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Abstract. Some have suggested that targeting conservation efforts on biodiversity hotspots—areas of
exceptionally high diversity —is the most efficient way to use limited resources to protect the most or rarest
species. Moreover, the preservation of biodiversity is a focus for resource management and conservation
because of the links between biodiversity and ecosystem function. However, there are many ways to define
biodiversity and a plethora of diversity indices. Do these indices agree on where biodiversity hotspots are,
and by extension, where conservation should take place? Here we use a habitat modeling approach to map
spatial and temporal patterns in five community metrics of the demersal fish community in the California
Current Large Marine Ecosystem: species density, species evenness, taxonomic distinctness, functional
divergence and total biomass. Depth, bottom temperature, sediment grain size, and distance to hard
substratum were included as covariates in the model. All indices showed strong spatial patterns and
relationships with depth. Spatial patterns for functional divergence and total biomass varied among years,
but other indices did not show temporal variation. We identified hotspots as cells where at least one index
was in the top 5% or 10% of its range. There was minimal spatial overlap among 10% hotspots for the five
indices. Over 40% of the study area was classified as a biodiversity hotspot by at least one metric. However,
no area was identified as a hotspot by all five metrics, and only slightly more than one percent of the coast
was identified as within a hotspot for three or more metrics. Since different indices represent various
aspects of diversity, our results caution against the uninformed use of these indices in the identification of
biodiversity hotspots. Instead, we must define our objectives and then choose the relevant metrics for the
problem.
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INTRODUCTION

Biodiversity has a central place in natural
resource management and conservation. Preser-
vation of biodiversity is a goal for both ethical
(Davidson 2013, Doak et al. 2014) and functional
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(Palumbi et al. 2009) reasons. Ecologically diverse
communities are more productive, have greater
resilience to disturbance, and improved ecosys-
tem services relative to less diverse communities
(Worm et al. 2006, Stachowicz et al. 2007, Duffy
2009, Palumbi et al. 2009). Therefore, sustaining
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biodiversity should play a foundational role in
determining ecosystem-based management
(EBM). Palumbi et al. (2009) go so far as to
suggest that biodiversity should serve as a
“national master variable to enable EBM.” Such
assertions motivate detailed discussion of spatial
and temporal patterns of biodiversity and the
best use of biodiversity measures in a manage-
ment setting (Worm et al. 2005, Tolimieri 2007,
Palumbi et al. 2009, Anderson et al. 2013).

Biodiversity hotspots—areas of high diversity
and/or endemism —have received the lion’s share
of attention as management targets for conserva-
tion (Myers 1988, 2003, Myers et al. 2000, Araujo
and Williams 2001, Araujo 2002, Kareiva and
Marvier 2003, Mittermeier et al. 2003, Worm et al.
2003, Selig et al. 2014). Proponents of the concept
suggest that focusing conservation efforts on
biodiversity hotspots is the most efficient way to
use limited resources to protect the most or rarest
species (Myers et al. 2000, Myers 2003). However,
others note that hotspots are often associated
with species’ range margins and transition zones
(Turpie et al. 2000, Araujo and Williams 2001,
Araujo 2002) where species may already be at the
limits of their environmental tolerances and less
likely to prosper than in the core of their
distributions. Moreover, hotspot analyses were
initially conceived at global scales identifying 18—
25 regions of high richness/endemism (Myers
1988, Myers et al. 2000). To be useful, finer-
grained maps of diversity are needed; conserva-
tion is conducted on the local or regional scale
not the continental scale. Furthermore, we have
known for more than a century that tropical
latitudes harbor more species (von Humboldt
1808, Darwin 1862, Wallace 1878), and recent
analyses, while improving the precision of such
early work, are mostly focused on documenting
this broad-scale pattern instead of providing
information that can be used in a management
setting (e.g., Tittensor et al. 2010, Stuart-Smith et
al. 2013).

A more serious problem is that while biodi-
versity is often equated with species richness or
endemism (Reid 1998, Myers et al. 2000, Worm et
al. 2003), in truth it is a broader, more complex,
and nuanced concept (Norton 1994, Purvis and
Hector 2000, Sarkar 2005). It “encompass|es]
variation at levels of complexity from within
species to across ecosystems” (Sala and Knowl-
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ton 2006) and includes both structural (richness,
evenness) and functional components (Callicott
et al. 1999). For example, biodiversity spans
biological scales from genetic diversity within
species (e.g., Hilborn et al. 2003) to counts of
species (e.g., Tolimieri 2007), and to higher
taxonomic (Clarke and Warwick 1998, 1999,
Tolimieri and Anderson 2010), phylogenetic
(May 1990, Faith 1992, 1994) and functional
relationships (Schleuter et al. 2010). The wide
range of diversity indices used by ecologists begs
the question: Do these indices agree on where
biodiversity hotspots are, and by extension,
where conservation should take place?

Here we quantify patterns of demersal fish
biodiversity off the west coast of the United
States using an extensive time series of system-
atic fisheries-independent trawl surveys. We use
a habitat modeling approach to document spatial
and temporal patterns in multiple metrics of
biodiversity. Specifically, we (1) characterize five
distinct aspects of the groundfish community:
species density, species evenness, taxonomic
distinctness, functional diversity, and total bio-
mass, (2) develop predictive maps to illustrate
spatial patterns of variation for each metric and
ask if these patterns vary across years, (3)
compare the areas identified as ‘high diversity’
by each metric to see if multi-species metrics
agree on high-value areas along the coast, and (4)
discuss the use of such multi-species metrics for
basic ecological insight and in the context of EBM
and marine spatial planning.

MATERIALS AND METHODS

Data source

We used data from the Northwest Fisheries
Science Center’s (NWFSC) U.S. West Coast
Bottom Trawl Survey of Groundfish Resources
off Washington, Oregon, and California (Fig. 1;
Bradburn et al. 2011, Keller et al. 2012). The
survey is a depth-stratified, random sample that
spans approximately 32-48.5° N and 55-1300 m
(see Bradburn et al. [2011] for a detailed
discussion of the sampling design). Each trawl
represents a standardized 15-minute tow. We
used 5743 samples collected between 2003 and
2011, encompassing 313 taxa identified to spe-
cies. The area swept by each trawl was calculated
for each tow and ranged from 0.008 to 0.045 km?*
(median: 0.017). We only included hauls deemed
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Fig. 1. Locations of fisheries-independent trawls and depth contours (insets) for (A) the entire sampled area
and (B) northern, (C) central and (D) southern sections as indicated by the yellow rectangles in (A). Hatched area

in the south is the Cowcod Conservation Area.

acceptable for stock assessment and used only
individuals identified to species (with two
exceptions, see Appendix: Data source and
species identification). Note that because bottom
trawls selectively sample fish (e.g., small fish fit
through the trawl mesh and are not observed)
and habitats (trawls cannot sample high-relief,
rocky habitat), our results are limited to the
assemblage of fishes caught by the trawl survey.

Community metrics

We calculated five multi-species community
metrics from the observed trawl data: (1) species
density, (2) species evenness, (3) taxonomic
distinctness, (4) functional divergence, and (5)
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total biomass. The first four are diversity metrics
and each captures a distinct aspect of diversity in
the fish community. Thought not a diversity
metric, we include total biomass as a fifth
community metric. Importantly, all of these
metrics can be calculated for a single sample.
We outline each metric below and present the
mathematical calculations for each metric in the
appendix.

Species density is the number of species per
area (Gotelli and Colwell 2001). Species density
contrasts with species richness, which is the
absolute number of species observed in an
exhaustive sample of an area. Species density is
a more easily estimated and conservation-rele-
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vant metric (Worm et al. 2003) in part because it
indicates the number of species affected by any
spatial management. We calculated species den-
sity as the number of species per trawl and
included swept area in the analyses as a covariate
to account for differences in trawl area (see
below).

Simpson diversity (Simpson 1949) is a measure
of species evenness (or more technically equita-
bility; Tuomisto 2012). Simpson diversity (})
varies between zero and one and gives the
probability that two individuals selected from a
sample will be of the same species; thus evenness
increases as A decreases. Here we use a common
variant, the Gini-Simpson index (1 — A), so that
evenness increases as the index approaches one,
and 1 — X is the probability of an interspecific
encounter (Hurlbert 1971). We calculated the
Gini-Simpson index (hereafter, species evenness)
using the ‘vegan’ package in R 3.0.1 (R Core
Team 2013).

Average taxonomic distinctness summarizes
the diversity of a sample based on the evolution-
ary relatedness among species. It is the mean of
all species-to-species distances through a taxo-
nomic tree for all pairs of species within a sample
and represents the taxonomic breadth of the
sample (Clarke and Warwick 1998, 2001). We
calculated taxonomic distinctness using the
‘vegan’ package in R 3.0.1 (R Core Team 2013)
as in Tolimieri and Anderson (2010) and scale
taxonomic distinctness between zero and 100
with higher values indicating increase taxonomic
diversity in a sample.

Functional diversity is a measure of the range
and distribution of “what organisms do in
communities” (Schleuter et al. 2010). It is
assumed to be a better indicator of productivity
and vulnerability than is species diversity be-
cause it measures the complementarity and
redundancy of co-occurring species. We used
functional divergence (Villéger et al. 2008) as a
metric of functional diversity. Functional diver-
gence quantifies variance in functional types and
indicates the degree of resource differentiation
and competition (Schleuter et al. 2010). That is, it
measures the distribution of abundance within
the volume of functional trait space occupied by
the species in the community (Schleuter et al.
2010). We calculated functional diversity using
the ‘FD’ package in R 3.0.1 (R Core Team 2013)
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Table 1. A list of the habitat covariates included in the
statistical models.

Forms included in the model

log(depth), log(depth)?
bottom temperature,

(bottom temperature)
grain size, (grain size)”
(km)°®

Habitat covariates

Depth (m)
Bottom temperature (C)

Sediment grain size, ® scalef
Distance to nearest rocky
outcrop (km)

Note: Swept area (km?) is included as a covariate in all
models to account for variation in sampling effort.
T @ scale (Krumbein and Sloss 1963).

based on the diets of 49 species (Dufault et al.
2009) that made up 86% of all the biomass in the
trawls (Appendix: Table Al). We omitted 158
trawls when calculating functional divergence
because there were fewer than three species with
diet data in those trawls making it impossible to
calculate the metric.

Finally, we calculated the total biomass for
each trawl by simply summing the biomass of all
species in a haul. While not a diversity metric per
se, total biomass is a general community metric
indicating that some areas support more fishes
than others. It is relevant because aiming
conservation efforts at areas of high biodiversity
but low biomass may not achieve management
goals.

Habitat covariates

We used four continuous habitat covariates as
potential predictor variables: average water
depth of the trawl, bottom temperature, distance
to nearest hard bottom, and sediment grain size.
Average water depth and bottom temperature
were directly measured on each survey trawl,
while distance to nearest rocky bottom patches
larger than one ha and sediment grain size were
calculated from existing geospatial data layers
(NMEFS 2013). We considered linear and quadrat-
ic terms for water temperature, sediment grain
size, distance to rock and the natural logarithm of
depth (see Table 1). Additionally, we included the
swept area of the trawl as an estimated covariate
because community metrics will not scale linear-
ly with effort. Thus we could not simply include
effort as an offset (Gotelli and Colwell 2011).
Note, there are many other potential habitat
covariates that could contribute to community
metrics —most notably deep water corals, spong-
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es, and other biogenic habitats (Krigsman et al.
2012). We did not have sufficient data across the
coast to include these potential covariates as
predictor variables.

Statistical models for community metrics

We implemented spatial generalized linear
models (Diggle et al. 1998, Wikle et al. 1998,
Royle and Wikle 2005, Shelton et al. 2014) to
estimate the relationship between habitat vari-
ables and each community metric and produce
predictive maps for each diversity metric. We
used the same generalized linear model structure
for all five diversity metrics. However, because
the metrics have different statistical properties,
we used specific exponential family and link
functions for each metric (Appendix: Table A2).
We illustrate our statistical approach using
species density and provide details for the other
metrics in the appendix. Importantly, our ap-
proach accounts for spatial autocorrelation and
avoids the assumption that the multiple trawls
occurring in distinct habitats represent indepen-
dent samples of an identical fish community. This
is a common, unacknowledged assumption in
diversity analyses that bin samples arbitrarily
based on coarse latitudinal grids (Cheung et al.
2009, Tittensor et al. 2010).

We modeled species density at location s and
time t as a Poisson random variable, Z(s, f),
whose mean parameter (s, ) is a function of
environmental covariates. We wrote this model
as a spatial generalized linear model

Z(s,1)|u(s, 1) ~ Poisson(pu(s, t))
log(n(s, 1)) = X(s,)B + w(s, 1) (1)

where X is a design matrix of environmental
covariates, B is a vector of regression coefficients,
and w is a spatially random effect that provides
local adjustment to the mean and captures the
effect of unobserved covariates and autocorrela-
tion. For simplicity, we considered only models
with main fixed effects (i.e., no interactions
between covariates) and time-invariant habitat
relationships (i.e., no interactions between year
and continuous covariates). This structure al-
lowed the spatial random variable w to absorb
the variability that may arise from model mis-
specification.

We modeled w as a smooth spatial surface, w ~
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MVN(0,C,(d, 6, 02), where MVN is the multivar-
iate normal distribution, C,(d, 0, 62) is a
covariance matrix based on an isotropic expo-
nential model with range parameter 6 that
controls the correlation between points as a
function of distance, d, and o is the spatial
variance (Cressie and Wikle 2011).

We accounted for variation among years by
testing two covariance structures for w. First, we
compared allowing the spatial field to vary
among years by making the covariance matrix,
Cu(d, 6, o), block-diagonal with elements
comprised of year-specific spatial covariance
matrices (see Appendix). Second, we considered
a model with a single shared spatial field for all
years. Estimating a single field is equivalent to
ignoring the temporal component of the data and
assuming all of the observations occurred in the
same year. For all models we estimated a single 0
and a single 6% so the scale and magnitude of
spatial correlation is considered similar among
years.

We used Bayesian methods to implement all of
our models and used predictive process models
to reduce model dimension and abbreviate
computing time (Banerjee et al. 2008, Finley et
al. 2009, Latimer et al. 2009, Shelton et al. 2014).
We did standard assessments of model conver-
gence and compared models using log-scoring
(Krnjaji¢ et al. 2008, Draper and Krnjajic 2010,
Draper 2013). As Hooten and Hobbs (2015) note
there is not an agreed-upon method for Bayesian
model comparison. We discuss the benefits and
limitations of the approach taken here in the
Appendix.

To generate predictive maps for each metric,
we created a 2 X 2 km resolution regular grid for
the region between the 50 and 1,300 m isobaths
from the US/Mexico border to the US/Canada
border. We then generated a predicted value for
each metric using the covariate values and spatial
location at the center of grid cell. We made all
predictions for a standard trawl area of 0.01 km*
(1 hectare). We did not generate predictive values
within California Cowcod Conservation Area 1
(CCA West; hatched region in Fig. 1), as the trawl
survey vessels do not sample in this region.

December 2015 %¢ Volume 6(12) ** Article 290



Identifying biodiversity hotspots for
different metrics and their overlap

We compared the predictive maps for the five
metrics to identify locations where the diversity
metrics agreed on high-value areas. Any given 2
X 2 grid cell was tagged as a hotspot if the value
for a given metric was in the top 5% or 10% of its
observed range (we refer to these as 5% and 10%
hotspots, respectively). We then compared maps
of these 5% and 10% hotspots among metrics to
determine the proportion of the habitat identified
as a hotspot by one to all five of the metrics. We
recognize that any definition of a hotspot is
arbitrary and note that other percentile cutoffs
are potentially reasonable. We also produced
maps of the overlap between the 10% hotspots in
order to illustrate the location of cross-metric
hotspots.

REesuLTs

The spatial models for the five community
metrics showed strong spatial patterning across
the coast (Fig. 2). All five metrics show strong
associations with depth (Table 2), and all except
taxonomic distinctness showed strong relation-
ships with observed bottom temperature (Table
2). Sediment grain size played a minor role in
determining the two metrics. Model selection did
not include distance to rock as a predictor of any
metric. In all cases, models that included the
spatial smoothing term w outperformed non-
spatial models. Model comparison indicated that
there was no evidence for temporal variability
among years for three of the metrics: species
density, species evenness, and taxonomic diver-
sity. For each of these metrics, the preferred
model used a single shared spatial field (Table 2).
In contrast, the preferred models for the func-
tional divergence and total biomass included a
unique spatial field for each year. The fact that
the spatial field varied among years indicates
that the location of unusually high or low values
of biomass and functional divergence differed
among years. To directly compare the three
metrics that showed no temporal variation and
the two that did, we calculated an across-year
average for total biomass and functional diver-
gence by averaging the predictions for each grid
cell and each individual year (Fig. 2). We present
the predicted maps for total biomass and

ECOSPHERE % www.esajournals.org

TOLIMIERI ET AL.

functional divergence by individual year in the
Appendix (Figs. Al and A2).

Patterns with depth varied among metrics. For
example, species density was higher at shallow
depths in southern waters (e.g., near San Fran-
cisco Bay) but higher at intermediate depths in
northern waters. Species evenness showed a
broadly similar pattern to species density in
terms of variation with depth. Functional diver-
gence was highest at shallower areas while
taxonomic distinctness was higher at depth
(Fig. 2).

The geographic location of hotspots for each
metric also varied (Fig. 3). Species density was
highest in the vicinity of San Francisco Bay where
hotspots were on the shelf. However, species
density hotspots were deeper on the slope to the
north. Species evenness hotspots were widely
distributed but may have been more prevalent
north of Cape Blanco. Patterns for taxonomic
distinctness were primarily depth related but
there were large hotspots south of Point Concep-
tion in the south. Functional divergence hotspots
were all located from roughly Cape Blanco north
with the exception of two small hotspots around
Cape Mendocino and just south of Monterey Bay.
Biomass hotspots were all found from the
Monterey Bay (N 36°30") and north.

There was little overlap in the locations of
hotspots identified by the five metrics (Fig. 4).
Over 40% grid cells were classified as a biodi-
versity hotspot by at least on metric. However,
there were no cells identified as hotspots by all
five metrics and only slightly more than 1% were
identified by three or more metrics.

All of the areas identified as 10% hotspots by
three or more metrics were in northern waters off
the Oregon and Washington coast (Fig. 4). The
southernmost three-metric hotspot was off Cape
Blanco. A second was just south of Astoria
Canyon with a third just north of Grays Canyon.
The only four-metric hotspot of any size was in
the vicinity of Heceta and Stonewall Banks with
another small four-metric 10% hotspot north of
Gray’s Canyon.

The greatest overlap between pairs of metrics
were for (1) species density and evenness (24%),
(2) species evenness and functional diversity
(25%), and (3) species density and functional
diversity (19%, Fig. 4). Taxonomic distinctness
overlapped only trivially with the other four
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metrics.

Discussion

The vast literature on biodiversity and ecosys-
tem function suggests that the conservation of
biodiversity may act as a simple and practical
tool for implementing EBM (Palumbi et al. 2009).
Focusing on biodiversity hotspots has been
suggested as a way to maximize our ‘bang-for-
the-buck’ by targeting conservation efforts in

areas with the most or most vulnerable species
(Myers et al. 2000, Myers 2003). However, the
task of identifying hotspots is difficult because
biodiversity can be defined in many ways both
among and within taxa and at different spatial
scales. At scales appropriate to management,
there may be little overlap in the hotspots for
different taxa or for hotspots defined by richness
or endemism (Reid 1998), making it difficult to
situate spatial planning tools such as no-take

Table 2. Summary of habitat covariates included in the preferred models for each community metric.

Model

Habitat covariates

Single random field?

Species density

Species evenness (Gini-Simpson, 1 — 1)
Taxonomic distinctness

Functional divergence

Total biomass

log(depth), log(depth)?, temperature

log(depth), temperature

log(depth), log(depth)?, grain size

log(depth), log(depth)?, temperature, temperature?
log(depth), log(depth)?, grain size, temperature

ZZ <<

Note: In addition to the covariates listed, all models included an estimated linear effect for the area trawled.
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areas or to target other conservation actions. For
example, in Europe (the palearctic), phylogenetic
diversity for terrestrial vertebrate groups (am-
phibians, birds, mammals) shows little overlap
due to different evolutionary histories (Zupan et
al. 2014). As a result, the evolutionary history of
these taxa is unequally represented within the
network of European protected areas. Moreover,
hotspots may be located in biogeographic tran-
sition zones where species are at their range
margins (Turpie et al. 2000, Araujo and Williams
2001, Araujo 2002) and species are likely at the
limits of their environmental tolerances. Other
authors suggest that focusing on hotspots could
divert efforts away from other important conser-
vation objectives (Kareiva and Marvier 2003).
Here, we show that five widely used metrics of
biodiversity provide disparate information about
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the fish community and the locations of biodi-
versity hotspots in waters along the U.S. West
Coast. From one perspective, we could conclude
that there are no biodiversity hotspots on the U.S.
West Coast; there are no areas in which all five
metrics are high along the nearly 2,100 km of
coastline. Furthermore, only 0.1% of the area was
identified as a high value area for four metrics,
only 1.3% include three metrics and only 6%
included two metrics. This lack of agreement is
troubling for the prospect of targeting hotspots
for conservation efforts. Moreover, our indices
are only a few of the vast number of diversity
metrics that could be applied to our data (e.g.,
Gotelli and Colwell 2001, Schleuter et al. 2010,
Anderson et al. 2011). Each would likely provide
a different map of high value areas.

From another perspective, the wide-range of
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potential diversity maps can help us focus on
how we use biodiversity hotspots by pointing to
an obvious and thorny problem: managers need
to specifically define the aspect of biodiversity
they wish to conserve or otherwise manage.
Despite the optimism of some authors (e.g.,
Palumbi et al. 2009), simultaneously optimizing
all facets of biodiversity will be impossible in
virtually all real-world situations (Reid 1998,
Zupan et al. 2014). The identification and
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conservation of biodiversity for EBM face the
same challenges as those faced in single-species
management: spatial planning requires a clear,
agreed upon set of goals to manage toward. The
development and application of an ever-growing
number of diversity metrics does not change this
fundamentally important fact.

Each of the metrics used for the fish commu-
nity off the U.S. West Coast represents a different
aspect of biodiversity. For example, targeting
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hotspots of species density would protect the
greatest number of species per unit area (Myers
et al. 2000, Araujo and Williams 2001, but see
Araujo 2002, Myers 2003). Alternatively, if the
goal is to sustain ecosystem function and services
(Palumbi et al. 2009), functional diversity hot-
spots would be appropriate targets. Focusing
management on biomass hotspots would be
relevant for goals related to extractive exploita-
tion (fishing) such as the maintenance of spawn-
ing stock biomass. Taxonomic diversity maps
provide an evolutionary perspective on biodiver-
sity. Each option outlined above could be used to
generate management scenarios, but they cannot
all be satisfied simultaneously.

The among-year variability in the maps for
total biomass and functional divergence, compli-
cates the process of spatial planning; hotspot
locations were not consistent over time (Appen-
dix: Figs. Al and A2). We presented a time-
average map of biomass and functional diver-
gence, but the year-to-year variation was consid-
erable for both metrics. Recent analyses of
biodiversity have generally been done globally
(e.g., Tittensor et al. 2010, Stuart-Smith et al.
2013)—at a scale too large to be practical for
spatial management—and ignore temporal
changes in biodiversity. For comparison, the
entirety of our study region is represented by
only three grid cells in the richness patterns
characterized by Tittensor et al. (2010). Further-
more, the ability to include temporal changes
should be a priority for any biodiversity analyses
given the projected changes to environments in
the coming years due to global climate change
(IPCC 2014).

A criticism of the use of hotspots for conser-
vation is that they may tend to occur in transition
zones where species are at their range margins
and less likely to prosper than in the core of their
range (Turpie et al. 2000, Araujo and Williams
2001, Araujo 2002). There are several biogeo-
graphic breaks along the West Coast where
assemblage structure changes for marine species
and especially groundfishes: Point Conception,
Monterey Bay, Cape Mendocino and Cape
Blanco (Horn and Allen 1978, Dawson 2001,
Horn et al. 2006, Tolimieri and Levin 2006).
Overall the concordance between the biogeo-
graphic breaks and diversity metrics was not
overwhelming. Hotspots were frequently associ-
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ated with biogeographic breaks, but they also
occurred elsewhere (Fig. 3). For example, some
species density hotspots were proximate to
biogeographic breaks, although, only in the
Monterey Bay locale was there a large area of
high species density. Notably, the Monterey Bay
and Point Conception hotspots for species den-
sity had low total biomass (but high historical
fishing pressure; Miller et al. 2014). Thus,
targeting conservation in these areas would
address many species, but not many individuals
of each species. Conversely the multiple metric
hotspots at Cape Blanco and to the north
occurred in areas of high biomass suggesting
that they would be more effective locations for
conservation efforts. These results emphasize the
importance of evaluating multiple diversity
metrics. While hotspots for a particular metric
were often located near a biogeographic break,
many other hotspots were not. For example,
there were small hotspots for species evenness
near Point Conception and Cape Mendocino and
a substantial hotspot near Cape Blanco. Howev-
er, large 5% hotspots were also common in other
locations north of Cape Blanco and south of Point
Conception. Patterns for taxonomic distinctness
were primarily related to depth and did not
show strong latitudinal variation or association
with biogeographic features.

The maintenance of biodiversity is important
for both ethical and practical reasons. Technical
advances in statistics and mapping will allow
improved identification of biodiversity hotspots
that can help us in targeting conservation dollars
and management activities. However, our results
caution against their uninformed use because
different diversity metrics differ in the identifi-
cation of high-diversity areas. We first need to
define our objectives and then choose the
relevant metrics for the problem. A diversity of
diversity metrics is only helpful if they can
provide actionable information for well-defined
goals. Claiming that we should manage ecosys-
tems for the benefit of biodiversity in general is
not helpful and may obscure profitable avenues
to pursue toward sustainable management.
Nevertheless, well-motivated, spatio-temporal
methods applied to diversity metrics have an
important role to play in determining conserva-
tion priorities and actions.
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