

1
2 MS. BIANCA PROHASKA (Orcid ID : 0000-0003-4495-073X)

3 MS. CAROLYN ROSE WHEELER (Orcid ID : 0000-0001-9976-8420)

4
5
6 Article type : Original Article

7
8
9 **Effects of Delayed Phlebotomy on Plasma Steroid Hormone Concentrations in Two**
10 **Elasmobranch Species**

11
12 Running title: Reproductive analyses delayed blood draw in sharks

13
14 B. K. Prohaska^{a*}, P. C. W. Tsang^b, W. B. Driggers III^c, E. R. Hoffmayer^c, C. R. Wheeler^a, and J.
15 A. Sulikowski^a

16
17 ^aDepartment of Marine Sciences, University of New England, 11 Hills Beach Road, Biddeford,
18 ME 04005, USA

19 ^bDepartment of Molecular, Cellular and Biomedical Sciences, University of New Hampshire,
20 129 Main Street, Durham, New Hampshire 03824, USA

21 ^cNational Oceanic and Atmospheric Administration, National Marine Fisheries Service,
22 Mississippi Laboratories, 3209 Frederick Street, Pascagoula, Mississippi 39567, USA

23
24 ***Corresponding author:** Current address is Department of Biology, Florida State University,
25 King Life Sciences, 319 Stadium Dr., Tallahassee, FL 32306 (313) 608-6049; E-
26 mail: bprohaska@bio.fsu.edu

27
28
29
This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the [Version of Record](#). Please cite this article as [doi:
\[10.1111/jai.13700\]\(https://doi.org/10.1111/jai.13700\)](https://doi.org/10.1111/jai.13700)

30

31

32

33

34 **Acknowledgments**

35 We thank captains C. Brown (*F/V Proud Mary*) and C. Felch (*F/V Lady Victoria*), as well as the
36 NOAA Fisheries, Mississippi Laboratories, Bottom Longline Survey Team. We also thank the
37 graduate and undergraduate students of the Sulikowski Laboratory at the University of New
38 England, and the Tsang Laboratory at the University of New Hampshire. This work was
39 sanctioned by the UNE's Animal Care and Use Committee (IACUC protocol no. UNE-
40 20121107SULIJ).

41 **Summary**

42 Measuring circulating concentrations of steroid hormones can be used as a method for
43 determining reproductive maturity and cycles in elasmobranchs. However, it is unknown how
44 long steroid hormones remain stable in elasmobranch blood following capture, and thus how
45 quickly these samples should be collected for the results of subsequent steroid hormone analyses
46 to be accurate. The objectives of this study were to determine if the sex steroid hormones
47 progesterone, testosterone and estradiol would remain at stable concentrations in the blood of the
48 Spiny Dogfish (*Squalus acanthias* Linnaeus, 1758) and the Atlantic Sharpnose Sharks
49 (*Rhizoprionodon terraenovae* Richardson, 1836) that were captured, left on deck and un-
50 refrigerated for 24 hours. Blood samples were serially drawn from five initially live sharks over a
51 period of 24 hours. While concentrations of all three hormones did significantly fluctuate over
52 the sampling period in both species, the resulting hormone concentrations from each sampling
53 period still fell within the range of previously reported values for each species in their respective
54 reproductive stage. Additionally, no significant changes in hematocrit were detected in either
55 species over the 24-hour period. This research represents an extreme situation in which sharks
56 were left on deck and un-refrigerated, and suggests that even when subjected to these conditions
57 steroid hormone concentrations may fluctuate, but the resulting values may still be useful for
58 assessing reproductive stage.

59

60

61
62
63
64
65
66
67
68
69
70
71
72

73 **Introduction**

74 The majority of elasmobranch fishes (sharks, skates and rays) exhibit life histories
75 characterized by slow growth, late maturity, and low fecundity, which make these fishes
76 particularly vulnerable to both direct and indirect fishing pressures (Dulvy et al., 2003). In
77 general, elasmobranch life histories are similar; however, a thorough understanding of each
78 species unique life history is essential for adequate management (Walker, 2004). Despite the
79 importance of life history data in formulating management strategies, such data are still lacking
80 for many elasmobranch species (Castro et al., 1999; Walker, 2004; Pinhal et al., 2008; IUCN,
81 2011).

82 Studies examining the life histories of elasmobranchs largely rely on lethal sampling
83 methodologies (Heupel & Simpfendorfer, 2010); however, these methods should be avoided for
84 species whose populations are threatened or endangered or when equally reliable data can be
85 taken in a non-lethal manner. To address these concerns, researchers have begun examining the
86 efficacy of non-lethal methods as an alternative when studying certain aspects of elasmobranch
87 life history, such as reproductive biology (Sulikowski et al., 2007; Hammerschlag & Sulikowski,
88 2011). One commonly used non-lethal sampling technique is the extraction of blood from live
89 sharks and subsequent isolation of steroid hormones, to examine physiologically-based
90 reproductive events (e.g. Callard & Koob, 1993; Gelsleichter et al., 2002; Sulikowski et al., 2006
91 Kneebone et al., 2007).

92 Despite frequent use of steroid hormone analyses in elasmobranch research over the past
93 30 years, no studies have identified how rapidly a blood sample should be collected from this
94 group of fishes before circulating plasma hormone concentrations begin to significantly fluctuate.
95 The objective of this study was to determine if circulating concentrations of the sex steroid
96 hormones progesterone (P₄), testosterone (T), and 17 β -estradiol (E₂) were stable in sharks
97 captured and left on deck un-refrigerated over a 24-hour period. If these steroid hormones are
98 found to remain stable in postmortem elasmobranchs, scientists could work cooperatively with
99 fishers by utilizing reproductive tracts and blood that would otherwise be discarded for future
100 endocrine studies, and for the validation of non-lethal steroid hormone assays.

101

102 **Materials and Methods**

103 Five adult female Atlantic Sharpnose Sharks (*Rhizoprionodon terraenovae* Richardson,
104 1836) and five adult female Spiny Dogfish (*Squalus acanthias* Linnaeus, 1758) were captured
105 and sampled using the methods described in Prohaska et al., (2013a, b). Briefly, *R. terraenovae*
106 were captured by bottom longline in the northern Gulf of Mexico in an area centered around
107 88.812°W and 27.887°N, while *S. acanthias* were captured by bottom trawl and gill net in the
108 US Northwest Atlantic in an area centered around 70.115°W and 42.471°N.

109 All specimens were phlebotomized immediately after capture and a 5 ml aliquot of blood
110 was collected; subsequently, all specimens were pithed. This work was sanctioned by the
111 University of New England's Animal Care and Use Committee (IACUC protocol no. UNE-
112 20121107SULIJ). Additional blood samples (5 ml each) were serially collected at 1 h, 3 h, 6 h,
113 12 h, and 24 h post-capture. Between blood collections, sharks were left on deck, shaded and
114 un-refrigerated. Immediately after each collection, a sub sample of blood was analyzed for
115 hematocrit (Hct) following the methods in Ciccia et al., (2012). The remaining blood sample was
116 then centrifuged at 1,242 g for 5 min. Separated plasma was removed and then stored at -20°C.
117 After phlebotomy at time 0, fork length (FL) was recorded from each shark, which was measured
118 to the nearest cm over a straight line along the axis of the body from the tip of the snout to the
119 fork in the caudal fin. After sampling at time 24 h, dissections were conducted and the following
120 data were recorded to assess reproductive stage: the five maximum follicle diameters (to the
121 nearest mm), and pup stretch total length (STL), which was measured to the nearest millimeter

122 over a straight line along the axis of the body from the tip of the snout to the posterior tip of the
123 upper lobe of the caudal fin while fully extended along the axis of the body.

124 Progesterone (P₄), testosterone (T), and 17 β -estradiol (E₂) were extracted from plasma
125 samples following the methods of Tsang and Callard (1987) and Sulikowski et al., (2004).
126 Briefly, each plasma sample was extracted twice with 10 volumes (5 ml) of ethyl ether (ACS
127 grade) and the organic phase was evaporated at 37°C under a stream of nitrogen. Extracts were
128 reconstituted in phosphate buffered saline containing 0.1% gelatin (PBSG). Prior to extraction,
129 each sample was spiked with 1,000 counts min⁻¹ of tritiated P₄, T, or E₂ (Perkin Elmer, Waltham,
130 MA, USA) to account for procedural loss.

131 Plasma steroid hormone concentrations were determined by radioimmunoassay following
132 a protocol modified from Tsang and Callard, (1987). Non-radiolabeled P₄, T, and E₂ (Steraloids,
133 Inc., Newport, RI, USA) were used to make stock concentrations of 80 μ g ml⁻¹ for P₄ and T, and
134 6.4 μ g ml⁻¹ for E₂ in absolute ethanol (ACS grade). The P₄, T and E₂ antibodies (Gordon D.
135 Niswender, Colorado State University, Fort Collins, CO, USA) were diluted to final
136 concentrations of 1:2,500 1:10,000, and 1:18,000, respectively. Tritiated hormones and
137 antibodies were added to the reconstituted plasma samples using PBSG to bring the total assay
138 volume to 400 μ L. After incubation at 4°C for 24 h, free hormone was separated from bound
139 hormone by the addition of a carbon (0.2%; Acros Organics, Fairlawn, NJ, USA) and dextran 70
140 (0.02%; Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) suspension, and centrifuged at 1,242
141 g for 10 min at 4°C. The supernatant was combined with 3.5 ml of Ecolume (MPO Biomedicals,
142 Solon, OH, USA) and the radioactivity was detected by a Perkin Elmer Tri-Carb 2900TR liquid
143 scintillation analyzer (Waltham, MA, USA). Final concentrations were corrected for procedural
144 loss using individual sample recoveries.

145 Repeated measures ANOVA were performed on plasma P₄, T, and E₂ concentrations as
146 well as Het by species. If a significant difference was found, a Tukey's post-hoc test was
147 conducted. If data failed tests of normality or homogeneity of variance, the data were
148 transformed. If transformed data still violated the assumptions, the nonparametric Friedman
149 repeated measures analysis of variance on ranks was conducted. All data were analyzed using
150 SigmaPlot 12.0 and were considered significant at $\alpha \leq 0.05$.

151

152 **Results**

153 *Rhizoprionodon terraenovae*

154 The five adult female *R. terraenovae* (mean \pm SEM; 76.4 ± 2.4 cm FL) collected in this
155 study were all in the early/mid gestational stage (Prohaska et al., 2013a, b). The overall mean
156 recoveries of plasma P₄, T, and E₂ were 60, 91, and 79%, respectively. The mean intra-assay
157 coefficients of variation for *R. terraenovae* plasma P₄, T, and E₂ assays were 13, 17, and 13%,
158 respectively. Despite an initial significant decrease in P₄ between intervals 0 and 1 h,
159 concentrations of P₄ remained statistically unchanged until another significant decrease was
160 detected at hour 12. From interval 12 h to 24 h P₄ remained statistically unchanged (RM
161 ANOVA: $F_{4,29}=17.213$, $p<0.001$, $\beta=1.000$; Figure 1a). A significant fluctuation in T
162 concentrations occurred over the sampling period; however, the Tukey's post hoc test did not
163 detect a significant pairwise difference between intervals 0 h and 24 (RM ANOVA: $F_{4,29}=5.777$,
164 $p=0.002$, $\beta=0.934$; Figure 1b). Similarly, a significant fluctuation in E₂ concentrations was
165 detected over the entire sampling period; however, the Tukey's post hoc test did not detect a
166 significant pairwise difference between intervals 0 and 24 h (RM ANOVA: $F_{4,29}=3.736$, $p=0.015$,
167 $\beta=0.701$; Figure 1c). No significant difference in Hct was detected at any sampling interval
168 (Friedman: $F_{4,28}=2.038$, $p=0.119$; $\beta=0.284$; Figure 2a).

169 *Squalus acanthias*

170 The five adult female *S. acanthias* (mean \pm SEM; 80.8 ± 0.8 cm FL) were all in the
171 candle gestational stage (Prohaska et al., 2013a, b). The overall mean recoveries of plasma P₄, T,
172 and E₂ were 71, 90, and 78%, respectively. The mean intra-assay coefficients of variation for *S.*
173 *acanthias* plasma P₄, T, and E₂ assays were 9, 11, and 12%, respectively. The mean inter-assay
174 coefficients of variation for *S. acanthias* plasma P₄, T, and E₂ assays were 9, 11, and 17%,
175 respectively. A significant decrease in P₄ was detected between sampling intervals 0 and 24 h,
176 with relatively little fluctuation between these intervals (RM ANOVA: $F_{3,23}=3.324$, $p=0.032$,
177 $\beta=0.575$; Figure 3a). A significant increase in T was observed at hour 6; however, no significant
178 difference was detected between interval 0 and 24 h (RM ANOVA $F_{3,23}=9.234$, $p<0.001$,
179 $\beta=0.994$; Figure 3b). A significant decrease in E₂ was evident between times 0 and 1 h; however,
180 the concentrations of E₂ remained statistically unchanged for the remainder of the sampling (RM
181 ANOVA: $F_{4,29}=13.079$, $p<0.001$, $\beta=1.000$; Figure 3c). No significant difference in Hct was
182 detected at any sampling interval (Friedman: $X^2_5=7.171$, $p=0.208$; Figure 2b).

183

184 **Discussion**

185 The aim of this study was to determine how stable steroid hormones were in sharks over
186 a 24-hour period. This study represents a disadvantageous scenario, one in which an animal is
187 left on deck un-refrigerated for 24 hours, and steroid hormone concentrations in both *R.*
188 *terraenovae* and *S. acanthias* did significantly fluctuate over the sampling period. In *R.*
189 *terraenovae*, T and E₂ were the most stable during the 24-hour sampling period; however, P₄
190 was only stable for one hour before it began to fluctuate. In *S. acanthias*, T and P₄ were most
191 stable for 12 h and 24 h, respectively, while E₂ was only stable for an hour before it began to
192 fluctuate. In instances where steroid hormone concentrations fluctuated among sampling
193 intervals, the fluctuations were relatively minor, less than an order of magnitude and could have
194 been influenced by small sample sizes.

195 Hormone concentrations in the blood are determined by both their synthesis and
196 clearance. Once hormones are synthesized they are transported through the body by blood
197 circulation until target tissues are reached, or catabolized by metabolic clearance typically in the
198 liver (Norman & Litwack, 1997). When an organism dies production of hormones and blood
199 circulation cease (Donaldson & Lamont, 2013). As the metabolic clearance rate slows, the half-
200 life of a steroid hormone increases (Norman & Litwack, 1997). Since the sharks were initially
201 alive when first sampled, some blood circulation likely occurred between the time 0 h and 1 h,
202 potentially resulting in some metabolic clearance; however, the relative stability of the hormone
203 concentrations past the first couple blood draws are likely a result of decreased or ceased
204 hormone catabolism.

205 Despite significant fluctuations in hormone concentrations, particularly in regards to *R.*
206 *terraenovae* P₄ and *S. acanthias* E₂, the range of values observed in this study are useful in
207 determining gestational stage in both species. For example, using the range of mean hormone
208 concentrations per time period alone (P₄: 1.9-6.4 ng ml⁻¹; T: 4.7-10.1 ng ml⁻¹; E₂: 660-1,049 pg
209 ml⁻¹) *R. terraenovae* would be classified as early/mid gestation based on Prohaska et al., (2013a,
210 b). Similarly, in *S. acanthias* mean hormone concentrations per time period alone (P₄: 80-304 pg
211 ml⁻¹; T: 47-207 pg ml⁻¹; E₂: 44-104 pg ml⁻¹) would classify sharks as candle stage based on
212 Prohaska et al., (2013a, b). Hormone concentrations are inherently variable; however,
213 concentrations between stages can be many of orders of magnitude different making actual
214 concentrations potentially not as important as relative concentrations.

215 While there was a trend toward decreasing Hct with time, no statistically significant
216 changes were found in Hct in either species over the sampling period. Similarly, Hoffmayer et al.,
217 (2012, 2015) did not observe significant changes in hematocrit in serially sampled *R.*
218 *terraenovae*. Despite not being statistically significant, the trend of decreasing Hct could be
219 indicative of a hemodilution. Previous work by Frick et al., (2010), in which blood was serially
220 drawn from Port Jackson sharks (*Heterodontus portusjacksoni* Meyer, 1793), and gummy sharks
221 (*Mustelus antarcticus* Günther, 1870), observed an initial elevation in Hct, followed by a
222 continuous decrease in Hct during a post-capture monitoring period, and postulated that this
223 decrease could have been the result of repeated blood extractions, a phenomena similar to that
224 previously observed in teleosts (Turner et al., 1983). In the current study, if hemodilution was
225 occurring, this could account for any decreases observed in steroid hormone concentrations. To
226 determine if hemodilution could have influenced the hormone concentrations observed in this
227 experiment, a follow up study should be conducted in which sharks are sampled at the time of
228 capture, subjected to the same conditions as those sharks in this study, and then sampled again at
229 24 h.

230 In addition to gaining a basic knowledge of the post-capture stability of steroid hormones,
231 the results of this study suggest there is potential to work cooperatively with commercial fishers
232 to use blood that would otherwise be discarded from harvested elasmobranchs for endocrine
233 studies, and for validating non-lethal steroid hormone assays. In commercial fisheries, caudal
234 fins are immediately cut off of harvested sharks so they can be bled; however, if researchers
235 were working cooperatively with fishers they could request that sharks not be bled immediately.
236 To account for any fluctuations in hormone levels post mortem, particularly like those observed
237 in *R. terraenovae* P₄ and *S. acanthias* E₂, additional samples could be collected and analyzed to
238 calculate a correction factor between the time post-capture that an animal is sampled and its
239 hormone level.

240

241 **References**

242 Callard, I. P., & Koob, T. J. (1993). Endocrine regulation of the elasmobranch reproductive tract.
243 *Journal of Experimental Zoology*, 266, 368–377. doi:10.1002/jez.1402660505

244 Castro, J. I., Woodley, C. M., & Brudek, R. L. (1999). A Preliminary Evaluation of the Status of
245 Shark Species. FAO Technical paper no. 380. The Food and Agriculture Organization of
246 the United Nations, Rome.

247 Ciccia, A. M., Schlenker, L. S., Sulikowski, J. A., & Mandelman, J. W. (2012). Seasonal
248 variations in the physiological stress response to discrete bouts of aerial exposure in the
249 little skate, *Leucoraja erinacea*. *Comparative Biochemistry and Physiology-Part A: Molecular and Integrative Physiology*, 162, 130-138. doi:10.1016/j.cbpa.2011.06.003

250 Donaldson, A., & Lamont, I. (2013). Biochemistry changes that occur after death: potential
251 marker for determining post-mortem interval. *Plos One* 8:1-10.
252 doi:10.1371/journal.pone.0082011

253 Dulvy, N. K., Sadovy, Y., & Reynolds, J. D. (2003). Extinction vulnerability in marine
254 populations. *Fish and Fisheries*, 4, 25–64. doi:10.1046/j.1467-2979.2003.00105.x

255 Frick, L. H., Reina, R. D., & Walker, T. I. (2010). Stress related physiological changes and post-
256 release survival of Port Jackson sharks (*Heterodontus portusjacksoni*) and gummy sharks
257 (*Mustelus antarcticus*) following gill-net and longline capture in captivity. *Journal of Experimental Marine Biology and Ecology*, 385, 29–37.
258 doi:10.1016/j.jembe.2010.01.013

259 Gelsleichter, J., Rasmussen, L., Manire, C., Tyminski, J., Chang, B., & Lombardi-Carlson, L.
260 (2002). Serum steroid concentrations and development of reproductive organs during
261 puberty in male bonnethead sharks, *Sphyrna tiburo*. *Fish Physiology and Biochemistry*,
262 26, 389–401. doi:10.1023/B:FISH.0000009292.70958.65

263 Hammerschlag, N., & Sulikowski, J. (2011). Killing for conservation: the need for alternatives to
264 lethal sampling of apex predatory sharks. *Endangered Species Research*, 14, 135–140.
265 doi:10.3354/esr00354

266 Heupel, M. R., & Simpfendorfer, C. A. (2010). Science or slaughter: need for lethal sampling of
267 sharks. *Conservation Biology*, 24, 1212–1218. doi:10.1111/j.1523-1739.2010.01491.x.

268 Hoffmayer, E. R., Hendon, J. M., & Parsons, G. R. (2012). Seasonal modulation in the secondary
269 stress response of a carcharhinid shark, *Rhizoprionodon terraenovae*. *Comparative
270 Biochemistry and Physiology. Part A, Molecular and Integrative Physiology*, 162, 81–87.
271 doi:10.1016/j.cbpa.2011.05.002.

272

273

274 Hoffmayer, E. R., Hendon, J. M., Parsons, G. R., Driggers, W. B. III, & Campbell, M. D. (2015).
275 A comparison of single and multiple stressor protocols to assess acute stress in a coastal
276 shark species, *Rhizoprionodon terraenovae*. *Fish Physiology and Biochemistry*, 41,
277 1253–1260. doi:10.1007/s10695-015-0083-4.

278 International Union for Conservation of Nature and Natural Resources (IUCN). (2011, July).
279 IUCN Red List of Threatened Species, Version 2011.1. Retrieved from
280 <http://www.iucnredlist.org>

281 Kneebone, J., Ferguson, D. E., Sulikowski, J. A., & Tsang, P. C. W. (2007). Endocrinological
282 investigation into the reproductive cycles of two sympatric skate species, *Malacoraja*
283 *senta* and *Amblyraja radiata*, in the western Gulf of Maine. *Environmental Biology of*
284 *Fishes*, 80, 257–265. doi:10.1007/978-1-4020-9703-4_10

285 Norman, A. W., & Litwack, G. (1997). *Hormones*. (2nd ed.). San Diego, CA: Academic Press.

286 Pinhal, D., Gadig, O. B. F., Wasko, A. P., Oliveira, C., Ron, E., Foresti, F., & Martins, C. (2008).
287 Discrimination of shark species by simple PCR of 5S rDNA repeats. *Genetics and*
288 *Molecular Biology*, 31, 361–365. doi:10.1590/S1415-47572008000200033

289 Prohaska, B. K., Tsang, P. C. W., Driggers, W. B. III, Hoffmayer, E. R., & Sulikowski, J. A.
290 (2013a). Development of a non-lethal and minimally invasive protocol to study
291 elasmobranch reproduction. *Marine and Coastal Fisheries*, 5, 181–188.
292 doi:10.1080/19425120.2013.788590

293 Prohaska, B. K., Tsang, P. C. W., Driggers, W. B. III, Hoffmayer, E. R., Wheeler, C. R., Brown,
294 A. C., & Sulikowski, J. A. (2013b). Assessing reproductive status in elasmobranch fishes
295 using steroid hormones extracted from skeletal muscle tissue. *Conservation Physiology*,
296 doi:10.1093/conphys/cot028

297 Sulikowski, J. A., Tsang, P. C. W., & Howell, H. W. (2004). An annual cycle of steroid
298 hormone concentrations and gonad development in the winter skate, *Leucoraja ocellata*,
299 from the western Gulf of Maine. *Marine Biology*, 144, 845–853. doi:10.1007/s00227-
300 003-1264-8

301 Sulikowski, J. A., Kneebone, J., Elzey, S., Jurek, J., Howell, H. W., & Tsang, P. C. W. (2006).
302 Using the composite variables of reproductive morphology, histology and steroid
303 hormones to determine age and size at sexual maturity for the thorny skate *Amblyraja*

304 *radiata* in the western Gulf of Maine. *Journal of Fish Biology*, 69, 1449–1465.
305 doi:10.1111/j.1095-8649.2006.01207.x

306 Sulikowski, J. A., Driggers, W. B. III, Ingram, G. W., Kneebone, J., Ferguson, D. E., & Tsang, P.
307 C. W. (2007). Profiling plasma steroid hormones: a non-lethal approach for the study of
308 skate reproductive biology and its potential use in conservation management.
309 *Environmental Biology of Fishes*, 80, 285–292. doi:10.1007/s10641-007-9257-y

310 Tsang, P. C. W., & Callard, I. P. (1987). Morphological and endocrine correlates of the
311 reproductive cycle of the aplacental viviparous dogfish, *Squalus acanthias*. *General and*
312 *Comparative Endocrinology*, 66, 182–189. doi:10.1016/0016-6480(87)90266-8

313 Turner, J. D., Wood, C. M., & Hobe, H. (1983). Physiological consequences of severe exercise
314 in the inactive benthic flathead sole (*Hippoglossoides elassodon*): a comparison with the
315 active pelagic rainbow trout (*Salmo gairdneri*). *Journal of Experimental Biology*, 104,
316 269–288.

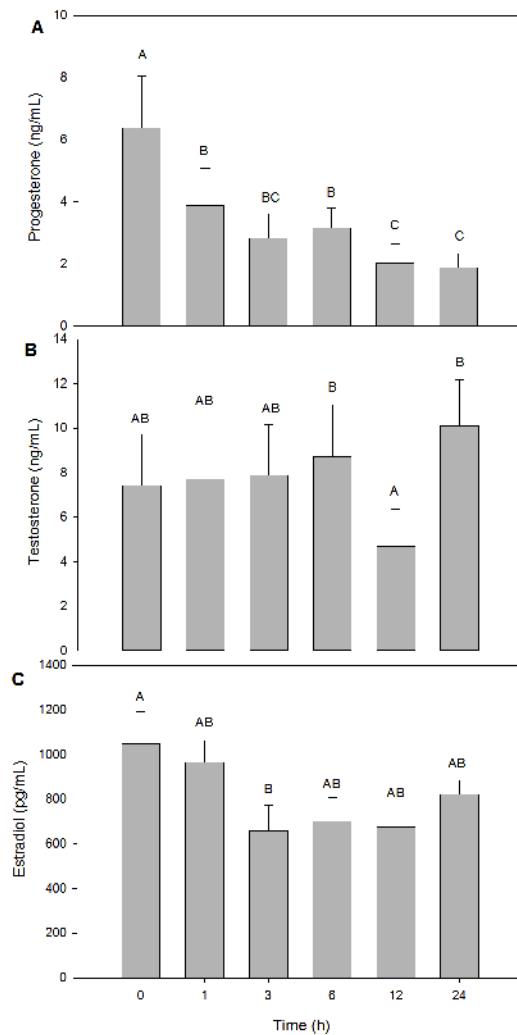
317 Walker, T. I. (2004). Chapter 13. Management measures. In J. A. Musick, Bonfil, R. (eds),
318 Technical Manual for the Management of Elasmobranchs. FAO Fisheries Technical
319 Paper no. 474. The Food and Agriculture Organization of the United Nations, Rome, pp
320 285–321.

321 **Figure Legends**

323 Figure 1. Mean (\pm SEM) concentrations of Atlantic Sharpnose Sharks *Rhizoprionodon*
324 *terraenovae* plasma steroid hormones progesterone (A), testosterone (B) (in nanograms per
325 milliliter) and estradiol (C) (in picograms per milliliter) at each sampling interval. Letters above
326 the bars denote statistically significant pairwise differences in hormone concentrations between
327 sampling intervals ($p < 0.05$).

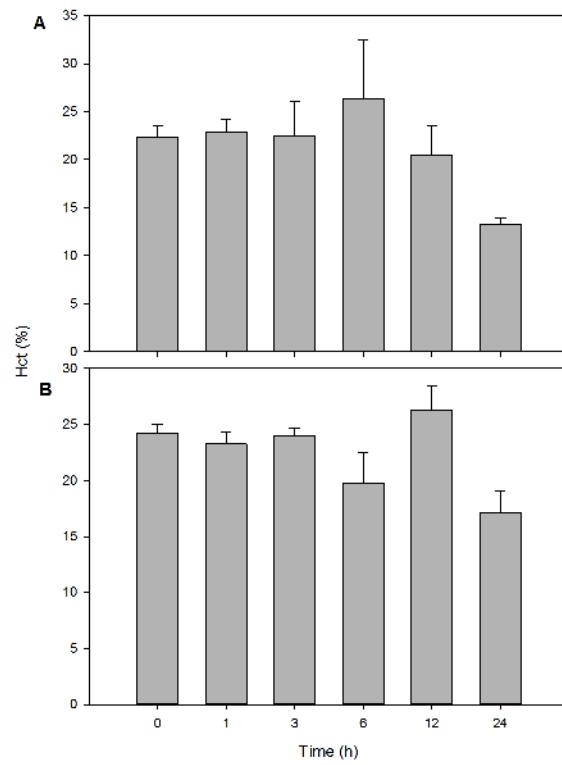
328

329 Figure 2. Mean percent (\pm SEM) hematocrit (Hct) of Atlantic Sharpnose Sharks *Rhizoprionodon*
330 *terraenovae* (A) and Spiny Dogfish *Squalus acanthias* (B) blood at each sampling interval.

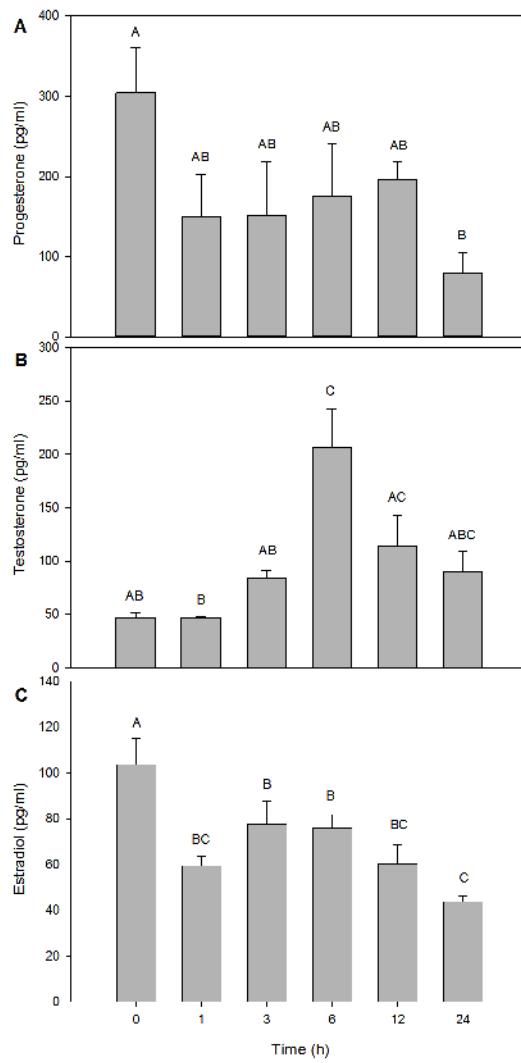

331

332 Figure 3. Mean (\pm SEM) concentrations of Spiny Dogfish *Squalus acanthias* plasma (in
333 picograms per milliliter) steroid hormones progesterone (A), testosterone (B) and estradiol (C) at

334 each sampling interval. Letters above the bars denote statistically significant pairwise differences
335 in hormone concentrations between sampling intervals ($p < 0.05$).


Author Manuscript

Author Manuscript


jai_13700_f1.tif

Author Manuscript

jai_13700_f2.tif

Author Manuscript

jai_13700_f3.tif