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Environmental DNA (eDNA)-genetic material recovered frcan environmental

medium such as soil, water, or feea®flects the membership tife ecological

community present in the sampled environment. As such, eDNA is a potemtially
source, of data for basic ecology, conservation, and management, because it offers the
prospect.of quantitatively reconstructing whetmlogical communities from easily
obtained samplesiowever, like all sampling methods, eDNA sequencing is subject to
methodological limitations thatan generate biased descriptions of ecological
communitiesHere, we demonstrate parallels betweBINA sampling andraditional
sampling techniquesnd usdhese parallels toffer a statisticastructure for framing the
challengessfaced by eDNA afat illuminating the gaps in our current knowledge.
Although the current state of knowledge on some of these steps precludes a fuleestimat
of biomass for each taxon in a sampled eDednmunity,we provide a map that

illustrates potential methods for bridging these gaps. Additionaéyyse an original
dataset.to estimatie relative abundances of taxgpecific templat®©NA prior to PCR
given therabundanagd DNA sequencesecovered podRCRandsequencinga critical

step in'thexchain of eDNA inferend&hile we focus on the use of eDNA samples to
determine the relative abundance of taxa within a community, our apaisacpplies

to single=taxon applications (including applications using qPCR), studies of diversity, and
studies focused ooccurrenceBy grounding inferences about eDNA community
composition in a rigorous statistical framework, and by making these inferendies,exp
we hope*tamprove theinferential potential for the emerging field @dmmunityievel

eDNA analysis.

Introduction:

A central aimof ecology is to understand the distribution and abundance of
organisms, whichequires estimates of the occurrenakgnsity, or biomass of the
organisms.in natural populations. Whether counting individuals in a hatisat,
populatien, oacrossanassemblaganaking inferences about an ent@mmunityfrom
an observed subset of individuals is fundameotakcological scienc&nfortunately all
sampling techniquearepotentially subject to bias, underminiagcuracy andonfidence
in estimats of critical ecological parameter¥isual surveys magverlook or misidentify

cryptic speciessurveyshat captire individualswith nets or trapsnayunderfepresent
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small orelusive preyand quadrasampling methods for non-mobile flora and fauna can
underestimate the abundance of rare species or miss landsedp@atterns

Fortunately therés a large and sophisticated literatdeglicated to examining and
improving efficacy and reducing bias for a range of sampling problentsrfestrial,
marine,.and aquatic systeif@dochran 1977, Royle and Nichols 2003, Cotter and Pilling
2007,Elith andLeathwick 2009)In this paper, we contribute to this literature by
developing a general statistical framewagkwell as specifistatistical sampling
methalsforthe emerging field of environmental DNA.

Recent dvances in molecular biotechnology have resulted in the emergence of a
new surveystool, whereby the DN#esent iran environmental medium (such as soil or
water, hereafteenvironmental DNA oeDNA), can beused to infer the presence of
organisms nearby (Jerde et al. 2011, Yoccoz 201@e are arrently tvo distinct
molecularapproachesor eDNA. In the first, heamount of a known DNAequence
presumably from a single taxoms-determined fronguantitativepolymerase chain
reaction(gPCR Thomsen et al. 2012, Nathan et al. 20T4e second approachto
amplify'some suitable region from all genomes present in a sample using PCR, and
sequencghe resulting products (ampliconsing massively parallel sequencing
technelogies, withowt priori knowledge of the organisms present or their genetic
sequence¢e.g. Ventner et al. 2004, de Barba et al 2015, Leray and Knowlton. 2015)
While the gPCR approach is being used in several applicationenitor rare or
invasive'specief_odge et al. 2012; Turnet al. 2014), such methods can involve
extensive.development for eatetxonof interest, andgannot easily providmsight into
communitylevel patternsSequencing methods could feasibly provide relative
abundance data for a suite of species in the contynas the relative proportierof
taxonspecific DNA sequencesbservednay reflectthe relative proportionsf DNA in
the enyvironment (Yoccoz 2012)hile attempts have been made to link sequence counts
to biomass (e.g. Evans et al. 2015), no such dtadyet evaluateitie complex chain of
processes,and associated uncertainty linking these two @tatesen et alln Press.

Thus, one barrier to the widespread adoption of the sequencing approach is the lack of

formal methods for linking this new data type (counts of DNA sequences) to the
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underlying pattern of intereshge abundance dnomassof taxa comprising a
community; Yoccoz 2012).

Conceptually, using eDNA to infer the biomass or abundance in a community is
largely analogous to traditional nemelecular methoddszigure 1lillustrateshow eDNA
and traditienal sampling attemiat provide information about the same quantitg
biomass okachspecies in the environment. B&BDNA and traditioal sampling aim to
make inferences abodistinctstageghat are potentially measuralflatent states;
represented'by boxes in Fig. 1), and processes which transforstaget the next
(arrows in Fig. 1).

Before turning to sampling methods for eDN#e firstdescribe a general
theoretical framework in terms of traditiorsgimplingof a marine fish community with
the goal of quantifyinghe biomass of each tax. Common sampling methodar fish
communities include using a variety of net technolo@rasvl, gillnets, cast nets, seines,
etc.), systems using baited hooks, and visual surveys. Importaetigrocess of
infereneerfrom datasing any of these methodan be conceptualized using the diagram
in Figure 1:We use fish communities as an example with which we are fapaihdrfor
which'there is dong history of explicitly modeling uncertainty, but the larger point
appliesto all ecological sampling.

For examplefor a sample collected using a trawl ribg total biomass ofish
taxoni at a particular location, and a particular time, B; ; , is a functionof the biomass
or counts observed in the ngt; . (Fig. 1). Given that we only obser¥g, . the process
of estimatings; , . from F;, . can be written as eonditional quantity[B; ; ;|F; ] For
expositional purposesve simplify notation by assuming single sample time and
location,[B;JF;]. As Fig. 1showsthebiomassn the environmentH;) is not connected
to the biomass captured by the &) by a single process but rather a chafidistinct
processesA full description of the sampling process would explicitly include each step.
For exampleresearchers commonly extracsubsample of individua(€;) from the full
catch of themnefD;) to determine the taxon-specific couff)( which itself may be
influenced by taxonomic identificatiarrors orother processes (Fig. 1).

From his conceptual framing it should bkear that our estimate of the taxon’s

biomassB; is influenced byat least thresets of processes: (thle sampling approach to
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obtain thecollectionD;, (2) the methods used teduce the full collection to the
subsampléd;, and(3) theidentificationand enumeration methods that result in the taxon
specific count;. Statistically,we can expand thaferenceof interestB;|F;] into three
conditionally,independent processes (for general discussion of conditional modeling see
Clark 2007, Cressie and Wikle 2011)

[BilFil.= [B;|D:][D;|E][E;|Fi] - 1)

Thus, any estimate from sampling data must implicitly or explicitly make gdsma or
estimatethesethree components. For example, the second term on the righilsidz]
describs thepropotion of the total catch takeim a subsampldf the entire catch is
included,[D;|E;] = 1, and this term can be dropped from the model.

While accounting fofD; |E;] is relatively straightforward, other terrimseq. 1 are
moredifficult. Indeed, determining how biomass present in the environment corresponds
to thetotal.eatchin the net|[B;|D;], is a classi@and persistently difficult problem that has
been explored extensively in ecology (Royle and Nichols 2BIit8, and Leatwick
2009) and fisheriesée the fisheries concepts of “catchabilityid ‘selectivity”;

Beverton and Holt 1957 section 8, Arreguin-Sanchez 1996, Venebles and Dichmont
2004)."Fer.our hypothetical marine fish example, niesh sizedesign, and deployment
of thesnet, among other characteristigdl, interact with the true density of each species
to determire whicharecapturedthe quantity{B;|D;] in eq. 1; Beverton and Holt 1957
section:8-Arreguin-Sanchez 1998)milar challenges facthe determination of E; | F;];
individaal skill and experience wikiffect the efficacy and accuraoftaxonomic
identification Ourpurpose here isierelyto notethatsuchcomplexitiesplaguevirtually

all sampling problems—whethé&grrestrialor marine from the poles to the equator.

The basic inferentiaframework introduced above (eq. 1, Figrdadily appliego
the problenof reconstructingecologicalcommunitiesrom eDNA. Below, weoutlinethe
processes=connecting ecological communtbesbservations of eDNA, and briefly
summarize the state of knowledge about each prodésthenconstruct a statistical
model foranalyzing community eDNA data that accounts for some pfticesses that
can potentially bias inference from eDNA datad provide a worked example for
applying these methods to a marine eDNA datad¥etend bybriefly discussing further

methodological needs for eDNA data and making recommendations for best practices.
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153  Throughout, we focus on the use of eDNA for community sampling and higthght

154  inferentialand empircal connections between traditional and eDNA sampling methods.
155

156  Conceptualmodels for eDNA

157 Here we derive a modstructure teestimatetherelativeamount of biomass

158  presentin a community f@ome set ofaxa ofinterest by sampling eDNAWhile we

159 developtheframework in the context of estimating abundance for multiple speaies f
160 sequenced DNAboth models of occurrence (e.g. Ji et al. 2014) asthgfe species

161 abundance (e.g. Jerde et al. 2011) are special cases in our framesneilkbe discussed
162 later. Our general approach also applies to qPCR methodologesacis on the

163 detection and quantification of taxa that are not directly sampled. For exampde, if w
164  collecteda liter of waterfrom the environment, we focygsimarily oninferring the

165 abundance of fisg invertebrates, and mammals from individual cells (and

166  accompanying DNAgFontained in thatvater samplewWhile similar methods could be

167 appliedttorbacteria and other microorgans that can be directly measuesdl

168 sequencedfrom a smaklhmple, we do not specifically address such casesdiaret

169 sequengcing rather than PCR based approanhgde more appropriate for small,

170 abundanttaxa (Yu et al. 2012).

171 To derive a general model for eDNA we need to explictgsiderthe data in

172  hand and the process that led to the observation of the/atassume that a researcher
173  has collected a sample of seawatafthough solil, fecal, or other samples are esseantiall
174  equivalent=for the purposes of recovering eDNA from an ecological community. After
175  filtering the sample, extracting total DNA, and amplifying the DNA of interest using

176  oligonucleotide PCR primers, we observe counts of unigue DNA sequences from a high-
177  throughput sequencer (e.g., lllumina, 454, lon TojréNute that therare many possible
178 molecular.methods by which the data can be derived. For all cases, though, the number of
179 observed DNA sequencés each type is a function of: 1) the true, but unknown, density
180 of DNA"ef.each taxa presemt the water, 2) the amount of DNA captured on the filter
181 and subsequent DNA extractior),tBe primer set and its interaction wittetDNA

182  sequence of each taxpresent4) the umber of PCR cycles performed,the error rate
183  of the sequence analyzer, and myriad other factors. In short, the observed counts of DNA
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sequences are a complicated stochastic realization of the true amount of DNA present in
the environmentfor each taxa. While eDNA protocols can be desigoadinimize such
stochastic forces, they cannot be eliminated altogether. Defensible ecological inference
therefore depends upon identifying and estimating the parameters that may silligstantia
influence.ebserved counts of DNs&quences

By analogy withthe net sampling example, the process by whiochass is
translateinto DNA sequences nzhed to taxonomic groups probabilistio(Fig. 1).
Specifically,"the biomass of eatdxonmustbe translatethrough severahtermediate
states'before it is observedamints of DNA sequenceisor taxoni, let W; be the density
of DNAvingthe environmentX; be the amount of DNA collected from the environmé&nt,
be the DNApresent after DNA extraction, a¢lbe the DNAsequences recoveralfe
acknowledge thatere are other reasonable wayp@afsing the process of generating
and making.inference from eDNA (i#he framework we discuss here is extendable, and
additional states could be added to Fig. 1). Howtwetatent states in Fig.ake intuitive
and, petentiallydirectlymeasurablevith existing technologies.

Asin'eq. 1, the amount of biomaBsestimated from eDNA sampling tise
produetof fourconditionally independersteps*

[B;|Z;] = [B;IW][W;|X;][X:|Y:1[Y;|Z;] (2)
Information about each link in this inferential chain is requiceproperly inferB; from
observed.counts @NA sequencethat emerge from BNA sequenceZ;. Such
information'can be some combination of prior information about the processes
connecting'these latent states, didutervation®f the statesandbiologically justified
assumptions about each compon@&htre are twocorollaies of this point i) any
inferences made aboBt from eDNA make implicit and/or explicit assumptions about
the other-eemponents on the right side of eqn. 2;ignélthere is no information about
any ofthe.eomponents on the right side of eq. 2 (or researchers are unwilling or unable to
make.assumptions about thesenponents), it will be impossible to make inference

aboutB; fram eDNA observations alonA parallel problem arises frequently in

! For the remainder of the manuscripe let capital Roman letters denote random
variables, lowercase roman letters denote realizations of random variables, and Greek
letters denote parameters. Bold lowercase denote vectors and bold uppercase are
matrices.
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fisheries biologists are unwilling to assert that thetual biomass isirrored by
observed catchesd. the connection betwedhandD in Fig. 1 cannot be bridged).
Therefore survey catches drequentlyused as indicesf abundance not estimates of
absolute abundance (Kimura and Zenger 1997, Cotter and Pilling P@¥pjite not
reflecting.actual abundanceych indices play a critical role in fisherjesgldlife

sciencs, and management (Branch et al. 2010, Jannot and Holland 20&3).
formulation‘ofeq. 2 also serves to point out where information is missing amdtigate
future research on poorly understood topics (Yoccoz 2012, Pedersen et al. 2015).

Other structure$or Figure lare reasonablendwe encouragénvestigators to
modify thesehain of inference represented in Figute heettheir specific sampling
needs. ' Wewview Figure 1 not as a ritpdm for analyzing eDNA but as a framework
which can be modified to suit individual purposes and clarify thinking about the
inferences that can and cannot be drawn from available eDNA data. We expect improved
and more complex analytical structures to bealioped for eDNA as the technology and
its useevolve.

An‘important point of lgure 1 is that the traditional sampling and eDNA arms of
the figure are only connected through the true biontasepresented at the top of the
figure«Fhis structure sen&to remind investigators that that directly comparing eDNA
and traditional sampling data is fraught with difficulty and can only be logically done
with a full sampling modefior both how counts of OTUs observed from a seque@er (
connectitorbiomas®) and how traditional sampling observations connect to biomass.
Alternatively one couldnakestrong assumptions about the connection betweemB.
Indeed the most difficult step for both eDNA and traditional sampling in marine
environments is thérst step in each pathwaybgetweerB and the density of DNA in the
environmeniV, andbetweerB andcollected individuals in a traditional sampl Fig.

1). To date,we know of neDNA study which has explicitly linkeB andW underfield
conditions’and very few that have linked them under cbattdaboratory conditions

(e.g. Takahara et al. 2012, Thomsen et al. 200®2)late, mostesearchers have either
asserted that the proportion of sequences observed from environmental samptes mir

the abundance (either count or biomass) of physically collected individuals or,
alternatively,concluded proportions of sequences are proportional to abundance based on
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visual inspectiorffor example, se de Vargas et al. 2015, their Figs. W2B and W2C and
accompanying textMVhile these correlations may accurately reflect a functional link
between individuals in the environment and eDNA, we would point out that a complex
and diverse set of processes that sep@aadY mean that there are largamber of

ways to.arrive at spurious correlations between these two.dtasetherefore desirable

to explicitlyassess each link in the inferential chain linking observed DNA sequences to
biomass‘orsome other biological/ecological parameter of interest.

While eq. 2 ignstructiveto broadly frame eDNA problemthe processethat
connecthe latent statesiust be detailed to make this model useful in practice.
Specifieallysthe rates of transition between the staieesented in Fig. 1 are controlled by
paraméersithat do not appear in eqwa& introduce those parameters héet ; bea set
of speciesspecific parameters associated wirdmsition fromB; to W; (e.g.DNA
shedding (Klymus et al. 201b;ersen et al. /n Press) and degradatio(fhomsen et al.
2012,Strickler et al. 2015; Fidl), ¢»; be taxonspecific parameters associated with
transition-fromW, to X; (e.g. thesmall scalgpatchines®f DNA in the wate), w; be
taxonspecific parameters associated VIMRA filtering andextraction (thdransition
from Xt Y)), and§; define taxorspecific parameters associated with PCR amplification
and sequencing driving the transition frofrto Z; (e.g. the match of a primer sequence to
the DNA input totemplate DNA sequengeEq. 2can be rewritten tonclude these
parameter$or all taxa simultaneously,

[B1Z,0, ¢, ¥, §] = [BIW, 0][WI|X, ][X|Y, 9][Y|Z,§] ©)

To connect these equationsampiricalobservations, they must be matched to
appropriate likelihood functionsve demonstratén detail how tado soin the section
“ Statistical methods for community eDNA” below.

It-bears notinghat the current state of knowledge with respeeDdIA limits our
ability to.estimateall terms on the right-hand side of eq. 3, although at least somardata
availablefrom which to begirsuch estimatiorHere we briefly summarize the state of
knowledge,with respect ®ach term in eq. @ig. 1).

1) Processedn the transition from biomass, B, to DNA present in the environME&(@&)
e DNA shedding rates are positively correlated with biomassrdhetnced by diet
(Takahara et al. 2012, Kelly et al. 2014, Klymus et al. 2&¥/ans et al. 20)%nd
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ambient eDNA density varies by species (Thomsen et al. 28a#ll DNA
fragments (ca. 100 base pairs) degrade within a few days in the marine environment
(Thomsen et al. 2012t in some casd3NA signalsare detectabléor weeks to
months (Barnes et al. 2018trickler et al. 2016 DNA shedding and degradation
rates.likely differ among taxand among lifestages Maruyama et al. 2014versen

et al.In Pres3, though these differences are not well studied.

In aquatic environmentsansportedNA does noappearto accumulate downstream
fromthe organism shedding it (Laramie et al. 2dd8)rather remainat similar
concentrationsavnstream over short distances (Pilloid et al. 20D8)A may be
moyedraver longedistancs bybulk flow (Deiner and Altermatt 2014) oy mobile
predators thatransport preypNA in their gut and deposit it in their fecéddrkes et
al. 2014).

2) Processes in the transition fradNA in the environment, Vi DNA collected on a

filter, X\(¢),.and fromDNA collected on a filterX, to DNA present after extractioly,
@)

Although methods for capturing eDNA influence the amount of useful sequence data,
theyelikely do not cause taxapecific biasesHeinsteinet al. 2009 Turner et al.

2014, Deiner et al. 2015). Howevergpand post-pcessing sample storage and

DNA extraction methodsanproduce taxorspecific biasesGarrigget al. 2007,

Deiner.et al. 2015).

3) Processes included ihe transition fronDNA present after extractiolY, toDNA

present‘after sequencing, ()

PCRamplificationof multi-taxon DNA samples introduces sequespecific biases

due todifferential primerbinding strength (Lee et al. 2018);a lesser degrdbe
numberof PCR cycles may exacerbate these bjBeés and Cavanaugh 1998, Sipos
et al=2007.

Terimprove cost efficiency by increasing sample throughput, a unique nucleotide
sequence (atdg’) can be adjoined to the 5’ end of PCR primers. While these tags
allow multiple samples to be pooled for simultaneous (multiplex) sequencing, they
can introduce sequence-specific bias by changing primer binding strength (Berry et

al. 2011).In effect, thesadditions simply lengthen the primer sequence.
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e High throughput sequencing platforms are thought to be relatively free from
sequencespecific biases, thai low nucleotide diversity can degrade sequence
quality (Fadrosh et al. 2014). Further, the bioinformatic protocols used to process raw
sequence data can influence the inferred number of reads for a given taxon (Schloss et
al. 2011).

e Lastly, the taxonomitformation DNA provides varies among loci, taxa, and
environments (Soergel et al. 2012), and nucleotide sequence repositories (e.g.
Genbank) are incomplete and both geographically and taxonomically biased
(Puillandre et al. 2009; Hijmans et al. 2000), limiting our ability to confidently
connectidentified DNA sequences with specific taxa.

The aboverlist is na complete set of hurdles faced by eDNA methods and we expect

additional challenges will ariga the future. However, the model structure kogical

process.of dividing the production of eDNA into conditionally independent processes is
generaland. broadly applicable to eDNA problems.

Statistical'methods for community eDNA

As discussed above, methods for eDNA are not sufficiently well devehltped
present'to make full inference about deneithiomass in an ecological community from
eDNA. Similar challenges confront estimation of density and biomass based on
traditional sampling method8@rnham et al. 1980, Hankin and Reeves 18&8y and
Royle 2010), but do not prevent researchers from making the best approximations
possiblesgiven existing knowledge and datethis section werovide a statistical
framework forestimatingthefinal term in eq3,[Y|Z, €], in a community contexOnce
we have an estimate ¥f if we can assumthat the transitions frond all the way td do
not havestaxorspecific biases, oumpproach allowstatisticallyjustified inferences about
the relativesabundance of taxa within a sampled commukstyheprocesses related to
sampling eDNA become increasingly well understoodpther three terms ieq. 3can
be modeled,using a logic similar to the one detailed below.

Fora sample of seawater that has been filteredhadststotal DNA extracted
amplified by PCR, andhas beemrocessed by a high-throughput seqegramur empirical
observations will be counts ahique DNA sequenceBNA sequences may be classified
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into types on the basis of their similarity with respect to a-sigecified threshold. Hse
are most often referred to as operational taxonomic units (OTUS), esaftee we refer
to them as OTUg~orsimplicity, we initially treat each unique DNA sequence observed
as an OTUandlaterdiscuss how to combine distinct OTUs into groups. Thaltg ofa
single seguencing run can be writess¥=z, wherezis arealization of the random
variableZ and is vector of length Eachentry in the vectorz;, then containshe counts
of tHei™OTY.

Using Bayes’ theoremye writethe posterior probability of, given our
observations and parameters as proportional to the likelihood of the observations,
[Z = z|¥, &élpand the prior probability of the parametgfs

[¥Z=z,§] «x [Z = z|Y,§][§] (4)
A logical sampling model for countgith many possible categories is altmomial
model.We. replace the general parametetation§ with & = {r,, 7, ... m;} which
representshe proportion oeach OTU sequence presenthe collected sampl&@henwe
canwritetthe likelihood as

[Z'=z|Y, m|~Multinomial(m, n) )
wherenris, the total number of DNA sequences observed. With a single sequencing run
we have singlset of observed counts,However if we havéV total observation®f
DNA sequencefrom a singleDNA extraction— potentially from multiple independent
PCR reactionsr sequencing runswe have,

[Z =z,,..,zy|Y, T|~Multinomial(1t,ny, ny, ..., Ny) (6)
This equationstateghat eaclzis a sample from a shared process (i.e. there is a single
true proportion of DNA from each taxon in the eDNA sample aechaveM
observations of this process)aiNationamong the observations n€an be attributetb
stochastigarecesses occurring durin€R and squencing, and the model described here
can besgeneralized to include these effects as individually modeled parahdssied

Because anultinomial distributioncan be written as a combination of
independent Poisson distributio(the multinomiaPdsson transformation; Baker 1994),
it is convenient to writéhe number ofequence®NA fragmentsobserved for each
OTU as an independent Poisson random variable,
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Zim~Poisson(e*)
A =B
367 Here,fi, theOTU-specific fixed effectsandA; are identicalbut we use this notation to

366 (7)

368 allow later elaboratiom circumstancewhereadditional processes are thought to
369 influence4;. The proportion of DNA associated with ed@hU canthenbe foundby

370 calculating
ebi
371 =5 (8)

372  Note thatEq. 6 provides identical inference to egand 8 (Baker 1994).

373 Thesmodel formulatiom eq 7 assumes that each observed Diksigmentis

374 sampledndependentlyrom a multinomialdistribution Due to thecompoundingprocess
375  of sequential amplification iRCR,counts of DNA sequences from a sequencer are not
376 truly independent observations of #nsdracteddNA. One methodio deal withsuch non-
377 independence is w@low for overdispersion in the Poisson paramétéNith m =

378 1,2,....Mreplicate dservations, & can write the observed species counts as an over
379 dispersed Poisson and estimate the amount of over-disperéjon,

Zim~Poisson(e?im)
380 Aim = Bi + Nim 9
Nim~N (0, GZ)

381 This is a simple random effeatsodel, but on¢hatallowsgreat flexibility inmodeling
382 count dataNote that in the cagbatonly a singleOTU is present, eq. Simplifies to a
383  log-linearmodel of the DNA counts and thus the sii@jl&J version of this model is
384  appropriate’for g°PCR data. When we observe more tha® dbewe can still produce
385 estimats of the proportion of DNA from each taxa across all of our observdgon§.
386  After specifying prior parameters, we can use standard Baydsigkov chain Monte
387 Carlo (MCMC)methoddo estimate the model anptovide uncertaintypounds(Gelman
388 et al. 2003)/ Likelihoo@ptimizatioh methods are also availabke further benefit othe
389 structuress the possibility of multiple random effects that can represent multiple sources
390 of variation.in the observed coun®e present anore complicateéxample in the online
391 supplement. We note thdne above model is similar to other modelssequencing data
392 proposed in a different context for other applications (Love et al. 2014).

393
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Addressing primer bias: a framework and a simulated example

Equation 9mplicitly makes assumptions that eDNlataalmost certainly violate
Importantly, eq. assumesll OTUspresenin the DNA extraction will be amplified
equally well by PCR, andiill subsequentlappear in theount data emerging from the
sequenceiyet PCR primers arstentionallydesigned t@amplify specific taxonomic
groups(e.g..vertebratesd the exclusion of others (e.g., Riaz et al. 2011). Evienin a
targetgroup of taxaintra-groupgenetic variability in the primer binding sitean cause
variationin‘templatgrimer mismatchresuling in unequabmplificationamong
templatesand thus bias in thebserved sequencésg. Hong et al. 2009 stimating the
extent of amplification bias due to this interactiequires detailed information about
both the‘primesetand theaemplate(target)sequence for all taxa of interesteirally, a
way to incorporate a series of covariatesuch as would describe thed&U-specific
effects—Is to construct a matriaf covariatesH, and estimated coefficientg, given
available information ahd primer mismatches with existing sequence data from target
taxa. Accordingly, the second line of eq. 9 can be modified to accommodate variation in
primer Speeificity to become:

Aim = Bi + YHim + Nim (10)

wherey defines how covariates shared across (ex@ the quality of match between the
primer andaxaDNA) will affect the observed number of DNA sequences for each
taxon. Also, note that theesearchespecifieddesign matrixH includes the subscript.
This indicates multiple PCR or sequencing runs conducted using distinct methads
single sample cabe usedointly to improve thereconstruabn of the ecological
communityof interest For exampleif two or moreindependent analysesere carried
out on,the samBNA extractior—such as in the case of mdlticus eDNA studies-the
resultscouldbe formally combined into a single analysis. Furthermore, such
methodelegical variation will help inform how changing primer specificity, the PCR
reactiopparametersor other methods affect the inference about the proportion of DNA
associated,with eaddTU. We illustratean application of these methods below in
“Understanding marine invertebrate communities using éDNA

To illustrate thepotentialconsequences of the effect of prirtemplate mismatch
on estimates of OTWomposition, we simulated small changes to the quality of primer
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425  match and used estimatesyaio show how they affeetl estimatesn a simple three

426  speciesommunity(Fig. 2, supplementary materials). Simulations show that a change in
427  primertemgdate match of as little as 5% (g.a 3 baseoair difference betweea 60 bp

428 long template and the combined forward and reverseer) can changestimates of

429 relative.abundancg-ig. 2). The most important point of Fig. 2Zlt because the

430 estimates are relative proportiath&it must sum to one, if one taxon has a biased

431 estimate; allof the other taxa’s estimates are biased as\wmlhsequence of this

432  observations thatanalyzingdataderivedfrom multi-species primers on a speclas

433  species basis.§. treating the number of reads for each taxa independently in later

434  analysepisilikely to decrease statistical precision and introduce bias in the relationship
435  between'th@umber of reads and virtually any other variable.

436

437  Estimating the absolute concentration of DNA in an extraction

438 Thus far, we have not provided direct estimates of the concentration of template
439  DNA inrthessampley, but only estimates of the proportional abundance of €adh .

440 To generate estimates DNA concentration, we need tocorporateadditional

441  information about the absolute abundance of DNA from at least some@T theto

442  scalethe proportional abundance to true abundance. We can use the posterior estimates of
443  proportional abundanae in combination with posterior estimates of the density of DNA
444  from asingleOTU, w,, to scale the proportions to DNA densities for@llUs Current

445  methods using qPCR are adept at producing estimates (@erde et al. 2011, Lodge et
446  al. 2012y Takahara et al. 201 we assume thab, andm are derived from independent
447  methods, we can use draws from the posterior distributions of each to derive thermoster

448  distribution ofY. For thej"™ OTU andg" draw from the posterior distribution, we have

@
449 v = @ ("’—) (11)

O

450  After caleulatingY for a large number of posterior draws, we can summarimeng

451  standard descriptors (mean, standard deviation, etc.). This method is appealing ibecaus
452  reflects the uncertainty in bothand the concentration of DNA derived from gPQR.

453  also shows how qPCR and sequencing approaches are nwenfaey data types that can

454  be combined and remphasizes how the structure presented in Figure 1 is applicable to a
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wide variety of eDNA methods. Bhighlightthe utility of this twepronged validaton
method for future applications.

Detection praobabilities and power analysis

A-tradeoff between detection probability for any giviexonand breadth of the
community.observed is common to surveys using both eDNA andotecular(i.e.,
traditional)methods. In many eDNA applicationketrisk of falsenegative detections (in
which ataxon is present, but not detected) is one of the most pressing issuegz (Yocc
2012, Yu etial. 2012, Ji et al. 2014,). Conveniently, the model outlined in egs. 9 and 10
provides asmethod for determining the thresholds for detection. However, because the
PCR primers for community eDNA analyses will almost never be strictly tapeaific,
the power analysis cannot be determined on a single-taagis but must always be
phrased In terms of a larger DNA community that is “observed” by a gl@protocol.

The relativeabundance of an arbitrary OTU, taxon “A”, can be fully defined by
four quantities: théruerelative proportion of DNA from OTU A in the samptg; the
estimated-effect of covariatés that OTU,yH 4; the total number of DNA sequences
observedn; andthe stochasticity in the PCR and sequencing proeés&ecause for
the obsérved data,= Y; e* (eq. 8), we can combine eq. 8 and 10 andhs@roperties
of the lognormal distribution to show that fany true value ofr,, the median value of
Aar A4, Will.be

Ay =log(my) +log(n) + yHy (12)

Using the“probability mass function of the Poisson distribution, the probability that the
observed number of DNA sequences@rU A will exceed Gat 4} is,

D(Zg> 0)= 1—e’a (13)

In this 'Way;the detection probability can be approximated for a given primer, the number
of DNA"sequences observed, and DNA community. This type of power analysis based on
the median estimate is likely sufficient for most applications, but it is important to
acknowledge that this approach igreovariability in the PCR proce¢s?) and

uncertainty in the estimate pf However, simulation approaches could incorfethis
variability if desired. Importantly, exq 12 and 18nakeexplicit that analytical approaches

based on the occurrence data (Yu et al. 2012, Ji et al. 2013peanial cases of muti

This article is protected by copyright. All rights reserved



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

taxa count datanlits simplest form, occurrence dagasimply the count data for each
OTU converted into two classes:= 0 andz; > 0. Other investigators have suggested
thatOTUs below a certain threshold abundance should be exclude®TéJg.below
0.005% of the total number of DNA reads is recommended by Bokulich et a). 2013
Regardless of the exact cutoff ustds section demonstrat¢hatthe same biases that
plague estimating abundance from eDNA aloplague estimatioof occurrence-
though signaturesf bias will be more difficult to deté@and estimatesingoccurrence
data.

We illustrate power curves Fig. 3 to provide a graphical method for
understanding the detection probability ddaonfor a given primer, extracted DNA, and
numberof DNA readsSpecifically, we compare three values of a single covariate
representing the match between the primer and t&0DNA. Ha = O represents the
average match between the primer and the taxa observed in the samplel,awhil 15
corresponds té having a 15% better match to primer than averagéHard 0.15
corresponds té having a 15% worse match to primer than average (e.g. for a 20
basepair primer, 15% corresporids change 08 basepair matches between primer and
template) For all three snulations, we used slope parametéhnatreflectrealworld
estimates of primer bias discussed beloWdnderstanding marine inveabrate
communities using eDNA”( = —14). An important result of Fig. 3 is that even when a
taxon is present in a sampiemay not be observed in the DNA counts emerging from
the sequencer. The probability of observing at least one instance of taxon A is
affected'both by its true abundance (relative to other species amplified by the PCR
product) and the match between the DNA sequence and the PCR primer used.

Eq. 12 and Fig. 3uggest that there are seventiitive andnorrmutually
exclusivesmethods for increasing detection probability of a partitasan 1) increase
the number‘of sequences observed for each PCR (inere@elecrease the number of
taxaamplified by the primer (decreasand thereby increase the relative abundance of
the OTU ofiinterestr,); 3) improve the ficiency of the primer for taxon Aelative to
other taxon in the DNA community (i.e. modifi;). In practice, a PCR primer that more
closely matchea particular taxomvill likely contribute to botlpoint 2 and 3. However,

increased primer specificity will always reduce the diversityagddetected in a single
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517  sequencing rurBoth highly specific and more general primers have imporéahtworld
518 applications §immons et al. /n Press).

519

520 Combining unigue DNA sequences into biolodjcaleaningful groups

521 Genetic variation among individuals both within and across taxa caniresud

522  problematic'scenarios: 1) high diversity within a taxon will result in it being represented
523 by more'than one OTU in the sequence data or 2) low diversity across taxaultiilres
524  many taxabeing represented by a single OTU. An ideal PCR prinuéd vemget a locus
525  with high inter-taxon diversity and low intra-taxon diversity. Unfortunately, we know of
526  no such lgeus that can be used for a broad swath of taxa. For the case where a single
527 taxon isrepresented by multiple OTUs, we describe two appesdor obtaining

528 abundance estimates.

529 The first is to estimate the model treating each OTU separately (eqg. 12), and
530 combine the output of the estimation procedure. Because each iteration of a Markov
531 chain prevides a draw from the posterior distributiothefparameters, the draws can

532 simply be'added together for the OTUs of interest, and the proportion of the resulting
533 taxon‘recalculated (Shelton et al. 2012). To provide a concrete, but fictitious, example,
534  suppose‘that OTW and OTUB wereboth observed in a sequencing rBoth OTUsare

535 subsequently determined to represent unique sequences frolmywonammoth

536 (Mammuthus primigeniugnd need to be combing&mprovide an estimate of the total

537 mammeth'present in the extracted DNA sample. After estimatiPgisson model (e.g.
538 eq. 10)'wecan simply add the testimated parameters for OTRJand OTUB

539  (B4and S, respectively) such th#, .mmoen = Ba + B for each MCMC iteration. fie

540 propertiga.of DNA attributable tanammothwould then ber,,;mmotnh = EB"Z“:ZLZM
541  Using draws from the posterior distribution maintains the correlation steugiar

542  uncertainty.bounds of the proportional occurrence. However, this approach has the
543  downside of requiring parameter estimates and the collection of covariates togHpulat
544  for each OTU, slowing computation speed if there are large numbers of OTUSs.

545 The second option is to group the OTUs into broader taxonomic groups before
546 they are included as input data for the model estimation. While the choicehafdhfiet

547  clustering sequence data into OTU counts is of general concern (Edgar et al. 2011, Yu et
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al. 2012), this approach also requires that all OTUs within a group be assumed to have
shared covariates related to P@®ntinuing our previos mammoth example, the
primertemplate mismatch might differ between OAdnd OTUB, and yet if their

counts were_ to be combined, information about their distinct matching chasticseri

could not.be directly incorporated in the model. A summary stasisth as the median
dissimilarity'would have to be used instead. Depending on the details of the primers and
match'quality, such averaging across covariates may or may not substantiadigdaf

the result:"Given these considerations, we advocatershafiproach ofombiningtaxa

after model estimation, unless speed is favored over accuracy or researchers are

sufficientlyseonfident that grouped taxa do not differ in PCR or sequencing efficiency.

Understanding marine invertebrate communities usingeDNA

To illustrate the utility of our statistical framework, we apply the above methods
to eDNA isolatedamplified, and sequencé&wm eleven, 1L seawater samples collected
from assingle location in Puget Sound, WA on June 26, 27, and 29, 2014 (Carkeek Park,
Seattle; WA, USA; 47°42'40.44"N, 122°22'20.10"\B¥cause we use this empirical
dataset:here only illustrate the application of statistical methods to counts of DNA
sequences emerging from a high throughput sequencer, we only outline the methods th
affect the statistical estimatiowe provide detailed molecular protocols in the online
supplement for interestedaders
Summary“ef molecular methods

Ta.test the effect of primer mismatoh templatespecificPCRefficiency, we
amplified each enviranental samplesingtwo differentsets of primes, which in each
direction shared a common core 22bp region targeting the 16S region of the
mitochondrion, but differed by an index sequence on the 5(saeTable S1 fothe
primer sequences ugedhese index sequences have been demonstrated to cause
differential’amplification efficiency among template DNA in a mbtethplate PCR
(Berry etal. 2011), and thus provide an opportunity to test the efficacy of our framework
for estimating biomass and eartainty in the face of biaBCR, library preparation,

sequencing, and bioinformatics protocols are described in the supplementarglmateri

This article is protected by copyright. All rights reserved



578
579
580
581
582
583
584
585
586
587
588
589
590

591

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

Theexperimental desigyieldedsequence data from SBCR products per
environmental sampléhreesequencing micates arisingrbm each of two distinct
primersets In total, we observed over 10.5 million individual DNA reads representing
27,973 unigue OTUs. For the purpose of this example, we model only 9 of the most
common.©QTUs and focus on estimating the propoal DNA contribution for these 9
OTUs and a tenth “Other” category which encompasses all remaining @Js.
investigate'only 10 OTUs for illustration purposes, thoughapoach is directly
applicablete a much larger set of OTUs. We present thelatavand models for
estimating these models for these nine OTUs in the supplementary materials.
Statistiealimodeling of OTU counts

To estimate the proportion of each of these 9 OTUs on each sampling occasion,
we use a version of eq. 10 that adds a subsamtresponding to each sample time and
includesm observed DNA replicates for each time. Then the full model is

Zjsm~Poisson(etitm)
Aitm = Bit + YHitm + Nitm (14)
Niem~N (0, 02)

Againyfindicates the count @TU i at timet, yH;;,,, controls the fixed effect of PCR
and sequencing bias on the observed numib®id counts for each replicate, wigh
estimatedegression coefficien@nd the covariate matrbtiy, supplied by the
investigator on the basis of available information about target-taxon sequetiees in
primer region Finally, n;.,, provides for additional error not accounted for by either the
fixed taxon effecp;.or the other fixed effect®Vhile it is possible to include a large
variety.of-potential covariates yH;,,, for illustration purposes we include only a single
covariateythdotal geneticdistance between the OTUSs’ primer binding sites and the
primers,y, at both forward and reverpriming sites ThusH is a design matrix with a
single column corresponding to the proportion of nucleotide mismatches between the
primers andseach template (OTU primer binding shAejalue of O would indicate no
difference between the primer and the template, while 0.10 would indicate 10%gof ba
pairs do not match between the primer and the OTU. Distance calculations were
performed using the function dist.dna in the R packageRapadis et al. 2004 To

derive estimates dhe design matri¥l we assesseithe quality of match between the
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primer and each taxon’s DNA. For the nfneal OTUs in the dataset, we performed a
BLAST search of NCBI's nucleotide database (GenBank) to idethigfyikely sequence
of the primer binding sites given existing sequence information for taxa in GenBank
matching the OTWequenceésee beloyw We centered the covariate value$d before
analysis,bysubtracing each value by the average across all Fither pairsThe
process.of eentering makgg the intercepfor eachOTU in this generalized linear
model"We assumed the “Other” category had a covariate value of Bldh&m= 0)
corresponding to the average amplification value of the “Other” category. Ceritexing

covariatesalso means that when we calculate the proportional contribution ofb8adh
Bi .

we cancalculate the proportion of each OTU in the sample;as ;e—ﬁtu This produces
l

estimates-gproportional composition of each OTdi a standardizeghatch betweethe
primersand-Substrafer all OTUs

We estimated eq. 14ising Just Another Gibbs Sampler (JAGS; Plummer 2003)
implementedn R (R Core Team 2014) usirige R2jagpackaggqSu and Yajima 2014).
We usediondinformative prior disttbutionsfor each parameteBpecifically we let
y~Normai(0,1000), f_~Normal(0,1000), ando?~Uniform(0,1000). We ran three
replicate MCMC chainsisinga 100,000 iteration burn-in and 10,000 monitoring
iterations. Weconfirmed appropriate model mixing and convergence using visual
inspection of trace plots argkelmanRubin diagnosticas implemented by the R package
“coda” (Plummer et al. 2006).

Results

Using eq. 14 we estimated the proportional composition for nine focal OTUs and
the“Other” category for aleleventime periods (Fig. 4, Fig. 5). Our modstienated a
large amount of overdispersion in the observed count data 8.34[0.68]; posterior
mean[sd]).indicatig that there remains a substantial effect of unknown and unmodeled
factors.onvariationamongsample. The large estimated overdispersion translates into
large uncertainty in the estimated proportiocz@hposition (Fig. 4). Or estimates are
statisticallywell-justified and reflect the uncertainty present in our observatorns,

suggesthat methodological improvementisll be required to provide more precise
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637 estmates of the marine communi#cross all times, OTUs 3, 5, and 7 were particularly
638 frequent. Both OTU 3 and 7 correspondie musselMytilus trossuluswhile OTU 5

639 corresponds tacorn barnacles (suborder Balanomorpikaly Balanus glandulg both

640 of which are among the most commonly observed species at our study site. We found no
641 dramaticpatterns ofOTU relativeabundancevertime or with respect to an important
642  covariate, tidal heightFig. 5). Howeverthe large degree aincertainty limitsour power
643 to detect'strong effects of time environmental factors.

644 Among our nine focal OTUswhich, again, represent sequences amplified and
645 recovered from environmental samplethe variance inprimertemplate mismatch was
646  substantialwAcross glirimertemplatepairs the mean proportional mismatch was 0.193
647 (range:0.11-0.28), indicating that) averagel0.81 out of a total 5base pairs were

648 mismatched: We estimateais expectedhat the effect of decreasing match between the
649  primer and substrate was strongly negative, —14.3[6.11](posterior mean[sd])

650 indicatingOTUswith a poor match between the primer binding aitd primer were

651 underrepresented in the observed DNA coudts. estimated effect of primer quality

652  similarto experimental results exploring the effect of primer mismatch on preferential
653 PCR amplificaibn (Polz 1998Sipos 2007, Wright et al. 20L4AVe emphasize that there
654  are a.great many possible other covariates that could benubesitype of analysis.

655

656  Discussionand conclusions

657 eDNA is anexciting emerging method for describing ecological communities.
658  Given thesenormous potential for eDNA applications in the environmental sciences,
659 recentreviews of eDNA methods hasteessed the need for improved molecular and
660 statistical techniques for eDN& u et al. 2012, Yoccoz et al. 2012, Schmidt et al. 2013,
661 Jietal.2014). Conceptually, the challenges posed by eDNA are largely analogous to
662 those faced by traditional sampling techniques (FigBadh conventional and eDNA

663  samplingultimately attempto male inference about the same quantithe biomassr

664  density ofeach species in the environmdhshould also be clear that tiéidnal

665 sampling methods suffer from a parallel set of sampling problems to eDNA and, as noted
666 earlier,our current inability to estimate abundance or biomass froleEamples alone

667 is not a fatal twfor eDNA dataA specific topic that deserves special consideration in
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future work is understanding the spatial and temporal spread of eDNA undei natur
conditions andhow the scale of inferendeom eDNA sampling matches (or, potentially,
does not match) the spatial and temporal inference available from traditional sampling
methods.

While we have framed our analysis in terms of biomass, we notarthat
equivalentstrudure is necessary fastimation of count data and fderiving most
community 'metrics of interest as wdllstimatedspecies richneds the number of
species with' biomass greater than 0 wBitennon diversity is species richness weighted
by the'relative biomass (or count)each specie®oth richness and Shannon diversity —
and indeedirtually all community andliversity metrics- are directly derived from
estimates of occurrence and abundance of indivepedies Thusthis framework
provides a pathway for investigating communities as well as individxel

In_closing we offeia fewrecommendations to ensure that eDNA study designs—
and the resulting datasetsre adequat® develop a meaningful estimate of tlaeget
biologiealreommunity structure.

Foremost, it shoulddoclear from the framework we discuss here that sample
replication (in space, time, laboratory treatment,) &aritical to partitioning variance
amongrsteps in the eDNA analytical ch@ecauseealworld constraints on time and
funding generally prevent replication at every ste@ emphasize thaeplicaton is most
important at the step or steps that are likely to introduce the greatest arheamnance
or where“the variance attributable to that step is of special intecgstxample, if one
has datasdemonstrating that eDNA captaxtraction and sequencing are likely to
introduce little systematic bias, but that P@f&mer choice has an unknown and
potentially large effect, PCR is the most important target for replicatiomdegendent
analysis..Samples treated separately can then subsequently be combined using
hierarchical’/models, where this would provide analytical be(ssfgonline supplement).
Note additionallythat we advocate avoiding pooling samples and then running analyses
on the pooled output whenever possible; there is information in the variability among
replicated outputs of molecular methods.

Secondpecaus¢axaare not equally abundant in a sampled environment, and
becausgaxaare not equally likely tamplify with a given set of PCR primers, eDNA
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699 community surveys are necessarily an uneven reflectitaxapresent, even for a

700 specifically targeted grogpThe same issues arise with traditional sampling methods, as
701 alternative survey methods have different but negligible selectivity issues (Beverton
702  and Holt 1957 section 8, Arreguin-Sanchez 1996, Venebles and Dichmont 2004).
703 Themethods we presefdr community eDNA dataffer the ability to correct for
704  attributablebiases and to be statistically honest abosgdzad variability that we do not
705 understand."Howevereal differences ilDNA abundance and susceptibility to

706 amplification mean thdbr any given set of PCR primettsere is a limited set of taxa
707  that can successfully be detect€His observation gives rise treerecommendations:
708 1. Usingmultiple markersffers the chance to broaden the scopenc#@BNA survey
709 andto generate mutually reinforcing datasets that might be combined in the

710 framework we present he(Bvans et al. 2015).

711 2. Community surveys that focus on the most commonesgtes generatedrather

712 than on theare sequence “tails~are mordikely to be repeatable and robust to

713 statistical inferencéAt the same time, we acknowledge that some analyses

714 particularly those focused on measures of biodiversity (e.g. Ji et al. 2&4) -

715 intrinsically interested in rare taxa. We think an incrddeeus on understanding

716 how-the probability of detection may affebversity estimates is an important area

717 for further research (Fig. 2; Schmidt et al. 2013).

718 3. Finally, a focus on the most common species (or most common sequences) found in
719 an envirgnment hamplications for primer desigriRather than accepting a very

720 broad:set of sequence constraints on primer design (e.g., all metazoans), ereuring th
721 primers are likely to be good matches for the few dozen most conamg@ispecies

722 in the samplearea is likely to yield a better rangeacceptable primer sequences.

723 Increased specificity isiore likely to lead to the intended results of a community

724 eDNA survey.Again, this approach is appropriate only when the interest is focused
725 onrelatively conmon species, not on rarewnknowntaxain the community.

726 As we have suggested throughout this paper, we believe there is ample room for

727  crosspollination between eDNA, both gPCR and sequencing based, and traditional
728 sampling approaches. Notably, the cgptaial framework we outline suggests that it is
729  possible to construct models that jointly model data from traditeomle DNA sampling
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730 to draw infer@ce about natural populations. We also expect that methodological biases
731 inherent to eDNA and traditionahmpling may often produce complementary, rather
732  than overlapping, estimates of community compositRegardless, here weave shown

733  how to,start toward this ultimate goal by providing a framework and detailed statistical
734  models for.a particularlghallenging aspect of eDNA workealculating the relative

735 abundancef DNA from multi-species primers while accounting for variatio@ P

736  However, multiple elements of the eDNA processing chain remain poorly descobed f
737  a quantitative perspective, aad future work clarifies bias@stroduced at each

738  experimental step, our framework provides a means of using such emerging information
739  to imprevesgquantitative estimates of community biomass from eDNA.

740
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