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Environmental variability and fishing effects on the Pacific
sardine fisheries in the Gulf of California
Alfredo Giron-Nava, Exequiel Ezcurra, Antoine Brias, Enriqueta Velarde, Ethan Deyle,
Andrés M. Cisneros-Montemayor, Stephan B. Munch, George Sugihara, and Octavio Aburto-Oropeza

Abstract: Small pelagic fish support some of the largest fisheries globally, yet there is an ongoing debate about the magni-
tude of the impacts of environmental processes and fishing activities on target species. We use a nonparametric, nonlinear
approach to quantify these effects on the Pacific sardine (Sardinops sagax) in the Gulf of California. We show that the effect
of fishing pressure and environmental variability are comparable. Furthermore, when predicting total catches, the best
models account for both drivers. By using empirical dynamic programming with average environmental conditions, we cal-
culated optimal policies to ensure long-term sustainable fisheries. The first policy, the equilibrium maximum sustainable
yield, suggests that the fishery could sustain an annual catch of �2.16 � 105 tonnes. The second policy with dynamic optimal
effort, reveals that the effort from 2 to 4 years ago impacts the current maximum sustainable effort. Consecutive years of
high effort require a reduction to let the stock recover. Our work highlights a new framework that embraces the complex
processes that drive fisheries population dynamics yet produces simple and robust advice to ensure long-term sustainable
fisheries.

Résumé : Si les petits poissons pélagiques soutiennent certaines des plus importantes pêches du monde, un débat se pour-
suit quant à la magnitude des impacts de processus environnementaux et des activités de pêche sur des espèces visées.
Nous utilisons une approche non linéaire et non paramétrique pour quantifier ces effets sur la sardine du Pacifique (Sardinops
sagax) dans le golfe de Californie. Nous démontrons que la pression de pêche et la variabilité environnementale ont des effets
comparables. En outre, pour ce qui est de prédire les prises totales, les meilleurs modèles tiennent compte de ces deux facteurs.
En combinant la programmation dynamique empirique aux conditions environnementales moyennes, nous établissons les politi-
ques optimales pour assurer la durabilité à long terme de la pêche. La première politique, concernant le rendement équilibré
maximal, indique que la pêche pourrait soutenir des prises annuelles de �2,16 � 105 tonnes. La deuxième politique, qui intègre
l’effort optimal dynamique, révèle que l’effort durant les deux à quatre années précédentes a une incidence sur l’effort équilibré
maximal actuel. Des années consécutives d’effort élevé requièrent une réduction pour permettre au stock de se rétablir. Nos
travaux mettent en lumière un nouveau cadre qui tient compte des processus complexes qui modulent la dynamique des
populations de ressources halieutiques, tout en produisant des avis simples et robustes pour assurer la pérennité de ces
ressources. [Traduit par la Rédaction]

Introduction
Small pelagic fish, such as sardines and anchovies, support the

largest fisheries in the world, contributing up to 37% of global
landings by weight (Essington et al. 2015), and are generally rec-
ognized as forage fish providing a vital source of food and trophic
links within marine ecosystems (Pikitch et al. 2012). However,
these stocks are subject to large fluctuations, with total landings

often varying by two orders of magnitude over just a couple of
years (Lluch-belda et al. 1986; Shelton and Mangel 2011; Velarde
et al. 2013). Such high variability is often attributed to known
linkages among life histories (Winemiller and Rose 1992), sto-
chastic processes, and environmental drivers, such as tempera-
ture, wind patterns, and primary productivity (Baumgartner
et al. 1992; Lluch-Cota et al. 2007; Shelton and Mangel 2011). As
such, there has been a strong push to incorporate environmental
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indices in models to predict recruitment and set harvest quotas
(Punt et al. 2014; Szuwalski and Hilborn 2015). Additionally, there
is also a strong case for the influence of fishing pressure on driv-
ing forage fish population dynamics and amplifying potential
collapses triggered by poor environmental conditions (Essington
et al. 2015). The debate between the impacts of environmental vari-
ability and fishing on fish population dynamics is a long-standing
one, particularly for small-pelagicfisheries (Pikitch 2015).

Pacific sardine (Sardinops sagax) fishery in the Gulf of
California, Mexico
The Gulf of California, Mexico, is one of the most productive

and biodiverse marine ecoregions in the world (Lluch-Cota et al.
2007), contributing �50% of Mexico’s total fisheries landings.
Small pelagic fish captured in the Gulf of California alone con-
tribute up to 21% of the total national reported catch by weight,
with Pacific sardine historically being the dominant species
caught (Velarde et al. 2015a). This purse seine fishery developed
in the late 1960s in the very productive waters around the city of
Guaymas (Fig. 1A), which remains the largest port for sardine fish-
eries in Mexico (Cisneros-Mata et al. 1995). In 1991, the fishery
experienced its first collapse, going from total annual landings of
almost 300 000 tonnes (t) to less than 10 000 t in a period of 2 years
(Cisneros-Mata et al. 1995; Velarde et al. 2013) (Fig. 1B). Since then,
the fishery has undergone three more collapses with a periodic-
ity between 3 and 8 years, showing a boom and bust dynamic
behavior. Fisheries managers in the region have assumed that
boom and bust cycles are primarily driven by large-scale environ-
mental variability (Lluch-belda et al. 1986; Nevárez-Martínez et al.
2001; Velarde et al. 2004; Arreguín-Sánchez et al. 2017), particu-
larly the Pacific Decadal Oscillation (PDO) and El Niño Southern
Oscillation (ENSO) (Lluch-belda et al. 1986; Nevárez-Martínez
et al. 2001; Velarde et al. 2004). As such, fishing is often assumed
to have a small effect on observed population and catch dynam-
ics. Taking a precautionary approach, it has been recommended

that to deal with the unpredictable environmental conditions
and minimize the impacts of fishing, it is preferable to set a con-
stant harvest rate (HR = 0.25–0.29) relative to the total available
biomass (De Anda-Montañez et al. 2010). Still, the official regula
tions for this fishery are not species-specific, as the Pacific sardine is
grouped with other small pelagics in the region. For this whole
group, Mexican regulations establish a maximum effort of 4000–
6000 trips per year, with a maximum catch of 700 000 t·year–1

(CONAPESCA 2012). Unfortunately, the lack of specificity on these
regulations have resulted in a lack of enforcement of a quota limit
for the fleet, which historically has fished until the end of the sea-
son or until the fishery is not profitable anymore (Velarde et al.
2013). Given these dynamics, it has been reasonable to assume that
the total catch per season is representative of the total abundance
(Velarde et al. 2004).
Contributing to the ongoing debate on how environmental vari-

ability and fishing drive forage fish population dynamics in small-
pelagic fisheries, here we use the case study of the Pacific sardine to
ask the followingquestions: Howdoes the effect offishing activities
compare with that of environmental variability on the population
dynamics for this fishery? Also, how canwe use this information to
make better predictions that informmanagement?
To characterize and quantify the causal influence of environ-

mental variability andfishing pressure on the population dynamics
of the Pacific sardine in the Gulf of California, we use a nonpara-
metric time series approach for detecting causation in ecological
systems known as Convergent Cross Mapping (CCM; Sugihara et al.
2012), which is part of the Empirical Dynamic Modelling (EDM)
framework (Sugihara 1994; Sugihara et al. 2012). Armed with this
information, we then construct a model to test whether incorpo-
rating explicit estimates of fishing effects improves the predict-
ability of fisheries yields. Finally, we build a dynamic model to
estimate a harvest policy that optimizes the long-term sustain-
ability of the fishery.

Fig. 1. (A) Map of Pacific sardine fishing zones in the Gulf of California (adapted from Lanz et al. 2008); (B) total catch in tonnes; and
(C) total effort in number of trips. The shaded areas in panel B represent strong El Niño (red) and La Niña (blue) events, which are defined
as five consecutive overlapping 3-month periods at or above a 1.5 °C anomaly. The red dotted lines indicate the first fishery collapse in
1991–1992. [Colour online.]
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Materials andmethods
Our analysis is divided into three components: (i) a multivariate

linear analysis to test lagged and unlagged correlations between
environmental variables and Pacific sardine catch and catch per
unit effort (CPUE) as a benchmark for predictability; (ii) a nonpara-
metric analysis using CCM and multivariate EDM to test for the
causal influence of environmental variables and fishing effort on
total catch and CPUE as an index of abundance; and (iii) a dynamic
model to estimate a harvest policy that optimizes the long-term
sustainability of the fishery.
We collected fisheries-dependent data on total catch, effort,

and CPUE from the fishing fleet that operates in the Gulf of Cali-
fornia (Fig. 1). Note that our metric of effort is the number of fish-
ing trips per year. This metric has many limitations (e.g., does not
consider the number of days per trip, searching time, or technol-
ogy improvements over time); however, this currently represents
the best available dataset for effort. The data span from 1969 to
2015 and were obtained from published material (Cisneros-Mata
et al. 1995; Lanz et al. 2008; Velarde et al. 2015a) and updated with
data extracted from the annual reports of the Centro Regional de
Investigación Pesquera in Guaymas.
We also collected the annual average for environmental indi-

ces spanning the time range from 1951 to 2015. The collected vari-
ables were the El Niño Southern Oscillation Index (SOI) (NOAA
2020a), the Pacific Decadal Oscillation (PDO) index (NOAA 2020b),
and an upwelling index derived from wind measurements at the
mouth of the Gulf of California (21°N, 107°W), which was the clos-
est monitoring station that had data for the whole time span
(NOAA 2020c). The upwelling index was specific for the spring
season, often associated with the spawning period for Pacific sar-
dine (Alvarez et al. 2017).

Setting a predictability benchmark with amultivariate
linear analysis
To create a baseline linear model (a model that assumes the ex-

planatory variables act independently of each other), we eval-
uated the linear correlation and the lagged linear correlation (up
to 10 lags) between the total catch and the explanatory variables
(effort, SOI, PDO, and upwelling index; refer to online Supple-
mentary Fig. S11). For each explanatory variable, we selected the
lag with the highest predictability and used this to construct a
multivariatemodel.
To test the predictability of this and the nonlinear dynamic

models in a comparable way, we employ leave-one-out (LOO)
cross-validation for all of them. Thus, for each prediction we
exclude the observed single time point to be predicted and build
the multivariate model with the rest of the time points. This is
then repeated to generate an out-of-sample prediction for each
time point. Finally, we performed a linear regression between
the predicted and observed values. We report the predictability
of eachmodel in terms of the Pearson correlation coefficient (r ).

Using nonlinear dynamics to improve predictability
We used EDM to construct a model in a way that does not

assume the variables are independent of each other, but that
have the potential to interact in a manner that the observations
themselves dictate. EDM is a set of time series analysis methods
based on the notion that a time series is the product of a nonlin-
ear dynamic system. Thus, a time series can be thought of as a
way of recording observations on the “attractor” of such a sys-
tem, where the attractor is a geometric shape that arises from
the underlying governing rules or dynamic equations that
describe how the variables change and interact through time (see
https://youtube/fevurdpiRYg). If the active coordinate variables
are known, such attractors are easily constructed from time

series data and can be used to predict future states of the system by
following the trajectories of points nearby to the point of interest
in the n-dimensional space (Dixon et al. 1999; Deyle et al. 2016).
Typically, however, it is difficult to measure or even to know all

the variables that interact in an ecosystem: the variables that
would be required to reconstruct the original attractor. However,
Takens’ theorem states that insofar as variables interact, their
time series must share information about each other, and this
allows one to recover information about the whole system from
only one time series (Takens 1981). Assuming that the collected
time series is xt, one can reconstruct a “shadow” version of the
original attractor by using lagged time series (e.g., xt – 1, xt – 2) as
proxies for other unknown time series of the same system. The
principles and mechanics of EDM and Takens’ theorem are fur-
ther explained in a series of short animations (http://tinyurl.com/
EDM-intro).
Within the EDM framework, a technique called CCM is used to

test whether variables have a causal effect on each other:
whether changes in one variable produce changes in another,
possibly uncorrelated variable. CCM uses Takens’ theorem to pre-
dict values of a causal driver from the shadow attractor produced
from the driven variable (Sugihara et al. 2012). Causal effect is
established if one can predict the driver variable from the driven
variable. For example, if the shadow attractor constructed from,
for example, sardine time series can be used to postdict what the
sea surface temperature (SST) was, then SST was a causal driver.
Thus, CCM is able to identify directional influence. This has been
demonstrated for Pacific sardine and northern anchovy (Engraulis
mordax) in the California Current System, both being causally
driven by SST, but not driving the dynamics of each other, nor
driving temperature (Sugihara et al. 2012; Deyle et al. 2016). In
this study, we used CCM to identify whether any of the explana-
tory variables (effort, SOI, PDO, or upwelling) had a causal influ-
ence on the time series of total catch, its derivative, or CPUE.
Once the relevant causal variables have been identified through

CCM, it is possible to build a multivariate nonparametric model.
For example, if we were to predict total catch and knew that
upwelling had a strong causal influence on it, instead of recon-
structing an attractor by using three time lags of total catch, we
would use two and substitute the third one for the upwelling
time series. Here, we first reconstruct the attractor for total catch
and CPUE with an E = 3 (E is the embedding dimension, which
represents the number of time series — number of variables, or
coordinates— used to reconstruct an attractor). Then, we use dif-
ferent combinations of total catch, CPUE, and the explanatory
time series with lags between 0 and 4 to reconstruct new attrac-
tors and predict total catch 2 years into the future.

Proposing new harvest policies through empirical dynamic
programming (EDP)
Next we seek to obtain harvest guidelines using empirical

dynamics. Our goal is to determine the harvest policy that maxi-

mizes the long-term cumulative catch, J ¼ R
1
t¼1

g tCt, where Ct is the

catch in year t. The term g < 1, typically referred to as the dis-
count rate, is merely a numerical device to ensure that the sum
converges. Note that if C is constant (i.e., Ct = C* as in a traditional
steady state, maximum sustainable yield (MSY) policy), then J
simplifies to C*/(1 – g ).
A “harvest policy” consists of a rule for determining the next

effort, typically as a function of the current state. However, since
we are using lags to reconstruct the system dynamics with EDM,
the “current” state may include several past values as well.
Althoughmodern practice typically evaluates one or more candi-
date policies through “management strategy evaluation” (Punt
et al. 2016), the policies considered are often somewhat ad hoc.

1Supplementary data are available with the article at https://doi.org/10.1139/cjfas-2020-0010.
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An orthodox— though still relevant— benchmark is the “optimal”
policy, found using dynamic programming (Mangel and Dowling
2016) or optimal control theory (Clarke 1986).
Our algorithm uses approximate dynamic programming (Powell

2007) to determine the optimal harvest policy given an empirical
dynamic model of catch and effort. This “empirical dynamic pro-
gramming” (EDP; Brias and Munch 2021) approach generalizes the
algorithmproposed by Boettiger et al. (2015), which did notmake use
of EDM and was strictly limited to one-dimensional (1D) dynamics.
EDP overcomes this 1D limitation and can handle multiple species
and multiple objectives in a scalable way. Details of the algorithm
and extensive simulation testing are provided in Brias andMunch (in
review). Here,we focus on the application of EDP to sardines.
To reconstruct the state dynamics, we modeled catch as a func-

tion of previous catch (C) and effort (F) every other year (given the
2 years reproduction age for Pacific sardine):

Ct ¼ GGP Ct�2;Ct�4;Ct�6; Ft; Ft�2; Ft�4; Ft�6ð Þ

The GGP function was estimated from the observed time series
using Gaussian process EDM (Munch et al. 2017) with a squared-
exponential kernel and an Automatic Relevance Determination
prior. This condition ensures the algorithm’s stability. To ensure
stability of the EDP algorithm, we conditioned the GP to drop the
catch to 0 whenever the previous effort is over the maximum
encountered in the data (supposing here that an infinite effort
will lead to biomass extinction). To find the optimal policy, we
applied a temporal difference learning algorithm based on the
estimated GGP (Powell 2007). This, essentially, determines effort
as a function of the current state (i.e., Ft = H(Ct – 2, Ct – 4, Ct – 6, Ft – 2,
Ft – 4, Ft – 6)) such that the cumulative catch J is maximized when
the dynamics evolve according to the estimated GGP. To comple-
ment this dynamic control policy, we also estimated the optimal
steady-state policy, (i.e., the F that maximizes C subject to the dy-
namical constraint C = GGP(C, C, C, F, F, F, F)). Note that this is pre-
cisely analogous to finding MSY, albeit with a nonparametric
productionmodel.
To evaluate the expected performance of the EDP policy, we

run the following simulations: (i) apply the near-optimal policy
given by the EDP algorithm (suggesting a different fishing effort
per year), (ii) apply a “reactive policy” to simulate current

conditions (fishers increasing total effort when catch is low and
reduce effort when total catch goes below the historical mini-
mum), and (iii) constant effort (using the value that gives themaxi-
mum sustainable catch computed by the EDP over 100 years). For
each policy, this consists of three steps:

1. Use the focal policy to determine effort
2. Predict the catch using the GP
3. Update the state and repeat

We start all the simulations from a system that has just collapsed
(we use the values of catches and efforts of 1993 as initial condi-
tions) and report the average results for 100 runs. Note that since
this approach marginalizes over environmental variation (i.e.,
any environmental dependence of catch is treated as noise), the
resulting policies are for the average environment. Optimal con-
trol for explicitly time-varying environmental conditions are
more challenging to estimate and are in development.

Results

The status quo: multivariate linear regression
We found a significant correlation between each of the explan-

atory variables and total catch, although for most of them, it was
only after taking into account time lags (Supplementary Fig. S11).
We found that fishing effort was correlated with total catch at 0,
1, and marginally at 2time steps. The SOI was only negatively cor-
related at 4 time steps, while the PDO was positively correlated at
2, 3, and 4 time steps. Finally, the upwelling index was positively
correlated from 4 through 10 time steps. Given the very high cor-
relation between catch and effort at no time lag, we only used the
largest possible and still significant time lag (2) for subsequent
analyses in an attempt to decouple the immediate effects of fish-
ing harder to catch more. For the rest of the variables, we used
the smallest significant lag. Thus, the selected time lags were 2, 4, 2,
and 4 for effort, SOI, PDO, and upwelling, respectively. By using
these time lags, the best multiple linear regression model selected
upwelling and the SOI as the two variables that together could
explain the most observed variability in total catch. The achieved
R2 was equal to 0.28, while the LOO cross-validation predictability
was equal to 0.21 (Fig. 2).

Fig. 2. Total catch observations (black solid line) and predictions with three different models: (i) assuming the average catch is the
prediction (red dashed line), (ii) using the best multivariate linear model with lags of environmental upwelling and El Niño Southern
Oscillation (ENSO; blue dashed line), and (iii) using the best multivariate Empirical Dynamic Model (EDM; orange solid line). The
presented predictability (r ) was derived from leave-one-out (LOO) cross-validations. [Colour online.]
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Improved predictability through EDM
We performed a CCM analysis to detect whether the explana-

tory variables (effort and environmental variability) had a causal
influence on catch, Dcatch, and CPUE (Fig. 3). We found a strong
effect of effort on total catch and CPUE, as well as a strong effect
of Dcatch in current effort. This means that the comparison
between this year’s and last year’s catch influences effort, as fish-
ers will try to make as much or more profit as last year, also
known as displaying a “reactive” behavior (maximize today’s
rent without considering the future). The SOI showed no causal
effect on any of the fishery variables. The PDO and the upwelling
index showed a weak causal influence on Dcatch and a stronger
influence on total catch and CPUE, comparable to the effect of
fishing effort.
By using the identified variables that are causally coupled to

total catch, we built a univariate model (using the catch time se-
ries and lags of it) and multivariate nonlinear predictive models
to predict total catch 2 years into the future. We found that the
univariate model achieved a predictability equal to 0.51, with
mean absolute error equal to 0.69 (Table 1). However, when incor-
porating the explanatory variables at different time lags, the best
five models ranged in predictability between 0.81 and 0.85. The
best model (r = 0.85, mean absolute error = 0.45) used total catch

with a lag of 2 years, the PDOwith a lag of 1 year, and effort with a
lag of 4 years. The rest of the top five models used also the SOI
and upwelling index (Table 1). In particular, the fifth best model
did not use effort or catch data, highlighting the relevance of
environmental variability, but which could be improved with
fishery-dependent data.

Harvest policies through EDP
The GP was fit using 3 lags of catch and 4 lags of effort, assum-

ing average environmental conditions, resulting in in-sample
predictability of r = 0.83 and out of sample predictability

Fig. 3. Convergent cross-mapping (CCM) among the three analyzed fishery variables (catch, Dcatch, and catch per unit effort (CPUE))
against the four explanatory variables (fishing effort, Southern Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and upwelling
index). The red lines indicate a causal influence from the explanatory variable to the fishery. The black lines indicate a causal influence
from the fishery variables to the explanatory variables. Only significant (a = 0.05) results are shown. [Colour online.]

Table 1. Top five nonlinear empirical models to predict total catch
2 years into the future.

Model Var1 Var2 Var3 r

C2P1E4 Catch lag 2 PDO lag 1 Effort lag 4 0.85
U1U4E4 Upw lag 1 Upw lag 4 Effort lag 4 0.83
E2U4E4 Effort lag 2 Upw lag 4 Effort lag 4 0.83
C2U4U1 Catch lag 2 Upw lag 4 Upw lag 1 0.82
S1U4U1 SOI lag 1 Upw lag 4 Upw lag 1 0.81
Univariate Catch lag 0 Catch lag 1 Catch lag 2 0.51

Note: For each model, the indicated explanatory variables substitute one
time series of lagged total catch to build a new manifold. All models were done
with an E = 3, as this was the identified embedding dimension to predict total
catch. Models are sorted from more explanatory to less explanatory power. The
univariate model refers to using only the total catch time series and lags of it to
build the attractor.

Fig. 4. Probability that catch is at equilibrium conditional on
effort held constant, according to the Gaussian process used for
the Empirical Dynamics Programming. The red line is the most
likely steady state for a given level of effort. The maximum
sustainable effort and catch are indicated by the yellow cross.
[Colour online.]
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(starting from year 25) of r = 0.78. The reactive behavior scenario
showed a maximum catch equal to 3.5� 105 t in year 5 of the sim-
ulation; however, as catch decreased and effort increased, the
fishery collapsed after year 10. In contrast, both the equilibrium
maximum sustainable effort and the EDP policy resulted in a sim-
ilar long-term sustainable catch (Fig. 4, Fig. 5C). The average catch
for the equilibrium maximum sustainable effort was approxi-
mately equal to 2.16 � 105 t·year–1, while the EDP policy resulted
in an oscillating behavior with maximum total annual catch
equal to 3.42� 105 t·year–1 and aminimumequal to 0.71� 105 t·year–1

(Fig. 5A).

Discussion
This manuscript contributes to resolving a long-standing ques-

tion in the fisheries management of small pelagics: How do the
effects of fishing effort compare with those of environmental var-
iability in driving the population dynamics?Andhow can including
this information into predictive models help to inform fisheries
management?

Identifying and quantifying causal relationships
As in previous reports, our findings show that environmental

variability has a detectable effect on the Pacific sardine’s popula-
tion dynamics in the Gulf of California (Cisneros-Mata et al. 1995;
Nevárez-Martínez et al. 2001; Petatán-Ramírez et al. 2019). In previ-
ous work, however, most of the temporal variability in the popula-
tion has been primarily associated with long-term environmental
phenomena that change SST and primary productivity distributions
(Petatán-Ramírez et al. 2019), such as El Niño (Nevárez-Martínez
et al. 2001; Velarde et al. 2004). Even though it is possible to appreci-
ate some degree of correlation between the fishery collapses and El
Niño events in 1987–1988, 1991–1992, and 1997–1998 (Fig. 1B), it is
also clear that for the following two collapses, that was not the
case. Instead, it has been suggested that in the last decade, the Gulf
of California SST anomalies have decoupled from El Niño events,
with as many as five warm decoupled anomalies that occurred
between 2007 and 2016 (Velarde et al. 2015b). Unfortunately, the
mechanisms by which El Niño affects the oceanographic local
conditions in the Gulf of California are still poorly understood
(Herrera-Cervantes et al. 2007). Recent research suggests that
while the southern Gulf might be generally forced by the

Eastern Tropical Pacific and possibly by El Niño, the region closer to
Guaymas, and thus to the sardine’s spawning grounds, is forced pri-
marily by tidal mixing in the Midriff Islands region (Lluch-Cota et al.
2007; Herrera-Cervantes et al. 2007). Although there is some evidence
for the effects of El Niño on SST (Frawley et al. 2019), a demonstration
of its effects on primary productivity in the Central Gulf of California
has proven more difficult (Santamaria-del-Angel et al. 1994; Kahru
et al. 2004; Lluch-Cota et al. 2007).
Our results also show that the effect of fisheries on the sardine

stock is comparable to that of environmental variability. Through
CCM, we identified that fishing activities have a causal influence
in total catch, Dcatch, and CPUE (Fig. 3). We also found that
Dcatch influences the amount of effort in the current season.
This supports the idea that fishers in the region follow a behavior
that prioritizes the value of the fishery today and does not con-
sider future scenarios. More broadly and contributing to the
ongoing debate on how environmental variability and fishing
behavior drive the population dynamics of fisheries species around
the world, our results using CCM are a step forward in identifying
and quantifying causal relationshipswithin these variables.

Improving predictability
Based on the premise of unpredictability and a conservative

approach (Martínez-Aguilar et al. 2009), current management
strategies for the Pacific sardine fishery have set a constant har-
vest quota, which implicitly estimates that the prediction each
year should be equal to the mean total catch. Such an assump-
tion, unfortunately, leads to no real predictability (Fig. 2). Some
authors have suggested that there is a linear correlation between
environmental variability and total landings (Nevárez-Martínez
et al. 2001). To test this hypothesis, we used the most optimized
version of a multivariate linear model and estimated its predict-
ability, which was r = 0.21 (Fig. 2). Even though this prediction
has some power, thus indicating the importance of environmen-
tal variability, it is still far from reliable to establish a dynamic
management scheme (Martínez-Aguilar et al. 2009). Using EDM,
we demonstrated that incorporating fishing effort and environ-
mental variability into a dynamic model can yield predictions of
total catch with r = 0.85 (Table 1; Fig. 2).
Furthermore, when analyzing the residuals for all the models

(Supplementary Fig. S21), we observe that EDM was the only

Fig. 5. Simulation of (A) total annual catch, (B) effort, and (C) cumulative yield over time starting from the 1993 situation (average of
100 runs). The blue policy is given by the Empirical Dynamics Programming (EDP) algorithm. (C) Cumulative yield over time is given by

R
T

t¼1
ctCt, from year 1 to the current year T. The grey policy (horizontal line in panel B) maintains the effort giving the maximum CPUE

(Ft = 2700). The magenta policy is the reactive policy (fishers increasing total effort when catch is low, decreasing to the minimum
encountered in the data if the annual yield is negative). [Colour online.]
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approach able to capture the boom and boost dynamics before
they happened (2 years ahead) within 1 standard deviation
throughout the whole time period. This was possible due to the
ability of EDM to capture the complex dynamics of the system,
and as such, the signal of the boom and boost cycles was present
in the fishery and environmental indices a couple of years before
they happened. Our approach demonstrates that not only it is
necessary to identify and use the proper explanatory variables,
but also to use amodelling scheme that does not rely on predefined
assumptions (e.g., functional approximations), expectations of sta-
bility or equilibrium, or simply autoregressive schemes (Ward and
Staunton-Smith 2002; Ives et al. 2003; Giron-Nava et al. 2020) to
make predictions about future states of the system. We propose
that the use of EDM in a fisheries context could help navigate com-
plex management scenarios where predicting future states is of
crucial importance given changing environmental conditions. This
echoes the results of a recent global meta-analysis demonstrating
that EDM outperformed linear autoregressivemodels in predicting
recruitment for 185 fish stocks (Munch et al. 2018), showing the
advantages of an equation-free approach when working in highly
dynamic and complex systems.

Towards dynamicmanagement
Assuming that catch and effort data are the only data available

for most fisheries, we calculated optimal policies to ensure a
long-term sustainable fishery using only these two variables. The
first policy, the equilibrium maximum sustainable yield, sug-
gests that if managed effectively, the fishery could sustain a catch
of �2.16 � 105 t·year–1 (under average environmental conditions).
The second policy, the EDP policy with dynamic optimal effort,
reveals that the effort from 2 and 4 years in the past can impact
the current effort required to keep the system’s sustainability.
Consecutive years of high fishing effort require a reduction in
the current catch to let the stock recover (Supplementary Fig. S61).
Even though this policy is adjusted every year, in the long run, the
total catch after 100 years is almost equal to that from the equilib-
rium maximum effort (Fig. 5C). Our simulations also show that
when the catches are low, policies that prioritize current over
long-term value (e.g., reactive behavior) should be avoided to
allow for the system’s recovery (Fig. 5A). If the current value pri-
oritization behavior is exaggerated, as in the simulations, it high-
lights that current practices can generate higher catches than
the optimal policies in the short term but lead the ecosystem to a
rapid collapse and the observed boom and boost dynamic behav-
ior. In terms of developing a real-world policy, it might be more
feasible to consider the equilibriummaximum sustainable yield,
as it is simpler and in the long term yields nearly the same catch
as themore complex and adaptive dynamic policy.
In this work, the GP model and resulting EDP policy are func-

tions only of catch, effort, and their time lags. As such, this treats
environment-dependent variation in catch as noise and effectively
averages over environmental conditions throughout the time pe-
riod. This presents obvious limitations in that it cannot account for
extremely low or high primary productivity scenarios and the
potential impacts on fish populations. However, as we demon-
strated with CCM and the nonlinear multivariate model, fishing
effort has a strong causal influence on the population dynamics.
Therefore, by taking a precautionary approach during low produc-
tivity scenarios (and 2 subsequent years), managers might be able
to prevent a fishery-driven collapse. Incorporating explicit esti-
mates of environmental variability and extreme scenarios into the
EDP framework is a work currently in progress. If successfully
implemented, dynamic policies that consider external drivers,
such as environmental variability, might be able to generate cu-
mulative larger catches than the equilibrium policy over the long
term. However, the success of this approachwill depend critically
on the accuracy of available environmental forecasts.

When thinking about the trade-offs among sustainability, human
livelihoods, and the inherent complexities of fisheries manage-
ment, we must recognize that a fisheries policy should be as robust
and simple as possible. By using the Pacific sardine fishery in the
Gulf of California as an example of a highly variable and difficult
to manage small-pelagic fishery, we have shown that estimating
an equilibrium sustainable effort could represent an upper limit
for both the effort and catch. However, for these policies to be
effective, they should be sensitive to other external drivers, such
as market pressures, extreme environmental events, and the im-
portance of these resources as key components of the ecosystem
to link primary productivity to upper trophic levels. Our work
thus offers an insight into a new framework for fisheries manage-
ment based on embracing the complex processes that drive po-
pulation dynamics yet producing relatively simple and robust
policies. In particular, this work was able to move forward the
discussion of the comparative effects of environmental variabili-
ty and fishing effort on the population dynamics of small-pelagic
fisheries (in this case the Pacific sardine in the Gulf of California),
demonstrating that both have an effect, with fishing effort being
dominant when predicting the fishery up to 2 years ahead. This
finding was only possible due to the application of new analytical
tools that embrace the complexity of the system and use it
to detect causal relationships between the observed variables
(Sugihara et al. 2012), thus making of this paper primarily a
methodological contribution to fisheries science. The next ques-
tion is how to use this information to refine the models that
account for these coupled effects and to inform policies that
ensure the long-term sustainable exploitation of these resources
that sustain both important fisheries and are a central part of
the ecosystem.
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