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1. Abstract(287 wor ds)

The interplay-of natural selection and genetic drift, influenced by geographicaeplatiting
systems, and population size, determines patternsnadtig diversitywithin speciesThe sperm
whale provides an interesting exampledbnglived species with few geographic barriers to
dispersal.WarldwidentDNA diversity is relatively lowbut highly structured among geographic
regionspandssocial groupattributed to female philopatry. However, it is uncledhi$ female
philopatryis due'to geographic regions or social group$iaey this might vary onaworldwide
scale. To answer these questionscambined mtDNA information for 1,091 previously
published samplesith 542 newly obtained DNA profiles (394 bp mtDNA, sex, 13
microsatellits) including the previously usampled Indian Oceaand social group information
for 541 individuals We found lowmtDNA diversity (1=0.430%) reflecting an expansion event
<80,000 years-bp, but stroddferentiaton by ocean, among regions witliomeoceansand
among social-groupsn comparisonmicrosatellite differentiation wasw atall levels
presumably due to male-mediated gene flavinierarchical AMOVA showed thakgionswere
important for explaining mtDNA variance in the Indian Ocean, but not Pacific, withl ggoup
sampling in theMlantic too limited to include in analgs. Social groups were important in
partitioning. mtDNAandmicrosatellite varianceithin both oceansl herefore both geographic
and social philopatry influenagenetic structure in the sperm whale, but their redatnportance
differs by sex and ocean, reflecting bregdiehavior, geographic featurasid perhaps more

recent origin of sperm whal@s the PacificBy investigating the interplay of evolutionary forces
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3

operating at different temporal and geographic scales, we show that sperm whales are perhaps a
unigue example of a worldwide population expansion followed by rapid assortment due to female
social orgargation

2. Introduction

Despitetheabsencef obvious geographic barriers, striking patterns of genetic differentiation

and diversity are evident in many marine megafauna. This inclodegenetic diversitydue to

past population bottlenecks/expansions (e.g., giant squid, Winkekebahr2013;killer whales,
Mouraet al.2014); strong patterns of genetic differentiation due to prey specialization (e.qg.,

killer whales'Rieschet al.2012)or habitat specialization (e,dnarbor porpoises, Fontaireal.
2014;sea lionsLowtheret al.2012; genetic differentiation due toaternal or natal fidelity to
breeding locations and migration routes (digtles,Bowenet al. 1992;baleen whaleBakeret

al. 2013; andmalebiased gene flow, aeflected inbiparentallyinherited nuclear markeesd
maternallyinherited mitochondrial DNAe.g., great white sharkiBardiniet al.2001; humpback
whales, Bakeet,al.2013). h some specig®.qg. killer whales, sperm whalesocialgroupsalso
influence genetic differentiatiompotertially reinforced by cultureuch asrocal dialect§Cantor

et al. 2025Cantor & Whitehead 2015; Gezpal. 2015; Hoelzekt al. 2007; Whiteheadt al.
2012).While studiefteninvestigate singléactors that influence genetic diversity, teasapgrt
differentmechanisms requires assessment génetic diversity patterrver multiple spatial

and temporal time scales.

Due toits worldwide distributionGoshoet al. 1984),social behaviofGeroet al. 2015), and
acoustiallyymediatedculture(Cantoret al. 2015; Cantor & Whitehead 2015he sperm whale
presentssansinteresting case study for this type of hierarchical analyiseigh whaling
remowedhundreds of thousands of individuals (Best 1979; Whitehead 2002; Whitehead 2003),
the sperm whales relatively abundant in comparisevith other large whale species360,000
individuals worldwide Whitehead 1998; 2002%5iven he sperm whale’s abundance and wide
geographic range, mitochondrial DNA{DNA) diversityin sperm whalg isrelatively low
compared with many other cetacean species (Alexata#r2013; Lyrholmet al. 1996;

Whitehead 1998), yet marked moderateto-strongdifferentiation between oceafisyrholm &
Gyllensten 1998)among marginal seas within the Atlanfi@rouotet al. 2004; Engelhaupt al.
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86 2009), and among social groups within the Pacific (Lyrholm & Gyllensten 1998; Rendell
87  2012). In an analysis of mitogenomes (Alexaretel. 2013), three previously proposed
88  hypothesesvere considereds the most likely causes of the low mtDNA diversity in sperm
89  whales:apopulation bottleneck and/or expansion (Lyrholm & Gyllensten 1998; Lyréioéin
90 1996) aselective sweep due &favorablesubstitution in antDNA-encodedrotein(Janik
91  2001) or a selective sweep due to beneficial cultural traits transmitted matrilineally in parallel
92  with the mitogenome eultural hitchhikirg (Whitehead 1998; Whitehead 2005). In comparison,
93 althoughsignificantnuclear differentiation (based on microsatellite genotypes) has been observed
94  among social‘groups in the Pacific (Lyrhodtnal. 1999),there is only weak differentiation
95 among regions within oceans (Engelhageipal. 2009; Mesniclet al.2011), and no sigficant
96 nuclear differentiatiotbetween ocean basifisyrholm et al. 1999).The contrast between
97  mtDNA and'microsatellite differentiatidmas been interpretesmale dispersal anf@male
98  philopatryatthree hierarchical levelsceanic scaled.yrholm et al. 1999) between regions
99  within oceans (e.gthe Atlantic; Engelhaupt al.2009), and at the social group level (Lynnol
100 & Gyllensten 1998).
101
102  Female philopatry and makgased dispersal is consistent with behavioral observations of sperm
103  whale social structurdlales disperse from their natal social units at an ageléfyears(Best
104  1979; Richarcet al. 1996a; Whitehead 2003ndbecome increasingly solitags they age,
105  extendng their latitudinal range into polar watg@llen 1980; Best 1979; Whitehead 2003).
106  After reaching sociahaturity (at 2527 years, Best 1979nales associate with females for the
107  purposes ef:mating, but do not permanergipainwith any given femalsocialgroup(Richard
108 et al.1996a;Whitehead 1993; Whitehead 19%€male sociajroups contain adult femaldsat
109  show longterm sociabondswith one anotheras well as juvenilesf both sexesandare
110  confined to lowtatitude tropical and temperate wat@est 1979; Christadt al. 1998; Coakes &
111 Whitehead 2004; Dufault & Whitehead 1998; Dufaailal. 1999; Richarckt al. 1996a).
112  Howeverghere aresubstantial differences by ocearvical dialectsfemale social group size,
113  and proportion of calves within social groy@eroet al. 2015; Whiteheadt al. 2012),
114  suggestinghat the relative importance of femalecial groups in partitioning genetic diversity

115  might vary by ocean.
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116

117  Here, we investiga the cause of the rapid radiation of maternal lineages in sperm whales, and
118  how social group and geographic factors partition genetic diversity in differentsod®&an

119  hypothesizethahe lowbut highly structuredntDNA diversity observed in the sperm whade
120  consistent wittarecent, rapid radiation of a single mtDNA lineage, followed by genetic drift due
121  to female philopatnat regional and social group levetar this,we assembled the largest sperm
122 whale gentic dataset to daténcluding both published and previously unpublished data.

123 Previously'unpublished data included stranding samples, and samples collected/bydlge *
124  of theOdyssey’a five year expedition thabllected biopsy samples (skin and lidab from

125 undersampled equatorial regiofSigure 1), including the previously wampled Indian Ocean
126  (Godardetalv2003). Previously published data included mtDNA control reg@i®) faplotypes
127  from 1,091samples (Engelhawgital. 2009; Lyrholm & Gyllensten 1998; Mesniek al. 2011;

128  Rendelletal.2012; Richardkt al. 1996a; Whiteheadt al. 1998).Usingthis unprecedented

129 dataset, we first.explicitly teite hypothesis tha past population expansion could explain the
130 low mtDNA diversity seen in the sperm whaleeWien evaluate the importance of geographic
131  regionspversusssocial groups in determining genetic structure within the Radfindian

132 Oceans (where sufficiemdividuals with social group information were available), using the
133 unique circumequatorial collection of samples fremgialgroups andvithin-ocean regions.

134  Finally, we also examinsexspecific differenceby carryingout these analyses for both

135  biparentally inherited nuclear markers (13 microsatellite loci) and the mateinhlyited

136  mtDNA. This study demonstreshow differentfactorsshapepatterns of genetic diversity at

137  multiple scalessin a broadly distributed marine organism.

138

139 3. Materialsand Methods

140  3.1. Assembly of mtDNA dataset and definition of spatial scales

141

142 Using the.definitions developed by Mesnatkal. (2005, also seSupplementary Material) lwe
143  summarizedntDNA haplotype information from previous publications by ocean and within-
144  ocean regionJupplementary Material)2Regions wee defined by aggregating samples that

145  were obtaied within ~500 km of each other, with the exception of the Mediterranean that was
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pooled over the entire sea for consistency with previous publications (Engeshal2009).
Areasincluded inregionalanalysesvere restricted to thosampled by th©dysseyand

augmented by samples from previous studies, where availablgjppiuél/subtropical areas

(38°S to"38°Nsampled in previous studies, as these were the latitudes primarily sampihed by
OdysseyRegions were also required to have five or more sampled individuals to limit the effect
of low sample sizesAggregation of datasets from different publications was possible because of
the concerted efforts of the Cachalote Consor{iM@snicket al. 2005)to standardize
nomenclattrdor,sperm whale mtDNA CR haplotypes.lack of standardized nuclear markers

did not allowfor identificatiorand removal of potential betweestudy replicatesHowever,we
removed withinstudy replicatesvhere identified

‘Voyage ofitheOdysseysamples wereollected from 1999-2005 in circum-equatorial regions
(Figure 1) using a biopsy dart. As detailed in Godsral. (2003), btal genomic DNA was
extractedrom theOdysseysamples using a high-salt procedure. DNA aliquots of 895 samples
werethen pravided by Ocean Alliance, sponsor of the ‘Voyage oDihessey New Zealand
sperm whalerskin and tissue samples 89) were collected from strandings by New Zealand
Department ofConservation staff from 1994 to 2008 and archived in th&Z&miand Cetacean
Tissue Archive (CeTA) at the University of Auckland. One sample originatig@imoa,
archived in CeTA, was also included. Oregon sperm whale skin and tissue sampBsvere
provided by the Oregon Marine Mammadi&hding NetworkDNA was extracted from samples
of stranded animals following a standard phenol/chloroform technique (Sangtralok989)as
modified by-Bakeet al.(1994).

We carried outmplification of the mtDNA CR using the primers M13dlp1.5 and tphe, and
seqien@da 619 bp consensus length of this fragment on an ABI3TROA analyzer, as
described in Alexandest al.(2013).Sequences were trimmed using PHRED scores and by eye
in Sequencher v. 4@&ene Codes). After trimming, sequences with more than 10% of bases
showing a PHRED score of <20 wereseguenced or removed from the datésktrin etal.

2010). We visually confirmedariable sites between haplotypes in each sequence using

SequencheAfter removal of replicatesye trimmed theOdysseyand stranding samples to the
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shorter consensus length of 394 bp and comtimeawith the previously published mtDNA
data.This 394 bp fragment has the highlestl of diversity across the sperm whale mitogenome,
andaccurately reflestintraspecificohylogenies based on thdl mitogenomesequence
(Alexanderetal.2013).

3.2. Sex identification of Odyssey and stranding samples

We sexedsamplewsing a multiplexed PCR amplifying 152 bp of 8ieYon the Y chromosome
of males(Richardet al. 1994;primers: sperawhale specificSRYprimers), and a 442-445 bp
fragment of theZFX/ZFYfragment present in both males and femé@esen and Medrano 1990;
primers: P45EZ and PBEZ). Each reaction consisted of 1 puL of sample DNA, and a final
concentrationrof 0.9x Platinuiraqbuffer (Invitrogen), 0.36 uM of each of the four primers, 2.27
mM MgCl3, 0.18 mM dNTP and 0.28 of PlatinumTag polymerase (Invitrogen), with ddi®

to 11uL total volume. The temperature profile consisted of an initial denaturing step of 3 min at
94°C, followed by 35 cycles of 94°C for 45 s, 58°C for 45 s and 72°C for 60 s, followed by a
final extensionsstep of 72°C for 10 min. The PCR products were run on a 1.6% agarose gel
(buffer: TBE),stained with ethidium bromide, and visualized under UV lightdnce of two

bands indicated malesample, one bara female sampleand no bandBCR failure

3.3. Microsatdllite genotyping, identification of replicates and kin

Thirteen microsatellite loci were selected based on previous genotyping in rimevepee
(Engelhaupet-al. 2009),and other cetacean specf{8sipplementary Material 3)Ve amplified

each locusanranrindividual reaction, with 1 pL of the sample DNA, a final concentration of 0.9%
PlatinumTaqgbuffer (Invitrogen), 0.36 uM of each primer and 0.18 mM dNTP. MgCl, and
PlathumTaq polymerase (Invitrogen) concentrations varied by locus as detailed in
Supplementary.Material, &nd we added ddi to 11 pL total volume. Temperature profiles
consisted,of an initial denaturing step of 3-5 minutes at 94-95°C, followed 49 8pcks of 94-

95°C for 30-40 s, the locuspecific annealing temperature (as detaile8upplementary

Material 3 for 30-60 s, and 72°C for 30-60 s, followed by a final extension step of 72°C for 8-30

min. Multiple microsatellite loci were combined based dfeding size range and fluorescent
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206 label Supplementary Material 3) and-tmaded on a\BI 3730xI DNA Analyzer withGS500 LIZ

207 ladder Output was processersingGeneMapper v. 3.fApplied Biosystems), with a minimum

208  signal strength detection threshold of 50 units. All automated calls were checkgzl fytle a

209  subset of'samples creskecked by a second researcher (D. Steel) to ensure consistency in allele
210 calling.

211

212 Other quality contro{(QC) measures were then carried out following Mairal. (2010).

213  Samples were only included if they were genotype@fdeaseight microsatelte loci, and

214  successfully'sexed sequencefbr mtDNA CR This QC wasd limit the inclusion of samples

215  likely affected by low DNA quantity/qualityldentification of replicate samples was carried out
216  usingCervuswa3.{Kalinowskiet al.2007). To compensate for genotyping ervee used

217  relaxed matehing allowing for mismatches at up to four microsatellite loci, with mismatching loci
218  corrected or repeated.rémainingmismatchesvere consistent with allelic droposamples

219  wereconsidered, replicatesthey matched at sex antDNA CR. Probability of identity (gp))

220 was calculatedsingCervusfor pairs showing exact matches, @ehnalexv. 6.501(Peakall &

221 Smouser2006;Peakall & Smouse 2012) for those with mismatches (avgsplye the

222 combination of exactlynatching markers)he perallele microsatellite error ra{@ompanoret

223  al. 2005)was estimated usingtentional duplicates for 110 samples, selected randomly with
224  respet to DNA quality and quantity. Tests for deviation from Hardy Weinberg equilibaineh

225  for linkage disequilibrium were conducted usi@gnepop v. 4.PRaymond & Rousset 1995a),

226 and tests for the presence of large allele dropout and null allelesMISiRD-CHECKER v.

227  2.2.3(van Qeosterhoutt al. 2004), following the methods @farroll et al.(2011).We excluded

228  microsatellitesloci frompopulation genetic analyses if they showed departures from Hardy-

229  WeinbergequilibriumA ‘kin restricted’ dataset was created to account for the sampling of first
230 order relatives within social groupale followed Mesniclet al’s (2011) approach of removing
231 one member of.eveifyrst-order kinpair (defined as samples sharing at least one allele at every
232 microsatellite locusidentified usingSOLOMON v. 1.4 (Christieet al. 2013).We retainede

233  sample with the most complete genotyqmen each pair. We conducted analyses on both the
234 ‘full’ and ‘restricted’ version of this dataset.

235
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3.4. Testing for a population expansion

We tested for a population expansiorthe mtDNA dataset by assesskgjs Fs (Fu 1997) and
the mismatch distributio(Harpending 1994; Rogers & Harpending 1992; Slatkin & Hudson
1991) undera‘demographic expansion scenario thradghuinv. 3.5with 10,000 permutations
to assess significan¢Excoffier et al. 2005; Schneider & Excoffier 1999Ne carried out these

tests at the worldwide, oceanic and regional levels.

3.5. mtDNA'diversity, differentiation, and phylogeography

Haplotype and nucleotide diversity (using the Tamura and Nei (X@®®ction) werealculated
usingArlequin Differences in haplotype diversity and nucleotide divels#iyveen oceans were
assessed wusing'a custew. 3.0.2AR Core Team 2013cript to conduct a permutian test with
10,000 replicategAlexander 2015)We inferredthe number of substitutions between the mtDNA
CR haplotypesvith a parsimony network created usin@S v. 1.2.1Clementet al. 2000).We
examinedceaniadifferentiationusingFsrt and ®sr (with theTamura and Ng(1993)correction),
with 10,000 replicates to assesgnificance inArlequin To evaluate the potential influence of
phylogeographic structuge., divergence as well as drift), we udeERMUT v. 2.qPetit 2010)

to test for differences betwe&ysr and Nst (analogs of Er and ®st: Pons and Petit 1996).

3.6. Microsatellite diversity and differentiation

Observed and expected heterozygosigyre calculatedsingCervus and allelic richnesssing
FSTATv. 2.9.3(Goudet 2001)We testedfor significant differences in observed heterozygosity
and allelicaichness between oceassiga custonR script(Hamner 2014)hatimplemenedt-
tests or'Wileoxon signed rank tests depending on equality @neas and normality of
differences between areg@upplementary Material 4)Ve calculatedrs by region and ocean
(using oceanic andorldwide microsatellite allele frequenciegspectivelyusingFSTAT with
10,000 replicates to assess significad@eexamine oceanic differentiation, we calculakgg
throughGenepogRaymond & Rousset 1995b; Rousset 2008), uiagexact tedb assess
significance(Raymond & Rousset 1995&)}!'st, an index thatompensates for the diversity of
microsatellitedMeirmans &Hedrick 2011)was calculated witksenodive v. 2.0b28Vieirmans

& van Tienderen 2004), using 10,000 permutations to assess signifitaegaresence of

This article is protected by copyright. All rights reserved



266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

10

population structure independent of aupriori partitionswasassessed for thregional

microsatellite dataset usir@jructure v 2.3.4Falushet al.2003; Pritcharett al. 2000).

Following Engelhaupet al. (2009),we assumed admixture and correlated allele frequencies with
500,000"burn=in steps, followed by 1,000,000 steps. Twenty replicates (following the
recommendations of Gilbegt al.2012 were carried out fok = 1to K = 13. The Evannet al.
(2005) methodvas used to assess the best fithniproughSTRUCTUREARVESTEREarl &
vonHoldt 2012). Using TRUCTUREHARVESTERuUtput, CLUMPP (Jakobsson & Rosenberg

2007)wasused o align cluster assignment across replicates

3.7. Evaluating the relative importance of social group versus geographic regions by ocean

We usedikld'data on spatial and temporal proximityQrysseyiopsy samples to identify
samples collected during a single encounter with a social group. To account fouglkevio
sampled groupghatwereunintentionally reencounteredwe combined groups that had genetic
replicates between the®@ur groups likely correspond to a mix of ‘social groups’ and ‘social
units’ as defined in previous publicatiof@@hristalet al. 1998; Gereet al. 2015; Whitehead
2003). Werincluded social group®imn the literature where mtDNA datgereavailable
(Supplementary Material 5). Tests of genetic differentiation were condo@tetioning the
dataset by social group, for groups where two or more individuale@@s$s Hierarchical
analyses nesting social group within ocean and region at the worldwide scale amdegion
for the Pacific and Indian Oceans (where adequate numbers of groups were available) were
conducted througArlequinfor mtDNA (Fst and ®s7), andGDAv 1.0(Lewis & Zaykin 2001)
for microsatellites (Er only). To limit the effect of small sample sizes, nesaedlysesvere
restricted-t@ssubset of social groups that had five or more indivicaeds QC

3.8. Testing for female philopatry: sex-biased gene flow and dispersal

We restricted malyses of sesbiasedgene flow and dispersal to samples genotyped in this study,
where sex.information was availabknalyseswere carried out at the oceamigdwithin-ocean
regionallevels (including alloceanskgions withat least 2 individuals of each sd®)lowing the
methods of Oremust al. (2007). Due to limited numbers of social groups with or more

sampled males (Supplementary Materialn®analyses were conducted at the social group.level
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296 We investigated sekiased dispersal usingo methodsn FSTAT (1) a compariso of sex-

297  specificFst values for both mtDNAcoding the mtDNA CR aa homozygote locus) and

298  microsatellites and (2) calculation of the sgecific variance of assignment index (VAIc) based
299  on microsatellite¢Goudetet al. 2002).We testedhe difference betweesexspecific values

300 using 10,000 permutationshe more dispersive sex is expected to have a lowevdtue

301 (method 1), but higher variance (method 2), than the more philopatri©smxuset al. 2007).
302  We notethat males in tis dataset included immature males that had not dispersed from their
303 natal social grouphat couldconservatively bias the tests against finding Adesed dispersal.
304 As well as sesbiased dispersalye obtainedexspecific gene flow estimatesing the formulas
305 presented in'Hedrickt al. (2013)andmicrosatellite/mtDNA CR Er as the input values.

306

307 4. Results

308  4.1. Assembly of mtDNA dataset

309 We summarizedesjuence information for 1,091 samples from previous studies (Engeé#talpt

310 2009; Lyrhelm-& Gyllensten 1998/lesnicket al.2011; Rendelet al.2012; Richardet al.

311 1996a; Whiteheadt al. 1998;as detailed irsupplementary Materid). After removal of

312 replicatesdentified by genotypingntDNA sequences were available #86individuals in the

313  collection from theDdysseyandfrom strandingsThese sequencegere trimmedo a consensus

314  sequence lengtbf 394 bp and combinealith the previously published informatioresuling in

315  1,587sequences oluded in analyses ahtDNA differentiation and diversity at tiveorldwide

316 and oceaniedeveDf these, 998amplesvere included in analyses b6 regions vthin ocears

317 (Tablel).

318

319  4.2. Assembly.of microsatellite dataset and quality control

320 Of the 988 total'samples genotyped in this study, 671 passed quality control, with a minimum of
321 8 microsatellite loci each. On average, the samples passing QC had microsatellite genotypes that
322 were92.8% completeS.D. = 9.58%), representing 12 out of a potelytiedmplete genotype of

323 13 microsatellite lociwe identified replicates using between 6 and 13 overlapping loci with

324  pgpysbetween 3.39E-21 and 1.76E-06, and.g»s) between 2.16E-06 and 4.50E-03. The per-
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allele microsatellite error rateas 1.27% based on #entional duplicatgairs that passed QC
This errorwas largely due to allelic drop o{x#95%)that washenidentified and correcteédnd
was similarin magnitudeo previous studies on sperm whales and other ceta(gakeret al.
2013; Carrolletal.2011; Mesniclet al.2011). Using the known duplicates, there was no
detectable error idesignation omtDNA hapbtypes (i.e.an errorate of €.7%), and only one
male/female discrepancy betweeduplicak pair(e.g., an error rate of 1.69%).

After removal of replicategshe 671genotypes that passed QC represebt&lindividuals. Using
SOLOMONtoidentify pairs of individuals sharing an allele at every locus, we found 12 likely
first-orderkin relationships. One pair from the Chagos Archipelago consisted of tes) meh
theremaining-relationshipsvolving at least one female. Given the #mamber of identified
potential-firstorder kin,asults for the ‘full’ andKkin-restricted’ datasets were very similar for all
analysesConsequently, we provide results of testricted’ dataset onlyasSupplementary
Materiak 6-7. We defined 1®ithin-ocean regions in the microsatellite dataset (Taplén
contrastwith the  mtDNA dataset, three regions were not represastéioey were not genotyped
in this currentsstudy/had insufficient numbers of individymlss QCHawai’i, western North
Atlantic, and.the Gulf of Mexico. We did not detect consissagtificant deviations from Hardy
Weinberg equilibriunor linkage disequilibriunacross the withiocean regions. In additione
found noconsistenevidence of scoring errgpyeferentialarge-allele dropout, or null alleles for
any microsatellite loci across the withiicean regionsTherefore, we retained all loci (Table 2)

for analyses of microsatellite diversity and differetndia.

4.3. Testing for-a population expansion

For theworldwide dataset, Fu’'s Fs was strongly and significantly negative (€5.4,p =
0.0002), and thentDNA mismatch distribution appeared unimodab(re 2;parameter
estimatesandp-values for all comparisons listed in Supplementary Materighl8hg with a
starlike'mtDNA network (Figure 3) these results are stromglicatorsof a worldwide
population expansion ii@male lineages dhe sperm whaléSlatkin & Hudson 1991). Based on
7= 1.625 and a control region substitution rate of 2.6%/million year@lexanderet al.2013), the
age of the expansion event was estimated at 78,300 yeai@58g&-1:72,300 — 97,900),
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although the SSD and raggedness indices suggest the expansion model simldtsgliby
was not a good fit for the datp € 0.0109) Because inferencd population expansions can be
affected by population structure (Pannell & Whitlock 2003; Ptak & Przeworski 2002 )glso
looked for population expansioasthe @eanic and withirecean regional level3he Pacific
Ocean had a strongly significant negative Fu's Fs value (2%.5,p = 0.0003),and both the
Pacific and Atlantic gave qualitatively unimodal mismad@tributions Figure 2) with the
population expansion model supported for the Atlantic Ogean0(1547). In contrast, the
Indian Ocean showed a multi-maaaismatch distributiorfFigure 2)andtheFu’s Fsvalue was
not significant (Supplementary Material 8)singestimates of tau for each ocean, the time at
expansion within the Pacifiwas estimated at 66,900 years before prg®&% Cl: 60,800 —
87,300); 67,200 years before pratin the Atlantic(95% CI: 55,206- 86,700), and 94,000 years
before preseritithe Indian Ocea(®5% CI: 37,100 — 150,000 hese datauggesa more recent
population expansion event in the Paciéilsosupported by thlEargenumber of withinPacific
regions with negative Fu’s Fs res(Bupplementary Material 8)

4.4. mtDNAwdiversity, differentiation, and phylogeography

We resolved aotd of 39 mtDNA CR haplotypes in theorldwide datase{Table 1) including
twelve previously unreported haplotypes (Figure 3). ExcepKrthese new haplotypegere
rare < 5).and only found in one region (Figure Fhe maximum distance between any two
haplotypes was two substitutioasd his only occurred twice on the haplotype network (Figure
3). Of the 31 variable sites found over the 394 bp mtDNA CR, all were transitions
(Supplementary Material) 1To investigate the potential for resolvifugthermtDNA diversity,
we sequenced00 samfesfor 619 bp of the mtDNA CR. A comparison of the two consensus
lengths indicated 394 bgaptured the majority of variatio®(pplementary Material)6
Therefore, even with the addition of Indian Ocean samples, the leweDA CR diversity in
the sperm whale is still among the lowest in Cet¢€ahblel vs. cetacean mtDNA diversity
estimates,in Alexandet al.2013). The Atlantic Ocean fthsignificantly lower nucleotide
diversity than the Indian arfélacificOceansandsignificantlylower haplotype diversity than the

Pacific(Table 1 p-values for alkignificart diversitycomparisonsummarizedn Supplementary
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Material 9, which appeared to be partly driven by the lack of mtDNA CR variation within the
Mediterranear{Table 1).

There was@me sharing of mtDNA haplotypes across all three ocean basins, particulay, of
andC: the{three most common haplotyp&gy(re 3 Figure 4) Despite thisgeographic structure
was evident at theceanic scale, with four haplotypes found at reasonably high frequencies (in
>20 individuals) yet restricted #single ocean basin (haploty)dén the Atlantic KK in the
Indian Oceank‘andD in the Pacific Ocearfigure 3 Figure 4)Values forFst and ®st showed
similar patternsit oceanic and regional levélEigure 4, Supplementary Material 18)eit with
®st tending to exceed the magnitude g@f.FAn explicittest of these two indices (usingas
ananalog of @swPons and Petit, 199Gnhdicated asmall but significant < 0.05) influenceof
phylogeographic structure at the oceanic level (i.e., haplotype lineages sortedryaodea
worldwide regionalevel (.e., haplotype lineages sorted by region over a worldwide scale).
However, tlese results wereontingent on the inclusion of the Gulf of Mexico, which has the
closely related haplotypes X and Y present in high frequencies (Figkiguge 9.

4.5. Microsatellite diversity and differentiation

No significant differences microsatellite heterozygosity or allelic richnegsre foundobetween
oceangusing Wicoxon signed rank ortestsdepending on equality of variances and normality
of differences between pajigcus by locus resulSupplementary Material) 7Sgnificant
differentiation was detected among oceans (F003, G'st 0.015,p < 0.05), but this was far
lower in magnitude than that seen fotDNA (Figure 4) Our Structureresults @ve the highest
likelihood:toKs=:1 (meanLn Pr(X|K) =-18,855.3cf. -18,908.9 foK = 2). Visual inspection of
the structure results fét = 2 (Supplementary Material 11) showed no obvious population
structure, offering further support f&r= 1. This is not surprising given the low levels of
differentiation foeund in tha priori analysegartitioning the dataset by regi¢e.g., st < 0.02
Supplementary Material 102) (Waples & Gaggiotti 2006).

4.6. Evaluating the relative importance of social group versus geographic regions by ocean

This article is protected by copyright. All rights reserved



413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

15

Among theOdysseylataset67 social groupsr(= 420 individuals) had more than two
individuals pass genetl@C measuresAfter inclusion of publishedhtDNA informationfor 28
socialgroups from Ecuador and the Gulf of Mexico (Engelhaupt 2004; O@etmet al. 2012;
Richardet'al'1996a), we includefl5 social groupsr( = 541 individuals),representing 16
regions and all 3 oceafSupplementary Material 5ln nonnested analysesdifferentiation
among social groups was extremely high: social group consistently eegmeater levels of
variation than partitioning bgegions and oceans (Figure #ihis is expectedjiven the more

fine-scale partitioning of social groups compared to higher-level geograqdles

To account for thisine-scale partitioning in a hierarchical AMOVA, westedsocial groups

with > 5 sampled-individuals within ocean and region for theonddwide dataset, and within
regions forthe"Pacific and Indian Oceans (the Atlantic did not have enough regieash
genetic marker typwith social groups of five or more individigi For the worldwide dataset,
social group explained a greatenount of mtDNA variance than either ocean or region, but all
levels were significant (Table.3n the Pacific, only social group (compared with region)
explained=anyssignificant amount of mtDNA variantalfle 3. In the Indian Ocean, however,
region explained a larger percentage of variance than social group, although sapialago
significant(Table 3. Social group was the only hierarchical lethet explainedny significant
variance ifthe microsatellitedatase{Table 3.

4.7. Testing for female philopatry: sex-biased gene flow and dispersal

Most equateriakegions showed a significant skew towards fesyalensistent with the
assumptiontthat th@dysseyargely targetedocial groups dominated lbymales (Tablel). Sex
specific estimates of gene flow, calculated from microsatellite and mtPfedricket al. 2013),
were low for females and high forales (Table ¥ Giventhe evidence for selsiased gene flow,

it is not surprising that testsr sexbiased dispersal indicated males are the more dispersive sex
(Table 4.At all hierarchical levels, femalgpecificFst for mtDNA exceeded that of malesnd

was significantly greatevhen partitioning by regions over the worldwidigaset Table4). For
microsatellites,He magnitude of femalspecific st wasgreater than malspecific

differentiation except among regions within the Pacific (however, neither sgxigas
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significanty different from zero). Femalspecific microsatellit€sr significantly exceeded that
of males at the oceanscale (Table ¥ Surprisingly the sexspecific variance of assignment tests

were not significant.

5. Discussion

We have shown evidence for multipler€esoperating on genetic diversity adiferentiation in
the sperm whalea marine species with a worldwide distributioner different tempotand
geographic scalesVe suggestherelativelylow mtDNA diversityof sperm whalegs consistent
with a recent'population expansionsweepHowever, dspite the lonmtDNA diversity,we
detected marked patterns of maternal structure in the Indian Go®dar to that seen in the
Atlantic Oeceani(this study; Engelhawgital. 2009), but in the absenoé obvious geographic
boundarieswin€ontrast, the Pacific Ocean showe@g$ardgional mtDNA differentiation. ¥en
after accounting for social group in a nested AMOVA, region remained an importanhlevel
describing genetic structure within the Indf@aoean, but not the Pacifithis is consistent with
previous studies that found no geographicbiged mtDNA structure in the Pacifloyrholm &
Gyllensten=1998; Lyrholret al. 1999; Rendelét al. 2012; Whiteheadt al. 1998), or significant,
but low levels.of differentiatiofMesnicket al.2011), suggestinthe Pacifids unusual in its

lack of geographic structure in comparison with the Atlantic and Indé&ai@s1n contrast with
the high levels of maternal structure found@atous hierarchical scalesiclear structure was far
less pronounced (albeit significant at the oceanic level, in contrast with pretidies%.g.,
Lyrholm et al. 1999 likely due to our larger sample sizes). In fact, within the nested AMOVA,
social groupwas the only important level for describing microsatellite variAtibeugh the

lack of nuelearsstructure could be influencedtbg recenpopulation expansidsweep it is also

likely affected by the presence of mdliased dispersal and gene flow.

5.1. A recent worl dwide expansion of sperm whales

The mismatch analysis conducted in this stwdg consistent with worldwide expansioof a
single maternal lineagbatbegan ~80,000 years agdbis important to point out that this
estimate is provisionalue to the problems of model fitting and phylogenetically derived

substitution rates (Grant 2015; ldbal. 2011a). Indeedhe use ok faster substitution rate
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473  derived from ancient DNA sampling (e.g., 20%/million year for bowhead whalest &o

474 20110 woud lead to an estimate of the expansion beginning ~10,000 years ago, consistent with
475  the end othe last glacial maximurfLGM) (Lambecket al.2014). In aemarkable parallel

476  another abyssaredator(and one of the sperm whalgigey), the giant squidArchiteuthisspp.),

477  also shows extremely low mitogenomic diversity (Winkelmahal.2013),and a similatime to

478  most recent common maternal ancestepending on the substitution rate usHus raises the

479  possibility that avorldwide expansion of sperm whales could have been predicated on a recent
480 expansion/of their pregspecially asther squid species have also shown signatures of

481 demographi€frange expansions that appear to be assbwiilh theLGM (e.g.,Doryteuthis gahi

482  |bafezet al. 2012 Dosidicus gigaslbafiezet al. 2011; Ibafiez & Poulin 2014further support

483  for this hypothesis comes from othlaepdiving, squid-feedingetaceans whickhow similar

484  patterns offexpansion, including the gray’s beaked wihéésg¢plodon grayiandpilot whales

485  (Globicephalaspp.)(Oremuset al.2009; Thompsoet al. 2016).However, as the squid species

486  mentioned are only some of the many cephalopod and fish species preyed on by the sperm whale
487  (Whitehead 2003) uture researchhouldestablish whether otherey specieshow the same

488  patternsiFhisissespecially pertinerds other cetacean species with diverse prey basesalso

489  shown signatures of population expansiassociated with the LGNg.g.,white-beaked

490 dolphins, Banguerainestrozeet al 201Q harbor porpoises, Fontaieeal. 2014 killer whales,

491  Morin et al. 2015).

492

493  In addition,the population expansions of the squid species mentioned could also sheport

494  cultural hitehhikinghypothesis, if the use diese squid as prey was restricted to a few initial

495  sperm whalematrilines.The inclusion of populatiotevel nuclear genetic markearsfuture

496  studiescoulddistinguish between a selective sweep and a population expansion as the cause of
497  low mtDNA diversity. A selective sweefeither due to cultural hitchhiking, or functional

498  sdection actingsorthe mtDNA) will reduce the genetic diversitf the mitogenome, but not of

499 the nuclear genom&harlesworthet al. 2003; Rokat al.2001).Given the limited

500 phylogeographic structure (i.glivergencepbsrvedfor sperm whalentDNA, whatever the

501 ultimate cause ohelow mtDNA diversity, time since this pointhas been insufficient for unique

502  oceanspecific or regiorspecific haplotype lineagéwith the exception of the Gulf of Mexico) to
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be established through mutation and lineage sorting. However, the marked femaldrghilopa
present in the sperm whadéregional and social group levels has worked on post-expansion

MtDNA diversity to establish strong patterns of mtDNiferentiation within oceans.

5.2. Female philopatry at the geographic vs social group level varies by ocean

Levels of regional differentiatiom mtDNA were much higher ithe Atlantic and Indian Oceans
than in the'Pacific. Geogralghregionpersisted as an important factor in partitioning mtDNA
diversity within the Indian Ocean, even after accounting for social group. In contith# the
Pacific, sacial group was the only level that described any significant amountatiorafihe

lack of regionmal structure in the Pacifgcconsistent with behavioral evidenéemale whales in
the Pacificrappear to range further than in the Atlantic, up to ~4000 km in tifie Bad only up
to ~700 km in the AtlantiQJaquett al. 2003; Mizroch & Rice 2013; Ortedartiz et al. 2012;
Whiteheackt al. 2012; Whiteheaet al. 2008). Previously, differences in geographic structure
and social group compositidretween the Atlantic and Pacific Oceans have been attributed to
oceanography;ypredation, whaling or culture (Whitehead et al. 2012)e€ulis suggeshat a
consideration.of the factors driving differences in geographic structure sheuloeaextended to

the Indian Ocean.

Oceanography can influence differentiation through geographic isolation (e.g., the
Mediterranean, Gulf of Mexicdngelhaupet d. 2009).However,geographic isolation cannot
explain theslarge degree of mtDNA differentiation seghin the Indian Ocean, particularly
illustrated-by-the mtDNA haplotype frequency differenicesomparison witlsri Lanka Instead

a potentialbceanographiexplanation lies ithe bathymetryf Sri Lanka there are #arge

number of submarine canyons that lead to enhanced productivity of this (egidgonset al.

2012). Female.sperm whales utilizing the Sri Lankan canyons might not need to ramgg\as w
to satisfysnutritional requirement&ordon 1987; Moors-Murphy 2014). This ‘enhanced
philopatry’ could then lead to the striking geogragtiféerentiationin mtDNA observedA

similar pracess of local fidelity has been proposed for insular communities of otherwisecpelagi

dolphins, due to an ‘island mass’ eff¢etartienet al.2012; Oremugt al.2012).
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Another potentiaéxplanation for the difference in geographic structure between oceans lies in
the acousticultureof sperm whaledt has been previously hypothesized that acoustic clans,
which comprise of social groups wisimilar repertoires aficoustic codasteredtypical series of
clicks), shapgatterns ofjenetic differentiationn the sperm whalgRendellet al.2012; Watkins

& Schevill"1977; Whiteheadt al. 1998). In the Atlantic, coda patterns vary based on geagraph
regionsand acoustic clans are allopatric (Whitehetdl.2012) This correlates with the
heightened patterns geographicallypased mtDNA differentiatioseen in this ocean. In the
Pacific, aceustic clans are distributed sympatrically across broad geographic(@argeset al.
2015; Rendelétal.2012; Whiteheaét al. 1998). It has been previously proposed that the lack
of geographicalipased mtDNA differentiation in the Pacific is because maternal dispedsal an
gene flow occurs within acoustic clans, but across broad geographic(sealtsmales are
socially philopatric rathethan geographically philopatric; Cantetral.2015; Rendelét al.

2012; Whiteheaet al. 1998).This hypothesis is consistent withir nested AMOVA results for

the Pacific,"where social group was the only level that explained any significanbtof

genetic variationHowever genetic structure driven by oceanography or cubdineenot
necessarily'mutually exclusive hypotheses: differences in resource use could be reinforced by
differences in codeepertoirebetween acoustic clarf€antoret al. 2015; Cantor & Whitehead
2015; Gereet al. 2015).

Local population declines due to whaling could have also reduced geogsapitture in the
Pacific(Whiteheadkt al. 2012) Largescale movements frothe Galapagos to Peru have been
documented, where whalirglated declines left the productive Humboldt Current
underpopulate@Whiteheacet al. 1997) Indeed, lhe Pacifi¢ particularly the North Pacific, was
subjected to.higlevelsof both legal and illegal whaling (Ilvashchergdoal. 2013). Aternately,
perhapsherehas been insufficient tinrethe Pacific for geographatructure to evolvepr
either genetic.diversity arocalizationpatterns given ourresults suggested a more recent
expansion in the Pacific. Distinguishing between whaling andhpnean causes of the ¢éc-
wide expansion wiltequireadditional geneticlatato establish tighter confidence-intervals on
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therelativetiming of population expansions between the oceans. Whether the signature of a
population expansion has been exacerbated by whaling or not, an expansion would be expected to
tightly correlate both the maternaliyheritedmtDNA andmaternallyinfluenced coda type
(Cantoret'ali2015; Whiteheadt al.2012).This could be further tested using linked acoustic and
genetic sampling in the Indian Ocean (e.g., Reredell.2012). We wouldredictthat in the

Indian Qcean, mMtDNA genetic variation would be at equilibrium with both coda and gkemgra

structure, as. it is in the Atlantic.

5.3. Femalepphilepatry and male-biased dispersal

Our findings confirm the importanae female philopatry anthalebiased dispersal in the sperm
whale(Engelhaupetal. 2009; Lyrholmet al. 1999). In addition to sekiased dispersal, we
demonstratethat the sperm whale shows maiased gene flonMale-biasedgene flowcould
explain the,significant amongroup microsatellite differentiatiosetected in this study: differing
paternal contributions to the alleles present within each female socialwgoolgh enhance
nuclear genetic drift between social gro@iRghardet al. 1996a).This mechanism could be
investigated.in the future using a gametiark-recapture framework to detect paternities among
different. social groupgCarrollet al.2012; Garriguest al. 2004). However, espite the overall
patterns of makbiased dispersal and gene flaignificant microsatellite differentiation between
oceans indicates some restriction in oceanic dispersal and gene flow, even of healess also
someevidencesfor breeding fidelity of males at even finer spatial scales than at the oceanic level
assuggested:by possible firsorder kirshipbetween two males ithe Chagos Archipelago.
Evidencefar male fidelity hasalsobeen foundn the Californian Curreny Mesnicket al.
(2011)using genetic assignmenthese findings could indicate trexbiased dispersal in sperm
whalesis facultative rather than obligageg.,some maleshow philopatry to specific areasile
others dispersé re-examination of other species (egyeat white sharkfardiniet al.2001;
humpback.whale®akeret d. 2013)that show apparent signatures of rHailesed genéow

could be offinterest to establish whether this phenomisrfonnd in other taxa.

5.4. Management implications
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Sex-biased dispersal and strong maternal population structure in the spernawgoae for
management units based on the more philopatric females, rather than the ngotey naales,
requiring femalespecific estimatesf population sizeimilar tomalespecific effective

population sizeestimatesn humpbacks (Constantire al. 2012). In addition, when defining
femalebased popation structure in the sperm whale, it is important to aggregate samples at
appropriate spatial scal@@onovan 1991; Dufaultt al. 1999). Given the clustered sample
collection of theDdysseywe chose to grougamples thabccurred within 500 km of another
sample. This could have inadvertently either spliions thatvere truly one population, or
alternately ‘ltmped’ areas with more than one distinct population. Both of thesatites

present problems. ‘Splitting’ regional populations could mean that the strongdésrbetween
social groupstdetectad our current research, as well@gvious studies (Lyrholm & Gyllensten
1998; Rendelet al. 2012),are conflated with regional differentiation. The alternative of
‘clumping’ can also be problematis regiongould represent areas of different importance for
males and femalg®.g., the Maldives/Chagos Archipelago regwhere only males were
sampled around the Chagos Archipelago, but both sexes around the Maldives). Although we
attempted-torassess thespriori divisions against a nea priori clustering methodStructure,

this was limited by low levels of differentiation and the relatively small number of microsatellite

loci.

Continuing to Investigate patterns of genetic differentiation in the sperm whalpastant, as
high degrees of differentiation (i,@solation)could indicate susceptibility to population declines
resultingfremavarious ongoing anthropogenic threats, includerganglement in marine debris
and shipsstrikgéNotarbartoleDi-Sciara 2014); exposure to pollutafBaveryet al.2013a;
Saveryet al.2013b; Wise Set al.2009; Wise Sret al. 2011) as well as pollution associated
with oil extraction (e.g.2010Deepwater Horizomwil spill), andnegative interactions with

anthropogenic.soun@lateet al. 1994).
5.5. Conclusion

In this study,we demonstratechiat low mtDNA diversityin the sperm whale is likely due to a

recent population expansidbespitelow mtDNA diversity,we demonstratehigh levet of
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regionalstructurewithin some ocean basins. However, social group was also an important level
in describing mtDNA variance. The importance of social group and geographic plyilopat
differed by ocean, with only social group explaining any significant amount of mtDNAnearia

in the Pacific'Ocean. Bag able to distinguish between geographic and social group philopatry is
importantas a restriction in movement between local populations could indicate thatthere

real risk oflongtermdeclines in response to current anthropogenic thrdaspjte he sperm

whale’s largenorldwide populatiorsize The approach we have used in this study for
partitioning the'effects of social group and geographic regiudhalso be useful for other

species that'show strong social structure, yet are of conservatioern such as elephanthe
longfinned pilot whaleandthe killer whale(Archie et al. 2008; Hoelzeét al. 2007;

Ottensmeyer& Whitehead 2003).

The specific mechanism(s) driving the differing contributions to gessticturewithin oceans
require further studyparticularly whether the expansion within facificis more reert than in
other oceans, and how acoustic codas are structured in the Indian Ocean. Howevkrtheveral
high levelssoimtDNA structure observed in the sperm whale appear to be driven by female
philopatryat multiple hierarchical leve]contrasting withmale-biased dispersal and gene flow.
By investigating the interplay of evolutionary forces operating at different texingod
geographic scales, we have shown tpatis whalesre perhaps a unique example of a global

population expansion followed by rapid assortment due to female social organization.
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Table d=Regional, oceanic and worldwidample sizesn and diversity metrics for mtDNA and microsatellites. For mtDNA,
number of haplotypek), haplotype diversityn) and nucleotide diversity (in %) is presented, with standard deviations
calculated-inArlequin Formicrosatellitesnumbers of individuals are given by s&x i) and total sample siza). A binomial
exact test was used to identify areas with a significant bias of females (asterisk after female sampleaes)astenisk after
malersample size), where * significaniat 0.05; ** significant ap < 0.001. ks values are indicated as significant where
signifieant atp < 0.05.Regional allelic richness adjusted by minimum regional sample size, witkanic allelic richness
adjusted by minimum ocean sample size. Regions ordered from east to westgh#tisscludes samples not originating from
tropical/subtropical regions, from areas with sampless@e small to include in regional analyses, or those samples without a
specifie.=50km regional location. References fitata [1] This study; [2] Lyrholm & Gyllensten(1998); [3] Rendelét al.

(2012); [4] Richarcet al.(1996a); [5] Whiteheadt al.(1998) [6] Mesnicket al.(2011); [7] Engelhaupdt al. (2009).

Table 1 (Continued)

mtDNA microsatellites
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Geographic area n k h(s.d.) n (s.d) F M n Allellc Fis | References
richness
Gulf of California 122 11 0.788 0.029 0.368 0.25Q | 93** 20 122 5.2 0.702 0.016 1
Galapagos/Ecuador 285 16 0.744 (0.012 0.33 (0.290) 0 23 23 51 0.677 0.031 |1,2,3,4,¢
Pacific Crossing 36 0.679 0.07) 0.301 0.220 20 13 37 51 0.704 0.013 1
e Hawai'i 28 0.6430.069 0.1% (0.164) | -- - - - - - 6
EU_) Kiribati 13 0.718 0.089 0.381 Q.27 | 10* 13 5.3 0.684 0.092* 1
Papua New Guinea 63 8 0.720 0.039 0.299 Q.21 | 54** 65 5.1 0.687 0.031 1
Unhassigned Pacific 478 - -- -- 22 31 66 -- -- -- 1,2,3,5,¢
Total 1025 33 0.780(0.008) 0.385(0.256) | 199** 97 326 8.9 0.704 0.021* --
Southwestern Australia 21 5 0.791 0.049 0.3® (0.2%) 9 21 5.4l 0.697 0.007 1
Cocos Island 18 3 0.451 0.119 0.29(0.187% | 18* 18 5.2 0.712 0.001 1
SriLanka 42 3 0.382 0.07§ 0.13L (0.1%) | 42* 56 51 0.671 0.040* 1
c _Maldives/ Chagos Archipelag 33 4  0.5700.06) 0.30 (0.22) | 9 15 34 53 0.700 0.041 1
E Seychelles 31 6 0.716 0.066) 0.407(0.27) | 17* 31 53  0.697 0.0D 1
Aldabras 12 3 0.712 0.069 0.3& (0.267) 6 12 51 0.677 0.027 1
Unassigned Indian 2 -- -- -- 1 1 3 -- -- 1
Total 159 8 0.788 (0.015) 0.426(0.280) | 102** 30 175 8.8 0.686 0.035* --
Mediterranean 40 1 0.000 0.000 0.000 (.000 1 8* 9 4.6 0.631 0.086 1,7
Canary Islands 14 3 0.648 0.08) 0.329(0.2%) 14 8 25 5.2 0.690 0.014 1
2 Western North Atlantic 87 6 0.616 0.028 0.271 (0.2M) - - - - - - 1,7
g Gulf of Mexico 153 5 0.50 (0.044) 0.211 (0.167) -- -- -- -- -- -- 7
Unassigned Atlantic 68 -- -- -- 3 0 7 -- -- -- 1,2
Total 362 8 0.748 (0.010) 0.333(0.231) | 18 16 41 8.8 0.669 0.051* --
UnassignedVorldwide 41 -- -- -- -- -- -- -- -- -- 2
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Worldwide total

1587 39

0.818 (0.005)

0.430 (0.279)

319** 143 542

14.0

0696  0.029

Table 2. Summary ofmicrosatellitdocusspecificcharacteristics fothe542 individuals genotyped in this studygives the

number ofiindividuals successfully typed at each loelasandHe (observed and expected heterozygosity, respectively)

calculated)irCervus Fsr calculated iflGenepogdor oceanic and regional subsets of data (see Tab$dljstically significat

Fst values-are bolded and italicized, with * significanpat 0.05; ** significant ap < 0.001.

Reference

Sizerange (bp) Noof alleles Ho

He Oceanic Fsr Regional Fsr

Locus n
EV1 521
EV5 529

EV14 483

EV37 504

EV94 534

GATA417 438

GT23 523

GT575 487

rw4-10 461

SW13 523

464/465 404

Valsecchi& Amos(1996)
Valsecchi& Amos(1996)
Valsecchi& Amos(1996)
Valsecchi& Amos(1996)
Valsecchi& Amos(1996)
Palsbgllet al.(1997)
Bérubéet al. (2000)
Bérubéet al.(2000)
Waldicket al. (1999)
Richardet al. (1996b)

Schléttereet al. (1991)

118 — 142

148 — 174

121 - 155

177 - 250

193 - 225

172 - 202

75-99

131 - 137

177 - 213

134 - 176

141 - 145
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12

11

14

32

17

7

12

4

14

14

3

0.599 0.641 0.0034

0.711 0.708 0.0100*
0.687 0.716 0.0032
0.855 0.905 0.0029*
0.82 0.804 0.0017
0.509 0.532 0.0107
0.511 0.499 0.0034
0.61 0.611 0.0011

0.72 0.768 0.0028*
0.824 0.835 0.0000

0.527 0.541 0.0035

0.0061

0.0071

0.0120*

0.0050*

0.0025

0.0019

0.0000

0.0104

0.0037

0.0092*

0.0000



1028

SW19 508 Richardet al.(1996b) 89 - 167 32 0.88 0.921 0.0017* 0.0029**
FCB1 519 Buchanaet al.(1996) 107 - 145 16 0.792 0.835 0.0018 0.0032
Average 494.9 14.5 0.696 0.717 0.0032** 0.0048**
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1030
1031
1032
1033
1034
1035

1036

1037

1038
1039

Table 3: Degrees of freedorfd. f.)and percentage of variati¢%) explained by ocean,
region, social group, and among individuishierarchicaAMOVAs, nestng social
group within ocean for the worldwide dataset, and social group within region for the
worldwide, Pacific and Indian Ocean datasets. (a) mtDNA (B) mtDNA ®st. and (c)
microsatellite 1. Levels which explain a significant percentage of variatiorbal@ged
anditalicized, with * significant ap < 0.05; ** significant ap < 0.001.The ®cial groups

these results are based on are summarized in Supplementary Material 5.

(@) Worldwide Pacific Indian

mtDNA Fgr d.f. % d.f. % d.f. % d.f. %

Among oceans 2 15.1** -- -- -- -- -- --
Among regions - -- 7 22.7** 2 -3.0 3 44.4**

Among social groupyg 31 32.0** 22 26.9** 9 344 6 12.3**
Among.individuals | 350  52.9** 292 504** | 162 686** | 90 43.2*

(b) Worldwide Pacific Indian

mtDNA ®gr d.f. % d.f. % d.f. % d.f. %

Amongreceans 2 25.0%* -- -- -- -- -- --
Among regions - -- 7 34.9** 2 -1.3 3  51.9**

Among seciakgroupyg 31 29.8** 22 21.5*%* 9  31.9** 6 10.6*
Amongfindividuals | 350  45.2%* 292 436** | 162 694** | 90  37.6*

() Worldwide Pacific Indian

microsatéellite Fsr d.f. % d.f. % d.f. % d.f. %

Among oceans 2 0.27 -- -- -- -- -- --
Among regions - -- 6 0.07 1 0.03 3 0.25

Among social. groupg 23 1.32%* 15 1.49** 7 1.25%* 7  1.66**
Among individuals | 281 98.4 222 98.4 110 98.7 | 104 98.6

Table 4. Sex-specific st comparisons by mark@ndestimats of sexbiasedgene flow

(Nm, my/me, Hedricket al.,2013) Regional analyses of sepecific st were limited to

This article is protected by copyright. All rights reserved



1040  areas with more than two identified females and madesummarized ifiable 1. Note,
1041 thatalthoughmalespecific microsatellite § appears to exceed that of femad@song
1042  regions in the Pacifimeitherestimate is significantly different from zero. Due to limited
1043  sampleisizes, a withiocean regional & analysis was not conducted for the Atlantic.
1044  HedricKket al's (2013)estimates of sexpecific gene flow are based on the fixation indices
1045  presentedn Figure4. As all variance in assignment tests (VAIc) were not significant,
1046  results of these tests are not displayedis$izally significant valuesfér the p-values for
1047 the difference in Er between sexesre bolded and italicized, with * significanta&
1048  0.05; ** significant atp < 0.001.
1049
mtDNA CR Microsatellites Geneflow
Area
n Fsr p -value n Fsr p -value Nm mu/me
By 175 0.1145 177 0.0004 7.75
Pacific | 0.1632 0.8438 22.01
region 42 0.0640 43 0.0103 170.57
By 70 0.4892 83 0.0061 1.09
Indian _ 0.1666 0.4499 43.56
region 27 0.2878 29 0.0050 47.68
By 0.57
Atlantic : - - - - - - 25.99
region 14.71
By 253 0.2735 274 0.0063 1.45
1 0.0366* 0.2745 34.82
region 72 0.1426 80 0.0028 50.39
Worldwide
By 289 0.1259 319 0.0068 4.38
0.0725 0.0351* 16.77
ocean 118 0.0673 143 0.0008 73.49
1050
1051
1052
1053

This article is protected by copyright. All rights reserved



1054
1055

1056
1057
1058
1059
1060

e

¥ b

2 e o R S Mexico
: Maldives/ ,
(Chagos Archipelazol AL
; "’ Gulf of California[jiie

Sri Lankafs g Galapagos/
] apua
sl New Guinea Eluaitse

B s L& 7
. N rossing’
l. g 3
L ~eiSouthwestern|
[ Australia

£2014 Google- Imagery 2014 NASA TeaMetrics | 1000 kon L————

Figur e l:-DBistribution of genetic samples from sperm whaised in analyse$Vhite labels indicate areas included in witleicean
MtDNA and microsatellite tropical/subtropical regional analySelysseysamples were aggregated together if they occurred within
500 km of-another sample. This created the localized regional areas shown iratnglescAdditional mtDNA samples/regions
included’in analyses originating from previous studies collected over simital Sgales are circle@eferences in Tablg). Gray

labels showegions notncluded in regional analyses due to small sample sizes.
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Figure 2: Mismatch distributions for lNA atworldwide, oceanic and regionalvels AbbreviationsGulf of California (GCA)
Galapages/Ecuador (GPG), ‘Pacific Crossing’ (PX), Hawai'i (HAW), Kiribati (KR), Papua New GuiNéz) (BW Australia (AUS),
Cocos Island (COC), Sri Lanka (SRWaldives/Chagos Archipelago (MAL), Seychelles (SEY), Aldabras (ALD), Carsaynd

(CNI), Western North Atlantic (WNAO)Gulf of Mexico (GMX). A mismatch distribution was not generated for the Mediterranean

due to lack of mtDNA variation within this region.

Figur e 3=Maximum parsimony network based on 394 bp of the mtDNA CR (haplotype definitions in SupplementarglMateri
Haplotypes-are colored by ocean, with the exception of haplotypes V and W that were rratdd@oa specific ocean in previous
studies. Size of haplotype pie is proportional on a log scale to the total numbeplEssanth the haplotype.ihes represent
substitutions,(one or two between haplotypes as defined by the key). New haplotypdserihedan this study are outlined.

Figure 3 (Continued)
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Figur e 4;/Differentiation of mtDNA andmicrosatellites at oceanicregional and social group levels with regional/oceamibNA
haplotype_frequencie8Vhere a ranga number of social groups/regions are given, the smaller number corresponds to the
microsatellite: sample size and the larger number to the mtDNA samplBlsigecial group analysis was conducted for the Atlantic
due to limited sample sizes. Braces to right of table give scale of each analysis (worldwide, and by each ocean)lSeesaaibte
sizes used'in regional analyses Supplementary Material for sample sizes used in social group analyses. Pairwise comparisons at
oceanic andtegional levels are giversupplementariaterial 12 Haplotype key ordered by worldwide abundance of haplotype. *
significant.at.p < 0.05; ** significant at p < 0.001.

Figure 4 (Continued)
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