to
decadal prediction models remains in an early stage of development (Séférian et al., 2014; Case
Study 4.6), it may yield benefits at the seasonal to decadal scale. In Section 2.3, discussion of
LMR-relevant seasonal to decadal predictions will be focused on the physical variables produced
by the operational seasonal to decadal global forecast systems, but priority developments to

expand biogeochemical prediction capabilities will be discussed in Section 6.
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2.1.2. The global climate observing system supporting climate prediction

The initialization of seasonal to decadal climate predictions is generated via a range of
data assimilation approaches (Section 2.1.3) that draw observational constraints from the global
climate observing system. This system collates diverse observations of many climate quantities
across the globe including those obtained from satellites, land-based weather stations,
radiosondes, weather radars, aircrafts, weather balloons, profiling floats, moored and drifting
ocean buoys, and ships (see
http://www.wmo.int/pages/prog/gcos/index.php?’name=0ObservingSystemsandData for a list of
the global climate observing system’s observational networks and climate variables). Expansion
of the global climate observing system across decades has improved prediction skill. For
instance, establishment of the Pacific Tropical Atmosphere-Ocean (TAO) moored buoy array in
the early 1990s (McPhaden, 1993) was key in enhancing seasonal prediction skill of ENSO and
ENSO-related SSTs (Ji and Leetmaa, 1997; Vidard et al., 2007). Similarly, the addition of Argo
profiling floats to the global ocean observing network improved seasonal SST forecast skill

(Balmaseda et al., 2007).

2.1.3. Assimilating observations to constrain the initial climate state

While the advent of satellites and of observing platforms, such as the TAO array and
Argo floats, have considerably increased the number of available observations, much of the
Earth system, particularly in the deep ocean (> 2000 m), remains unobserved. Climate prediction
systems combine observational and model constraints using a data assimilation system to fully
initialize climate predictions. Diverse approaches are used, from nudging methods to four-
dimensional variational analyses and ensemble Kalman filters. For instance, the NOAA
Geophysical Fluid Dynamics Laboratory (GFDL) coupled data assimilation system produces an
estimate of the present climate state by using an ensemble Kalman filter algorithm to combine a
probability density function (PDF) of observations, both oceanic and atmospheric, with a prior
PDF derived from the dynamically coupled model (Zhang et al., 2007). For more details on data
assimilation techniques we refer readers to Daley et al. (1991), Kalnay et al. (2003), Tribbia and
Troccoli (2007), Edwards et al. (2015), Zhang et al. (2015), and Stammer et al. (2016).

Assimilating observations produces an initialized climate state that differs from what the

climate models would simulate were they running freely. This is because dynamical climate
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models are an approximation of the real world, and as such can show systematic bias (Warner,
2011). Once a seasonal forecast begins, dynamical models drift back to their freely running state.
In some cases, drifts can be as large as the signal being predicted, particularly for longer lead-
times, and can degrade forecast skill (Goddard et al., 2001; Magnusson et al., 2013; Smith et al.
2013). It is therefore important to remove this drift to obtain the signal of interest for input into
LMR models. While diverse approaches for this have been proposed, they primarily involve
subtracting the mean drift from across a set of retrospective forecasts (hindcasts). For example,
to correct for model drift in a January-initialized SST anomaly forecast for May, the mean drift
for January-initialized May forecasts from the past 30 years is subtracted from the predicted
temperature trend.

While a primary goal of data assimilation is forecast initialization, the estimates of
atmospheric or ocean state produced via data assimilation are also useful for model verification
and calibration, retrospective studies of past ocean variability, and “nowcasts” of present
conditions. Such historical time series of past ocean state estimates are referred to as reanalysis
datasets. While often taken as “observations” they are obtained using the model and a data
assimilation system in the same way as was described for model initialization. Hence, reanalyses
are model-dependent and each climate prediction center produces its own version of what the
earth system looked like in the past (Table A1l). While such reanalyses are generally in
agreement for variables that are widely sampled (e.g. SST after the advent of satellites) over
scales resolved by the GCMs, there are differences, reflecting model uncertainty, the scarcity of
observational data, and the fact that single observations may not be representative of the large-
scale climate state. One way to estimate uncertainties among ocean reanalyses is to conduct
ocean reanalysis intercomparisons (Balmaseda et al., 2015). Table A1 lists six operational ocean
reanalysis products that are available for the period from 1979 to present and that are used in a
Real-time Ocean Reanalysis Intercomparison Project (Xue et al., in review). One example of
uncertainties of ocean reanalysis products is shown in Fig. 2 for temperature anomalies at a depth
of 55 m during April 2015. Some areas, such as the west coast of North America, clearly stand
out as being consistent between reanalysis products. This has also been shown in some recent
seasonal forecast efforts in the region (Siedlecki et al., 2016), increasing confidence in their
treatment as “observations”. By contrast, temperature values along the Northeast shelf of North

America are more uncertain. This highlights the importance of confirming consistency of
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reanalyses with observations at the scales of interest when possible (Stock et al., 2015), and the

paucity of oceanic variables for which we can robustly evaluate prediction skill.

2.1.4. Analysis and dissemination in support of diverse stakeholders

The goal of analysis and dissemination systems is to take the raw output from the
predictions and package it in a way that can be easily accessible and understood by stakeholders.
Generally, because of the variety of users and applications of seasonal forecasts, most climate
prediction centers focus on ensuring that seasonal climate model output is corrected for model
drift (see Section 2.1.3 for more details) and verified. Forecast verification, which entails an
assessment of forecast skill, is described in Section 2.2. Any further post-processing, such as
downscaling to application-relevant spatial scales, is performed on an ad hoc basis in
collaboration with users.

Climate forecasts are inherently uncertain because of the chaotic nature of the climate
system, whereby small differences in initial conditions can lead to a diverse range of climate
states (Lorenz, 1963; Wittenberg et al., 2014), as well as our imperfect understanding of the
climate system. In an attempt to capture some of this uncertainty, a collection of forecasts
differing in their initial conditions or model parametrizations, referred to as an ensemble, is
produced (see Section 2.2 for more details). For a forecast to be useful for decision making, it
needs to represent the likelihood of different outcomes. Probabilistic forecasts constructed from
information provided by the ensemble forecast fill this need. Such forecasts are commonly
communicated as probabilities that the outcome will be in the lower, middle or upper tercile of
the climatological PDF (Fig. 3), although many other possibilities exist. Reliability, the property
that forecast probabilities are similar to observed frequencies, is crucial for decision making.
However, probabilistic forecasts based on raw forecast output tend to be overconfident, and are
thus often recalibrated to improve their reliability (Sansom et al., 2016). Deterministic forecasts
describing the average outcome of the forecast ensemble are also sometimes disseminated. While
relatively simple to interpret, they are generally less useful than probabilistic forecasts because
they contain no measures of uncertainty or the likelihood of alternative outcomes.

Once the climate predictions are verified, most prediction centers deliver forecasts to
users via the internet. For example, seasonal forecasts from NOAA NCEP, GFDL, and numerous

other modeling centers can be downloaded from the North American Multi-Model Ensemble
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(NMME) (Kirtman et al., 2014) website at http://www.cpc.ncep.noaa.gov/products/NMME/.
Hindcasts (i.e. retrospective forecasts) are archived on the same site, and skill assessment maps
are also made available. It should be noted that because of the large variety of users and the
limited resources devoted to delivery systems, model output presentation and visualization is
rarely customized to specific user needs. Thus, there is utility in repackaging standard forecasts
specifically for the fisheries and aquaculture sectors as “targeted forecasts” (Hobday et al., 2016;

Siedlecki et al., 2016).

2.2. Forecast skill

In addition to providing users with information on forecast uncertainty through well-
calibrated probabilistic forecasts as discussed above, skill information is essential for LMR
managers or fishing industry personnel to assess confidence in seasonal to decadal forecasts.
Hence, model verification, which assesses prediction quality of the forecast through skill
assessment, is essential for seasonal to decadal predictions to be practically useful to decision-
making. As well as enabling drift correction as described in Section 2.1.3, retrospective forecasts
are used by climate prediction centers to establish forecast skill. This involves initializing a suite
of predictions across the past several decades and testing whether predictions would have been
successful (e.g. given an estimate of climate conditions in January of 1982, how well can the
model predict temperature and precipitation anomalies for the rest of 1982). These retrospective
forecast suites are also made available to potential users to assess predictability of particular
variables of interest.

Numerous prediction skill measures have been developed (Stanski et al., 1989; von
Storch and Zwiers, 2001; Jolliffe and Stephenson, 2003; Mason and Stephenson, 2007; van den
Dool, 2007; Wilks, 2011). Generally, stakeholders are interested in the correctness of a forecast
(Mason and Stephenson, 2007), and thus the anomaly (see Section 3.1.3 for details on how
anomalies are calculated) correlation coefficient (ACC) and root mean square error (RMSE)
between the model retrospective forecast and observations are among the most commonly used
prediction skill measures for deterministic forecasts. For a probabilistic forecast, the Brier Score
(BS) is often used to measure of the mean squared probability error of whether an event
occurred. The value of the dynamical prediction can also be assessed by comparing the skill of a

dynamical forecast output to that of climatology. For instance, the ranked probability skill score
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(RPSS), a commonly used measure of probabilistic prediction, is used to reflect the relative
improvement given by the forecast over climatology (Fig. 3). Seasonal to decadal prediction skill
is also often compared against that of a persistence forecast. A persistence forecast is a forecast
produced by simply projecting forward the current climate anomaly. For example, a January one-
month lead SST forecast would be compared against a persistence forecast derived from
maintaining the December temperature anomaly into January. Statistical predictions, particularly
for decadal forecasts whose skill also depends on changes in radiative forcing not represented in
a persistence forecast, can also act as useful tools against which to assess dynamical prediction
skill (Ho et al., 2013). While statistical or persistence forecasts provide an important benchmark
against which to assess the added value of dynamical seasonal forecasts, a skillful statistical (e.g.
Eden et al., 2015) or persistence forecast can be as relevant to users as a skillful dynamical
forecast.

As discussed in Section 2.4.1, for a forecast to be useful to LMR managers and the
fisheries and aquaculture industries, not only does it need to be skillful, but its uncertainty has to
be representative of the spectrum of potential outcomes. Climate prediction uncertainty arises
from different sources (Payne et al., 2016), with internal variability and model uncertainty being
the most important for seasonal to decadal predictions, particularly at regional scales (Hawkins
and Sutton, 2009). Internal variability uncertainty stems from emergent chaotic properties of the
climate system, and causes predictions differing only a little in initial conditions to evolve to
quite different climate states (Lorenz, 1963; Wittenberg et al., 2014). In an attempt to capture
some of this internal variability uncertainty, climate prediction centers produce different
forecasts characterized by the same global dynamic model started with slightly different initial
conditions chosen to reflect equally probable initial states given a set of observational
constraints. The collection of such forecasts is referred to as a single-model ensemble.

Forecast uncertainty also arises from our incomplete understanding of the climate system,
as reflected in the forecast model being a simplification of the real world. Model error can stem
from uncertainties in the parameterizations of physical processes that are either not well
understood, act at a scale below the model’s spatial or temporal resolution, or are too
computationally expensive to be modeled explicitly. Errors in numerical approximations also add
to model uncertainty. Multi-model ensembles are a way to characterize forecast uncertainty

arising from this model uncertainty. In such ensembles, simulations from entirely different
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models, often from various prediction centers, are combined to produce a forecast output. The
North American Multi-Model Ensemble (NMME) (Section 2.1.4) is an example of such a
forecast. Seasonal forecasts from leading US and Canadian prediction systems are combined to
produce a multi-model ensemble mean seasonal forecast. Single model forecasts are also
provided, but the multi-model mean has been shown to have higher prediction skill than any
single model (Becker et al., 2014). The skill increase comes from error cancellation and the non-
linearity of model diagnostics (Becker et al., 2014). In addition to a more accurate measure of
central tendency, use of a multi-model ensemble often allows for a more complete representation
of forecast uncertainty. Ensemble methods thus allow forecasts to be probabilistic, reflecting the
range of all potential outcomes (Goddard, 2001). To base decisions on a comprehensive
assessment of risk, incorporation of seasonal to decadal predictions into LMR applications
should include these estimates of forecast uncertainty.

Dynamical processes that operate at scales finer than a model’s resolution must be
parameterized. The spatial resolution of a model grid dictates the breadth of processes that may
be simulated, and differences in this resolution can influence model error and thus limit forecast
skill. Indeed, an increase in resolution from the 100 to 200-km atmospheric resolution common
to many of the current seasonal to decadal prediction systems (Kirtman et al., 2013), to 50-km
resulted in better seasonal temperature and precipitation forecast skill, particularly at a regional
scale (Jia et al., 2015). Nevertheless, in regions where local and/or unresolved sub-grid scale
processes strongly modulate the basin-scale climate signal, even such relatively high resolution
(50-km atmosphere and 100-km ocean) predictions have limited skill. For example, global
climate models that have an ocean resolution of 100-km to 200-km have a bias in both ocean
temperature and salinity in complex coastal environments such as the US Northeast Continental
Shelf (Saba et al., 2016). These biases may partially explain the relatively poor predictive skill of
seasonal SST anomalies predictions in this region (Stock et al., 2015). When both atmosphere
and ocean model resolution are increased (50-km atmosphere, 10-km ocean), such biases are
substantially reduced (Fig. 4) because the Gulf Stream coastal separation position as well as
regional bathymetry are more accurately resolved. We stress, however, that while enhanced
resolution appears critical for some scales and ecosystems, existing models show considerable
prediction skill for marine resource relevant variables at other scales and ecosystems (Section

2.3). High resolution GCMs (10-km ocean versus 100-km in many prediction systems), are also
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considerably more computationally expensive to run, currently limiting their use in operational
climate prediction systems. Furthermore, biases can remain at this resolution, and can be quite
large in specific ocean regions (Delworth et al., 2012; Griffies et al., 2015). This is due, in part,
to the challenges of optimizing sub-gridscale parametrizations for higher resolution models
(Goddard et al., 2001).

An alternative means of addressing resolution challenges is to embed a regional
dynamical downscaling model in a global climate prediction system (e.g. Section 4.5, Section 6).
Most of the world’s fish catch is produced (Pauly et al., 2008) and most aquaculture operations
are located in coastal and shelf seas. Regional models have the added advantage of improved
resolution of coastal process (e.g. tidal mixing) that impact predictive skill of LMR-relevant
variables at decision-relevant scales. However, these advantages must be weighed against the
challenges, such as boundary condition inconsistencies, encountered when nesting models of
considerably different structure and resolution (Marchesiello et al., 2001; Brennan et al., 2016).

It is important to note that while some of the current uncertainty in seasonal to decadal
predictions can be reduced by, for example, improved model parameterizations, expanded
observational networks, or increased model resolution, irreducible uncertainties will remain.
Owing to the chaotic nature of the atmosphere, there are inherent seasonal and decadal
predictability limits, which need to be clearly communicated to stakeholders (Vaughan and
Dessai, 2014; Zebiak et al., 2015). For instance, on the west coast of the US, the seasonal
upwelling season ends abruptly with the fall transition. This transition is driven mostly by
storms, and consequently may not be predictable on seasonal time scales.

Finally, since reanalysis products are often treated as observations in forecast verification
(Section 2.1.3), it is important for users to confirm the fidelity of such data sets to their specific
area of interest prior to integration with LMR management frameworks. Where possible, this
should be done with additional hydrographic data that may not have been incorporated in the
reanalysis. We refer readers to Stock et al. (2015) for an example on how such an analysis can be

performed.
2.3. Prediction of living marine resource-relevant physical variables

Variables routinely predicted using current seasonal to decadal forecast systems are

LMR-relevant (e.g. SST), and the objectives of seasonal to decadal climate prediction are
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consistent with the spatiotemporal scale of many of the fisheries management decisions.
However, oceanic prediction skill has often only been assessed with a view to its influence on
regional weather prediction, rather than being of primary interest in itself (Stockdale et al.,
2011). There are, however, a growing number of prediction studies for quantities and
spatiotemporal scales relevant to LMR science and management challenges (Fig. 5). Below we
discuss several of these, including predictability of SST anomalies, sea ice, and freshwater
forcings that influence LMRs, along with recent advances for anticipating extreme events.

SST anomalies are both important drivers and meaningful indicators of ecosystem state
(e.g., Lehodey et al., 2006; Brander et al., 2010). Efforts to assess the predictability of SST
anomalies have emphasized ocean basin-scale modes of variability often linked to regional
climate patterns (e.g., ENSO; Barnston et al., 2012). However, recent work has also revealed
considerable SST prediction skill for many coastal ecosystems (Stock et al., 2015). Over short
time scales, skill often arises from simple persistence of SST anomalies due to the ocean’s
substantial thermal inertia (Goddard and Mason, 2002). In many cases, however, skill exceeds
that of persistence forecasts and can extend across leads of 6-12 months (Fig. 6). Such seasonal
SST predictability may arise from diverse mechanisms, including the seasonal emergence of
predictable basin-scale SST signatures following periods dominated by less predictable local
variation, transitions between opposing anomalies due to the seasonal migration of ocean fronts,
or the predictable re-emergence of sub-surface anomalies following the breakdown of summer
stratification (Stock et al., 2015). Further analysis suggests that multi-model based SST
predictions can further improve regional SST anomaly prediction skill and more reliably
represent prediction uncertainty and the potential for extremes (Hervieux et al., in review). The
considerable prediction skill at this LMR-relevant scale has allowed for some pioneering use of
SST predictions for marine resource science and management (e.g., see case studies in Section
4), and suggests ample potential for further expansion.

In a few ocean regions, most notably the North Atlantic, SST predictions are skillful for
several years (Yang et al., 2013; Msadek et al., 2014a; Keenlyside et al., 2015). This time scale is
of particular interest for many LMR applications (Fig. 5). The predictive skill on these time
scales emerges from phenomena, primarily in the ocean, that have inherent decadal scales of
variability (Salinger et al., 2016). Perhaps the most prominent among these is the Atlantic

Meridional Overturning Circulation (AMOC). Decadal-scale variations in AMOC-related ocean
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heat transport can influence SST over a wide area of the North Atlantic, and are thought to be a
critical component of North Atlantic basin-scale SST variation characterized by the Atlantic
Multidecadal Oscillation (AMO). For example, the abrupt warming observed in the mid-1990s in
the North Atlantic has been retrospectively predicted in several models (Pohlmann et al., 2009;
Robson et al., 2012; Yeager et al., 2012; Msadek et al., 2014a), with an increase of the AMOC
being responsible for the warming. The Pacific Decadal Oscillation (PDO) also has decadal
scales of variability and can be predicted a few years in advance, with significant impacts across
a broad area of the North Pacific and adjacent continental regions (Mochizuki et al., 2010; Meehl
and Teng, 2012). More idealized predictability studies also suggest the potential for substantial
decadal predictive skill in the Southern Ocean (Boer, 2004), associated with deep vertical mixing
and substantial decadal scale natural variability (Salinger et al., 2016). Nevertheless, unlike
seasonal climate predictions, which are operational, the field of decadal prediction is in a very
early stage (Meehl et al., 2014). Performance of decadal predictions needs to be assessed over a
wider range of models and systematic model errors have to be reduced further to increase their
utility to the marine resource community. Furthermore, the limited number of decadal-scale
fluctuations of the 30-40 year period for which retrospective forecasts are possible severely
restricts the effective sample size with which to characterize decadal prediction skill. Models
may demonstrate an ability to capture several prominent events over this time period, but it is
difficult to robustly generalize skill for this limited sample of independent decadal-scale events.
Sea ice is another LMR-relevant variable (Coyle et al., 2011; Hunt et al., 2011, Saba et
al., 2013), whose seasonal predictive skill has been assessed at a regional scale. Based on
estimates by the National Snow and Ice Data Center, September Arctic sea ice extent has
declined at a rate of about 14% per decade since the beginning of satellite records (Stroeve et al.,
2014), a trend largely attributed to warming due to accumulating GHGs (e.g. Stroeve et al.,
2012). In addition to these long-term changes, large year-to-year variations have been observed
in the position of the summer and winter sea ice edge. Operational and quasi-operational
initialized predictions show some skill in predicting summer Pan-Arctic sea ice extent when it
reaches its minimum in September, with significant correlation 3 to 6 months in advance at best
in a few dynamical models (Sigmond et al., 2013; Wang et al., 2013; Chevallier et al., 2013;
Msadek et al., 2014b). Sea ice thickness appears to provide the memory for sea ice extent

predictability from one summer to the next. Hence more accurate predictions could be expected
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with improved observations of sea ice thickness and sea ice thickness initialization (Guemas et
al., 2016). While predictions of summer sea ice have important implications for shipping and
resource extraction, sea ice extent in late winter affects spring phytoplankton bloom timing and
ultimately fish production (Hunt et al., 2011). However, while enhanced forecast skill with up to
3 to 4 months of lead-time relative to a persistence forecast has been reported during fall and
early winter, forecast skill remains limited in late winter (Sigmond et al., 2013; Msadek et al.,
2014b). Processes driving winter sea ice predictability include the representation of atmospheric
dynamics like the position of the blocking high (Kwok, 2011), but also oceanic processes like
heat convergence that drives SST anomalies in the marginal seas (Bitz et al., 2005). On-going
studies based on improved model physics, improved parameterizations, and increased resolution
in the atmospheric and oceanic components of the models are expected to improve representation
of atmospheric dynamics, oceanic processes, and the mean distribution of sea ice, its seasonal
variations, and possibly its predictability. Such improvements may also impact SST prediction
skill (Stock et al., 2015).

While oceanic variables are of major importance for production and distribution of wild
and aquaculture species, river temperature and flow are additional influences on recruitment and
survival of commercially-important anadromous fish species, such as Pacific and Atlantic
salmon (Bryant, 2009; Jonsson and Jonsson, 2009) and stocks such as northwest Atlantic river
herring that have fallen below historical levels (Tommasi et al., 2015). In addition, these
variables affect nearshore ocean dynamics and hence impact aquaculture of estuarine species.
Seasonal stream flow predictability is thus of high interest to some industry groups and fisheries
management agencies. Land models incorporated in current seasonal to decadal climate
prediction systems, however, only provide a coarse representation of topography, river networks,
and land cover, and forecasts of hydrological properties are not very skillful if taken directly
from global dynamical forecast systems (Mo and Lettenmaier, 2014). Historically, land
resolution in models has limited topographic variability, which impacts snowfall, and as a result
has downstream influences on surface hydrology (e.g. reduced soil moisture and stream flow) in
mountainous regions and surrounding areas dependent on orographic precipitation and spring
and summer snowmelt (Kapnick and Delworth, 2013; Kapnick et al., 2014). This bias is
pronounced in western North America where mountain hydrology drives water availability

(Barnett et al., 2005). As a result, higher resolution hydrological models have been forced by the
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larger scale input from coarser global climate models to produce hydrologic forecasts at scales
useful for decision makers (e.g. Mo and Lettenmaier, 2014). As prediction systems increase in
atmospheric and land surface resolution, precipitation and temperature prediction skill over
mountain regions also increases as topography is better resolved (Jia et al., 2015).

Aside from issues in resolution, hydrologic predictability is largely a function of initial
land surface conditions (primarily soil moisture and snow cover) and seasonal forecasts of
rainfall and temperature (Shukla et al., 2013; Yuan et al., 2015). In regions where snow and soil
moisture provide a long hydrological memory, such as the western United States or high altitude
locations, accurate initial conditions can provide skillful forecasts out to 3 to 6 months,
particularly during cold seasons (Koster et al., 2000; Mahanama et al., 2012; Shukla et al., 2013).
Similarly, in regions where the flow regime is controlled by groundwater rather than rainfall,
persistence of initial flow can provide a skillful seasonal forecast (e.g. Svensson, 2016).
However, over most of the globe, persistence skill decreases after a month (Shukla et al., 2013),
and improvements in the predictability of streamflow are made by incorporating climate
information into hydrological forecasting systems. Climate predictions systems can provide such
climate forcing inputs (i.e. precipitation and temperature predictions) (Mo and Lettenmaier,
2014). However, the precipitation prediction skill of current global dynamical forecast systems is
often too low to extend hydrological forecast skill beyond 1 month, particularly in dynamically
active regions (Mo and Lettenmaier, 2014). Skillful seasonal hydrological predictions out to 3 to
9 months lead-times have been obtained, however, by integrating into hydrological models
rainfall predictions derived from a climate index, such as the NAO, from a climate prediction
system (e.g. Svensson et al., 2015). Alternatively, skillful seasonal hydrological predictions have
been achieved by statistically integrating a climate index directly into a hydrological forecast
system (e.g. Piechota and Dracup, 1999; Karamouz and Zahraie, 2004; Wang et al., 2011;
Bradley et al., 2015).

Over recent years substantial effort has been placed on seasonal predictions of extreme
phenomena, particularly tropical (Camargo et al., 2007; Vecchi and Villarini, 2014) and
extratropical (e.g., Yang et al., 2015) cyclones. These extreme events threaten fishers’ safety at
sea and can dramatically impact the aquaculture and fishing industry through lost production and
income with changes in fish survival and growth, reduction in water quality, and destruction of

essential fish habitat (e.g. coral reefs, seagrass beds) or infrastructure (Chang et al., 2013;
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Hodgkinson et al., 2014). Although individual tropical cyclones are very much "weather"
phenomena, with no path to predictability beyond a few days, some aggregate statistics of
tropical cyclones are strongly influenced by predictable large-scale aspects of climate, such as
ENSO or other modes of variability (e.g., Gray, 1984). This has led to the development of a
number of skillful statistical (Klotzbach and Gray, 2009; Jagger and Elsner, 2010), dynamical
(Vitart and Stockdale, 2001; Vitart, 2006; Zhao et al., 2010; Chen and Lin, 2011; Vecchi et al.,
2014; Murakami et al., 2015), and hybrid statistical-dynamical (Wang et al., 2009; Vecchi et al.,
2011) prediction methodologies, which have targeted primarily basin-wide (e.g., North Atlantic,
West Pacific, etc.), seasonally-integrated statistics of tropical cyclone activity. More recently,
methodologies that exploit the ability of high-resolution GCMs to represent both regional
hurricane activity and its connection to climate variation and change have led to skillful seasonal
predictions of tropical cyclone activity at more regional scales (e.g., Vecchi et al., 2014; Zhang et
al., 2016, Murakami et al., in review). The coming years are likely to see an expansion in the
growth of tools for the seasonal prediction of tropical cyclones and many other extreme
phenomena, such as tornadoes (Elsner and Widen, 2014 ; Allen et al., 2015), and heat waves (Jia
et al., 2016) enabled by the widespread development of high-resolution dynamical prediction
models, improved understanding of the connection of weather extremes to large-scale conditions,
and the pressing societal need for information about the statistics of high-impact weather events

at regional scales.

3. Managing living marine resources in a dynamic environment

Management of LMRs is an exercise in trade-offs, requiring that managers balance
multiple, often competing objectives (e.g. Jennings et al., 2016). For instance, global policies and
the legal mandates of many countries require weighting conservation of commercial stocks
against their exploitation, protecting bycatch species that are overfished or listed as endangered
or threatened, safeguarding of coastal economies and fishing communities, and balancing present
benefits to stakeholders against future losses (King et al., 2015). Fisheries managers acting on
the best available science are mandated to prevent overfishing while, on a continuing basis,
achieving high levels of benefits to society from fisheries and other seafood products. Fishers
must balance a parallel tradeoff between the value of current harvest and the maximum value of

future harvests. Similarly, aquaculture industry participants have to balance the value of expected
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returns from capital investment against its opportunity costs.

LMR industry or management decisions are made all the more challenging because these
objectives must be achieved against the backdrop of a highly dynamic ocean environment.
Different decisions are made for different spatial and temporal scales (with regard to both lead-
time and the application of the decision), and thus their effectiveness is influenced by climate—
driven variability from across the climate system (Fig. 5). In this section, we summarize LMR
management and industry decisions made with lead-times from days to decades and the
frameworks used to make them, identifying the points where seasonal to decadal climate

predictions could inform decisions, and discuss the potential benefits of this information.

3.1. Industry Operations

For the aquaculture industry, key decisions include when to release fry, ‘plant’ and
harvest fish/shellfish, and when and what remedial actions to take to counter or avoid poor
conditions. Extreme events such as floods, storms, and tropical cyclones can dramatically
impact the aquaculture industry through reduction in water quality and destruction of
infrastructure (Hodgkinson et al., 2014). Anomalously warm or cold conditions can also result in
lost production and income via direct mortality effects, changes in growth or disease outbreaks
(Chang et al., 2013, Spillman and Hobday, 2014). Hence, nowcasts and daily environmental
forecasts are routinely used to improve the operational planning of the aquaculture industry. For
example, monitoring networks of coastal water chemistry have been essential to reduce the
impact of extremely low pH waters on oyster larval survival, increasing the economic resilience
of the Pacific Northwest shellfish industry (Barton et al., 2015). Similarly, estuarine conditions
are monitored to time release of hatchery reared salmon fry with optimal environmental
conditions for growth and survival (Kline et al., 2008). While information on current
environmental conditions is useful, seasonal forecasts of particular environmental variables can
further improve the operational planning activities and climate readiness of the aquaculture
industry by giving aquaculture farm managers time to develop and implement management
strategies that minimize losses to climate, as is outlined in Case Study 4.1 (Spillman and
Hobday, 2014; Spillman et al., 2015), or by allowing hatcheries time to adjust their release
schedule (Chittenden et al., 2010).

For the fishing industry, key decisions include investments in boats, gear and labor, as
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well as when, where, and what to fish. Fishers rely on historical knowledge of the influence of
environment on fish distribution to optimize such investment and harvest decisions. However,
movement of environmental conditions into new ranges and associated changes in fish
distribution (Section 1) is now affecting the value of fishers' past knowledge, making it harder to
locate fish and make optimal pre-season investments, undermining their business performance
(Eveson et al., 2015). As demonstrated in Case Study 4.2, seasonal climate forecasts can be
incorporated into fish habitat models to produce fish distribution forecasts and improve the
operational planning and efficiency of the fishing industry.

Such habitat models generally use correlative techniques to define regions of high
abundance, or high probability of occurrence, for a species of interest in relation to
oceanographic conditions. Species distribution data can be sourced from tagging studies,
fisheries-dependent records, fisheries-independent surveys, or other sources. The distribution
data is then related to one or multiple environmental variables (e.g. temperature, Hobday et al.,
2011) through a variety of statistical methods, including generalized linear models (GLM),
generalized additive models (GAM), classification and regression trees (CART), and artificial
neural networks (ANN). When making century-scale projections of how fish distributions will
change due to shifts in climate and marine habitat distribution, other commonly used models
include Maxent (Phillips et al., 2006), Dynamic Bio-climate Envelope Model (DBEM; Cheung
et al., 2009), AquaMaps (Kaschner et al., 2006), and the Non-Parametric Probabilistic Ecological
Niche (NPPEN) model (Beaugrand et al., 2011). These models vary in assumptions and
complexity, and can at times give markedly different results when applied to the same dataset
(Lawler et al., 2006; Jones et al. 2013; Jones and Cheung 2014, Cheung et al. 2016a). For this
reason, it is advisable to use an ensemble of multiple models when it is practicable to do so.
Regardless of the statistical model used, all correlative habitat models assume that the
relationships observed between species distributions and environmental variables in the training
dataset are reliable proxies for actual mechanistic drivers of habitat preference. This assumption
can be reasonably robust, for example if statistical associations with temperature closely mirror
known physiological constraints, or more questionable, where a correlation is observed but the
mechanistic basis is unknown (Peck et al., 2013). This can limit the performance of habitat
models when they are extrapolated outside the range of the training dataset: either spatially into

other geographic regions, or temporally into past or future time periods (Brun et al. 2016).
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Long-term industry decisions, such as long-term resource capitalization and
determination of optimal investment strategies for long-term sustainability can also be informed
by these same habitat models, driven by multi-annual to decadal rather than seasonal, climate
forecasts. Such long-term species distribution forecasts would help the fishing industry
determine, and initiate a discussion with managers on optimal licensing strategies in the face of a
changing environment, such as more flexible quota-transfer frameworks (Mcllgorm et al., 2010).
For the aquaculture industry, multi-annual to decadal scale species distribution forecasts would
improve capital investment decisions such as where to establish a new site or estimate and sell

risk in a market place (Little et al., 2015).

3.2. Monitoring and closures

Public health officials and fisheries managers have to make decisions on when to close a
resource to protect the public, the resource itself, or, as for the case of bycatch species, resources
caught incidentally to fisheries operations. Decisions also have to be made on how best allocate
limited monitoring resources. Advanced estimates of stock distribution via bioclimatic habitat
models (Case Study 4.5) or more complex ecosystem models (Case Study 4.6) informed by
seasonal climate forecasts can guide planning for observer coverage and for fishery-independent
surveys to ensure that stocks are monitored across their distributions. Below we elaborate via
three examples on how short-term forecasts of climatic variability can be linked to triggers for
fisheries closures (e.g., harmful algal blooms), allow time to prepare response plans (e.g., in
response to coral bleaching), and reduce unwanted and incidental captures.

Harmful algal blooms (HABs), pathogens (e.g. Vibrio spp.), and dangerous marine
species such as jellyfish pose a significant threat to public health and fishery resources. Total
economic costs of HABs, including public health, commercial fishery, and tourism impacts, are
an average of $49 million per year in the US alone (Anderson et al., 2000). For instance, an
unprecedented coastwide HAB in spring 2015 caused widespread closures of commercial and
recreational fisheries over the entire U.S. West Coast and led to substantial economic losses to
the seafood and tourism industries (McCabe et al., 2016). HAB-related fish-mortality is also
recognized as a significant problem in Europe (ICES, 2015), and HAB-related closures of
fisheries in eastern Tasmania and the west coast of North America have led to economic

hardship and are becoming more frequent (Lewitus et al., 2012; van Putten et al., 2015). To limit
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such adverse effects, coastal resource managers have to estimate optimal allocation of
monitoring resources, as well as appropriate times and locations for beach and shellfish bed
closures. If fishers can anticipate HAB-related closures, they can make informed decisions about
which stocks to target and develop approaches to compensate for expected lost revenues.

Nowcasts and short-term (e.g. lead-time less than a month) forecasts of pathogens and
HAB likelihood or distribution have been successful in helping coastal planners target
monitoring, guide beach and shellfish closures, water treatment practices, and minimize impacts
on the tourism and fisheries and aquaculture industries
(http://coastalscience.noaa.gov/research/habs/forecasting; Stumpf and Culver, 2003; Constantin
de Magny, 2009). Such nowcasts and short-term forecasts are generally derived from an
empirical habitat model (Section 3.1) incorporating temperature and salinity fields from regional
hydrodynamic models driven by weather models (e.g. Constantin de Magny, 2009), though
mechanistic HAB models have also been developed (McGillicuddy et al., 2011). Integration of
seasonal climate forecasts into such frameworks could extend the lead-times of HABs and
pathogen forecasts, allowing coastal planners and impacted industries more time to develop
response strategies. Likewise, temperature-based surveillance tools dependent on seasonal SST
forecasts have been proposed to help monitor, research, and manage emerging marine disease
threats (Maynard et al., 2016).

Reduction of incidental capture of protected or over-exploited species during fishing
operations is an important management objective in many jurisdictions; and fisheries managers
are tasked with deciding what management actions are warranted to achieve this objective (e.g.
Howell et al., 2008; Smith et al., 2007). Spatial management strategies that restrict fisher access
in specific zones and at specific times have been successfully used to limit interactions between
bycatch species and fishing gears (Hobday et al., 2014; Lewison et al., 2015). However, as fish
move to remain in suitable physical and feeding conditions, fish distributions and phenology
change with varying ocean dynamics (Platt et al., 2003; Perry et al., 2005; Nye et al., 2009;
Pinsky et al., 2013; Asch, 2015), and therefore static time-area closures can be ineffective
(Hobday and Hartmann, 2006; Howell et al., 2008; Hobday et al., 2011; Howell et al., 2015).
Integration of real-time or forecast ocean conditions into a habitat preference model (Section 3.1)
is now being pursued to determine spatial distributions of species of concern and to set dynamic

time-area closures (Hobday and Hartmann, 2006; Howell et al., 2008; Hobday et al., 2011;
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Howell et al., 2015; Dunn et al., 2016). For instance, nowcasts of the preferred habitat of
loggerhead and leatherback turtles are helping to reduce interactions between Hawaii swordfish
longline fishing vessels and these endangered species (Howell et al., 2008; Howell et al., 2015).
The utility of seasonal forecasts in setting effective dynamic spatial management strategies

(Maxwell et al., 2015) to reduce bycatch is exemplified in Case Study 4.7.

3.3. Provision of Catch Advice

Setting annual catch quotas, or adjustments to fishing seasons or effort, is one of the most
critical and difficult decisions taken by fisheries managers. In the United States, Annual Catch
Limits (ACLs) are mandated to not exceed scientifically determined sustainable catch levels
(Methot et al., 2014). Such intensive management of fishing levels occurs in other fishery
systems and has been considered key to effective control of exploitation rates (Worm et al.,
2009). ACLs are dependent on a control rule that basically defines the fraction of the fish stock
that can be safely harvested each year. The control rule is designed to achieve a large fraction of
the biologically possible “Maximum Sustainable Yield”, based on a forecast of stock abundance
over the next one to several years and biological reference points. Reference points, such as the
fishing rate that achieves the maximum long-term average yield (Fisy), reflect the long-term
productivity of a fish stock and are the basis for a management system to maintain annual fishing
mortalities at a target level that does not lead to overfishing (Quinn and Deriso, 1999).

Reference points and forecasts of stock status are based upon stock assessment models,
which commonly are data-assimilating, age-structured models of a single stock’s population
dynamics (Methot, 2009; Maunder and Punt, 2013). Typically, these lack spatial structure, while
focusing on temporal dynamics on an annual time step over several decades. We refer readers to
Quinn and Deriso (1999) for a detailed description of a range of stock assessment models,
differing in complexity and data requirements. The parameters of the model, e.g., annual
recruitment, natural mortality rates, annual fishing mortality rates, etc., are calibrated by
assimilating data on fishery catch, fish abundance from surveys, and the age or length
composition of fish in the surveys and catch. Nielsen and Berg (2014) illustrate recent advances.

The effects of ecological (e.g. predator abundance) or physical factors on population
dynamics are rarely modeled explicitly: a recent meta-analysis showed that just 24 out of the

1200 assessments incorporated such information (Skern-Mauritzen et al., 2015). These
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unmeasured, non-fishing driving factors are only accounted for by allowing the models to
incorporate random variability in key model parameters, particularly recruitment, or by
incorporating empirical measured inputs, particularly regarding fish body weight-at-age.
However, without including the process causing the fluctuations in the model framework, there
1s no basis for refining the random forecast into the future.

Reference points are thus generally computed assuming quasi-equilibrium conditions and
stationary stock productivity (Quinn and Deriso, 1999). However, in many fish populations,
ecosystem and climate can shift the production curve over time (Mohn and Chouinard, 2007;
Munch and Kottas, 2009; Payne et al., 2009; Payne et al., 2012; Peterman and Dorner, 2012;
Vert-pre et al., 2013; Bell et al., 2014; Perild and Kuparinen, 2015), calling this assumption into
question. Failure to include variability in any component of productivity, such as recruitment,
natural mortality, and growth, into the development of reference points and annual catch advice
can lead to unexpected population declines when productivity shifts to unanticipated low levels
(Brunel et al., 2010; Brooks, 2013; Morgan et al., 2014). Furthermore, the use of static reference
points can contribute to inaccurate estimates of stock recovery time and rebuilding thresholds
(Collie and Spencer, 1993; Holt and Punt, 2009; Hammer et al., 2010; Punt, 2011; Pershing et
al., 2015).

Nevertheless, robust alternatives to the status quo definitions of reference points have yet
to be developed. For stocks that have undergone recognized shifts in productivity over their
catch history, dynamic reference points can be constructed using data from the most current
regime, as is currently done for Gulf of Alaska walleye pollock (Dorn et al., 2014) or southeast
Australian morwong (Wayte, 2013). However, performance of such reference points in achieving
management objectives as compared to the status quo has been mixed (Punt et al., 2014a, b). A
common shortcoming is that using a shorter time series leads to less biased, but more uncertain,
reference points (Haltuch et al., 2009; Dorner et al., 2013; Punt et al., 2014b). Furthermore, even
dynamic reference points assume that the recent past will be representative of near future
conditions. Because of the noisy nature of productivity parameters, such as recruitment,
productivity shifts tend to be recognizable only well after the change has taken place, preventing
managers from adjusting harvest strategies in a timely manner, and increasing the risk of
overfishing (A'mar et al., 2009; Szuwalski and Punt, 2013). Statistical techniques such as the

Kalman filter, which allow for time varying productivity parameters in stock assessment models,
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have proven useful in a timely detection of productivity shifts and improved reference point
estimation for semelparous species (Peterman et al., 2000; Peterman et al., 2003; Collie et al.,
2012). Temporal variability in reference points can also be introduced via environmental
covariates on productivity parameters. When these environmental factors can be skillfully
forecasted and the environment-population dynamics relationship is robust, the fish productivity
forecast is improved (Maunder and Watters, 2003; Schirripa et al., 2009; Haltuch and Punt,
2011; Johnson et al., 2015; Miller et al., 2016).

Effectiveness of alternative reference point definitions and climate-robust harvest control
rules can be tested through Management Strategy Evaluation (MSE). MSE is a simulation tool
for comparing the trade-offs in the performance of alternative management strategies while
accounting from uncertainty from different sources, such as climate responses, biological
interactions, fishery dynamics, model parametrizations, observations, and management
approaches (Cooke, 1999; Butterworth and Punt, 1999; Sainsbury et al., 2000). While the utility
of accounting for the environment in achieving management objectives has been demonstrated
for some species (Basson, 1999; Agnew et al., 2002; Brunel et al., 2010; Hurtado-Ferro et al.,
2010; Pershing et al., 2015; Miller et al., 2016), existing MSEs demonstrate that climate drivers
of stock productivity show mixed results with respect to the effectiveness of alternative,
potentially climate-robust, management strategies when compared to those currently
implemented (A’mar et al., 2009; Punt et al., 2011; Szuwalski and Punt, 2013; Punt et al., 2014).
One exception is the Pacific sardine fishery; whose catch targets vary with a reference point
dependent on a 3-year moving average of past SST (Hill et al., 2014).

Through the use of seasonal climate forecast information, climate informed reference
points as used operationally for the US sardine fishery, would be more reflective of future
productivity. This may help managers both adjust annual catch targets in a timely manner and set
more realistic rebuilding targets (Tommasi et al., accepted.). Effectiveness of such climate-
informed reference points will depend upon achieving climate forecast skill at the seasonal to
decadal scale, and on past observations used to identify environmental drivers of productivity
being able to adequately characterize future relationships.

Addition of climate forecast information into stock assessment models may also reduce
uncertainty bounds on stock status projections by narrowing the window of probable outcomes

as compared to the use of the entire historical range (Fig. 7a). Furthermore, if a stock
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productivity parameter is subject to an environmentally-driven shift or directional trend, future
values may lie outside of the historical probability space, leading to biased estimates of stock
status under the assumption of stationarity (Fig. 7b and 7c). As a result, a climate forecast may
serve as an advance warning of shifts in environmental conditions and stock productivity
parameters, and may reduce bias in stock status estimates (Fig. 7b and 7c).

It must be stressed that the theoretical value of climate forecast information detailed in
Fig. 7 is dependent on both the strength of the environment-fisheries relationship and climate
forecast skill. That is, we assume that the environment-fisheries relationship is robust and
stationary, that a relatively high proportion of the unexplained variability can be explained by the
environmental data (e.g. Basson, 1999), and the environment can be well predicted. For instance,
if the environment-fisheries relationship breaks down, climate-driven harvest control rules will
perform poorly (Fig. 2d), highlighting the need for a strong mechanistic understanding of the
environment-fisheries link (Dorner et al., 2013), or more conservative management approaches

when the fluctuations cannot be predicted with adequate precision.

3.4. Spatial Issues and Protected Areas

In addition to multi-year forecasts of stock status and revisions of reference points
(Section 3.3), multi-year to decadal fisheries management decisions encompass long-term spatial
planning decisions regarding changes to closed areas, the setting of future closures, preparation
for emerging fisheries, and adjustment of quotas for internationally shared fish stocks. Even
decisions about which management body has jurisdiction may need adjustment over time.

As for short-term spatial management rules aimed at bycatch reduction (Section 3.2),
stock distributions employed in the setting of current long-term closed areas are generally taken
as static. Fish assessment models generally lack spatial structure, and thus have no inherent
capability to forecast changes in stock distribution as ocean conditions shift the distribution of
the stock, nor to calculate the localized impact of a spatially restricted fishery or reserve
(McGilliard et al., 2015). However, the spatial distribution of many marine species has been
shown to be particularly sensitive to changes in climate over multi-annual to decadal scales (Nye
et al., 2009; Pinsky et al., 2013; Poloczanska et al., 2013; Bell et al., 2015; Thorson et al. 2016).

Such climate-driven distributional shifts can have important implications for spatial

management measures. For example, shifts of juvenile plaice (Pleuronectes platessa) towards
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deeper waters have made a closed area (the “Plaice Box™) set up in the North Sea to prevent
recruitment overfishing less effective (van Keeken et al., 2007). One potential solution for stocks
that have undergone recognized shifts distribution over their catch history is use of dynamic
seasonal-area closures. Climate predictions, particularly of surface and bottom temperatures,
could be used to drive species habitat models that help define fishery closure areas (Section 3.1;
Link et al., 2011; Makino et al., 2014; Shackell et al., 2014; Rutterford et al., 2015).
Furthermore, seasonal to decadal predictions (as well as nowcasts and hindcasts) of
environmental conditions may contribute to management even if they are not directly
incorporated within stock assessments. For instance, the Northeast US butterfish (Poronotus
triacanthus) assessment investigated methods to incorporate historical change in thermal habitat
to evaluate changing availability to the survey. While habitat-driven time-varying survey
catchability was not included in the final assessment, the focused effort to evaluate survey
catchability overall altered assessment estimates of scale, permitted more robust estimation of
natural mortality, and ultimately increased the catch quota relative to previous results.

Shifting species distributions can also create important new fishing opportunities, such as
the squid fishery in the Gulf of Maine that appeared during a particularly warm year (Mills et al.,
2013). Hence, forecasts of species distributions driven by multi-year to decadal climate
predictions can help identify which species are likely to spark new fisheries, and then prioritize
them for additional research, experimental fishing programs, or short-term closures during the
colonization phase. Such forecasts can also warn of distributional shifts outside of the range of
current fisheries operations, and may prevent overfishing of the remaining portion of the stock.

Advance warning of shifting distributions is particularly important when they impact
international agreements, since negotiations can take years. For example, mackerel faced a
“double jeopardy” scenario when they partially shifted into Icelandic and Faeroese waters and
the additional harvest pressure led to overfishing of the stock (Astthorsson et al., 2012;
Hannesson, 2012; Dankel et al., 2015). Pre-agreements between organizations or nations can be
drafted to create a clear set of rules for how to adjust quotas and allocations based on indicators
of changes in a stock distribution, perhaps including side-payments to compensate for lost
fishing opportunities (Miller and Munro, 2004). For instance, forecasts of ocean conditions are
used to forecast the proportion of Fraser River salmon migrating around the south end of

Vancouver Island, thus dramatically affecting international allocation of the catch opportunity
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(Groot and Quinn, 1987). Forecasts may also be critical for building a common understanding of

stock trajectories and for motivating the need for pre-agreements.

4. Case Studies

The previous two sections have provided an overview of the range of marine resource
decisions that could be improved with climate forecasts and of climate forecast skill for LMR-
relevant variables across decision making time scales. In this section, we highlight pioneering

applications of the climate predictions discussed in Section 2.

4.1 Seasonal forecasts to improve prawn aquaculture farm management

Pond-based prawn aquaculture in Australia is primarily located on the northeast coast of
Queensland (Fig. 8). Growing season length, timing of harvest, and farm production in this
region are strongly influenced by environmental conditions, such as air temperature, rainfall, and
extreme events, including tropical cyclones. Anomalously cool or warm temperatures can impact
production and timing of harvest, thus affecting delivery to market. Rainfall extremes, including
tropical cyclones, affect freshwater quality and supply to farms, road access in the case of
flooding, and can also cause loss of farm infrastructure. In this situation, predictions of
environmental conditions weeks to months in advance can improve risk management and allow
implementation of proactive management strategies to reduce unfavorable impacts and maximize
positive effects of conditions on farm production.

Seasonal forecast products for Queensland prawn farms were first developed in 2011-
2012 (Spillman et al., 2015) and currently continue to be delivered via a password protected
website. Regional temperature and precipitation forecasts are derived from the global dynamical
seasonal prediction system POAMA (Predictive Ocean Atmosphere Model for Australia;
Spillman and Alves, 2009; Spillman et al. 2011), and then downscaled using local weather
station information for participating prawn farms. The forecasts were verified by assessing the
probabilistic skill of the model predicting the upper terciles for maximum air temperature and
rainfall, and the lower tercile for minimum temperature, as these were the events of greatest
concern to prawn farm managers. Forecast accuracy is generally higher for temperature than
rainfall, and declines with lead-time (Fig. 8). Forecasts out to lead-times of 2 months, which

aligns with several farm operational planning timeframes, such as those for feed management or
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harvest time (Hobday et al., 2016), are sufficiently skillful to be integrated within prawn farm
management decision framework (Spillman et al., 2015).

Feedback from prawn farm managers following delivery of the first few forecasts led to
refinement of forecast format, visualization and delivery, and resulted in an industry award for
the project team. This approach has been applied to other marine aquaculture industries (e.g.
salmon; Spillman and Hobday, 2014), with industry recognition that a range of management
decisions can be supported by environmental forecasts to improve aquaculture production in the

face of climate variability and change.

4.2 Seasonal forecasts to improve economic efficiency of a large-scale tuna fishery

Large numbers of juvenile quota-managed southern bluefin tuna (SBT) (Thunnus
maccoyii) occur in the Great Australian Bight (GAB) during the austral summer (Dec-Apr),
where they are caught in a purse-seine fishery worth ~AUD 60 million annually. In recent
fishing seasons, unexpected changes in the distribution of SBT were observed that affected the
timing and location of fishing activity and contributed to economic pressure on the fishery. In
particular, in the 2011/12 season, SBT moved through the GAB quickly and were distributed
further east than in the past two decades. This resulted in less than 15% of purse-seine catches
being taken from fishing grounds reliably used over the previous 20 years. The following season
(2012/13) also saw unusual SBT distribution patterns that again impacted the fishery. As a result
of these observed changes, the Australian Southern Bluefin Tuna Industry Association
recognized the need for scientific support to improve operational planning in the purse-seine
fishery. Many decisions central to SBT industry members planning their fishing operations need
to be made weeks to months in advance, so seasonal forecasts of environmental conditions were
regarded as a useful tool.

Environmental variables influencing the spatial distribution of SBT in the GAB during
summer were explored using location data collected on SBT over many years from electronic
tags, and comparing the ocean conditions where fish were found with the conditions available to
them throughout the region and time period of interest (Eveson et al., 2015). SST was found to
have the greatest influence, with fish preferring temperatures in the range of 19-22°C. Once
habitat preferences were established, this information was coupled with POAMA (see Section

4.1) to predict locations of preferred SBT habitat in future. Both the habitat preference model
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and POAMA were evaluated against historical observations, and it was concluded that SST-
based habitat forecasts for SBT in the GAB have useful skill for lead-times up to 2 months. A
daily-updating website was created to provide industry with forecasts of environmental
conditions and SBT distributions for the next fortnight and next 2 calendar months from the date
of issue (Fig. 9), along with a suite of other relevant information, including skill of the forecasts
(www.cmar.csiro.au/gab-forecasts). Based on feedback from industry stakeholders obtained
both formally through a survey and informally through an industry liaison representative, the
information provided on the website has proven to be a valuable tool for fishers making
decisions such as when and where to position vessels and to conduct fishing operations (Eveson
et al., 2015). As the SBT fishery is quota-managed, the forecasting approach will not lead to
increased catches (and thus impact sustainability), but will enable fishers to catch their quota

more efficiently, thereby increasing profitability.

4.3 A statistical seasonal forecast to improve the operational planning of a lobster fishery

The US fishery for American lobster is one of the most valuable in the country. Landings
in Maine alone accounted for nearly US$500M in 2015. The fishery is open year-round, but the
catch is highly seasonal. In Maine, where the majority of lobsters are landed, landings typically
begin increasing rapidly during the first week of July, when lobster migrate inland and begin to
molt. During 2012, the Gulf of Maine was at the center of a prolonged “marine heatwave,”
which caused temperatures in the spring to lead the normal annual cycle by 3-4 weeks (Mills et
al., 2013). The annual lobster migration and molt took place nearly a month early, resulting in
very high catches in early June instead of early July. The supply chain was not ready for the
influx of newly molted soft-shell lobsters, and the imbalance between supply and demand led to
a severe decline in price. Furthermore, record warm air temperatures contributed to increased
mortality of lobsters during storage and transport. Thus, even though lobster landings set a
record in 2012, it was an economically challenging year for many lobstermen.

Motivated by the events in 2012, the possibility of an early warning indicator of lobster
fishery timing was explored and it was found that the date when landings in Maine begin to
increase is negatively correlated with subsurface temperatures in March and April. Based on this
relationship, a statistical forecast system was developed that takes temperatures at 50 m from a

network of coastal ocean buoys operated by the Northeast Regional Association of Coastal
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Ocean Observing Systems (NERACOOS) in spring and estimates the probability of the fishery
shifting into the high-landings period during a particular week in June or July. For the last two
years, the first forecast of the year has been announced to the industry at the Maine Fishermen’s
Forum and then updated weekly at www.gmri.org/lobster-forecast and via Twitter (Fig. 10).
Forecasters have now begun to work more closely with harvesters, dealers, and marketers in the
industry to assess how it can be further improved to meet their needs. Other work has identified
value in using sea temperature observations and models to help forecast outbreaks of lobster

epizootic shell disease (Maynard et al., 2016).

4.4 Seasonal forecasts to improve coral reef management

Increases in ocean temperature over a coral’s tolerance limit are the leading cause of
coral bleaching events (Hoegh-Guldberg et al., 2007). Since 1997, NOAA’s Coral Reef Watch
has been using SST satellite data to provide near real-time warnings of coral bleaching (Liu et
al., 2014). While coral reef managers and scientists have been able to use these nowcasts to
execute operational response plans, managers recognized the need for longer lead-time forecasts
to improve management responses to coral bleaching. Following these requests, NOAA Coral
Reef Watch developed the first seasonal coral bleaching outlook, based on a statistical model
from NOAA’s Earth System Research Laboratory (Liu et al., 2009). In 2009 the Australian
Bureau of Meteorology developed the first dynamical seasonal forecasts for coral bleaching risk
on the Great Barrier Reef, based on seasonal SST predictions from POAMA (see Section 4.1;
Spillman and Alves, 2009; Spillman, 2011). NOAA Coral Reef Watch, in turn, developed a
dynamical 4 month lead coral bleaching outlook for coral reefs globally using seasonal SST
predictions from the NOAA National Centers for Environmental Prediction (NCEP) global
dynamical climate prediction system, the CFS model (Eakin et al., 2012).

These seasonal coral bleaching forecasts are made publicly available on the internet
(http://www.bom.gov.au/oceanography/oceantemp/GBR_SST.shtml,
http://coralreefwatch.noaa.gov/satellite/bleachingoutlook_cfs/outlook_cfs.php) and they allow
coral reef managers around the world to develop timely and proactive bleaching response plans,
brief stakeholders and allocate monitoring resources in advance of bleaching events. Resource
managers and scientists have been using these bleaching outlooks extensively throughout the

2014-16 global coral bleaching event (Eakin et al., 2014; Eakin et al., 2016).
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For example, in August 2010, following severe coral bleaching, the Thailand and
Malaysian governments closed numerous popular dive sites to reduce additional stress to
severely bleached reefs (Thomas and Heron, 2011). In May 2016, Thailand again closed ten
reefs, this time in advance of the bleaching peak (The Guardian 2016,
https://www.theguardian.com/environment/2016/may/26/thailand-closes-dive-sites-over-coral-
bleaching-crisis. Accessed August 15, 2016) and in response to these forecast systems. More
recently, once Coral Reef Watch alerts were issued in late June 2015 of the high potential for
bleaching in Hawaiian waters (Fig. 11), the Hawaii Department of Land and Natural Resources
(DLNR) immediately began preparations of resources to monitor this event. Having only seen
significant multi-island bleaching in the main islands twice before, in 1996 and 2014 (Jokiel and
Brown, 2004; Bahr et al., 2015), a much more comprehensive effort was needed. Additional
volunteers were trained, who, together with teams from the state, University of Hawaii, NOAA,
and XL Catlin Seaview Survey, were deployed across most of the islands. This group was able to
document and monitor this unprecedented event, while the DLNR was able to alert the public
and work with marine resource users to encourage reduction of activities that could further stress
the corals during the bleaching event. Additionally, DLNR undertook an effort to collect
specimens of the rarest coral species from the main Hawaiian Islands and safeguard them in their
coral nurseries on Oahu and Maui. Many of these species suffered severe bleaching and
mortality, and DLNR staff have been unable to find one of these species alive off Oahu since the
2015 event. Both Bureau of Meteorology and NOAA seasonal forecast tools were also used
extensively by reef management during the most recent bleaching event on the Great Barrier
Reef in the summer of 2015/2016, currently believed to be the worst on record

(http://www.gbrmpa.gov.au).

4.5 Seasonal forecasts of Pacific sardine habitat

Pacific sardines are notable as one of the few stocks managed with respect to climatic
variability in the US. Just recently, sardine distribution and migration forecasts have been
produced (Kaplan et al., 2016; Fig. 12) for the US Pacific Northwest and Canadian British
Columbia, based on 6 to 9 month predictions of ocean conditions
(http://www.nanoos.org/products/j-scope/; Siedlecki et al., 2016). These predictions rely upon

the NOAA NCEP global dynamical climate prediction system Climate Forecast System (Saha et
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al., 2006) to force a high resolution (~1.5 km) Regional Ocean Modeling System (Haidvogel et
al., 2008). The efforts are fully described in Siedlecki et al. (2016), including skill assessment
for SST, bottom temperature, and oxygen. Relationships between sardine distribution and J-
SCOPE predictions of ocean physics and chlorophyll were estimated for 2009. The final fitted
relationships between SST and salinity had moderate skill to predict sardine distributions
(presence or absence) in summer 2013 and 2014, with up to 4 to 5 month lead-times. Skill
assessment focused on a “hit rate” metric, area-under-the-curve (AUC), which balances the
desire to correctly predict sardine presence against the risk of false positives. One caveat to the
sardine forecasts is that they predict available sardine habitat (Fig. 12) without accounting for
sardine stock size. Recent declines in sardine abundance (Hill et al., 2015) have likely meant a
contraction of the stock southward (MacCall, 1990), despite availability of suitable habitat in the
US Pacific Northwest and British Columbia.

As with many pelagic species, sardines are seasonally migratory and forecasts of their
distribution by J-SCOPE may be relevant for fisheries management and industry. The sardine
stock is landed by US, Mexican and Canadian fishers and the extent of the northward summer
migration is dependent on both water temperature and population contraction due to low
population abundance. The sardine forecasts by Kaplan et al. (2016) predict the extent of this
northward migration and could be used to plan fishing operations (e.g. whether Canadian fish
processors should expect sardine deliveries) or fisheries surveys. Additionally, quotas apportion
a fixed percent of sardine catch to Canadian vessels, and J-SCOPE provides foresight that that
this portion may be unharvested in a particular cold year. Furthermore, sardine straddle
international boundaries, and short-term seasonal forecasts may help international management
and industry to cope with and prepare for the long-term distribution shifts expected under climate
change (Pinsky and Mantua, 2014). To date, forecasts have primarily been delivered through
collaboration with NANOOS (Northwest Association of Networked Ocean Observing Systems)
via the web (http://www.nanoos.org/products/j-scope/). Web products include predictions of
ecological indicators relevant to the regional fishery management council, and will soon be
incorporated in NOAA’s Integrated Ecosystem Assessment (Harvey et al., 2014). Other outreach
efforts are ongoing and aim to produce targeted forecasts (as discussed for Australia above in
Section 4.1) for fishery managers and stakeholders, and to better integrate with fishery

management council needs.
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4.6 Short-term forecasts of Indonesian tuna fisheries to control illegal fishing

The last decade has seen the generalization of satellite Vessel Monitoring Systems to
monitor licensed fishing vessels, the use of satellite radar images to detect illegal fishing and the
development of Electronic Reporting Systems (ERS) to provide catch statistics in real time.
Integration of these developments in fishery monitoring with an operational forecasting model of
fish spatial dynamics that has the ability to predict the distribution of fish under the influence of
both environmental variability and fishing is assisting Indonesian fishing authorities in
controlling illegal fishing and implementing conservation measures. This operational monitoring
framework (Gehlen et al., 2015) was developed through the INDESO project and integrates a
high resolution regional model system coupling ocean physics to biogeochemistry (NEMO/
PISCES; Gutknecht et al., 2016; Tranchant et al., 2016) to a spatially explicit tuna population
dynamics model (SEAPODYM; Lehodey et al., 2010; 2015). SEAPODYM simulates functional
groups of organisms at the intermediate trophic levels (Lehodey et al., 2010; 2015) and the
dynamics of their predators (e.g. tuna) (Lehodey et al., 2008). The model is complemented by a
quantitative parameter estimation and calibration approach (Senina et al., 2008) which enables
the application of the model to fish stock assessment and testing of management scenarios
(Sibert et al., 2012).

Tuna are highly migratory species, and their habitats cover large expanses of the global
ocean. Thus, the simulation of fish stock dynamics at high resolution in the Indonesian region
requires accounting for exchanges (fluxes) with populations outside of the regional domain (i.e.
Pacific and Indian Ocean) under the influence of both environmental variability (e.g. ENSO) and
fishing mortality. Boundary conditions for the regional 1/12° SEAPODYM implementation are
obtained from a 1/4° global operational configuration (Fig.13) driven by temperature and
currents from the operational ocean prediction system Mercator-Ocean PSY3V3 (Lellouche et
al., 2013). Biogeochemical forcings (net primary production (NPP), dissolved oxygen) are either
derived solely from the coupled physical-biogeochemical model NEMO/ PISCES (forecast
mode) or from NEMO/PISCES and satellite ocean color and SST data (to estimate NPP;
Behrenfeld and Falkowski, 1997), along with climatological dissolved oxygen (O2) (hindcast and
nowcast modes). The regional operational model SEAPODYM also uses a climatological data

set (i.e., monthly average of the last 5 years) of fishing effort prepared from the best available
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information to apply an average fishing mortality. The forecasting system runs every week and
delivers one week of hindcast, one week of nowcast, and 10 days of forecast. These outputs are
used by the Indonesian Fishing Authority to improve the collection and verification of fishing
data, to assist illegal fishing surveillance, and to establish conservation measures (e.g.,
identification and protection of spawning grounds and nurseries) required for the sustainable

exploitation of this essential resource (Marion Gehlen, personal communication, June 22, 2016).

4.7 Seasonal forecasts for dynamic spatial management of the Australian east coast tuna fishery

Since 2003, a dynamic spatial management approach has been used to limit unwanted
capture of a quota-managed species, SBT, in the Australian eastern tuna and billfish fishery. The
approach combines a habitat model, conditioned with temperature preference data obtained from
pop-up satellite archival tags deployed on SBT and an ocean model to produce near real-time
habitat nowcasts, delivered by email and utilized the same day by fishery managers during the
fishing season (Hobday and Hartmann, 2006; Hobday et al., 2010). Managers use this
information along with other data inputs (such as recent fishing catch rates) to restrict access in
the core (high probability of occurrence) zone to vessels that have both observers and SBT quota.
The habitat model was extended in 2011 to include a seasonal forecasting component using
ocean temperature forecasts from the seasonal prediction system POAMA, with useful forecast
skill out to several months (Hobday et al., 2011). Both nowcast and seasonal forecast habitat
maps produced for managers show probabilistic zones of tuna distribution coded as “OK”
(unlikely to encounter SBT), “Buffer” (likely to encounter SBT) and “Core” (very likely to
encounter SBT) (Fig. 14). Incorporating a seasonal forecasting component has been an
important step in informing and encouraging both managers and fishers to think about decisions
on longer time scales (Hobday et al., 2016). Forecasts are now delivered via a dedicated webpage
(http://www.cmar.csiro.au/sbt-east-coast/). The dynamic habitat forecasting approach has
reduced the need for large areas closures while still meeting the management goal, but does
require fishing operators to develop more flexible fishing strategies, including planning vessel

movements, home port selection and quota purchase.

5. Recommended practices
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Following Hobday et al. (2016) and Siedlecki et al. (2016), there are three main
components to a successful LMR forecast framework: assessment of needs, forecast
development, and forecast delivery. Here, we break down the forecast development and delivery
stages further to provide more details of the forecast implementation process (Fig. 15).
Identification of a clear management need via effective communication between climate
scientists and management or industry stakeholders from the start of the forecast development
process is essential for the utility and widespread adoption of climate prediction tools for LMRs
(Hobday et al., 2016; Harrison and Williams, 2007; Fig. 15). This needs assessment should
include the determination of relevant variables, spatial domain, spatial resolution, and timescales.
Once needs have been assessed, it is incumbent upon scientists to provide balanced
communication of both capabilities and limitations to evaluate whether forecasts are likely to be
useful to their partners.

Forecast development is underpinned by an understanding of the mechanisms relating
physical climate variables to the LMR of interest. Once such linkages are found, three forecast
development steps follow: an assessment of the skill of the physical climate variable forecast, an
assessment of the skill of the LMR model forecast, and the uncertainty associated with each. The
prediction skill for the physical climate variables must be assessed at an appropriate timescale
relative to the management decision timeframe and at a spatial resolution able to resolve
environmental driving mechanisms. Skill assessment will make use of retrospective forecasts and
observations. When reanalyses are used in lieu of observations, their accuracy at the scale of
interest should be confirmed against data prior to forecast skill assessment whenever possible
(Section 3). If the skill evaluation indicates that the variables of interest cannot be skillfully
forecasted at an adequate lead-time and/or relevant spatial scale, stakeholder expectations may
be re-evaluated and alternate variables or scales of interest investigated (i.e. it may be necessary
to return to the needs assessment step). Alternatively, downscaling or bias correction techniques
may improve skill at the desired scale in some cases (Section 6). Skill may be assessed using at
least measures of correlation, variability, and bias between forecast and observations, although
further verification analyses are possible (Mason and Stephenson, 2007).

Once a physical climate variable forecast has been developed and determined to be
skillful, the value of using it in an LMR model must be determined. LMR model skill assessment

can employ skill metrics based on “hit rate”, such as AUC or area-under-the-curve (Fielding and
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Bell, 1997) and the True Skill Statistics (Allouche et al., 2006), to evaluate whether the LMR
forecasts reproduce biological phenomena (e.g., presence of tuna, occurrence of a coral
bleaching event). While it is well known that climate affects LMRs (Section 1), most of derived
climate-LMR relationships are empirical, with climate variables often acting as proxies of
complex trophic effects, interspecies interactions, and dispersal processes. For climate
information to be included in LMR management frameworks, the environment-fisheries
relationship has to be robust and preferably based on mechanistic, ecologically-sound
hypotheses. A sufficiently long observational data series is required for model calibration and
verification (Haltuch and Punt, 2011), including out-of-sample validation (Francis, 2006; Mason
and Baddour, 2007; Mason and Stephenson, 2007). In addition, if the environment-fisheries
relationship relies on stock assessment model output (e.g. recruitment), it is important that this
relationship be developed within the stock assessment model itself rather than as a post-hoc
analysis to ensure uncertainties associated with the stock assessment model are properly
propagated (Maunder and Watters, 2003; Brooks and Deroba, 2015). Furthermore, to increase
confidence in the robustness of these empirical relationships, meta-analytical techniques can be
employed to ensure that the proposed hypothesis is robust across a species range (Myers, 1998),
taking into account, however, that environmental variables may affect species differently across
their latitudinal range (e.g. Mantua et al., 1997).

As environment-LMR associations may change over time (e.g. with changing baselines
under climate change), these empirical relationships need to be periodically re-evaluated as new
environmental and LMR data are collected. LMR forecast development will therefore be an
iterative process and management has to be dynamic to allow for changing management
decisions as the environment-fisheries relationship evolves with the continuous integration of
new information. Environment-LMR correlations have been observed to be more robust when
tested with new data at the edges of a species range (Myers, 1998). These populations may serve
as initial case studies with which to develop dynamic management frameworks that integrate
climate prediction information. Table A2 includes a list of LMRs for which a sufficient
understanding of how they respond to climate variability has been achieved, and which may
serve as additional case studies. These include those determined by Myers (1998) as robust to re-
evaluation and those that already make use of environmental information in their management as

described by Skern-Mauritzen et al. (2015).
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To provide a thorough presentation of risk to decision makers, it will be important to
assess the uncertainty of the climate prediction as well as that of the LMR models. For the
climate prediction, this will involve quantification of processes, variability and model
uncertainty via the use of single and multi-model ensembles (Section 3). Forecasts will be
inherently probabilistic, and ensembles can be used to estimate the probability. On the fisheries
side, there is also uncertainty associated with LMR models’ parameterizations (Cheung et al.,
20164, b). As for climate predictions, ensemble approaches can be employed in LMR models to
account for the high level of uncertainty in the parameterization of biological processes (e.g.
Kearney et al., 2012; Laufkoétter et al., 2015; 2016). Uncertainty in the environment-LMR
relationship will also need to be accounted for by, for instance, running multiple simulations of
the LMR model differing in their stochastic error of the LMR-environment relationship (e.g.
Lindegren et al., 2013).

Finally, an effective forecast delivery mechanism is required. The climate prediction
needs to be delivered in a format that can be effectively incorporated into LMR models and
decision frameworks, such as population models used in fish stock assessment. As in all the
stages of LMR forecast development, consistent user engagement is essential to ensure sustained
use of such prediction tools (Harrison and Williams, 2007; Hobday et al., 2016). For instance,
the general difficulty people have in understanding uncertainty and probabilities has limited the
use of climate predictions in the natural resource sector (Nicholls, 1999; Marshall et al., 2011).
Collaboration with social scientists on the most appropriate presentation and delivery options
may enhance adoption of forecast information (Harrison and Williams, 2007). Automated web-
based delivery systems are a common delivery method, although ongoing contact with end users
and acknowledgement of user feedback is important to build engagement and for continued
forecast use (Hobday et al., 2016). Funding for delivery system maintenance, user engagement,
and continued user training should be included in projects to maintain iterative LMR operational
forecast systems.

The value of integrating climate predictions into LMR decision frameworks has to then
be demonstrated to managers or industry. This can be undertaken by employing cost-benefit
analyses (e.g. Asseng et al., 2012) and MSE (Section 2.4, Tommasi et al., accepted). For
example, MSEs can assess the performance of different management strategies (e.g. with and

without climate predictions) in relation to a suite of performance metrics while taking
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uncertainty into account. They may also include economic models to better evaluate the specific
economic value of integrating climate forecasts into LMR decisions (e.g. Richardson, 2000).
While MSEs have been developed in the context of fisheries science, such decision support
systems could also be applied to industry or coastal manager’s decision frameworks. Results
from these assessments would inform both climate and LMR prediction development by

highlighting further refinements needed to better inform decisions.

6. Priority developments

While the potential benefits of seasonal climate forecasts in reducing the climate
vulnerability of the fishery and aquaculture industry and in improving fisheries management are
clear (Section 4), barriers to their widespread adoption also exist. Social, cultural, economic, or
political constraints, such as existing regulations or dissemination difficulties, can limit forecast
use (Nicholls, 1999; Goddard et al., 2001; Harrison and Williams, 2007; Davis et al., 2015).
However, the discussion herein will be limited to priority developments aimed at reducing
technical impediments to climate forecast application. These technical barriers include
incomplete understanding of environment-LMR relationships, limited length and availability of
physical, biogeochemical and biological time series for model development and validation, and
the irreducible predictability limits at seasonal to decadal scales. There is also need for
methodological advancements in LMR models to explicitly consider environmental productivity
indicators and spatial distributions, and apply empirical models in non-stationary systems.
Finally, there is a need for reduction in climate model bias through improvements in model
formulation and initialization, verification of LMR-relevant physical variables at LMR-relevant
spatial scales beyond SST, the development of biogeochemical forecasting capabilities in global
prediction systems, and improvements in climate predictability at LMR-relevant regional scales
through higher resolution global prediction systems or the development of downscaling
frameworks.

On the LMR model side, predictive capacity is constrained by our incomplete
understanding of environment-LMR relationships, especially their response to environmental
fluctuations (e.g. Chavez et al., 2003; Di Lorenzo et al., 2009; Le Mézo et al., 2016). As a case in
point, only 2% of managed fisheries worldwide explicitly integrate past environmental

information into their current tactical decision making and provide an existing framework to
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readily incorporate climate forecast information (Skern-Mauritzen et al., 2015). This lies in stark
contrast to ubiquitous climate-marine resource correlations reported in the literature (e.g. Hare et
al., 2010; Mueter et al., 2011; Ottersen et al., 2013). For most populations, the length of
available, co-occurring fishery, biological and environmental time series may be too short to
robustly identify the environment-LMR relationship (Haltuch and Punt, 2011) or to develop a
habitat preference model, highlighting the importance of maintaining and expanding existing
observational data series for environment-LMR model development and verification. Funding
for ocean and LMR observations is limited. Given the importance of having climate observations
over a period long enough to span different environmental regimes, LMR observations that cover
a wide range of population sizes, and large sample sizes to improve estimation of model
parameters, establishment of new monitoring networks must be carefully balanced with the
critical need to maintain current sampling programs (Haltuch and Punt, 2011; Dorner et al.,
2013). Maintenance and expansion of physical climate observing systems, as discussed in
Section 3, are also essential to climate model development to improve climate predictability
through better model initialization (e.g. Servonnat et al., 2014). Including concurrent measures of
basic biogeochemical and lower-trophic-level measurements should be integrated into existing
observing systems, when possible, to facilitate better understanding of physical-biological
interactions in the marine environment and better assessment of model predictive capability.
That said, while spatially-or temporally-constrained (or incomplete) environmental data may be
limited in quantitative utility, such data can help provide qualitative context for decision-making.
For example, time series of conditions can be used to delineate regime-specific parameter
estimates or emergent patterns in indicators can provide justification for precautionary
management actions and intensified monitoring (Zador et al., in press).

Non-stationarity issues are particularly critical for decadal to centennial predictions.
However, for many populations, knowledge of environment-fishery interactions is limited to
basic correlations. These correlative (and often linearly approximated) relationships provide a
useful, existing tool to start integrating climate predictions into LMR models. But if an
ecosystem were to shift into a new, no-analog state and the ecosystem processes that were
empirically described by this correlative relationship were to change, subsequent management
decisions may perform poorly (Dorner et al., 2013). Similar shifts can occur at shorter time-

scales. For example, many species distribution models developed with one decade of data
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perform poorly when used to project species distribution during another decade (Brun et al.,
2016). For bias correction of physical climate models, non-linear statistical techniques that are
better at simulating distribution extremes appear to perform better under novel climate conditions
(Gaitan et al., 2014). More sophisticated, model-free statistical approaches also appear promising
in establishing environmental influences on LMRs that can be applied in a management
framework, particularly over short timescales (e.g. Ye et al., 2015). To improve LMR predictive
capacity, it will be necessary to expand the use of such techniques into tactical management
frameworks, and to characterize their benefits relative to more traditional statistical techniques as
well as ecosystem models.

Dynamic ecosystem models integrate physical variables, lower-trophic-level dynamics,
LMR dynamics, and human impacts, mechanistically, and are critical to enhance our
understanding of LMR responses to climate variability (Travers et al., 2007; Rose et al., 2010;
Le Mézo et al., 2016). Such process-based understanding is necessary to the development of
models able to skillfully predict LMR under novel conditions (Evans, 2012). Furthermore,
because of the inherent complexity, non-linearity, and multi-stressor characteristics of marine
ecosystems, multispecies and ecosystem models can in some cases assess uncertainties and
trade-offs more effectively (Pikitch et al., 2004; Link et al., 2012). Nevertheless, such models are
currently only employed for strategic advice at the decadal and multi-decadal scale, rather than
for short-term tactical decisions (e.g. Smith et al., 2011; Pacific Fishery Management Council
and National Marine Fisheries Service 2014; Fulton et al., 2014; Marine Stewardship Council,
2014). One issue of concern with the use of ecosystem models for tactical decisions is their
inability to integrate all of the data streams, such as catch-at-age data, that are customary in
current tactical fisheries decision frameworks. Another issue is that their complexity comes at the
cost of longer running time, hindering their use within current tactical management process
timelines. Also, they rely on static assumptions and parameterizations, which may not remain
valid under future conditions. Finally, because more processes are modeled and there is
uncertainty in each, the fully characterized uncertainty can be large. This may make decision-
making more difficult but, if this uncertainty accurately reflects the true uncertainty in the
system, it will ultimately result in better decisions. Expanded application of such models for
tactical management decisions will be dependent on improving their parameterizations,

specification of initial conditions, extending quantitative model assessments, and reducing their
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uncertainties through additional physiological studies, process studies, and modeling
experiments aimed at understanding the mechanisms driving LMR’s responses to climate. LMR
surveys that include more hydrographic, biogeochemical, and lower-trophic-level (plankton)
observations will also be critical to make progress towards expanded use of ecosystem models in
LMR forecasting applications.

Highly resolved spatial and population dynamics models of a specific target species
coupled to a coarser, lower-trophic-level model (Lehodey et al., 2008; Senina et al., 2008;
Section 4.2) or “models of intermediate complexity” — MICE — (Lindegren et al., 2009; Collie et
al., 2014; Plagdnyi et al., 2014) may be more immediately suited for tactical management
decisions, as their uncertainties are more tractable. MICE use statistical parameter estimation
methods common in current tactical fisheries models to fit multispecies models to data for small
groups of interacting species. Such models are becoming sufficiently advanced, including both
species interactions and impacts of temperature on population dynamics (Holsman et al,. in
press.), and can be used in concert with single-species models to provide tactical fisheries advice
from a multi-model suite, similar to operational prediction systems used in weather forecasts
(Ianelli et al., in press.). Combining such models with seasonal and decadal forecasts will help
evaluate risk profiles and trajectories of recovery plans, assess the flexibility of harvest policies
to dynamic conditions, and identify areas of management vulnerability to climate change (e.g.,
are dynamic management policies available in hand to respond to sudden shifts in ecosystem
structure or driving processes?; Holsman et al., in review). While MICE are quite promising for
tactical decision making in the near future, simulation testing to determine whether they can
provide adequate information for tactical management under various information conditions
typical of fisheries management needs to be undertaken. If successful, such applications may
also provide a valuable template for the expansion of holistic whole ecosystem models from
strategic to tactical management decisions.

Expanded use of seasonal to decadal forecasts is also limited by problems of relevance in
terms of critical variables, and spatial and temporal scales (Nicholls, 1999; Hobday et al., 2016).
For some LMR-relevant variables, there are irreducible predictability limits at seasonal to
decadal scales due to the chaotic nature of the atmosphere (Deser et al., 2012). Such variables
will remain unpredictable even with a perfect data assimilation system and model formulation,

and hence management frameworks robust to unpredictable variation will need to be developed.
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It will be important for climate scientist to continue assessing predictability limits of LMR-
relevant variables and to communicate such limitations to users, e.g., by providing reliable
probabilistic forecasts accompanied by appropriate measures of historical skill.

For some regions and time scales, however, predictability of LMR-relevant variables is
limited by the systematic errors of GCMs (Goddard et al., 2001). It is critical to find ways to
either reduce this model bias or reduce its negative impacts on forecast skill through novel
techniques (e.g., Batté et al., 2016). Reduction in model bias will involve improvement in both
model physics and parametrizations, as well as data assimilation systems (Goddard et al., 2001;
Meehl et al., 2014; Siedlecki et al., 2016). For instance, as variability in ocean circulation can
depend on both temperature and salinity variations in the ocean's interior, improved observations
of these quantities, as well as improved assimilation systems to make optimal use of these
observations, are critical. As resolution of GCMs increases, representation of the physical
processes responsible for regional climate predictability improves (e.g. Jia et al., 2015), and, in
some cases, this may lead to improved forecast skill of LMR-relevant variables.

Forecasts at the multi-annual to decadal time scales, while of great interest to LMR
management and industry, are not yet operational (Section 3). Continued research to improve our
theoretical understanding and representation of the physical processes and feedbacks responsible
for decadal scale climate variability are required to reduce model bias and improve decadal
forecast skill (Meehl et al., 2014). Furthermore, in order to better assess the performance of
decadal forecasts, predictability studies across more models and with larger ensembles need to be
carried out (Meehl et al., 2014). Demonstration of reliable skill, however, will remain limited by
the small sample size available for verification due to the high time series autocorrelation and
limited quantity of independent samples at decadal time scales (Kumar, 2009; Meehl et al.,
2014). Furthermore, it is important to stress that the decadal predictability of regions, such as the
North Pacific, subject to strong atmospheric forcing, will remain limited (Branstator and Teng,
2010; Meehl et al., 2014).

In addition to improvements in models and initialization, predictability across
spatiotemporal scales of more LMR-relevant physical variables such as bottom temperature, sea
surface height, onset of upwelling, or salinity need to be examined. Biogeochemical prediction
(e.g. chlorophyll biomass, net primary productivity (NPP), export production fluxes, aragonite

saturation in coastal zones, oxygen concentration) is also of major relevance to ecosystem-based
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management of marine resources (Levin et al., 2009; Stock et al., 2011). While biogeochemical
prediction is in its early stages and no coupled physical-biogeochemical seasonal to decadal
forecasting systems are yet operational (but see Case Study 4.6 for their use in sub-seasonal
prediction), recent work shows some potential. Predictive skill up to several months has been
shown in the northern CCS for bottom oxygen (Case Study 4.5, Siedlecki et al., 2016), and up to
3 years for NPP in some oceanic domains (Séférian et al., 2014, Chikamoto et al., 2015). In most
cases, the increased predictability in NPP arises from that of nutrients, which directly benefit
from the initialization of the model physical fields (Séférian et al., 2014). These pioneering
results demonstrate that biogeochemical prediction shows promise and highlight the need to both
develop integrated physical-biogeochemical forecast systems, and further quantify
biogeochemical predictive skill over a variety of space and time scales to inform ecosystem-
based management approaches to LMRs. Application of ESMs in a climate change framework
has demonstrated that uncertainty in LMR projections can be large due to uncertainty in the
many modelling components, from GCMs to upper-trophic level models, required to assess
climate change impacts on LMRs (Cheung et al., 2016b). Computing and personnel resources
will hence be required to develop an ensemble approach for biogeochemical prediction able to
account for this uncertainty. An assessment of prediction skill beyond SST to other properties
driving biological responses will also necessitate supporting, collecting, and maintaining
sampling programs and observing systems.

The spatial resolution of global climate models poses another limitation to their skill at
the regional scale relevant to LMR decisions. Downscaling techniques can be used to generate
finer-scale information from large-scale climate predictions. By relating well predicted large-
scale factors to a local process of interest, downscaling, in addition to providing higher spatially
and temporally resolved data, may produce LMR-relevant variables not skillfully generated by
global prediction systems (e.g. Siedlecki et al., 2016). There are two types of downscaling
techniques: statistical and dynamical. The first links the large-scale output from a global
prediction system to local scale variables using statistical-empirical relationships. The second
uses the large-scale output as boundary conditions to regional-scale, physics-based dynamical
models.

Statistical downscaling techniques are computationally inexpensive, so the large

ensembles required to appropriately characterize initial condition and model uncertainty of
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seasonal to decadal predictions (Section 2.1.2) can be run relatively fast. The ability to quickly
produce output is an advantage particularly relevant for downscaling of seasonal predictions, as
they have to be produced in a timely manner to be relevant to the decision-making process
(Laugel et al., 2014). However, to construct robust statistical relationships, long observational
records are required (Section 4.1 and 4.3), though are not always available. Second, all statistical
downscaling techniques assume that the large-scale, local climate relationship will remain the
same in the future. While these assumptions may hold for the relatively short timeframe of
seasonal predictions, they may deteriorate over longer-range decadal predictions.

By contrast, dynamical downscaling techniques explicitly model the physical processes
involved and therefore may perform better than statistical methods under changing or
unprecedented conditions (e.g. van Hooidonk et al., 2015). Dynamical downscaling models,
however, will still inherit any bias of large-scale GCMs, and may even amplify such systematic
errors (Goddard et al., 2001; Hall, 2014). This stresses again the need to reduce bias in global
predictions systems to improve predictability of LMR-relevant variables at a regional scale.
Further research will also be necessary to assess the relative costs and benefits of statistical
versus dynamical techniques for downscaling of LMR-relevant climate predictions. This will
require more resources allocated towards the development of downscaling frameworks for LMR-
relevant climate predictions in regions of interest for LMRs. For instance, coupling to fine
resolution coastal models, like the efforts in the northern CCS and Indonesian region (Case
Studies 4.5 and 4.6), is a promising approach that warrants more studies in other regions.
Furthermore, modeling studies aimed at understanding the extent to which LMR-relevant local
processes are interactive with the large-scale and to what extent they are primarily "driven" by
large-scale processes are required. Such studies would help to identify the type of downscaling
method most appropriate and indicate regions requiring higher-resolution global climate
prediction systems to further enhance predictability and support decision making at fine spatial

scales.

7. Concluding Remarks
It is widely recognized that the productivity and distribution of LMR populations change
over time in response to climate and ecosystem variability and long-term trends. Fishers,

aquaculturists, coastal planners, and fisheries managers recognize that many of their operational
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planning and management decisions should account for this dynamism. We have shown how
recent improvements in global dynamical climate prediction systems have resulted in skillful
predictions of LMR-relevant variables at many of the spatial and temporal scales at which LMRs
are managed, and how such predictions are already helping industry and managers make
decisions in dynamic environments. By describing climate prediction systems and their
capabilities, as well as the range of decisions currently taken by managers and the fisheries and
aquaculture sector that may benefit from the inclusion of future climate information, new
applications may be developed for wider use. Successful integration of climate information into
LMR decision frameworks will depend on close collaboration and open dialogue between
potential users and climate scientists.

While some progress has been achieved within existing frameworks and resources,
challenges in both climate and fisheries models need to be addressed to further expand utility of
such predictions for LMRs (Section 6). To ensure widespread application of climate forecasts
into LMR decision making and prevent unintended consequences of climate and fisheries
interactions, new methodological approaches that capture complex ecosystem dynamics and the
full range of LMR drivers need to be developed. Such frameworks will inherently be
probabilistic and consist of ensemble methods to account for uncertainties in both climate and
LMR models, improve model accuracy, and help end users understand risk. These frameworks
will also evolve over time as our understanding of environment-LMR links, which remains poor
for many species and regions, is improved through more field observations and experimental
studies. Therefore, management decision systems will need to become more flexible to the
inclusion of new information streams at a variety of both spatial and temporal scales, as well as
to frequent re-evaluation.

As we acknowledged above, seasonal to decadal predictions of climate and LMR
dynamics will sometime fail despite the best efforts, especially given the increasing potential for
no-analog system states and ecological surprises (Williams and Jackson, 2007; Doak et al.,
2008). To cope with this inevitability, we also encourage the development of approaches for
managing unexpected changes once they have happened (Schindler and Hilborn, 2015).

As predictability is the ultimate test of scientific theory, routinely using these climate-
forecast informed frameworks to make predictions of LMR dynamics will also improve

understanding of ecosystem dynamics. In addition, skillful predictions at seasonal to multi-
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annual scales will lend confidence to the use of such models to project LMR dynamics over
longer temporal scales, and can be used to build stakeholder confidence in the use of longer term
climate projections. With exploited systems being more sensitive to environmental variability
(Hsieh et al., 2006; Perry et al., 2010), development of such capabilities will be essential to the
development of climate-ready management systems to effectively manage and culture LMRs in a

future environment where long term change renders historical experience less valuable.
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Figure Captions

Figure 1. Overview of simulation design for seasonal and decadal predictions and climate
projections. GHG refers to greenhouse gases. Note that the year for shifting from pre-industrial
to historical forcing in climate projections, here set to 1860, can differ between climate models.
“Forcings” in the climate change context refer to specified solar insolation and concentrations of
radiatively active atmospheric constituents.

Figure 2. Temperature anomalies at 55-m depth from six different ocean reanalysis products for
April 2015 relative to each-product 1981-2010 climatology. The bottom left panel shows the
ensemble mean, and the bottom right the ratio of signal (ensemble mean) to noise (ensemble
spread).

Figure 3. Left panel: One-month lead probabilistic forecast of SST for summer (June, July, and
August, JJA) initialized in May 2016 from the North American Multi-Model Ensemble
(NMME). This forecast was produced using all the ensemble members provided by each model
participating in the NMME. It therefore reflects both initial condition and model uncertainty.
Warm colors (yellow-orange) indicate areas with a significant probability of experiencing upper-
tercile temperatures, with the probability of such terciles ranging from 40-100% depending on
the degree of shading. Analogous interpretations exist for the anomalously cool (blue colors) or
near climatological (gray colors) conditions. Right panel: Ranked probability skill score for the
forecast presented in the left panel. The color bar represents the relative improvement of the
probability forecast (left panel) over climatology, with O indicating no skill over climatology.
Note the higher predictive skill in the North Atlantic, North Pacific and at the equator.

Figure 4. May-June surface and bottom temperature/salinity biases (model minus observations)
for the US Northeast Continental Shelf. Observations are based on May-June climatologies of
NOAA ship-based in situ measurements from 1977 to 2009. Model output is from each climate
model’s 1990 control simulation (40-year mean). The average global ocean (atmosphere)
resolutions for CM2.1, CM2.5FLOR, CM2.5, and CM2.6 are 100-km (200-km), 100-km (50-
km), 25-km (50-km), and 10-km (50-km), respectively. Note that the operational GFDL seasonal
climate prediction system uses CM2.5FLOR. Refer to Saba et al. 2016 for further details on the
models and experiments.

Figure 5. Temporal and spatial scales of fisheries decisions (circles) and atmospheric weather
phenomena (clouds). Atmospheric weather processes adapted from Troccoli et al. (2007), Fig.
2.1. Note that “resilience and sustainability” and “rebuilding plans and protected areas” decisions
are made across a range of spatial scales. Here they are associated with large spatial scales to
reflect the significant impact of large scale climate processes, such as global climate change, on
their outcome.

Figure 6. Anomaly correlation coefficients (ACCs) as a function of forecast initialization month
(x-axis) and lead-time (y-axis) in the National Atmospheric and Oceanic Administration
(NOAA) Geophysical Fluid Dynamics Laboratory (GFDL) CM2.5 FLOR and NOAA National
Centers for Environmental Prediction CFSv2 global climate prediction systems for the Gulf of
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Alaska (GoA) large marine ecosystem (Stock et al. 2015). Note how late winter-early spring SST
anomaly prediction skill exceeds persistence at long lead-times (4-12 months). Grey dots
indicate ACCs significantly above 0 at a 5% level; white upward triangles indicate ACCs
significantly above persistence at a 10% level with ACC > 0.5; white downward triangles
indicate ACCs significantly above persistence at a 10% level with ACC < 0.5.

Figure 7 Left column: idealized environmental forcing historical time series, and short term
forecast (+1 standard deviation) based on seasonal climate forecast (blue), forecast based on
assumption that future conditions will be within the historical variability (red), and truth (black);
central columns: probability density function of environmental forcing and of environmentally-
dependent productivity parameters; right column: productivity historical time series and its one-
year forecast based on a dynamic environmental driver (blue) or on average environmental
conditions (red). Arrows represent the different steps of an environmentally-explicit stock
assessment framework.

Figure 8. Regional probabilistic forecast skill for maximum air temperature (upper tercile),
minimum air temperature (lower tercile), and rainfall (upper tercile) based on tercile probabilities
for each lead-time. The skill score corresponds to the ratio of the number of correct forecasts to
the total number of forecasts for the period of 1981-2010 (Adapted from Spillman et al., 2015).

Figure 9. Left: Maps showing the average SST for the GAB as forecast by POAMA on 17 Dec
2015 for the next fortnight and the next two calendar months. The mean SST over the whole area
shown is given in the top left corner of each map. The black line represents the 200-m contour.
Right: Corresponding areas of preferred SBT habitat, where values > 1 indicate more preferred
habitat and values < 1 indicate less preferred habitat.

Figure 10. Example of the GMRI lobster forecast as delivered to the fishing industry via Twitter
on March 24, 2016. The first panel shows the spring temperature from the NERACOQOS coastal
ocean buoys in spring 2016 (red line) used to generate the forecast. Temperatures in 2016 have
been higher than the 2000-2014 average. The second panel shows that SST has been
anomalously warm throughout the Maine coastal region for March 2016. The bottom panel is the
actual forecast, predicting a 68% chance that the season will start three weeks earlier than
normal, a 31% chance that it will start two weeks early, and only a 1% chance that it will begin
one week early. The normal high-landings period for Maine lobster is considered to start
between July 3 and 10.

Figure 11. Comparison of (a) Coral Reef Watch 4-Month Bleaching Outlook with (b) 4-month
composite of maximum Bleaching Alert Area from real-time satellite data for the same period,
August-November 2015. The levels refer to potential bleaching intensity, with possible
bleaching starting at a warning thermal stress level, bleaching likely at an Alert Level 1 and
bleaching mortality likely at an Alert Level 2. Note successful prediction of severe bleaching in
Kiribati and Hawaii.

Figure 12. Probability of sardine presence, for July (left) and August (right) of 2015. These two
to three month forecasts are the average of a three-member ensemble, initialized as April 15",
May 1, and May 15", Due to relatively warm sea surface temperature, the forecasts predict
habitat suitable for sardine throughout the region. The exception is low salinity water for which
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the model would expect sardine to be found at more intermediate rather than warm temperatures.
This leads to low probability of presence in the less saline Columbia River plume. Note that
recent declines in sardine stock size (which is not included in the model) may be resulting in
unoccupied, but suitable, habitat in the northern region.

Figure 13. Example output from the global (top) and regional (bottom) SEAPODYM model
configurations developed though the INDESO project.

Figure 14. Habitat maps indicating zones of SBT distribution (see text for explanation of zones),
obtained using POAMA seasonal forecasts of ocean temperature. The upper left plot shows the
historical daily climatology of the zones (yellow ribbon), the current year’s observed zone
locations to date (red ribbon) and the latest monthly forecasts of zone location (red stars). The
arrows along the other panels indicate whether the zones are moving north or south relative to
the POAMA nowcast.

Figure 15. Steps required for successful integration of climate predictions into LMR decision
frameworks. (Adapted from Hobday et al., 2016).

Appendix

Table Al. List of six operational ocean reanalysis products from 1979-present used in the Real-
time Ocean Reanalysis Intercomparison Project. See
http://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html for a link to download
some of these reanalysis products. The data assimilation column lists the observation types used
for their estimation (T/S for temperature and salinity; SLA: altimeter-derived sea level
anomalies; SST: sea surface temperature, SIC: sea-ice concentration), as well as assimilation
techniques used for reanalysis: Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter
(EnKF), Variational methods (3DVar). The atmospheric surface forcing is usually provided by
atmospheric reanalyses, using either direct daily fluxes, or different bulk formulations. There are
also systems that use fluxes from coupled data assimilation systems (Coupled DA).

. Ocean Da.t a Ocean Analysis
Product Forcing Assim. . .
Model Observations Period
Method
NCEP o o
GODAS NCEP-R2 11\4)(311\/;3 3DVAR T/SST 1979-present
(NGODAS)
(e} (o]
(ggDDk) Coupled DA 11\/[)(31@ 4 EnKF T/S/SST 1979-present
ERA40 to 2002; o o
(ng}gj{xS) NCEP-R2 1\}[81\242 EnKF T/S/SST 1970-present
thereafter
ECMWF ERA40 to 1988; 1°x1/3° SLA/T/S/SST/
(ORAS4) ERAI thereafter | NEMO3 3SDVAR SIC 1979-present
JMA JRASS corr + 1°x0.5° SLA/T/S/SST/
(MOVE-G2) COREBulk | MRLCO SDVAR SIC 1979-present
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M3

NASA
(MERRA
Ocean)

MERRA +
Bulk

0.5°x1/4°
MOM4

EnOI

SLA/T/S/ISST/
SIC

1979-present
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2749

2750

2751  Table A2. Living marine resources for which there is a linkage between their dynamics and

2752  environmental variability. These includes those determined by Myers 1998 as robust to re-

2753  evaluation, marked by an *, and those described by Skern-Mauritzen et al. 2015 as making use of
2754  environmental information in their management, marked by a . For all other examples, the

2755  reference is provided.

2756

hydrography, primary
production

Species Region Environmental Reference
Driver
Cod*f Barents Sea Temperature
Cod* Eastern Baltic Salinity
Cod* Labrador Salinity
Cod* NW Atlantic Calanus spp.
abundance
Eurasian Perch* Windemere and Temperature
Baltic region
Pike Perch* Netherlands and Temperature
Baltic region
Herring* Southern British Temperature
Columbia
Herring* Northern Temperature
Newfoundland
Sardine* ¥ California Temperature
Sardinef Mediterranean Chlorophyll a
AnchovyT¥ Mediterranean Chlorophyll a
Sea Bass* South Britain Temperature
Smallmouth bass* Lake Opeongo Temperature
Smallmouth bass* North Lake Huron Temperature
White Haket Southeastern Atlantic | NAO
(West Africa)
Mutton Snapper South Atlantic/Gulf | Temperature and
of Mexico salinity
Yellowtail flounder* | Southern New Temperature
England
Plaice* Kattegat Wind
Skipjack tunat Eastern Pacific Temperature, ocean
currents, primary
production
Swordfish¥ Southeastern Pacific | Ocean climate,

91



2757

Striped Marlinf Northeastern Pacific | Ocean climate,
hydrography, primary
production
Pacific hake California Current Ocean currents Agostini et al. 2006
Sablefish California Current Ekman transport, sea | Schirripa and Colbert
level 2006

Pink salmont North Pacific Temperature and prey

availability
Coho and Chinook Columbia River PDO and prey Peterson and
Salmon availability Schwing 2003, Bi et

al. 2011, Peterson
and Burke 2013,
Burke et al. 2013)

Chinook Salmon

Snake River

Air temperature, river
flow, upwelling, PDO

Zabel et al. 2013

Lobster* Gulf of Maine Temperature
Northern shrimp* Gulf of Maine Temperature
Banana prawn* Gulf of Carpentaria Salinity
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Anomalous Temperature (C) at z=55m: APR 2015
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?.'; ~+ Andrew Pershing @Sci_Officer - Mar 24
a ' Updated #lobster forecast from @GMRI.
Increasing chance of the season starting 3+

weeks early.
Avg. Temperature at 164 ft (50m) Sea Surface Temperatures, 3/9-3/16/2016
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2015 Jun 30 NOAA Coral Reef Watch 60% Probability Coral Bleaching Thermal Stress for Jul—Oct 2015
Experimental, v3.0, CFSv2—based, 28—member Ensemble Forecast
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