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Environmental DNA (eDNA)—genetic material recovered from an environmental 30 

medium such as soil, water, or feces—reflects the membership of the ecological 31 

community present in the sampled environment. As such, eDNA is a potentially rich 32 

source of data for basic ecology, conservation, and management, because it offers the 33 

prospect of quantitatively reconstructing whole ecological communities from easily-34 

obtained samples. However, like all sampling methods, eDNA sequencing is subject to 35 

methodological limitations that can generate biased descriptions of ecological 36 

communities. Here, we demonstrate parallels between eDNA sampling and traditional 37 

sampling techniques, and use these parallels to offer a statistical structure for framing the 38 

challenges faced by eDNA and for illuminating the gaps in our current knowledge. 39 

Although the current state of knowledge on some of these steps precludes a full estimate 40 

of biomass for each taxon in a sampled eDNA community, we provide a map that 41 

illustrates potential methods for bridging these gaps. Additionally, we use an original 42 

dataset to estimate the relative abundances of taxon-specific template DNA prior to PCR, 43 

given the abundance of DNA sequences recovered post-PCR-and-sequencing, a critical 44 

step in the chain of eDNA inference. While we focus on the use of eDNA samples to 45 

determine the relative abundance of taxa within a community, our approach also applies 46 

to single-taxon applications (including applications using qPCR), studies of diversity, and 47 

studies focused on occurrence. By grounding inferences about eDNA community 48 

composition in a rigorous statistical framework, and by making these inferences explicit, 49 

we hope to improve the inferential potential for the emerging field of community-level 50 

eDNA analysis. 51 

Introduction:  52 

 A central aim of ecology is to understand the distribution and abundance of 53 

organisms, which requires estimates of the occurrence, density, or biomass of the 54 

organisms in natural populations. Whether counting individuals in a habitat, in a 55 

population, or across an assemblage, making inferences about an entire community from 56 

an observed subset of individuals is fundamental to ecological science. Unfortunately all 57 

sampling techniques are potentially subject to bias, undermining accuracy and confidence 58 

in estimates of critical ecological parameters. Visual surveys may overlook or misidentify 59 

cryptic species, surveys that capture individuals with nets or traps may under-represent 60 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

small or elusive prey, and quadrat-sampling methods for non-mobile flora and fauna can 61 

underestimate the abundance of rare species or miss landscape-scale patterns.  62 

Fortunately there is a large and sophisticated literature dedicated to examining and 63 

improving efficacy and reducing bias for a range of sampling problems for terrestrial, 64 

marine, and aquatic systems (Cochran 1977, Royle and Nichols 2003, Cotter and Pilling 65 

2007, Elith and Leathwick 2009). In this paper, we contribute to this literature by 66 

developing a general statistical framework as well as specific statistical sampling 67 

methods for the emerging field of environmental DNA. 68 

Recent advances in molecular biotechnology have resulted in the emergence of a 69 

new survey tool, whereby the DNA present in an environmental medium (such as soil or 70 

water; hereafter environmental DNA or eDNA), can be used to infer the presence of 71 

organisms nearby (Jerde et al. 2011, Yoccoz 2012). There are currently two distinct 72 

molecular approaches for eDNA. In the first, the amount of a known DNA sequence - 73 

presumably from a single taxon - is determined from quantitative polymerase chain 74 

reaction (qPCR; Thomsen et al. 2012, Nathan et al. 2014). The second approach is to 75 

amplify some suitable region from all genomes present in a sample using PCR, and 76 

sequence the resulting products (amplicons) using massively parallel sequencing 77 

technologies, without a priori knowledge of the organisms present or their genetic 78 

sequences (e.g. Ventner et al. 2004, de Barba et al 2015, Leray and Knowlton 2015). 79 

While the qPCR approach is being used in several applications to monitor rare or 80 

invasive species (Lodge et al. 2012; Turner et al. 2014), such methods can involve 81 

extensive development for each taxon of interest, and cannot easily provide insight into 82 

community-level patterns. Sequencing methods could feasibly provide relative 83 

abundance data for a suite of species in the community, as the relative proportions of 84 

taxon-specific DNA sequences observed may reflect the relative proportions of DNA in 85 

the environment (Yoccoz 2012). While attempts have been made to link sequence counts 86 

to biomass (e.g. Evans et al. 2015), no such study has yet evaluated the complex chain of 87 

processes and associated uncertainty linking these two states (Iversen et al. In Press). 88 

Thus, one barrier to the widespread adoption of the sequencing approach is the lack of 89 

formal methods for linking this new data type (counts of DNA sequences) to the 90 
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underlying pattern of interest (the abundance or biomass of taxa comprising a 91 

community; Yoccoz 2012).  92 

Conceptually, using eDNA to infer the biomass or abundance in a community is 93 

largely analogous to traditional non-molecular methods. Figure 1 illustrates how eDNA 94 

and traditional sampling attempt to provide information about the same quantity: the 95 

biomass of each species in the environment. Both eDNA and traditional sampling aim to 96 

make inferences about distinct stages that are potentially measurable (latent states; 97 

represented by boxes in Fig. 1), and processes which transform one stage to the next 98 

(arrows in Fig. 1).  99 

Before turning to sampling methods for eDNA, we first describe a general 100 

theoretical framework in terms of traditional sampling of a marine fish community, with 101 

the goal of quantifying the biomass of each taxon. Common sampling methods for fish 102 

communities include using a variety of net technologies (trawl, gillnets, cast nets, seines, 103 

etc.), systems using baited hooks, and visual surveys. Importantly, the process of 104 

inference from data using any of these methods can be conceptualized using the diagram 105 

in Figure 1. We use fish communities as an example with which we are familiar, and for 106 

which there is a long history of explicitly modeling uncertainty, but the larger point 107 

applies to all ecological sampling.  108 

For example, for a sample collected using a trawl net, the total biomass of fish 109 

taxon i at a particular location, l, and a particular time, t, ��,�,� is a function of the biomass 110 

or counts observed in the net, ��,�,� (Fig. 1). Given that we only observe ��,�,� the process 111 

of estimating ��,�,� from ��,�,� can be written as a conditional quantity, ���,�,����,�,��. For 112 

expositional purposes, we simplify notation by assuming a single sample time and 113 

location, [��|��]. As Fig. 1 shows, the biomass in the environment (��) is not connected 114 

to the biomass captured by the net (��) by a single process but rather a chain of distinct 115 

processes. A full  description of the sampling process would explicitly include each step. 116 

For example, researchers commonly extract a subsample of individuals (��) from the full 117 

catch of the net (��) to determine the taxon-specific count (��), which itself may be 118 

influenced by taxonomic identification errors or other processes (Fig. 1).  119 

From this conceptual framing it should be clear that our estimate of the taxon’s 120 

biomass �� is influenced by at least three sets of processes: (1) the sampling approach to 121 
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obtain the collection ��, (2) the methods used to reduce the full collection to the 122 

subsample ��, and (3) the identification and enumeration methods that result in the taxon 123 

specific count ��. Statistically, we can expand the inference of interest [��|��] into three 124 

conditionally independent processes (for general discussion of conditional modeling see 125 

Clark 2007, Cressie and Wikle 2011) 126 

[��|��] = [��|��][��|��][��|��] .   (1) 127 

Thus, any estimate from sampling data must implicitly or explicitly make assumptions or 128 

estimate these three components. For example, the second term on the right side, [��|��] 129 

describes the proportion of the total catch taken in a subsample. If the entire catch is 130 

included, [��|��] = 1, and this term can be dropped from the model.  131 

While accounting for [��|��] is relatively straightforward, other terms in eq. 1 are 132 

more difficult . Indeed, determining how biomass present in the environment corresponds 133 

to the total catch in the net, [��|��], is a classic and persistently difficult problem that has 134 

been explored extensively in ecology (Royle and Nichols 2003, Elith and Leathwick 135 

2009) and fisheries (see the fisheries concepts of “catchability”, and “selectivity”; 136 

Beverton and Holt 1957 section 8, Arreguín-Sánchez 1996, Venebles and Dichmont 137 

2004). For our hypothetical marine fish example, the mesh size, design, and deployment 138 

of the net, among other characteristics, will interact with the true density of each species 139 

to determine which are captured (the quantity [��|��] in eq. 1; Beverton and Holt 1957 140 

section 8, Arreguín-Sánchez 1996). Similar challenges face the determination of [��|��]; 141 

individual skill and experience will affect the efficacy and accuracy of taxonomic 142 

identification. Our purpose here is merely to note that such complexities plague virtually 143 

all sampling problems—whether terrestrial or marine, from the poles to the equator. 144 

The basic inferential framework introduced above (eq. 1, Fig. 1) readily applies to 145 

the problem of reconstructing ecological communities from eDNA. Below, we outline the 146 

processes connecting ecological communities to observations of eDNA, and briefly 147 

summarize the state of knowledge about each process. We then construct a statistical 148 

model for analyzing community eDNA data that accounts for some of the processes that 149 

can potentially bias inference from eDNA data and provide a worked example for 150 

applying these methods to a marine eDNA dataset. We end by briefly discussing further 151 

methodological needs for eDNA data and making recommendations for best practices. 152 
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Throughout, we focus on the use of eDNA for community sampling and highlight the 153 

inferential and empirical connections between traditional and eDNA sampling methods.   154 

 155 

Conceptual models for eDNA   156 

Here we derive a model structure to estimate the relative amount of biomass 157 

present in a community for some set of taxa of interest, by sampling eDNA. While we 158 

develop the framework in the context of estimating abundance for multiple species from 159 

sequenced DNA, both models of occurrence (e.g. Ji et al. 2014) and of single species 160 

abundance (e.g. Jerde et al. 2011) are special cases in our framework, as will be discussed 161 

later. Our general approach also applies to qPCR methodologies. We focus on the 162 

detection and quantification of taxa that are not directly sampled. For example, if we 163 

collected a liter of water from the environment, we focus primarily on inferring the 164 

abundance of fishes, invertebrates, and mammals from individual cells (and 165 

accompanying DNA) contained in that water sample. While similar methods could be 166 

applied to bacteria and other microorganisms that can be directly measured and 167 

sequenced from a small sample, we do not specifically address such cases here; direct 168 

sequencing rather than PCR based approaches may be more appropriate for small, 169 

abundant taxa (Yu et al. 2012).  170 

To derive a general model for eDNA we need to explicitly consider the data in 171 

hand and the process that led to the observation of the data. We assume that a researcher 172 

has collected a sample of seawater—although soil, fecal, or other samples are essentially 173 

equivalent—for the purposes of recovering eDNA from an ecological community. After 174 

filtering the sample, extracting total DNA, and amplifying the DNA of interest using 175 

oligonucleotide PCR primers, we observe counts of unique DNA sequences from a high-176 

throughput sequencer (e.g., Illumina, 454, Ion Torrent). Note that there are many possible 177 

molecular methods by which the data can be derived. For all cases, though, the number of 178 

observed DNA sequences for each type is a function of: 1) the true, but unknown, density 179 

of DNA of each taxa present in the water, 2) the amount of DNA captured on the filter 180 

and subsequent DNA extraction, 3) the primer set and its interaction with the DNA 181 

sequence of each taxon present, 4) the number of PCR cycles performed, 5) the error rate 182 

of the sequence analyzer, and myriad other factors. In short, the observed counts of DNA 183 
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sequences are a complicated stochastic realization of the true amount of DNA present in 184 

the environment for each taxa. While eDNA protocols can be designed to minimize such 185 

stochastic forces, they cannot be eliminated altogether. Defensible ecological inference 186 

therefore depends upon identifying and estimating the parameters that may substantially 187 

influence observed counts of DNA sequences.  188 

By analogy with the net sampling example, the process by which biomass is 189 

translated into DNA sequences matched to taxonomic groups is probabilistic (Fig. 1). 190 

Specifically, the biomass of each taxon must be translated through several intermediate 191 

states before it is observed as counts of DNA sequences. For taxon i, let �� be the density 192 

of DNA in the environment, �� be the amount of DNA collected from the environment, �� 193 

be the DNA present after DNA extraction, and Zi

As in eq. 1, the amount of biomass �� estimated from eDNA sampling is the 199 

product of four conditionally independent steps,

 be the DNA sequences recovered. We 194 

acknowledge that there are other reasonable ways of parsing the process of generating 195 

and making inference from eDNA (i.e. the framework we discuss here is extendable, and 196 

additional states could be added to Fig. 1). However the latent states in Fig. 1 are intuitive 197 

and, potentially, directly measurable with existing technologies. 198 

1

[��|��] = [��|��][��|��][��|��][��|��]    (2) 201 

 200 

Information about each link in this inferential chain is required to properly infer �� from 202 

observed counts of DNA sequences that emerge from a DNA sequencer ��. Such 203 

information can be some combination of prior information about the processes 204 

connecting these latent states, direct observations of the states, and biologically justified 205 

assumptions about each component. There are two corollaries of this point: i) any 206 

inferences made about Bi

                                                        
1 For the remainder of the manuscript, we let capital Roman letters denote random 
variables, lowercase roman letters denote realizations of random variables, and Greek 
letters denote parameters. Bold lowercase denote vectors and bold uppercase are 
matrices. 

 from eDNA make implicit and/or explicit assumptions about 207 

the other components on the right side of eqn. 2; and, ii ) if there is no information about 208 

any of the components on the right side of eq. 2 (or researchers are unwilling or unable to 209 

make assumptions about these components), it will be impossible to make inference 210 

about �� from eDNA observations alone. A parallel problem arises frequently in 211 A
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fisheries; biologists are unwilling to assert that the actual biomass is mirrored by 212 

observed catches (i.e. the connection between B and D in Fig. 1 cannot be bridged).  213 

Therefore survey catches are frequently used as indices of abundance not estimates of 214 

absolute abundance (Kimura and Zenger 1997, Cotter and Pilling 2007). Despite not 215 

reflecting actual abundance, such indices play a critical role in fisheries, wildlife  216 

sciences, and management (Branch et al. 2010, Jannot and Holland 2013). The 217 

formulation of eq. 2 also serves to point out where information is missing and to motivate 218 

future research on poorly understood topics (Yoccoz 2012, Pedersen et al. 2015).  219 

Other structures for Figure 1 are reasonable and we encourage investigators to 220 

modify the chain of inference represented in Figure 1 to meet their specific sampling 221 

needs. We view Figure 1 not as a rigid form for analyzing eDNA but as a framework 222 

which can be modified to suit individual purposes and clarify thinking about the 223 

inferences that can and cannot be drawn from available eDNA data. We expect improved 224 

and more complex analytical structures to be developed for eDNA as the technology and 225 

its use evolve. 226 

 An important point of Figure 1 is that the traditional sampling and eDNA arms of 227 

the figure are only connected through the true biomass, B, represented at the top of the 228 

figure. This structure serves to remind investigators that that directly comparing eDNA 229 

and traditional sampling data is fraught with difficulty and can only be logically done 230 

with a full sampling model for both how counts of OTUs observed from a sequencer (Z) 231 

connect to biomass (B) and how traditional sampling observations connect to biomass. 232 

Alternatively one could make strong assumptions about the connection between Z and B. 233 

Indeed the most difficult step for both eDNA and traditional sampling in marine 234 

environments is the first step in each pathway (between B and the density of DNA in the 235 

environment W, and between B and collected individuals in a traditional sample, D; Fig. 236 

1). To date, we know of no eDNA study which has explicitly linked B and W under field 237 

conditions and very few that have linked them under controlled laboratory conditions 238 

(e.g. Takahara et al. 2012, Thomsen et al. 2012). To date, most researchers have either 239 

asserted that the proportion of sequences observed from environmental samples mirror 240 

the abundance (either count or biomass) of physically collected individuals or, 241 

alternatively, concluded proportions of sequences are proportional to abundance based on 242 
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visual inspection (for example, see de Vargas et al. 2015, their Figs. W2B and W2C and 243 

accompanying text). While these correlations may accurately reflect a functional link 244 

between individuals in the environment and eDNA, we would point out that a complex 245 

and diverse set of processes that separate D and Y mean that there are large number of 246 

ways to arrive at spurious correlations between these two states. It is therefore desirable 247 

to explicitly assess each link in the inferential chain linking observed DNA sequences to 248 

biomass or some other biological/ecological parameter of interest. 249 

While eq. 2 is instructive to broadly frame eDNA problems, the processes that 250 

connect the latent states must be detailed to make this model useful in practice. 251 

Specifically, the rates of transition between the states presented in Fig. 1 are controlled by 252 

parameters that do not appear in eq. 2; we introduce those parameters here. Let θi be a set 253 

of species-specific parameters associated with transition from Bi  to Wi  (e.g. DNA 254 

shedding (Klymus et al. 2015, Iversen et al. In Press) and degradation (Thomsen et al. 255 

2012, Strickler et al. 2015; Fig. 1), �� be taxon-specific parameters associated with 256 

transition from Wi  to Xi  (e.g. the small scale patchiness of DNA in the water), ψi be 257 

taxon-specific parameters associated with DNA filtering and extraction (the transition 258 

from Xi  to Yi), and �� define taxon-specific parameters associated with PCR amplification 259 

and sequencing driving the transition from Yi  to Zi 

[�|�,�,�,�, �] = [�|�,�][�|�,�][�|�,�][�|�, �]  (3) 263 

(e.g. the match of a primer sequence to 260 

the DNA input to template DNA sequence). Eq. 2 can be rewritten to include these 261 

parameters for all taxa simultaneously, 262 

 To connect these equations to empirical observations, they must be matched to 264 

appropriate likelihood functions; we demonstrate in detail how to do so in the section 265 

“Statistical methods for community eDNA” below.  266 

It bears noting that the current state of knowledge with respect to eDNA limits our 267 

ability to estimate all terms on the right-hand side of eq. 3, although at least some data are 268 

available from which to begin such estimation. Here we briefly summarize the state of 269 

knowledge with respect to each term in eq. 3 (Fig. 1). 270 

1) Processes in the transition from biomass, B, to DNA present in the environment, W (�)  271 

• DNA shedding rates are positively correlated with biomass and influenced by diet 272 

(Takahara et al. 2012, Kelly et al. 2014, Klymus et al. 2015, Evans et al. 2015) and 273 
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ambient eDNA density varies by species (Thomsen et al. 2012). Small DNA 274 

fragments (ca. 100 base pairs) degrade within a few days in the marine environment 275 

(Thomsen et al. 2012) but in some cases DNA signals are detectable for weeks to 276 

months (Barnes et al. 2014, Strickler et al. 2015). DNA shedding and degradation 277 

rates likely differ among taxa and among life-stages (Maruyama et al. 2014, Iversen 278 

et al. In Press), though these differences are not well studied. 279 

• In aquatic environments transported DNA does not appear to accumulate downstream 280 

from the organism shedding it (Laramie et al. 2015) but rather remains at similar 281 

concentrations downstream over short distances (Pilloid et al. 2014). DNA may be 282 

moved over longer distances by bulk flow (Deiner and Altermatt 2014) or by mobile 283 

predators that transport prey DNA in their gut and deposit it in their feces (Merkes et 284 

al. 2014). 285 

2) Processes in the transition from DNA in the environment, W, to DNA collected on a 286 

filter, X (�), and from DNA collected on a filter, X, to DNA present after extraction, Y 287 

(�) 288 

• Although methods for capturing eDNA influence the amount of useful sequence data, 289 

they likely do not cause taxon-specific biases (Feinstein et al. 2009, Turner et al. 290 

2014, Deiner et al. 2015). However, pre- and post-processing sample storage and 291 

DNA extraction methods can produce taxon-specific biases (Carrigg et al. 2007, 292 

Deiner et al. 2015).  293 

3) Processes included in the transition from DNA present after extraction, Y, to DNA 294 

present after sequencing, Z (�)  295 

• PCR amplification of multi-taxon DNA samples introduces sequence-specific biases 296 

due to differential primer binding strength (Lee et al. 2012); to a lesser degree the 297 

number of PCR cycles may exacerbate these biases (Polz and Cavanaugh 1998, Sipos 298 

et al. 2007).  299 

• To improve cost efficiency by increasing sample throughput, a unique nucleotide 300 

sequence (a “tag”) can be adjoined to the 5’ end of PCR primers. While these tags 301 

allow multiple samples to be pooled for simultaneous (multiplex) sequencing, they 302 

can introduce sequence-specific bias by changing primer binding strength (Berry et 303 

al. 2011). In effect, these additions simply lengthen the primer sequence. 304 
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• High throughput sequencing platforms are thought to be relatively free from 305 

sequence-specific biases, though low nucleotide diversity can degrade sequence 306 

quality (Fadrosh et al. 2014). Further, the bioinformatic protocols used to process raw 307 

sequence data can influence the inferred number of reads for a given taxon (Schloss et 308 

al. 2011). 309 

• Lastly, the taxonomic information DNA provides varies among loci, taxa, and 310 

environments (Soergel et al. 2012), and nucleotide sequence repositories (e.g. 311 

Genbank) are incomplete and both geographically and taxonomically biased 312 

(Puillandre et al. 2009; Hijmans et al. 2000), limiting our ability to confidently 313 

connect identified DNA sequences with specific taxa. 314 

The above list is not a complete set of hurdles faced by eDNA methods and we expect 315 

additional challenges will arise in the future. However, the model structure and logical 316 

process of dividing the production of eDNA into conditionally independent processes is 317 

general and broadly applicable to eDNA problems. 318 

 319 

Statistical methods for community eDNA 320 

As discussed above, methods for eDNA are not sufficiently well developed at 321 

present to make full inference about density or biomass in an ecological community from 322 

eDNA. Similar challenges confront estimation of density and biomass based on 323 

traditional sampling methods (Burnham et al. 1980, Hankin and Reeves 1988, Kéry and 324 

Royle 2010), but do not prevent researchers from making the best approximations 325 

possible given existing knowledge and data. In this section we provide a statistical 326 

framework for estimating the final term in eq. 3, [�|�, �], in a community context. Once 327 

we have an estimate of Y, if we can assume that the transitions from Y all the way to B do 328 

not have taxon-specific biases, our approach allows statistically-justified inferences about 329 

the relative abundance of taxa within a sampled community. As the processes related to 330 

sampling eDNA become increasingly well understood, the other three terms in eq. 3 can 331 

be modeled using a logic similar to the one detailed below. 332 

For a sample of seawater that has been filtered, has had its total DNA extracted, 333 

amplified by PCR, and has been processed by a high-throughput sequencer, our empirical 334 

observations will be counts of unique DNA sequences. DNA sequences may be classified 335 
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into types on the basis of their similarity with respect to a user-specified threshold. These 336 

are most often referred to as operational taxonomic units (OTUs), and hereafter we refer 337 

to them as OTUs. For simplicity, we initially treat each unique DNA sequence observed 338 

as an OTU, and later discuss how to combine distinct OTUs into groups. The results of a 339 

single sequencing run can be written as Z=z, where z is a realization of the random 340 

variable Z and is vector of length I. Each entry in the vector, zi, then contains the counts 341 

of the ith

Using Bayes’ theorem, we write the posterior probability of Y, given our 343 

observations and parameters as proportional to the likelihood of the observations, 344 

[� = �|�, �], and the prior probability of the parameters [�], 345 

 OTU.  342 

 [�|� = �, �] ∝ [� = �|�, �][�]    (4) 346 

A logical sampling model for counts with many possible categories is a multinomial 347 

model. We replace the general parameter notation � with � = {�1,�2, …��} which 348 

represents the proportion of each OTU sequence present in the collected sample. Then we 349 

can write the likelihood as 350 

 [� = �|�,�]~�����������(�,�)    (5) 351 

where � is the total number of DNA sequences observed. With a single sequencing run 352 

we have single set of observed counts, z .

[� = �1, … , ��|�,�]~�����������(�,�1,�2, … ,��)  (6) 356 

 However if we have M total observations of 353 

DNA sequences from a single DNA extraction – potentially from multiple independent 354 

PCR reactions or sequencing runs – we have, 355 

This equation states that each z is a sample from a shared process (i.e. there is a single 357 

true proportion of DNA from each taxon in the eDNA sample and we have M 358 

observations of this process). Variation among the observations of z can be attributed to 359 

stochastic processes occurring during PCR and sequencing, and the model described here 360 

can be generalized to include these effects as individually modeled parameters if desired.  361 

Because a multinomial distribution can be written as a combination of 362 

independent Poisson distributions (the multinomial-Poisson transformation; Baker 1994), 363 

it is convenient to write the number of sequenced DNA fragments observed for each 364 

OTU as an independent Poisson random variable, 365 
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���~�������(���)�� = ��       (7) 366 

Here, β i

�� =
���∑ ����        (8) 371 

, the OTU-specific fixed effects, and �� are identical, but we use this notation to 367 

allow later elaboration in circumstances where additional processes are thought to 368 

influence ��. The proportion of DNA associated with each OTU can then be found by 369 

calculating 370 

Note that Eq. 6 provides identical inference to eqs. 7 and 8 (Baker 1994).  372 

The model formulation in eq. 7 assumes that each observed DNA fragment is 373 

sampled independently from a multinomial distribution. Due to the compounding process 374 

of sequential amplification in PCR, counts of DNA sequences from a sequencer are not 375 

truly independent observations of the extracted DNA. One method to deal with such non-376 

independence is to allow for overdispersion in the Poisson parameter �. With m = 377 

1,2,…,M replicate observations, we can write the observed species counts as an over-378 

dispersed Poisson and estimate the amount of over-dispersion, �2,  379 ���~�������(����)��� = �� + ������~�(0,�2)

   (9) 380 

This is a simple random effects model, but one that allows great flexibility in modeling 381 

count data. Note that in the case that only a single OTU is present, eq. 9 simplifies to a 382 

log-linear model of the DNA counts and thus the single OTU version of this model is 383 

appropriate for qPCR data. When we observe more than one OTU, we can still produce 384 

estimates of the proportion of DNA from each taxa across all of our observations (eq. 8). 385 

After specifying prior parameters, we can use standard Bayesian Markov chain Monte 386 

Carlo (MCMC) methods to estimate the model and provide uncertainty bounds (Gelman 387 

et al. 2003). Likelihood optimization methods are also available. A further benefit of the 388 

structure is the possibility of multiple random effects that can represent multiple sources 389 

of variation in the observed counts. We present a more complicated example in the online 390 

supplement. We note that the above model is similar to other models for sequencing data 391 

proposed in a different context for other applications (Love et al. 2014). 392 

 393 
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Addressing primer bias: a framework and a simulated example 394 

Equation 9 implicitly makes assumptions that eDNA data almost certainly violate. 395 

Importantly, eq. 9 assumes all OTUs present in the DNA extraction will be amplified 396 

equally well by PCR, and will subsequently appear in the count data emerging from the 397 

sequencer, yet PCR primers are intentionally designed to amplify specific taxonomic 398 

groups (e.g. vertebrates) to the exclusion of others (e.g., Riaz et al. 2011). Even within a 399 

target group of taxa, intra-group genetic variability in the primer binding site can cause 400 

variation in template-primer mismatch, resulting in unequal amplification among 401 

templates and thus bias in the observed sequences (e.g. Hong et al. 2009). Estimating the 402 

extent of amplification bias due to this interaction requires detailed information about 403 

both the primer set and the template (target) sequence for all taxa of interest. Generally, a 404 

way to incorporate a series of covariates—such as would describe these OTU-specific 405 

effects—is to construct a matrix of covariates, H, and estimated coefficients, �, given 406 

available information about primer mismatches with existing sequence data from target 407 

taxa. Accordingly, the second line of eq. 9 can be modified to accommodate variation in 408 

primer specificity to become: 409 ��� = �� + ���� + ���   (10) 410 

where � defines how covariates shared across taxa (e.g. the quality of match between the 411 

primer and taxa DNA) will affect the observed number of DNA sequences for each 412 

taxon. Also, note that the researcher-specified design matrix H includes the subscript m. 413 

This indicates multiple PCR or sequencing runs conducted using distinct methods on a 414 

single sample can be used jointly to improve the reconstruction of the ecological 415 

community of interest. For example, if two or more independent analyses were carried 416 

out on the same DNA extraction—such as in the case of multi-locus eDNA studies—the 417 

results could be formally combined into a single analysis. Furthermore, such 418 

methodological variation will help inform how changing primer specificity, the PCR 419 

reaction parameters, or other methods affect the inference about the proportion of DNA 420 

associated with each OTU. We illustrate an application of these methods below in 421 

“Understanding marine invertebrate communities using eDNA” .  422 

To illustrate the potential consequences of the effect of primer-template mismatch 423 

on estimates of OTU composition, we simulated small changes to the quality of primer 424 
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match and used estimates of � to show how they affected estimates in a simple three-425 

species community (Fig. 2, supplementary materials). Simulations show that a change in 426 

primer-template match of as little as 5% (e.g. a 3 base-pair difference between a 60 bp 427 

long template and the combined forward and reverse primer) can change estimates of 428 

relative abundance (Fig. 2). The most important point of Fig. 2 is that because the 429 

estimates are relative proportions that must sum to one, if one taxon has a biased 430 

estimate, all of the other taxa’s estimates are biased as well. A consequence of this 431 

observation is that analyzing data derived from multi-species primers on a species-by-432 

species basis (i.e. treating the number of reads for each taxa independently in later 433 

analyses) is likely to decrease statistical precision and introduce bias in the relationship 434 

between the number of reads and virtually any other variable. 435 

 436 

Estimating the absolute concentration of DNA in an extraction 437 

Thus far, we have not provided direct estimates of the concentration of template 438 

DNA in the sample, Y, but only estimates of the proportional abundance of each OTU, �. 439 

To generate estimates of DNA concentration, we need to incorporate additional 440 

information about the absolute abundance of DNA from at least some of the OTUs to 441 

scale the proportional abundance to true abundance. We can use the posterior estimates of 442 

proportional abundance � in combination with posterior estimates of the density of DNA 443 

from a single OTU, �1, to scale the proportions to DNA densities for all OTUs. Current 444 

methods using qPCR are adept at producing estimates of �1 (Jerde et al. 2011, Lodge et 445 

al. 2012, Takahara et al. 2012). If we assume that �1 and � are derived from independent 446 

methods, we can use draws from the posterior distributions of each to derive the posterior 447 

distribution of Y.  For the jth OTU and gth

��(�)
= �1(�) ���(�)�1(�)�    (11) 449 

 draw from the posterior distribution, we have 448 

After calculating Y for a large number of posterior draws, we can summarize Y using 450 

standard descriptors (mean, standard deviation, etc.). This method is appealing because it 451 

reflects the uncertainty in both � and the concentration of DNA derived from qPCR. It 452 

also shows how qPCR and sequencing approaches are complementary data types that can 453 

be combined and re-emphasizes how the structure presented in Figure 1 is applicable to a 454 
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wide variety of eDNA methods. We highlight the utility of this two-pronged validation 455 

method for future applications. 456 

 457 

Detection probabilities and power analysis 458 

A trade-off between detection probability for any given taxon and breadth of the 459 

community observed is common to surveys using both eDNA and non-molecular (i.e., 460 

traditional) methods. In many eDNA applications, the risk of false-negative detections (in 461 

which a taxon is present, but not detected) is one of the most pressing issues (Yoccoz 462 

2012, Yu et al. 2012, Ji et al. 2014,). Conveniently, the model outlined in eqs. 9 and 10 463 

provides a method for determining the thresholds for detection. However, because the 464 

PCR primers for community eDNA analyses will almost never be strictly taxon-specific, 465 

the power analysis cannot be determined on a single-taxon basis but must always be 466 

phrased in terms of a larger DNA community that is “observed” by a given PCR protocol. 467 

The relative abundance of an arbitrary OTU, taxon “A”, can be fully defined by 468 

four quantities: the true relative proportion of DNA from OTU A in the sample ��; the 469 

estimated effect of covariates for that OTU, ���; the total number of DNA sequences 470 

observed, n; and the stochasticity in the PCR and sequencing process, �2. Because for 471 

the observed data, � = ∑ ����  (eq. 8), we can combine eq. 8 and 10 and use the properties 472 

of the log-normal distribution to show that for any true value of ��, the median value of 473 ��, ��∗ , will be 474 

 ��∗ = log(��) + log(�) + ���  (12) 475 

Using the probability mass function of the Poisson distribution, the probability that the 476 

observed number of DNA sequences for OTU A will exceed 0 at ��∗  is,  477 �(�� > 0) =  1 − �  ��∗     (13) 478 

In this way, the detection probability can be approximated for a given primer, the number 479 

of DNA sequences observed, and DNA community. This type of power analysis based on 480 

the median estimate is likely sufficient for most applications, but it is important to 481 

acknowledge that this approach ignores variability in the PCR process (�2) and 482 

uncertainty in the estimate of �. However, simulation approaches could incorporate this 483 

variability if desired. Importantly, eqs. 12 and 13 make explicit that analytical approaches 484 

based on the occurrence data (Yu et al. 2012, Ji et al. 2014) are special cases of multi-485 
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taxa count data. In its simplest form, occurrence data is simply the count data for each 486 

OTU converted into two classes: �� = 0 and �� > 0. Other investigators have suggested 487 

that OTUs below a certain threshold abundance should be excluded (e.g. OTUs below 488 

0.005% of the total number of DNA reads is recommended by Bokulich et al. 2013).  489 

Regardless of the exact cutoff used, this section demonstrates that the same biases that 490 

plague estimating abundance from eDNA will also plague estimations of occurrence – 491 

though signatures of bias will be more difficult to detect and estimate using occurrence 492 

data. 493 

We illustrate power curves in Fig. 3 to provide a graphical method for 494 

understanding the detection probability of a taxon for a given primer, extracted DNA, and 495 

number of DNA reads. Specifically, we compare three values of a single covariate 496 

representing the match between the primer and taxon A’s DNA. HA = 0 represents the 497 

average match between the primer and the taxa observed in the sample, while HA = -0.15 498 

corresponds to A having a 15% better match to primer than average and HA

Eq. 12 and Fig. 3 suggest that there are several intuitive and non-mutually 509 

exclusive methods for increasing detection probability of a particular taxon: 1) increase 510 

the number of sequences observed for each PCR (increase n); 2) decrease the number of 511 

taxa amplified by the primer (decrease I and thereby increase the relative abundance of 512 

the OTU of interest, ��); 3) improve the efficiency of the primer for taxon A relative to 513 

other taxon in the DNA community (i.e. modify H

 = 0.15 499 

corresponds to A having a 15% worse match to primer than average (e.g. for a 20 500 

basepair primer, 15% corresponds to a change of 3 basepair matches between primer and 501 

template). For all three simulations, we used a slope parameter that reflect real-world 502 

estimates of primer bias discussed below in “Understanding marine invertebrate 503 

communities using eDNA” (� = −14). An important result of Fig. 3 is that even when a 504 

taxon is present in a sample, it may not be observed in the DNA counts emerging from 505 

the sequencer. The probability of observing at least one instance of taxon A is 506 

affected both by its true abundance (relative to other species amplified by the PCR 507 

product) and the match between the DNA sequence and the PCR primer used. 508 

A). In practice, a PCR primer that more 514 

closely matches a particular taxon will likely contribute to both point 2 and 3. However, 515 

increased primer specificity will always reduce the diversity of taxa detected in a single 516 
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sequencing run. Both highly specific and more general primers have important real world 517 

applications (Simmons et al. In Press). 518 

 519 

Combining unique DNA sequences into biologically meaningful groups 520 

 Genetic variation among individuals both within and across taxa can result in two 521 

problematic scenarios: 1) high diversity within a taxon will result in it being represented 522 

by more than one OTU in the sequence data or 2) low diversity across taxa will result in 523 

many taxa being represented by a single OTU. An ideal PCR primer would target a locus 524 

with high inter-taxon diversity and low intra-taxon diversity. Unfortunately, we know of 525 

no such locus that can be used for a broad swath of taxa. For the case where a single 526 

taxon is represented by multiple OTUs, we describe two approaches for obtaining 527 

abundance estimates. 528 

The first is to estimate the model treating each OTU separately (eq. 12), and 529 

combine the output of the estimation procedure. Because each iteration of a Markov 530 

chain provides a draw from the posterior distribution of the parameters, the draws can 531 

simply be added together for the OTUs of interest, and the proportion of the resulting 532 

taxon recalculated (Shelton et al. 2012). To provide a concrete, but fictitious, example, 533 

suppose that OTU A and OTU B were both observed in a sequencing run. Both OTUs are 534 

subsequently determined to represent unique sequences from woolley mammoth 535 

(Mammuthus primigenius) and need to be combined to provide an estimate of the total 536 

mammoth present in the extracted DNA sample. After estimating a Poisson model (e.g. 537 

eq. 10) we can simply add the two estimated parameters for OTU A and OTU B 538 

(��and ��, respectively) such that �������ℎ = �� + �� for each MCMC iteration. The 539 

proportion of DNA attributable to mammoth would then be �������ℎ =
��������ℎ∑ ���� .  540 

Using draws from the posterior distribution maintains the correlation structure and 541 

uncertainty bounds of the proportional occurrence. However, this approach has the 542 

downside of requiring parameter estimates and the collection of covariates to populate H 543 

for each OTU, slowing computation speed if there are large numbers of OTUs. 544 

 The second option is to group the OTUs into broader taxonomic groups before 545 

they are included as input data for the model estimation. While the choice of method for 546 

clustering sequence data into OTU counts is of general concern (Edgar et al. 2011, Yu et 547 
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al. 2012), this approach also requires that all OTUs within a group be assumed to have 548 

shared covariates related to PCR. Continuing our previous mammoth example, the 549 

primer-template mismatch might differ between OTU A and OTU B, and yet if their 550 

counts were to be combined, information about their distinct matching characteristics 551 

could not be directly incorporated in the model. A summary statistic such as the median 552 

dissimilarity would have to be used instead. Depending on the details of the primers and 553 

match quality, such averaging across covariates may or may not substantially influence 554 

the result. Given these considerations, we advocate the first approach of combining taxa 555 

after model estimation, unless speed is favored over accuracy or researchers are 556 

sufficiently confident that grouped taxa do not differ in PCR or sequencing efficiency. 557 

 558 

Understanding marine invertebrate communities using eDNA 559 

To illustrate the utility of our statistical framework, we apply the above methods 560 

to eDNA isolated, amplified, and sequenced from eleven, 1-L seawater samples collected 561 

from a single location in Puget Sound, WA on June 26, 27, and 29, 2014 (Carkeek Park, 562 

Seattle, WA, USA; 47°42'40.44"N, 122°22'20.10"W). Because we use this empirical 563 

dataset here only to illustrate the application of statistical methods to counts of DNA 564 

sequences emerging from a high throughput sequencer, we only outline the methods that 565 

affect the statistical estimation. We provide detailed molecular protocols in the online 566 

supplement for interested readers. 567 

Summary of molecular methods 568 

To test the effect of primer mismatch on template-specific PCR efficiency, we 569 

amplified each environmental sample using two different sets of primers, which in each 570 

direction shared a common core 22bp region targeting the 16S region of the 571 

mitochondrion, but differed by an index sequence on the 5’ end (see Table S1 for the 572 

primer sequences used). These index sequences have been demonstrated to cause 573 

differential amplification efficiency among template DNA in a mixed-template PCR 574 

(Berry et al. 2011), and thus provide an opportunity to test the efficacy of our framework 575 

for estimating biomass and uncertainty in the face of bias. PCR, library preparation, 576 

sequencing, and bioinformatics protocols are described in the supplementary material. 577 
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The experimental design yielded sequence data from six PCR products per 578 

environmental sample: three sequencing replicates arising from each of two distinct 579 

primer sets. In total, we observed over 10.5 million individual DNA reads representing 580 

27,973 unique OTUs. For the purpose of this example, we model only 9 of the most 581 

common OTUs and focus on estimating the proportional DNA contribution for these 9 582 

OTUs and a tenth “Other” category which encompasses all remaining OTUs. We 583 

investigate only 10 OTUs for illustration purposes, though this approach is directly 584 

applicable to a much larger set of OTUs. We present the raw data and models for 585 

estimating these models for these nine OTUs in the supplementary materials. 586 

Statistical modeling of OTU counts 587 

 To estimate the proportion of each of these 9 OTUs on each sampling occasion, 588 

we use a version of eq. 10 that adds a subscript t corresponding to each sample time and 589 

includes m observed DNA replicates for each time. Then the full model is 590 ����~�������(�����)���� = ��� + ����� + ��������~�(0,�2)

   (14) 591 

Again, ��� indicates the count of OTU i at time t, ����� controls the fixed effect of PCR 592 

and sequencing bias on the observed number of OTU counts for each replicate, with � 593 

estimated regression coefficients and the covariate matrix Hitm supplied by the 594 

investigator on the basis of available information about target-taxon sequences in the 595 

primer region. Finally, ���� provides for additional error not accounted for by either the 596 

fixed taxon effect ���or the other fixed effects. While it is possible to include a large 597 

variety of potential covariates in ����� for illustration purposes we include only a single 598 

covariate, the total genetic distance between the OTUs’ primer binding sites and the 599 

primers, �, at both forward and reverse priming sites. Thus H is a design matrix with a 600 

single column corresponding to the proportion of nucleotide mismatches between the 601 

primers and each template (OTU primer binding site). A value of 0 would indicate no 602 

difference between the primer and the template, while 0.10 would indicate 10% of base 603 

pairs do not match between the primer and the OTU. Distance calculations were 604 

performed using the function dist.dna in the R package ape (Paradis et al. 2004). To 605 

derive estimates of the design matrix H we assessed the quality of match between the 606 
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primer and each taxon’s DNA. For the nine focal OTUs in the dataset, we performed a 607 

BLAST search of NCBI’s nucleotide database (GenBank) to identify the likely sequence 608 

of the primer binding sites given existing sequence information for taxa in GenBank 609 

matching the OTU sequences (see below). We centered the covariate values in H before 610 

analysis by subtracting each value by the average across all OTU-primer pairs. The 611 

process of centering makes ��� the intercept for each OTU in this generalized linear 612 

model. We assumed the “Other” category had a covariate value of 0, (i.e. HOther,t,m 

We estimated eq. 14, using Just Another Gibbs Sampler (JAGS; Plummer 2003) 619 

implemented in R (R Core Team 2014) using the R2jags package (Su and Yajima 2014). 620 

We used non-informative prior distributions for each parameter. Specifically we let 621 �~������(0,1000), �−~������(0,1000), and �2~�������(0,1000). We ran three 622 

replicate MCMC chains using a 100,000 iteration burn-in and 10,000 monitoring 623 

iterations. We confirmed appropriate model mixing and convergence using visual 624 

inspection of trace plots and Gelman-Rubin diagnostics as implemented by the R package 625 

“coda” (Plummer et al. 2006). 626 

= 0) 613 

corresponding to the average amplification value of the “Other” category. Centering the 614 

covariates also means that when we calculate the proportional contribution of each OTU, 615 

we can calculate the proportion of each OTU in the sample as ��� =
����∑ ����� . This produces 616 

estimates of proportional composition of each OTU at a standardized match between the 617 

primer and substrate for all OTUs.  618 

 627 

Results 628 

 Using eq. 14, we estimated the proportional composition for nine focal OTUs and 629 

the “Other” category for all eleven time periods (Fig. 4, Fig. 5). Our model estimated a 630 

large amount of overdispersion in the observed count data (�2 = 8.34[0.68]; posterior 631 

mean[sd]) indicating that there remains a substantial effect of unknown and unmodeled 632 

factors on variation among samples. The large estimated overdispersion translates into 633 

large uncertainty in the estimated proportional composition (Fig. 4). Our estimates are 634 

statistically well-justified and reflect the uncertainty present in our observations, but 635 

suggest that methodological improvements will be required to provide more precise 636 
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estimates of the marine community. Across all times, OTUs 3, 5, and 7 were particularly 637 

frequent. Both OTU 3 and 7 correspond to the mussel, Mytilus trossulus, while OTU 5 638 

corresponds to acorn barnacles (suborder Balanomorpha; likely Balanus glandula), both 639 

of which are among the most commonly observed species at our study site. We found no 640 

dramatic patterns of OTU relative abundance over time or with respect to an important 641 

covariate, tidal height (Fig. 5). However, the large degree of uncertainty limits our power 642 

to detect strong effects of time or environmental factors. 643 

Among our nine focal OTUs—which, again, represent sequences amplified and 644 

recovered from environmental samples—the variance in primer-template mismatch was 645 

substantial. Across all primer-template pairs the mean proportional mismatch was 0.193 646 

(range: 0.11-0.28), indicating that, on average 10.81 out of a total 56 base pairs were 647 

mismatched. We estimated, as expected, that the effect of decreasing match between the 648 

primer and substrate was strongly negative, � = −14.3[6.11](posterior mean[sd]) 649 

indicating OTUs with a poor match between the primer binding site and primer were 650 

underrepresented in the observed DNA counts. Our estimated effect of primer quality is 651 

similar to experimental results exploring the effect of primer mismatch on preferential 652 

PCR amplification (Polz 1998, Sipos 2007, Wright et al. 2014). We emphasize that there 653 

are a great many possible other covariates that could be used in this type of analysis. 654 

 655 

Discussion and conclusions 656 

eDNA is an exciting emerging method for describing ecological communities.  657 

Given the enormous potential for eDNA applications in the environmental sciences, 658 

recent reviews of eDNA methods have stressed the need for improved molecular and 659 

statistical techniques for eDNA (Yu et al. 2012, Yoccoz et al. 2012, Schmidt et al. 2013, 660 

Ji et al. 2014). Conceptually, the challenges posed by eDNA are largely analogous to 661 

those faced by traditional sampling techniques (Fig. 1). Both conventional and eDNA 662 

sampling ultimately attempt to make inferences about the same quantity: the biomass or 663 

density of each species in the environment. It should also be clear that traditional 664 

sampling methods suffer from a parallel set of sampling problems to eDNA and, as noted 665 

earlier, our current inability to estimate abundance or biomass from eDNA samples alone 666 

is not a fatal flaw for eDNA data. A specific topic that deserves special consideration in 667 
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future work is understanding the spatial and temporal spread of eDNA under natural 668 

conditions and how the scale of inference from eDNA sampling matches (or, potentially, 669 

does not match) the spatial and temporal inference available from traditional sampling 670 

methods. 671 

While we have framed our analysis in terms of biomass, we note that an 672 

equivalent structure is necessary for estimation of count data and for deriving most 673 

community metrics of interest as well. Estimated species richness is the number of 674 

species with biomass greater than 0 while Shannon diversity is species richness weighted 675 

by the relative biomass (or count) of each species. Both richness and Shannon diversity – 676 

and indeed virtually all community and diversity metrics – are directly derived from 677 

estimates of occurrence and abundance of individual species. Thus this framework 678 

provides a pathway for investigating communities as well as individual taxa. 679 

In closing we offer a few recommendations to ensure that eDNA study designs—680 

and the resulting datasets—are adequate to develop a meaningful estimate of the target 681 

biological community structure.  682 

Foremost, it should be clear from the framework we discuss here that sample 683 

replication (in space, time, laboratory treatment, etc.) is critical to partitioning variance 684 

among steps in the eDNA analytical chain. Because real-world constraints on time and 685 

funding generally prevent replication at every step, we emphasize that replication is most 686 

important at the step or steps that are likely to introduce the greatest amount of variance 687 

or where the variance attributable to that step is of special interest. For example, if one 688 

has data demonstrating that eDNA capture, extraction, and sequencing are likely to 689 

introduce little systematic bias, but that PCR primer choice has an unknown and 690 

potentially large effect, PCR is the most important target for replication and independent 691 

analysis. Samples treated separately can then subsequently be combined using 692 

hierarchical models, where this would provide analytical benefit (see online supplement). 693 

Note additionally that we advocate avoiding pooling samples and then running analyses 694 

on the pooled output whenever possible; there is information in the variability among 695 

replicated outputs of molecular methods. 696 

Second, because taxa are not equally abundant in a sampled environment, and 697 

because taxa are not equally likely to amplify with a given set of PCR primers, eDNA 698 
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community surveys are necessarily an uneven reflection of taxa present, even for a 699 

specifically targeted groups. The same issues arise with traditional sampling methods, as 700 

alternative survey methods have different but non-negligible selectivity issues (Beverton 701 

and Holt 1957 section 8, Arreguín-Sánchez 1996, Venebles and Dichmont 2004).  702 

The methods we present for community eDNA data offer the ability to correct for 703 

attributable biases and to be statistically honest about biases and variability that we do not 704 

understand. However, real differences in DNA abundance and susceptibility to 705 

amplification mean that for any given set of PCR primers there is a limited set of taxa 706 

that can successfully be detected. This observation gives rise to three recommendations:  707 

1. Using multiple markers offers the chance to broaden the scope of an eDNA survey 708 

and to generate mutually reinforcing datasets that might be combined in the 709 

framework we present here (Evans et al. 2015).  710 

2. Community surveys that focus on the most common sequences generated—rather 711 

than on the rare sequence “tails”—are more likely to be repeatable and robust to 712 

statistical inference. At the same time, we acknowledge that some analyses – 713 

particularly those focused on measures of biodiversity (e.g. Ji et al. 2014) - are 714 

intrinsically interested in rare taxa. We think an increased focus on understanding 715 

how the probability of detection may affect diversity estimates is an important area 716 

for further research (Fig. 2; Schmidt et al. 2013).  717 

3. Finally, a focus on the most common species (or most common sequences) found in 718 

an environment has implications for primer design. Rather than accepting a very 719 

broad set of sequence constraints on primer design (e.g., all metazoans), ensuring that 720 

primers are likely to be good matches for the few dozen most common target species 721 

in the sampled area is likely to yield a better range of acceptable primer sequences. 722 

Increased specificity is more likely to lead to the intended results of a community 723 

eDNA survey. Again, this approach is appropriate only when the interest is focused 724 

on relatively common species, not on rare or unknown taxa in the community. 725 

As we have suggested throughout this paper, we believe there is ample room for 726 

cross-pollination between eDNA, both qPCR and sequencing based, and traditional 727 

sampling approaches. Notably, the conceptual framework we outline suggests that it is 728 

possible to construct models that jointly model data from traditional and eDNA sampling 729 
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to draw inference about natural populations. We also expect that methodological biases 730 

inherent to eDNA and traditional sampling may often produce complementary, rather 731 

than overlapping, estimates of community composition. Regardless, here we have shown 732 

how to start toward this ultimate goal by providing a framework and detailed statistical 733 

models for a particularly challenging aspect of eDNA work—calculating the relative 734 

abundance of DNA from multi-species primers while accounting for variation in PCR. 735 

However, multiple elements of the eDNA processing chain remain poorly described from 736 

a quantitative perspective, and as future work clarifies biases introduced at each 737 

experimental step, our framework provides a means of using such emerging information 738 

to improve quantitative estimates of community biomass from eDNA. 739 
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