Abstract Number: 689658 2020 International Qil Spill Conference

Impacts of Deepwater Horizon on Fish and Fisheries: What Have we Learned about

Resilience and Vulnerability in a Coupled Human-Natural System?
S.A. Murawskit, C.B. Paris?, T. Sutton®, M. Cockrell**, S. O’Farrell®, J. Sanchirico®,
E. Chancellor?, L. Perruso®

University of South Florida, College of Marine Science, 140 7" Ave. S, St. Petersburg, FL
33701; 2University of Miami, Department of Ocean Sciences, Rosenstiel School of Marine and
Atmospheric Science, Miami, FL 33149; *Nova Southeastern University, Halmos College of
Natural Resources and Oceanography, Dania Beach, FL, 33004; *Florida Department of
Agriculture and Consumer Services, Division of Aquaculture, Holland Building, Suite 217,
600 South Calhoun St., Tallahassee, FL 32399; *University of California-Davis, Department of
Environmental Science and Policy, 2102 Wickson Hall, Davis, California, 95616; ®National

Marine Fisheries Service, Southeast Fisheries Science Center, Miami, FL 33149
Abstract #689658

The Deepwater Horizon (DWH) oil spill occurred in a region of the Gulf of Mexico (GoM)
supporting abundant, diverse and valuable communities of fishes and fishers. The economy of
the northern GoM is inextricably tied to the natural resource bases of the region (tourism,
fishing, oil and gas, etc.) and thus the coupling between the human and ecological systems is
tight and subject both feed-back and, to some extent, feed-forward controls. Management
actions taken during the 87-day DWH spill incident included the closure of over 280,000 km? of
productive fishing area (about 1/3 of USA federal waters in the GoM), resulting in significant
declines in catches and revenues for some critical species for several months after the spill. As

well, a variety of oil spill countermeasures including the use of chemical dispersants (at the well
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head and the sea surface), releases of freshwater into marshes to staunch the progression of oil
ashore, creation of sand berms, burning of oil at sea and mechanical pickup were employed.
Because of the closures, fishers were compensated for lost fishing opportunities in a number of
ways, including employment in oil spill response efforts (the VoO or Vessel of Opportunity
program), accepting compensation payments from the Responsible Parties, and moving fishing
areas and shifting to open areas of the GoM. Some fisheries were heavily impacted during 2010
(e.g., menhaden and inshore invertebrate fisheries), while for others, area shifting resulted in
little change in GoM-wide fishery catches (e.g., red snapper, penaeid shrimps). In the 10 years
since the DWH disaster, many fisheries have recovered, exhibiting patterns of inter-annual
variability consistent with those seen prior to the spill, but other species have shown little to no
recovery. One of the critical issues in understanding oil spill effects is that of causal inference
given multiple simultaneous drivers and feedbacks, thus the appeal of viewing fish-fishery

interactions as a coupled human and natural system.

Results of long-term monitoring studies document a variety of responses of various taxa
occupying diverse habitats from estuarine/coastal to open ocean. These impacts resulted both
from oil contamination and from various response countermeasures. Differential recovery
trajectories are mediated by life history aspects contributing to resilience and to some extent the
degree of ongoing contamination from pools of residual oil and other chronic sources.
Relatively resilient species were those exhibiting low to moderate modularity (near ubiquitous
species or populations) and those with relatively short life cycles. Fishing community resilience
to the spill was related to a variety of employment alternatives during closures and facilitated by

the capacity of fishers to adapt to non-traditional opportunities in fishing and by financial
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assistance programs. Overall, the level of business failures during and just after DWH was lower

than historical averages for important reef fish fisheries of the Gulf.

Introduction

The Gulf of Mexico (GoM) Large Marine Ecosystem (LME, Fig. 1) is a highly complicated
(many interacting components) and complex (non-linear and multi-order relationships among
components) Coupled Human And Natural System (CHANS, Liu et al. 2007; Carter et al. 2014;
Ainsworth et al. 2017; Ferraroa et al. 2019). The ecosystem supports a wide range of valuable
provisioning services (e.g., petroleum, fisheries, fresh water extractions) as well as the full array
of other critical ecosystem service categories (e.g., regulating, supporting and cultural, NASEM
2013; Davis 2017; Gracia et al. 2020; Murawski et al. 2020; 2021). Monitoring of fish stock
abundance and recruitment was ongoing prior to DWH primarily in support of state and federal
fisheries management. The five bordering U.S. states and several federal agencies (primarily
NOAA/NMES) conduct routine monitoring surveys in support of fisheries and environmental
management. These surveys show a diversity of responses of fishery-supporting species
consistent with their life history attributes, and the degree to which populations intersected the
oil spill and/or were affected by response measures such as fresh water diversions in Louisiana’s
marshes (Peterson et al. 2017). New sampling programs instituted since the spill have provided
a robust baseline of oil contamination (primarily sampling for polycyclic aromatic hydrocarbons
— PAHSs) and abundance changes that did not exist prior to DWH (Murawski et al. 2014; 2018;
Pulster et al. 2020a; 2020b). Concerted efforts to catalog the biodiversity and measure the
response of fish communities including the meso- to bathy-pelagic realms of the GoM (McClain

et al. 2019; Sutton et al. 2020) have been supported by the Natural Resource Damage
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Assessment (NRDA,; Deepwater Horizon Natural Resource Damage Assessment Trustees 2016)

and by the Gulf of Mexico Research Initiative (GoMRI), among other institutions.

The purpose of this paper is not to provide a comprehensive overview of the many, diverse
impact trajectories of resources affected, and alternatively, those impervious to the effects of
DWH. Rather, we report on the intersections between impacts on fishery resources and their
coupling to human use outcomes for fisheries in the GoM. Additionally, we provide a
conceptual model of how a CHANS approach can be structured for the GoM to help elucidate
causal relationships among system components, given the wealth of ecological, economic and
anthropological information available for the LME and useful in the context of oil spill impact

assessment.

Vulnerability and Resilience of Gulf Fish and Fisheries

The coupling of ecological and human-centric systems provides a rich format for understanding
the causal relationships between a particular driver (e.g., the DWH oil spill and associated
mitigation measures) and their impacts on ecosystems and people, in the context of other
multiple, significant, and synergistic factors affecting those outcomes (Adger et al. 2005; Liu et
al. 2007; Carter et al. 2014). In contrast to an approach to causality focused on a single cause-
effect relationship (e.g., changes in a population affected by a single, dominant driver, such as
DWH), the CHANS approach offers three important distinctions: (1) the approach provides a
context for multiple simultaneous drivers, (2) it emphasizes two-way (e.g., reciprocal)
interactions between natural and human components of systems as well as multiple cascading
interactions, and (3) it is scalable across the range of habitat complexity, human and animal
population modularity and mobility, and human drivers (e.g., local fishing effects to global

change effects; Levin et al. 2006; Carter et al. 2014, Ferraroa et al. 2019).

4
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Case in point, long time series data document a continuous decline is population abundance of
blue crab (Callinectes sapidus) in coastal waters of Alabama dating decades prior to DWH (Fig.
2). How do we interpret the impacts of the DWH spill given that the proximal drivers of long-
term decline in this species are likely overfishing and habitat degradation? As well, does the
closure of the fishery during late spring to late autumn of 2010 tell us anything about the strength
of the fishery effect on abundance? In this case, there appeared to be a slight (but statistically
insignificant) uptick in mean abundance the following year (and thus little positive impact from a
short-term MPA,; Fiore et al. 2020) which apparently did not arrest the longer-tern declining
trend (Fig. 2). A similar, but perhaps more compelling example of coastal resource response is
that of white shrimp (Litopenaeus setiferus) and brown shrimp (Farfantepenaeus aztecus) in the
Barataria Bay region of coastal Louisiana (Fig. 3). These two species provide the bulk of
commercial shrimp landings not only in Louisiana but the GoM as a whole (Fiore et al. 2017).
This region was heavily impacted by both oil transport to the coast originating from DWH and
large-scale releases of freshwater as an oil spill countermeasure (Peterson et al. 2017; Murawski
et al. 2021). Closure of the fishery for most of the spring, summer and autumn likely resulted in
the strong in-year increase observed in 2010 for white shrimp and the spike in abundance in the
following year (2011) for brown shrimp. Both stocks had been increasing prior to the spill due
to long-term, significant declines in shrimp fishing effort (Fiore et al. 2017), in part associated
with destruction of many shrimp vessels due to hurricanes in 2005 and the overall economics of
shrimp fishing (and economics of competing shrimp imports). That the increases in 2010 and
2011 could not be sustained is likely due to the longer-term fishery effect (Fiore et al. 2017) and
the short-term expectations of higher shrimp volume which may have attracted effort to the re-

opened area following the closures. Thus, while the general perception for most inshore

20z 1snbny gz uo Jasn [enuad YYON Ad Jpd'859689-1-1.202-85€€-6912!/6076.62/859689/ 1/ 20Z/Pd-8]0lHE/0S0l/WO"ssadua)|e uelpLaw//:diy woly papeojumoq



Abstract Number: 689658 2020 International Qil Spill Conference

populations was significant declines due to the impacts of contamination and countermeasures
(Peterson et al. 2017) in some cases the closures actually may have resulted in substituting one

significant driver for another.

The literally thousands of resource species and sub-populations in the vicinity of the DWH
accident exhibited a wide range of population trajectories from 2010 onward, likely reflecting
their relative vulnerabilities to contamination from the spill, the degree of population resilience
inherent in the various life histories of animals, and other attributes of the LME system
(Murawski et al. 2016; 2021; Schwing et al. 2020). To the last point, resource populations are
either semi-distinct population segments, linked in geographically dispersed meta-populations, or
represent homogeneous populations throughout the Gulf, reflecting a continuum of population
modularity vs. connectivity (Paris et al. 2020). There are many examples of sub-populations of a
species contributing to the resiliency of the larger meta-population (e.g., Schindler et al. 2010).

If there are significant adult movements or larval exchange among sub-populations, this
“portfolio effect” may contribute to overall resource resilience. The portfolio effect can work at
the meta-population level and also represents a significant factor buffering multispecies fisheries
from the vagaries of individual species changes (Cline et al. 2017). In the case of Gulf fisheries,
the multispecies nature of the resource and the flexibility of Gulf fishers to target multiple
fisheries (particularly seasonally and in nearshore regions) and different areas (Cockrell et al.
2019) is likely an important factor contributing to the apparent resilience of Gulf-wide fishery

landings following DWH (Fig. 4).

Total fishery landings and first-sale value (e.g., prices paid to fishers) from the USA GoM have
varied considerably over time (Fig. 4). Total landings (tons) peaked in the mid-1980s at about

1.2 million metric tons, whereas total (non-deflated) value peaked in 2014 at nearly $1.1 billion
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(Fig. 4). The volume of GoM landings is generally dominated by catches of Gulf menhaden
(Brevoortia patronus), a low value industrial fish, whereas the overall value of the fishery is
dominated by white and brown shrimp catches. Landings declined sharply in 2010, to the lowest
level since the late 1950s, (Fig. 4) doubtlessly due to the closure of prime Gulf menhaden fishing
areas off Louisiana and Mississippi. However, overall landings value declined only slightly
primarily due to shrimp fishing vessels re-locating to productive fishing grounds off Texas (and
to some extent Florida) and reef fish fishing vessels (targeting primarily snappers and groupers)

transferring effort primarily to the west Florida shelf (Cockrell et al. 2019).

Fishers confronted with the large scale fishery closures, and perceptions of oil-tainted seafood,
exhibited a range of compensatory behaviors. For those fishers used to exploring fishing
grounds beyond areas subject to closures, re-location west or east resulted in preserving revenue
and in some cases, increased revenues from open areas (Cockrell et al. 2019). Their success in
adapting to the abrupt closure of grounds was primarily tied to either to their experience with the
“explore vs. exploit” trade-off (O’Farrell et al. 2019) or the ability to form or use existing

networks to rapidly gain knowledge of new fishing opportunities in unfamiliar regions.

Fishers were also afforded income from several compensation programs (Mayer et al. 2015)
contributing to their economic viability. During the fishery closures, the Responsible Party (BP)
chartered about 3,000 fishing vessels to perform various clean-up and monitoring activities as
part of the Vessel of Opportunity (VoO) program. Overall the VoO dispersed $594 million to
qualifying fishers in the impacted region (Mayer et al. 2015), a total nearly equal to the
cumulative first-sale revenue of all USA Gulf fisheries in 2010 (Fig. 4). In addition to the VoO,
compensatory payments to businesses affected by the spill totaled about $10.5 billion (Mayer et

al. 2015). While only a fraction of affected businesses were fishers, these payments also were
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made to various fishing support businesses (maintenance, supply, wholesale fishmongers, etc.) in
coastal communities. The ability to qualify for compensatory payments or participate in the
VoO may explain the lower than customary business failure rate documented for the reef fish

fishery coincident with the DWH accident (Cockrell et al. 2019).

The longer-term resilience of the fishing industry to the DWH spill and ensuing management
decisions is thus partly a function of the population-level consequences of the spill for marine
resources, the inherent coping mechanisms of fishers (e.g., managed portfolios of targeted
fisheries, ability to adapt to abrupt change) and mechanisms set up during the spill to compensate
fishers for lost income. However, the resilience potential of fishers may come at a cost of both
disassociating fishery catches from traditional ports and communities (in the cases where
landings ports changed) or perceived unfairness of the disbursement of compensation payments

among community members (Mayer et al. 2015).

The considerable literature on population resilience and vulnerability often conflates the two
concepts (Adger et al. 2005; Adger et al. 2006; De Lange et al. 2010a; 2010b). However, in our
estimation these concepts are separable since the vulnerability of a species or human community
is to a specific threat and not to threats generally (Murawski et al. 2021). Thus, for example, a
coastal community may not be particularly vulnerable oil spills generally, but highly vulnerable
to one emanating in the trajectory path from a particular site. Likewise, resilience (e.g., the
capacity to either resist a population insult or recover quickly from it) is primarily related to a
variety of endogenous population traits (longevity, reproductive strategy, ability to metabolize
and excrete xenobiotic chemicals, etc.) or related to the degree of connectivity with adjacent
populations in its “portfolio”. Thus, we may classify various Gulf resources in terms of a

bivariate matrix of vulnerability scores on one axis and species resiliency on the other. While
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not a focus of this paper, the extrema of population resilience include deep corals (long-lived and
slow growing this with low resilience to xenobiotics such as oil contamination, and were highly
vulnerable because of oil transport to the sea floor during DWH (Schwing et al. 2020). At the
other extreme, Gulf menhaden appear highly resilient because of their short life span, high
relative fecundity and high degree of population connectivity. As well, because of the timing
and transport of DWH oil to the coast, vulnerable menhaden life stages were not particularly

vulnerable to the DWH spill (Murawski et al. 2021).

A Coupled Systems View of Gulf Fisheries and Fishes

The CHANS approach appears to be highly suited to evaluating the resilience of fishes and their
co-dependent human systems in the GoM to shocks such as DWH (Fig. 5). The literature defines
several concepts that are essentially tests of the veracity of the CHANS designation and whether
causal inferences can be drawn that explain the various states of the system (Ferraroa et al.
2019). The term excludability is used to characterize the degree to which outcomes have no
causal link other than the treatment variable of interest; no interference, describes the assumption
that a causal effect link is not is not in turn affected by changes in the spatial domain adjacent to
area of interest. Violations of the assumptions of excludability or no interference complicate the
direct interpretation of causal inference (Ferraroa et al. 2019). In particular, human capital
mobility (such as was exhibited for fishers during DWH) can bias causal inferences about the
strength of human drivers because of the no interference assumption (Ferraroa et al. 2019).
However, as can be seen from the example of white and brown shrimp (Fig. 3), the exclusion of
fishing from that area for a full life span of one generation of the species reveals the strength of
the causal relationship between fishing mortality extant before and after closures, despite the fact

that effort flowed out of the spatial domain of Barataria Bay during the closures and was likely
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differentially attracted to it after the closures were lifted. One cannot, however, discount other
simultaneous drivers that were manipulated during the spill (such as the toxic effects of the oil
and dispersing chemicals and the flooding of the habitat with freshwater). The DWH scenario
involving significant fishery closures (Fig. 1) represents a massive, short-term MPA
‘experiment’ that would have been impossible to conduct otherwise, and has revealed the
importance of fishing (and other environmental drivers) as having important causal links
between human activities and the state of the natural system. It also emphasizes the importance
of both direct and indirect interactions and the overlay of geographically scalable environmental

co-stressors such as sea level rise (Fig. 5).

The systems diagram (Fig. 5) documents structural associations between the variety of
environmental co-stressors, most of which are under varying degrees of human control. The
separability or confounding effects of these stressors is difficult to experimentally define and is
more likely the domain for ecosystem models (e.g., Ainsworth et al. 2017). The scenario of an
oil spill (e.g., DWH) affects the vulnerability of particular resources to exposure, and, along with
the pre-spill resilience capacity (also affected by the non-spill co-stressors) influences resource
trajectories during and post-spill. Given the varying effects of the spill on marine populations
(no effect, decline, beneficial effect) resources will be defined by their post-spill trajectories. For
those resources (and their habitats) negatively affected by the oil or associated counter-measures,
“recovery” will be dependent on “natural” processes (e.g., recruitment, natural mortality, fishing
effort, etc.) as influenced by directed restoration activities. Restoration may include direct
habitat manipulation, cultivation and stocking of affected species, or “compensatory”
conservation efforts to reduce other stressors either for a pre-determined time period or

permanently. Clearly human interference in this process can consequentially affect the

10
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trajectories of population recovery. However, as has been demonstrated in other environmental
management domains, the assumption that resource recovery will be symmetric in timing or
degree with resource decline may be seriously flawed (Duarte et al. 2009). Not only is the
‘shifting baseline’ syndrome an important consideration in setting restoration goals (recover to
where?), but restoration efforts may fundamentally change the structure of the CHANS system

being considered.
Summary

The Deepwater Horizon oil spill had consequential and, at this point, ongoing impacts on the
coupled human and environmental system supporting fish and fisheries of the northern Gulf of
Mexico. Nearshore resources, in particular, were significantly impacted by a combination of the
oil spill and various spill countermeasures that were deployed, some of which may have had
more consequential negative impacts than the oil contamination itself. The 280,000 km? fishery
closure (from April 2010 to well into 2011) was the largest fishery closure ever enacted for a
marine oil spill in the USA, and had significant, observable impacts on some resource species.
However, other simultaneous impacts to resources (e.g., from toxic contamination) complicate
the evaluation of causal inference from all of the impacts of the spill and associated

countermeasures.

The development of the CHANS approach to the human-natural fishery system in the Gulf
affords new insights into the interplay of various co-stressors and in particular may provide an
important framework to understand impacts of massive restoration projects ongoing in coastal
and nearshore regions. The area is subject to significant and ongoing habitat loss as well as
increased freshwater inputs from natural sources as well as directed river diversions. The system

also provides a virtually unique testbed to better define direct and indirect causal links between

11
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human and natural components of the system and for making predictions regarding the long-term
consequences for Gulf fisheries not only for DWH but other environmental catastrophes

(Berenshtein et al. 2019).
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Figure 1. Spatial extent of surface expression of the Deepwater Horizon oil spill (gray shaded
areas, Murawski et al. 2014) and maximum extent of fishery closures (red polygon,
July 12, 2010).
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Figure 2. Relative abundance (catch per unit if effort — CPUE) from the Alabama Trawl Survey
(Alabama Marine Resources Division), 1981-2018. Blue bars are the mean +/- 1 SD
(error bars).
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Figure 3. Relative abundance (numbers per standardized trawl haul) of two species of shrimp
from the Louisiana Department of Fisheries and Wildlife’s trawl survey in Barataria
Bay, 1994-2018.
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Figure 4. Total fishery landings (metric tons) and first sale value ($ millions) of commercial
fishery landings in the USA portion of the Gulf of Mexico, 1950-2017.
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Figure 5. The cycle of pre-spill, post-spill and recovery sequences of resources affected by
large-scale contaminant events such as Deepwater Horizon.
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