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Abstract

The increasing negd to account for the many factors that influence fish population dynamics,
particularly these external to the population, has led to repeated calls for an ecosystem
approach tofisheries management (EAFM). Yet systematically and clearly addressing these
factors, and-hence implementing EAFM, has suffered from a lack of clear operational
guidance. Hereswe propose 13 main factors (shift in location, migration route, or timing,
overfishing'(three types), decrease in physiology, increase in predation, increase in
competition, decrease in prey availability, increase in disease or parasites, and a decline in
habitat quality or habitat quantity) that can negatively influence fish populations via
mechanismswreadily observable in ~20 population features. Using these features as part of a
diagnostic framework, we develop flowcharts that link probable mechanism(s) underlying
population €hange to the most judicious management actions. We then apply the framework
for example case studies that have well known and documented population dynamics. To our
knowledge, this 1Sithe first attempt to provide a clearly defined matrix of all the probable
responses to the most common factors influencing fish populations, and to examine possible
diagnostics simultaneously, comparatively, and relatively in an attempt to elucidate the most
probablesmechanisms responsible. The framework we propose aims to operationalize EAFM,
thereby not only better diagnosing factors influencing fish populations, but also suggesting
the most appropriate management interventions, and ultimately leading to improved fisheries.
We assert the'framework proposed should result in both better use of limited analytical and

observationakzesources and more tailored and effective management actions.
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Table 1. Summary of the literature for major mechanisms impacting living marine resource
(LMR) populations, with detailed mechanisms or specific effects noted. With some

summarizations of EAFM, Monitoring, and Risk considerations.

Table 2. Diagnostic table listing population features (rows) indicative of possible

mechanisms (columns) influencing LMR populations.

Table 3. Case study of example populations from the Northeast and Northwest Atlantic.

Values indicate actual observed population responses in each situation.
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Introduction

There are many factors that influence fish populations (Figure 1; c.f. Link et al., 2012a).
These populations represent highly valuable living marine resources (LMRs) supporting
fisheries around the globe (FAO, 2018). Therefore, it is wise to ensure that fisheries
managemeéntpractices routinely catalogue, diagnose, and identify those factors that have the
largest inflaence on LMRs. We have known for centuries that fishing, oceanographic
conditions, species interactions, disease, and habitat can all cause measurable impacts on
LMR populations (Baird, 1873; Hjort, 1914; Smith, 1994; Jackson et al., 2001), observations
which have only,been reinforced over time (Sissenwine, 1984; Cushing, 1990, 1995;
Jennings & Kaiser, 1998; Reno, 1998; Hsieh et al., 2006; Anderson et al., 2008; Cury et al.,
2008; Shelton & Mangel, 2011). The challenge remains — how do we respond to these factors
in terms of management interventions to ensure sustainable LMR populations and marine
ecosystems, as well as their associated harvests and the vitality of coastal communities
associated with these harvests and LMRs? Certainly lowering fishing pressure has been
recognized (Table 1- Overfishing.I) as prudent in instances where overfishing has been
clearly identified;'but as a broader array of drivers (i.e. climate change, multiple ocean uses,
pollution, ete.;Table 1- EAFM.I; Figure 1) increasingly affects oceanic conditions, simply
lowering fishing rates may not be entirely sufficient to maintain (or rebuild) sustainable LMR

populations and-their associated fisheries (Table 1-Overfishing.II).

While many factors can affect LMR populations via multiple possible mechanisms, the list of
the most important factors is finite. We assert that there is sufficient knowledge about these
factors from which suitable management actions can be enacted to mitigate, minimize or
reverse these influences on LMRs. From the science-based knowledge we have accumulated
to-date, coupled with first principles reasoning, a suite of actions that address factors
influencing LMRS can emerge. For example, we know that increasing fishing mortality to the
point of overfishing can lead to a population decline (Table 1-Overfishing.III). Similarly,
increasing predator impacts on a population increases natural mortality rates, and can also
lead to a pepulation decline Table 1-Predation.I). Yet the specific population-level responses
that occur would,exhibit different diagnostics and the management actions to address this
increased mortality would be quite different for each case. A clear assignment of the
diagnostic response to probable causal factor(s) would then result in more appropriately

tailored management recommendations.
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We understand that the mechanisms exhibited by these influencing factors operate on and can
influence both the population and the broader ecosystem within which these populations exist
(Botsford et al., 1997; Jennings & Kaiser, 1998; Jackson et al., 2001; Scheffer et al., 2005;
Cury et al., 2008; Wells et al., 2016; Link, 2018). The mechanisms impact a range of LMR
populationrand ecosystem processes (Figure 1), and can occur concurrently. Here we use the
term Living Marine Resources (LMR) largely as a fish stock or population, but recognize that
there can be other taxa that are harvested. Here we use the term “factors” as those facets of a
marine ecosystem that respond to some larger-scale driver, but functionally can be thought of
as synonymous to a “mechanism” or “process” that influences LMR populations. In the
sense they negatively influence a population, we synonymously use the term “pressure.” We
use the term™*‘features” as representative of those aspects of LMR populations that can be
tracked to understand the potential causality of a population change, here used synonymously
as “diagnostics”. Certainly sorting out the various impacts on a population to disentangle
these multiple effects remains a challenge. Considering a wide range of potential mechanisms
implies that\a suite of features need to be examined and monitored to delineate the most
important faeters.and the most probable causal mechanism(s) influencing LMRs. We assert
that there are variables representing characteristics of LMR populations that we routinely
measure(tow headings in Table 2) that should help elucidate these more dominant,
influencing factors. Unique combinations of the prevalence and degree of these features
should be indicative of the type of mechanism impacting LMR populations. Once identified,
these could be treated analogous to medical diagnostics such that both the underlying
mechanism and potential remedies could be elucidated (i.e., fisheries autopsies, sensu Smith
& Link 2005). This essentially represents a specialized form of ecological engineering
applied to marine fisheries (Odum, 1983; Mitsch, 2012; de la Mare 1998, 2005; Mitsch,
2012), whereby standard diagnostic criteria are developed and evaluated against observations,
from which wotkable solutions are then explored and applied. We acknowledge that given
the myriad possible mechanisms influencing LMRs it may be difficult to definitively
diagnose specific’cause-and-effect relationships for these LMR populations. However, the
approach proposed here importantly can rule out those mechanisms not likely to be an
important factoninfluencing LMR populations. And despite specific details of causal
mechanisms, can begin to identify those mechanisms and hence the most suitable set of

management interventions for those factors influencing LMRs.
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For some time now, ecosystem-approaches to fisheries management (Table 1-EAFM.II)
have been recognized as having significant benefits (Table 1-EAFM.III ). Here we operate
with EAFM defined as considering ecosystem factors as part of the analysis of a LMR
population (Garcia et al., 2003, Garcia and Cochrane, 2005; Link & Browman, 2014), as
opposed to'an"emphasis on the entire system of fisheries or the entire suite of ocean-use
sectors on the one hand or ignoring those factors external to a population on the other.
EAFM clearly recognizes the need to consider these broader factors more explicitly, and
directly addresses the potential competing objectives facing a suite of fisheries in a given
marine ecosystem (Table 1-EAFM.IV). Yet despite the clearly stated— and where
implemented, realized— benefits (Pitcher et al., 2009; Link, 2018; Fulton et al., 2019), the
implementation of EAFM is not widespread. This is no longer primarily due to linguistic
uncertainty (Curtin & Prellezo, 2010; Link & Browman, 2014; NMFS, 2016a; b; Marshak et
al., 2017) nor lack of clarity about mandates (Link et al., 2018; Rudd et al., 2018). Rather, it
is increasingly recognized that EAFM has not been widely implemented largely due to lack
of clear opetational guidance on how to actually execute it (Table 1-EAFM.V). Here we
propose a framework to operationalize EAFM, thereby better diagnosing factors influencing
LMR populations, suggestive of more appropriate management interventions, and ultimately

leading to 1mproved fisheries.

Operational Framework

The approach we propose here addresses elements of uncertainty, risk, and complexity as an
archetype of ecological engineering (de la Mare, 1998; de la Mare, 2005). In essence,
ecological engineering an ecosystem and the goods and services it provides (de la Mare 1998,
2005; Holling, 1996; Mitsch, 2012; Odum, 1983) identifies a range of problems and explores
a universe of solutions that are appropriate to the challenges being faced and provides a
structured,decision making framework to implement those solutions. It is very much a
solutions-ofiented approach rather than an acknowledgment of, and then paralysis by, the
large rangerofpossible cause and effect pathways. De la Mare notes that “The emphasis is on
standards,diagnostics, regulations, accountability, (and) commitment to (iterative) learning,
distinction between technical and political processes—rather than to mechanical system
optimization that de-emphasizes uncertainties and ecosystem complexities (Odum).” Here we
adopt that mindset by proposing an operational framework to address the factors facing

marine fish and fisheries.

This article is protected by copyright. All rights reserved



102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

The operational framework we propose is aimed at disentangling the different factors that

affect population processes. The framework consists of:

1) Observing changes in LMR populations.
2) Diagnesing observed changes.
3) Dis¢riminating among possible mechanisms.

4) Using flowcharts to determine possible management actions.

The overall schema of how we view major factors influencing LMR populations is as a range
of possible influencing factors, which once identified would suggest specific management
actions (Figure' 1): This schematic (Figure 1) depicts relationships between impacts on
observable characteristics of fished populations from various drivers acting through specific
mechanisms undetlying population change. These impacts are then transmuted differentially
via various population features that can be diagnostic of the mechanism. Once those
population responses are identified, appropriate management measures can be recommended
to address different mechanisms. The potential management actions would be differentially
employed based upon the diagnostics identified as having the strongest influence on LMRs.
Some management measures can also be directly focused on changes affecting fish
communities, habitats, fishery markets, and full ecosystems, such as ecosystem-level catch
controls, multispecies measures, and habitat restoration, but here our focus is largely on LMR
populations. Thus, it seems both prudent and appropriate to unpack the possible mechanisms

further.

Observing changes in LMR populations

The starting,point for operationalizing EAFM is to observe changes in the characteristics of a
LMR population,or stock. We provide a list of ~20 commonly measured or derived features,
arising fromboth fisheries independent and dependent observations (Table 2). If a population
is experieneingrechanges in several features, it is advisable to focus on those showing the
greatest change or considered to have the greatest effect on population dynamics. Each

combination 6fpopulation responses is indicative of different factors influencing the LMR.

A key observation is that many of these features are routinely measured, but they are not
considered in a systematic, standard manner as a cohesive suite of diagnostics responsive to a

range of possible influences on population dynamics. We do not mean to imply that these
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features are not currently used as diagnostics in fisheries. Certainly many of these features are
examined in most fisheries stock assessment contexts (Gulland, 1970; Mace et al., 2001;
Lynch et al., 2018; Marshall et al., 2019), and certainly informal examination of these
features can lead to further elucidation of population dynamics as well. Others have begun to
consider when'these other factors might be considered in a stock assessment context (e.g.
Lynch et ali, 2018; Marshall et al., 2019). Yet the salient points we are making is that to our
knowledge, no one has provided a clearly defined matrix of all these probable responses to
common faetors influencing LMRs (including factors external to population dynamics), nor
has anyone examined all these possible diagnostics simultaneously, comparatively, and

relatively injan attempt to elucidate which probable mechanism/s are responsible.

There is a mmimum level of data required to execute the framework proposed here. For a
given LMR population under consideration, one would need to have at least some measures,
over time, of population size, individual size, reproduction, individual health, and location
(Figure 1). “These would translate into regularly monitored variables such as relative
abundance, plussvarious measures of fecundity, size structure, location, and vital
rates/conditien., Secondarily would be any information, even contextual, regarding habitat
associations, disease, stomach contents, ecological interactions, stock identification, and
possible genetiepopulation structure. We acknowledge that there are often data limited
situations, and in those instances using whatever information is available should be applied to
this framework, even if not necessarily exhaustive. Yet in many instances, routine
monitoring, surveying and sampling should be able to provide many of these commonly
measured fishery variables. Here we evaluate these routine measures as a comprehensive

whole.

Another important consideration is that these features which detect population change
underscorethe'need for routine and ongoing monitoring. This is monitoring that not only
captures trendssin abundance or biomass or location (Table 1-Monitoring.I), but monitoring
that requiressactual biological sampling of LMRs (i.e., measures of fecundity, maturity, age,
diet, size, etc.; Fable 1-Monitoring.II). It is also clear that these surveys need to be
increasingly multidisciplinary in their sampling (Table 1-Monitoring.III) to cover the range of

variables warranting continued monitoring.
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Additionally, the amount of change in any observed population feature is an important
consideration. Both regarding magnitude and relative variability of any response. On the one
hand, there is often a low signal-to-noise ratio in many LMR population dynamics such that
detection of any change among typical variability can be difficult. This would run the risk of
too readilyrassigning change as being spurious. On the other hand, setting the standards for
change too/rigorously may miss some important changes to LMR population dynamics. This
would run the risk of setting change criteria too rigidly such that any deviation below some
pre-set (andipotentially artificial) statistical properties might actually miss legitimate changes.
Thus, the challenge remains of how to best quantitatively set a threshold of a response such
that it would,inveke a diagnosis of legitimate LMR population change. Here we resist the
(understandable) desire to prescribe any statistical test of significance for determining such
thresholds of change. Rather, we recommend a more ordinal, percentile-based, rule-of-thumb
approach. We would generally suggest that any change in value of a LMR population feature
above 25% should probably be considered (at least relative to typical variation of that feature)
as a possible change worth monitoring more closely, and any change greater than 100%
should probablysbe acknowledged as an important change. Yet the reason we are not entirely
prescriptiveis that a doubling or halving of some features (e.g. recruitment) may be well
within the bounds of what is normally observed, and conversely only a 5-10% change may be
critically important for another feature (e.g. growth rate). The salient point is to track
population features for persistent changes of a magnitude that is noteworthy for that

particular feature.

Diagnosing observed changes

Population response features (rows) and potential influencing mechanisms (columns) can
help diagnose causality of LMR population change (Table 2). Akin to a checklist, examining
the populationtesponse features can winnow down probable mechanisms influencing a

population.

For exampleyif recruitment overfishing were the primary mechanism influencing a LMR
population, the:expected response across multiple population features would be a decline in
the number of recruits, abundance, biomass, maturity, a negative impact to spawning duration
and initiation, an increase in fecundity, and maybe a decline in size-at-age and weight-at-
length (Table 1.Overfishing.IV). Similar responses would be seen for growth overfishing, but

would be distinguished from recruitment overfishing by also having a decline in condition
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factor and liver weight, perhaps no change in spawning time, limited changes to maturity and
fecundity, and size-at-age and weight-at-length would likely decline (Table 1-Overfishing.V).
Ecosystem overfishing would be similar to both, but occurring for multiple stocks
simultaneously, coupled with a decline in overall ecosystem productivity (e.g. primary
production;, ehloerophyll a, etc.), change in ratios of biomass among fish guilds, or lower
overall landings (Table 1.Overfishing.VI; not shown in Table 2). Conversely, changes in
migration route, migration timing or permanent shift in location would express very few
definitive responses, save for changes to distribution, range, and timing of spawning (Table
1-Migration/Movement/Location.I). Changes due to loss of habitat (quantity or quality),
increase in competition, decline of available prey, increase in predator abundance, a decline
in physiology, ©oran increase in disease would similarly have the requisite, mostly negative,

responses in key population features (Table 2).

We assert that Table 2 is useful to explore potential mechanisms influencing LMR
populations., Yet we also recognize that with 13 possible negative influencing mechanisms
(out of 19 totalgincluding positive responses), 20+ population features, and three possible
responses (#;0,2), the combinations of options to track could be overwhelming and decidedly
un-insightful.” We also recognize that for many of the population features, the responses are
often the same.across a range of factors and not entirely useful as distinguishing diagnostics
across the range of possible mechanisms. For instance, most negative influences on LMR
populations result in a decline in measures of population size (abundance, biomass,
abundance-at-age), individual size (size-at-age, weight-at-length, length frequency, maximum
length, growth rate), individual health (condition factor, liver weight, stomach weight, diet
composition), and reproduction (median age, fecundity, maturation, recruitment). Given these
similar respenses across a range of possible mechanisms, it would appear difficult to
diagnose potential causality to population responses. Yet upon closer inspection, it is in those
instances which"exhibit distinct responses where there is high promise for diagnosing specific

mechanismss«(seecircled cells in Table 2).

For example, ifmost population response features are negative but length frequencies, or
size- or weight-at-age are increasing, it would be probable that predation is increasing (Table
2; Predator abundance column). This mechanism occurs as predators tend to target smaller
fish (Table 1-Predation.Il), and although other population responses exhibit decline, the

resulting size structure could actually increase. Additionally, several taxa have shown
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increased growth rates in the presence of predators to grow out of “predator pits” (Bakun,
2006; Peck et al., 2014). We thus identify this as a key diagnostic of predation as most other
impacts to size structure exhibit declines in size. Hence collectively these diagnostics could
imply increased predation pressure, distinct from other negative features caused by other
factors. Otherdiagnostics potentially indicative of specific mechanism include growth rate
(implying not only possible predation, but also growth, rather than recruitment overfishing;
Table 1-Physiology.T'), condition factor (similarly implying growth but not recruitment
overfishingg Table 1-Physiology.II ), and perhaps a change in migration route (Table 1-
Migration/Mevement/Location.II), stomach weight (implying physiological, competition, or
food availability.mechanisms which are distinguished from mortality-driven responses; e.g.
overfishingfprédation; Table 1-Predation.III), range, distribution (both of which distinguish
locational or migratory influences; Table 1-Migration/Movement/Location.III), fecundity
(implying recruitment overfishing; Table 1-Physiology.III), and maturity (implying
recruitment but not growth overfishing and ruling out possible habitat influences; Table 1-
Physiology.LV) (see circled cells, Table 2). Focusing on these distinguishing features as key
diagnosticsandsifi combination with other population features, should facilitate elucidation
of probable:mechanisms from which suitable management actions could then be

recommended.

An important note is that some diagnostics can indicate a positive population response. Those
factors that.indicate a positive influence should not be overlooked, and conditions to be
attentive to or that maintain positive responses warrant as much attention as negative
responses. The resulting management action may be very minimal (i.e. let the situation
continue with no intervention; Pomeroy & Berkes, 1997; Fletcher, 2005; Rosenberg et al.,
2006) to quite involved (e.g. continue to restore habitat or significantly lower fishing rates;
Berkes et.al.; 2001; Fletcher, 2005; Mora et al., 2009; Beck et al., 2011; Dunn et al., 2011;
Beechie et al';2013). There are instances where a diagnostic would clearly indicate positive
LMR populatienrfeatures, implying the ability for a decrease in management interventions
(e.g. decrease’buffers to catch). The salient point is that not all diagnostics should be
expected to indieate negative influences on LMR populations (Hilborn, 2010; Lotze et al.,
2011, Link et al., 2012a; Hilborn et al., 2015). However, given that much of management
action emphasizes mitigating or reversing poor LMR population status, here we mainly

emphasize negative population responses in the flowcharts below.
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Discriminating among mechanisms

Discriminating among the many possible factors that can influence LMR populations remains
a challenge. Given the myriad possible combinations, knowing where to start the diagnostic
assignation can be potentially overwhelming. We posit that to execute this winnowing of
plausiblecausal*factors requires three considerations. First is using the diagnostics to rule out
possible fac¢tors that are not probable. Second is focusing on factors with known risks of
substantial negative effects if management interventions are not enacted. And finally is
prioritizinggthose factors which nominally can have some form of the ability to exert

management.control.

We acknowledge that there are copious risk-based approaches to triage LMRs in response to
fishing (Table 1:Risk.I), climate change impacts (Table 1-Risk.II), ecological dynamics
(Table 1-Risk.III), and habitat loss (Table 1-Risk.IV), among others (Table 1-Risk.V). A lot
of those efforts focus on the system of fishes or fisheries in a given locale, not necessarily the
individual populations as noted here (c.f. Lynch et al., 2018). Certainly extant information
from those efforts’could and should inform the delineation of causal mechanisms in the

present framework.

We also acknowledge the need for ancillary information beyond the population features noted
in Table 2. For example, sampling to determine whether ecosystem productivity has changed
or that multiple LMR populations are experiencing overfishing would further inform
ecosystem overfishing (Table 1-Overfishing.VI). Or measures of physical and chemical
oceanographic phenomena could also inform and confirm these different mechanisms
(especially habitat suitability; e.g. temperature, pH, salinity, etc.; Table 1-Monitoring.IV).
Additional information indicating changes to other species could also inform possible
competition.orloss of prey. If overfishing was suspected, certainly fishery dependent
measures afd€stimates of catch, landings, effort, catch-per-unit-effort (CPUE), and related
metrics wouldiinform that mechanism as well (Table 1-Overfishing.VII). The salient point is
that while the"diagnostics focus on features of population response, additional information to

confirm or denyshypothesized mechanisms is wise to consider.

We propose the following order to discriminate among possible mechanisms that influence

LMR populations.
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Movement, migration or location
Overfishing

Physiology

Predation

Competition or prey abundance

Disgase or parasites

N kR

Habitat

We suggest the issues of changing location or migration be examined first. Multiple other
factors could be examined first, but we note that ignoring shifts in location results in
misinformed ufiderstanding of population dynamics, potentially leading to misleading
management advice (e.g. biological reference points could be inaccurate; Table 1-
Migration/Movement/Location.IV). Then we suggest that the various forms of overfishing be
examined. Even if the responses are mostly similar to loss of habitat, increased competition
or predation, or lower food availability or declining physiology, and those other factors
cannot definitively be ruled out, overfishing is one we can nominally control more directly
via management.interventions (for example as compared to competition among fishes; Table
1-Competition.I).” Thus it should be considered in priority order over those other factors.
Then we recommend that changes to physiology be considered. If there are notable changes
to fundamental, vital rates (due to pollution, climate change, or whatever driver), any
representation of population dynamics will need to account for these vital rate changes or run
the risk of misrepresenting population functioning and the management advice derived
therefrom (Table 1-Physiology.V). Next is consideration of predation. Although similar to
forms of overfishing, the mechanisms of population impact are different and the need to
account for predator influences on LMR populations would need to be handled distinctly.
Again, managemeént advice in the form of biological reference points is documented to be
inaccurate if'thisifactor is occurring but unaccounted for (Table 1-Predation.IV). Then
competitionorprey abundance needs to be considered. This mechanism results in similar
responses teroverfishing, predation or physiological changes, but relies on changes to other
species in the'eeosystem (Table 1-Competition.I). Again, the biological reference points, and
resulting management advice derived therefrom, can be misestimated or biased if these
factors are occurring but not expressly accounted for (Table 1-Competition.II). The
penultimate option is to determine if disease or parasites were influencing a population. The

diagnostics associated with this mechanism are likely the most definitive of any among the

This article is protected by copyright. All rights reserved



339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

different population features, and although it might co-occur with other mechanisms and the
impacts may be sub-lethal, this feature tends to have a clear signal with clear impacts on fish
health (Table 1-Disease/Parasite.l). Finally, we propose considering habitat last, largely as
that has the fewest distinguishing diagnostics and emerges after all other factors are ruled out.
The changes*from habitat, particularly habitat decline, have clear impacts on fish populations
in smaller, freshwater and estuarine habitats or for many taxa that have strong site fidelity
(e.g. for offshore reef and hard-bottom habitats; Table 1-Habitat.I). While habitat effects can
be less pronounced for some species of marine fishes with larger ranges, large daily ambits,
higher motility, and less site fidelity (Table 1-Habitat.II), other species and their juvenile
stages can have guite specific habitat requirements, which can create bottlenecks in cases of
habitat limifation or decline (Table 1-Habitat.III). Again, there is some evidence that key
population dynamics can be misestimated if habitat factors that impact populations are not

accounted for (Table 1-Habitat.IV).

Once a primary mechanism has been identified, the question remains- what to do next? Upon
obtaining thewresults from this discrimination exercise, we propose using a suite of flowcharts
to arrive at suitable management options appropriate for a LMR population under a given set

of conditions.

Using flowcharts to determine possible management actions

The final step in our proposed framework is to couple the identified probable mechanism/s to
effective management actions. In order to link mechanisms acting on LMR populations to the
most appropriate management action/s, we propose a set of flowcharts. We reiterate that it is
wise to start with the highest ranked mechanism to determine what action is suggested for
that factor before considering the next mechanism and flowchart. These flowcharts are based
on a logical,hierarchical decision tree approach, with each step suggestive of subsequent
action or furtherévaluation. In each case, the entry point for each of these flowcharts is based
on evidencesforthe mechanism established by the diagnostics in Table 2. These flowcharts
are presentedin this order to represent those population diagnostics and features that can be
1) clearly attributed to a particular cause, 2) can be addressed in order of the scope of
population impact, and 3) to rule out possible factors, or combinations thereof, before moving
onto the next set. We reiterate that the framework is to be used in an ordered and structured

manner, and not randomly, in order to rule out potential causes and hence possible actions.
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The aim is to rule out those factors that are more impactful (in terms of lasting population

impacts) as one steps through the suggested ordering of the flowcharts.

The action endpoint (i.e., advice) in each step of every flowchart has an action verb followed
by tangible, operational management options. We structured those in this manner to avoid
being too generic or “platitudinal,” to focus on specific, actionable steps, and to reinforce the
mindset of seeking possible solutions, all while building on extant LMR management
measures (Table 1-EAFM.VI). For example, if the advice recommended was to lower Fishing
Pressure, werecognize that doing so could occur via one of multiple specific management
actions in any given management jurisdiction; as such we do not attempt to prescribe these.
(Here we use lowering Fishing Pressure (represented by F), lowering Total Allowable Catch
(TAC), lowering Annual Catch Limits (ACLs), lowering fishing mortality rate (classically
represented by F), or lowering fishing effort somewhat synonymously. Although we
recognize the nuances among them, we do not make clear distinctions among them when
recommending particular management actions. For the purposes of this work, we use the
general termy“fishing pressure” (lowering, modifying, changing, etc.) as represented by the
shorthand of,"“E”.and acknowledge that this could be done via many different mechanisms.
We alsomote that Harvest Control Rules (HCRs) could include lowering fishing pressure (F)
in many formsgand generally include recommendations to HCRs as part of lowing fishing
pressure; herein we only make specific distinctions when there is a multispecies or ecosystem
HCR as those HCRs tend to be more strategic in their emphasis. We also acknowledge the
use, generally of fishing (classical F) and biomass (B), biological reference points (BRPs)
that would be generally subsumed into our fishing pressure rubric, and specifically only
identify them in this context when specific changes thereto would be advisable, particularly
with respect.to increasing buffers when estimating and establishing these BRPs. We also
reiterate that,the proposed management actions are commonly used measures (Table 1-
EAFM.VI)butthere are recommended for specific contexts and combinations in response to
diagnosed mechanisms. We also note that multiple proposed management actions could

equally address the mechanisms identified, and do not prescribe among any one of them.

For example, if a change in population movement, migration and location is suggested by
the diagnostics (Table 2), one first asks whether there is a decline in range (Figure 2). If so,
then one should examine the overfishing flowchart (Figure 3). If no decline in range is

observed, one could then ask if there is an increase in range. If so, evaluation of the
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population could lead either to a lowering of buffers to biological reference point (BRP)
buffer or an increase in fishing pressure (F) (Table 1-Migration/Movement/Location.V), else
continuation to the next step. Then one needs to determine if there is a shift in distribution. If
not, no further action is needed. If so, one then asks if there is a change in the timing of
migration®Ifsoythat would lead to recommendations of a seasonal closure and/or spatial
fishery allocation measures, to ensure that conservation measures protecting critical life
history events are maintained (i.e., establishing fisheries management based on spatial
fishing units that vary over time, whether rotating or otherwise; Table 1-
Migration/Mevement/Location.VI). For example, the importance of accounting for changes
to migrationyin spatial management has been reinforced in studies documenting spawning
shifts of fishes/in the Norwegian and Barents Seas (Reiss et al., 2009; Langangen et al., 2018;
Langangen et al’;2019). The reasoning behind this is to allow for spawning, feeding, etc. that
occurs as part of the migration, and ignoring the shift of when the migration occurs would
leave the stock susceptible to missing those important life history events. If there is not a shift
in migration,timing, one then determines if there is a change in migration route. If so,
depending upenswhether it crosses political boundaries, either spatial allocation, spatial stock
assessment (SA).models, or reevaluation of stock identification (ID) would be recommended
for consideration (Table 1-Migration/Movement/Location.VII). Finally, if there is a change in
spatial stock preductivity, some of the same measures would be recommended (Table 1-
Migration/Movement/Location.VII). We acknowledge that different specific mechanisms
might result in the same recommended management measure. This is not a concern as long as
proposed solutions are explored and it is recognized that this duplicity in fact provides a
menu of options; for example, reevaluating stock ID has application for multiple scenarios,

and in either case regardless of how one arrived at that point, would be beneficial to execute.

If overfishing,is.suggested by the diagnostics (Table 2), one could then ask a series of
sequential questions to determine sub-mechanisms and appropriate actions for that
mechanisme(Figure 3). First, one needs to determine whether the population is the direct
target of afishery, or whether it is caught incidentally. From that determination, a range of
possible fisherysmanagement actions related to bycatch (including gear modifications) or
multispecies Harvest Control Rules (HCR) would be recommended (Table 1-

Overfishing. VIII). For example, if the population is caught as bycatch, then measures could
be taken to modify the target fishery management to reduce this bycatch such as gear

modifications, bycatch limits, or spatial management to avoid areas of high bycatch (Table 1-
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Overfishing.IX). In addition, evaluating multifleet interactions could determine whether

changes across multiple fisheries could reduce bycatch mortality (Table 1-Overfishing.X).

A different but related set of measures would be appropriate to manage overfishing if the
populatiofrsubjeet to overfishing is a directly targeted stock (Figure 3). Nearly all measures
include reducing fishing pressure (i.e., mortality, F) by limiting catches, fishing effort, or
some combination thereof (Table 1-Overfishing.XI). Here we use lowering Fishing Pressure
(represented by F), lowering Total Allowable Catch (TAC), lowering Annual Catch Limits
(ACLs), lowering fishing mortality rate (classically represented by F), or lowering fishing
effort somewhat synonymously. Although we recognize the nuances among them, we do not
make clear distinctions among them when recommending particular management actions.
For the purposes of this work, we use the general term “fishing pressure” (lowering,
modifying, changing, etc.) as represented by the shorthand of “F” and acknowledge that this
could be done via many different mechanisms. We also note that Harvest Control Rules
(HCRs) could include lowering fishing pressure (F) in many forms, and generally include
recommendatiens'to HCRs as part of lowing fishing pressure; herein we only make specific
distinctions'when there is a multispecies or ecosystem HCR as those HCRs tend to be more
strategicin their emphasis. We also acknowledge the use, generally of fishing (classical F)
and biomass (B); biological reference points (BRPs) that would be generally subsumed into
our fishing pressure rubric, and specifically only identify them in this context when specific
changes thereto would be advisable, particularly with respect to increasing buffers when
estimating and establishing these BRPs. However, evidence of differential influences leads
to different management measure combinations beyond lowering fishing pressure. First, if
there is evidence of phenotypic effects or evolutionary impacts, then minimum size
limits/gear restrictions, closures of nursery grounds, and other measures to protect stock
structure and,genétic diversity may be necessary (Table 1-Overfishing.XII). If there is no
evidence of'évolutionary impacts, the next question is whether there is evidence of ecosystem
overfishing«(esgesystem-wide decrease in productivity, overall fish size, overall landings, and
or a shift insbiomass ratios). If so, an ecosystem-level TAC or some multispecies HCR would
be recommended.(Table 1-Overfishing. VIII, XIII). For example, the Eastern Bering Sea had
some concerns about regime shifts and total catch available, and implemented an overall cap
on groundfish for the ecosystem (Witherell et al., 2000; Goodman et al., 2002; NPFMC,
2018), which has helped to maintain one of the more lucrative and stable fisheries in the

world (Link 2018). If recruitment overfishing were identified, again a reduction in F or even
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spawning closures might be warranted (Table 1-Overfishing.IV, XIV), and if growth
overfishing were identified, minimum size or gear regulations might also merit consideration
(Table 1-Overfishing.V) beyond lowering fishing pressure. If one checks all these steps but
has no conclusive determination, an alternate mechanism should be explored (e.g.

physiology, predation, or competition (Figures 4-6)).

If a change'in physiology were indicated by the diagnostics, one would need to proceed in a
more bifurcated flowchart to evaluate whether the changes were declines or increases in
various individual size and vital rate features (Figure 4; Young et al., 2006; Horodysky et al.,
2015, 2016),In effect, for each step in the flowchart, an evaluation of each subsequent
metabolic pfocessiwould result in either a change in SA model parameterization, a change in
F (increase or decrease depending upon the direction of the physiological change), or if a
decline, specific gear or area closure measures (Table 1-Physiology.VI). For example, in
instances where growth has been strongly suspected of declining, BRPs and F (largely as
TACs and related catch limits) derived therefrom have been lowered in those situations
(Table 1-Physielegy.VII), with the result of sustainable fisheries over a longer term (Table 1-
EAFM.VII).Ifthe flowchart results in inconclusive results, an evaluation of habitat
considerations would be warranted (Figure 8). Of note here is the proposal for multiple
instances to inelude temperature adjusted parameters or covariates in SA models. Although
not without debate (Table 1-Physiology.VIII), the recognition of thermal conditions driving
population dynamics via physiological mechanisms is well-known (Table 1-Physiology.IX)
and increasing given climate change considerations (Portner & Peck, 2010; Pankhurst &
Munday, 2011; Metcalfe et al., 2012). There are certainly some conditions where adding a
specific thermal feature is not helpful (e.g., Table 1-Physiology.X), but in some instances it
can be beneficial (e.g., Table 1-Physiology.XI).

If an increase"inpredation were indicated by the diagnostics (Figure 5), one first asks if it is
designated assasforage fish, and if so recommend forage-specific management actions be
undertakens(Table 1-Predation.V). Then a series of steps is explored to determine information
availability andwwhether predation can be handled as predation mortality (M2; e.g., Table 1-
Predation.VI) directly or whether multispecies HCRs should be adopted. In almost all end
cases, a revision to F is recommended cognizant of predation mortality; the specifics lie in
how predation is accounted for in the SA or BRP-setting process. For example, lacking

detailed information, the ICES uses multispecies models to inform predation-related
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parameters for single stock assessment models in the North and Baltic Seas, which are then
used to set specific F rates for those fishes (Hollowed et al., 2000b; Vinther, 2001; Dickey-
Collas et al., 2010). We acknowledge that no specific management measure to control
predators is recommended or likely advisable (Marshall et al., 2016; Lennox et al., 2018).
Rather we"propose that this additional source of mortality be explicitly considered as it can
drastically alter the magnitude of population size (abundance) estimates (Table 1-

Predation. VII), resultant biological reference points (BRPs; Table 1-Predation.VIII, Caddy &
Mahon, 1995; Collie & Gislason, 2001; Mace et al., 2001; Caddy, 2004; Overholtz et al.,
2008; Tyrrelletal., 2011), and hence resultant fishing recommendations for management

(e.g., Table'l-Predation.IX).

If an increase in'‘competition or decrease in prey abundance/availability were indicated, we
first ask if this is due to an invasive species (Figure 6). Such invasive species, or even
endemic species that exhibit major population “blooms” or outbreaks, are known to
significantly. impact food webs and population diagnostics of important, fishery-supporting
taxa (Table d=Coempetition.III). If so and if feasible, we recommend invasive control
measures beiimplemented (e.g., Table 1-Competition.IV). If there is a change in prey
productivity, that then bifurcates the flowchart into spatio-temporal overlap or dietary overlap
considerationsgresulting in the need for spatial management measures or spatial SA models
for the former or multispecies HCRs and adjusted single species BRPs and SAs (cognizant of
carrying capacity limitations) for the latter (Table 1-Competition.V). If those are not the case,
one would then return to the point prior to the bifurcation and then ask if there was a decline
in prey-food based (i.e., indicative of a shift in ecosystem productivity) or prey mortality.
These would result in recommendations of developing an ecosystem-level or multispecies
HCR respectively (Table 1-Competition. VI, Overfishing. VIII, XIII). A lot of these
recommended,management actions are in the form of multispecies HCRs or adjusting stock-
specific BRP§'or'HCRs in a MS or single species SA context. Again, no specific management
measure toeontrol competitors, predators of prey, or prey populations are recommended or
likely advisable (Link & Auster, 2013; Marshall et al., 2016; Lennox et al., 2018), but
accounting fot these species interactions either in SA, multispecies models or HCRs should
be a consideration. These factors are especially germane in fish communities and ecosystems
with high site fidelity, highly specific fish niches, and food webs with a high potential for
limited production or high competition (Munday et al., 2001; Ward et al., 2006; Link &

Auster, 2013). Examples of those situations include tropical coral reefs and high latitude
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demersal ecosystems (Munday et al., 2001; Hixon & Jones, 2005; Forrester et al., 2006; Link
& Auster, 2013).

If an increase in disease or parasite were indicated (Figure 7), the first step is to evaluate the
degree of'prevalence; if low then the population should be monitored, but no specific
management action is recommended. If the prevalence is high, then measures to disrupt either
the disease vector (Table 1-Disease/Parasite.Il) or parasite life history or habitat (Table 1-
Disease/Parasite.IIl) need to be executed. For example, the sea lamprey (Petromyzon
marinus, Pettomyzontidae) can significantly impact salmonid populations in the Laurentian
Great Lakes\(i.e.4 freshwater, inland seas in N. America) and copious effort to disrupt the
spawning and spawning habitats of these lamprey has occurred (Smith & Tibbles, 1980;
Christie & Goddard, 2003). If the prevalence is not high, but the occurrence of the disease or
parasite is a risk to human health, then a fish consumption moratorium would be
recommended (Adedeji et al., 2012). These consumption moratoria routinely occur with
concerns from biomagnification of trace metals or organochlorine compounds (Table 1-
Disease/Parasite:V), but have also occurred for instances of disease outbreak, particularly for
many species of shellfish (Table 1-Disease/Parasite.V). Although we have largely focused on
marine capture fisheries herein, this factor also has high applicability to sea-farmed and
aquaculture-raised fish (Meyer, 1991; Stentiford et al., 2017). If the disease or parasite does
not pose a risk to human health, the next step is to determine if it is lethal to fish. If not but
could have perceptual or cosmetic effects, then market substitutions might be advisable
(Anderson & Anderson, 1991; Wessels & Anderson, 1995). If so, then accounting for the
effects on natural mortality needs to occur, either via stock assessment models, or a risk-

based modification in F (e.g., Table 1-Disease/Parasite.VI).

If a decline in habitat were indicated (Figure 8), the first step would be to determine if that
habitat was"linked to population metrics and rates, or if the habitat were particularly
identified asssensitive (using information not included in Table 2), as compared to a generic
decline in habitat that might not be impacting or important to LMR populations. If the habitat
were impactingypopulation spatial metrics, then some form of spatial management, closure or
spatial SA models would be recommended (Table 1-Habitat.V,
Migration/Movement/Location.VII). This might also reiterate the need to check movement
mechanisms (Figure 2). If not and the habitat itself were exhibiting substantial decline, then

reducing pressure on the habitat and if need be habitat restoration would be recommended,
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576  possibly associated with reducing F (Table 1-Habitat.VI). If there is a habitat-linked change
577  to population productivity metrics, then that would need to be considered in a SA model or
578  result in modified F (Table 1-Habitat.VII). For example, in an instance when habitat was

579  known to be expanding for butterfish (Peprilus triacanthus), this information was

580 incorporatedintora SA model, productivity was actually estimated to increase, and the

581  subsequentF was increased (Manderson et al., 2011; Kohut et al., 2012; Adams et al., 2015;
582  Essington et al., 2016; Marshak & Brown, 2017). It is worth noting that a lot of the potential
583  management actions for habitat relate to habitat restoration, and that these often result in

584  benefits for a,breader set of species than just the focal taxa (Table 1-Habitat. VIII).

585

586  Case studies

587  Developing and 'describing the operational framework is necessary. But we recognize that
588 that alone can be quite theoretical, esoteric and potentially tedious. Thus, here we provide a
589 few illustrative examples that step-though the diagnostics and flowcharts. They were selected
590 from situations familiar to those in the author string, but the ultimate aim is to test the

591 framework forether LMRs. From the observations for each population and using the key
592  diagnostics'that.emerged (Table 3), we contrast them with what could be the possible causal
593  mechanism (Table 2) and then explore the various flowcharts accordingly. To further these
594  examples, we.then examine the salient literature for each of these situations to see if there is
595  evidence supporting the outcome suggested from the operational framework. These examples
596  were selected to demonstrate the proposed framework, but not to exhaustively detail each
597  potential situation.

598

599  Northeast Atlantic

600 Overview

601  The Northeast.Atlantic has experienced some pronounced changes in the regional climate
602  during the last30years (Sherman et al., 2009; Drinkwater et al., 2014; Hollowed & Sundby,
603  2014; Kjesburetal., 2014; Trenkel et al., 2014). The most pronounced ecosystem effect in this
604  region has.been a northward shift in phytoplankton (Edwards et al., 2001), zooplankton

605  (Beaugrand etals, 2002), and fish (Perry et al., 2005; Hollowed & Sundby, 2014; Kjesbu et
606  al., 2014; Fossheim et al., 2015). There has also been a substantial increase in some of the
607  fish stocks such as the Northeast Arctic cod (Boreogadus saida, Gadidae; Hollowed &

608  Sundby, 2014; Kjesbu et al., 2014) and Atlantic mackerel (Scomber scombrus, Scombridae;
609  Trenkel et al., 2014; Berge et al., 2015). The great abundance of the Northeast Arctic cod has
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been attributed to synergies between a favorable climatic state and good management of the
stock over a long period of time (Kjesbu et al., 2014). An important component of the
management has been to eliminate the previous illegal and unreported fishing taking place in
the trawling for demersal fish in the Barents Sea (Gullestad et al., 2013). However, there has
been a faverableclimatic effect on the recruitment of cod with many strong year classes
produced in the early 2000s. The ice free area of the Barents Sea has also increased
substantially during the last decades and this has increased the primary productivity of the
region. Thenincrease in the ice free area of the Barents Sea in the last two decades
corresponds.to the total area of the North Sea. The Atlantic mackerel has similarly had a
sequence of verysstrong cohorts which has resulted in what appears to be a record high
abundance of this stock in recent years, although there are some uncertainties in the stock
assessment (ICES, 2014a, 2018). Some other stocks, including the Norwegian Spring
Spawning (NSS) Atlantic herring (Clupea harengus, Clupeidae), have conversely not
produced a strong year class since 2004 (ICES, 2018). This might be related to the climatic
condition or.to the reduced zooplankton abundance seen both in the Norwegian Sea (Huse et
al., 2012) andsalefig the coast (Toresen et al., 2019), but the causes for the poor recruitment
are far frombeing fully understood (ICES, 2014a). The blue whiting (Micromesistius
poutassou, Gadidae) has had some fluctuations in abundance in last the 30 years with strong

variation bothdn'recruitment and in adult abundance.

Applying the framework for pelagic fish in the Norwegian Sea
Here we test the framework for the three abundant pelagic fish stocks feeding in the
Norwegian Sea: Atlantic mackerel, NSS herring, and blue whiting. For mackerel, the most
pronounced changes in recent years have been the notable expansion in range and northward
shift in distribution (Utne et al., 2012; Olafsdottir et al., 2016; Nottestad et al., 2016), which
result in those.diagnostics clearly emerging as important (Table 2, 3). There has also been a
substantial feduction in weight at age (Olafsdottir et al., 2015) as well as a sequence of very
strong recruitment since 2005, and subsequent increase in biomass and abundance (ICES,
2011, 201442018). However, in recent years the weight-at-age has slightly increased. In
relation to Table,2, there are several mechanisms that could lead to these diagnostics. From
the observations on this population the key diagnostics that emerged (Table 3) were
contrasted with what could be possible causal mechanisms (Table 2); from that we then
explore the various flowcharts accordingly. In this instance the main diagnostics are

suggestive of a change in movement or competition, with the primary possible mechanism an
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increase in distributional range due to changes in migration. Using the change in the
Movement/Location Flowchart (Figure 2) the answer sequence is Y, N, Y, N with the
management suggestions to Decrease BRP buffer and allow for increased F. This is not
advocating for raising F to something above Fy;sy or an equivalent limit BRP, but rather
decreasing'the'buffer to allow for more fishing (e.g. going from a 10% to 5% buffer or
something §imilar). Another possible mechanism is competition for prey (Table 2, 3). This is
in line with'a previous study finding both inter- and intraspecific foraging competition
between the planktivorous fish feeding in the Norwegian Sea (Huse et al., 2012). Using the
Competition/Prey Availability flowchart (Figure 6) the answer sequence is Y, N, N, Y, Y, Y
with the suggested management actions of adjusting multispecies (or single species) HCRs
for competition or changed K. Thus for mackerel there are a few options that warrant
consideration, some of which are currently being discussed as potential management options

for this stock (Huse et al., 2018).

The diagnostics for NSS herring are less clear (Table 3, 1). The most pronounced pattern in
recent yearsshassbeen a decline in stock size, mainly in relation to poor recruitment since
2004 (Skagsethet al., 2015, Toresen et al., 2019). The mechanisms give a lot of similar signs
for recruitment, biomass and abundance. All the three types of overfishing can clearly cause
these effects, However, this is likely not occurring since the stock has been fished at a low
level the Tast 20 years, in line with the target fishing mortality of 0.125 (ICES, 2014a). We
also acknowledge that excluding other factors in SA models can lead to misinformed BRPs
(Mace et al., 2001; Caddy, 2004; Tyrrell et al., 2011); thus we still need to evaluate this
potential mechanism in the flowchart. In this instance the main diagnostics that emerge would
be suggestive of changes in competition, predation, or overfishing (Table 3). Using the
Overfishing flowchart (Figure 3), the answer sequence is maybe (treated as Y), Y, N, N, N,
N which results,in recommendations of checking other mechanisms. The same diagnostics
can emerge"from mechanisms associated with decreased prey abundance (or increased
competitiom)rand‘increased predator abundance (Table 2, 3). Upon initial glance, the latter is
rather unlikely as the predators of adult NSS herring are relatively few (Holst et al. 2004) and
have not increéased (D. Howell & B. Bogstad, pers. comm.). But predation could be occurring
as an effect on herring recruitment due to the expansion of mackerel, which can be a predator
on juvenile herring (Skaret et al., 2015). Potential additional evidence for predation is
increased predation pressure on herring in the nearby Barents Sea where the herring spends

its first 3-4 juvenile years (Dragesund, 1970). The Barents Sea has had a strong increase in
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biomass of piscivorous fish in the last decade, particularly large Atlantic cod (Gadus morhua)
that are known herring predators (Johansen, 2003). Thus, we need to evaluate the predator
flowchart. Using the Increase in Predation flow chart (Figure 5) gives the sequence Y, N, N,
Y with the resulting management suggestion of reducing F, increasing buffer to BRPs or
using M27explicitly in the SA model to set adjusted BRPs. Of these, we think the latter may
be more appropriate given the ambiguous evidence for predation. Another important
diagnostic population feature has been a long term reduction in length-at-age (Table 3; Huse
et al., 20125ICES, 2018). The decrease in zooplankton abundance (Huse et al., 2012; ICES,
2014b; Dupont et al., 2017; Toresen et al., 2019) is further evidence that also supports this
possible meehanism. Our proposed framework necessitates stepping through higher risk
mechanisms first, but still allows for the exploration of all possible mechanisms. Using the
Competition/Prey Availability flowchart (Figure 6) gives the answer sequence Y, N, N, Y, Y,
Y and the management suggestion would be to adjust multispecies (or single species) HCRs
for competition or changed K. This is similar to the result for mackerel above. For NSS
herring, the'sum result is that some form of adjustment to either BRPs or HCRs would be
recommended:that accounts for the effect of ecological interactions, whilst monitoring for

overfishing continues.

The blue whiting 1s presently at fairly stable population levels of abundance and biomass, but
has gone through some dramatic changes in abundance during the last 20 years (Payne et al.,
2012). Of particular note was a quadrupling of recruitment during 1996-2005 compared to the
preceding 20 year period (Payne et al., 2012). The causes for this increase in productivity are
not well understood, and the most likely explanation is a combination of changes in the large
scale circulation of the sub-polar gyre (Hatan et al., 2005) causing variation in mackerel
predation on the larval blue whiting (Payne et al., 2012). The diagnostics for blue whiting are
not entirely clear,/but the few key features suggest a possible increase in predation or
competition”(Table 3). Using the increase in predation flowchart (Figure 5) gives the answer
sequence YyINg7¥, Y which results in the management suggestion of modifying F or
evaluating.multispecies HCRs. Similar to mackerel and NSS herring there was a reduction
in length-at-agesover time for the blue whiting (Table 3), probably related to competition
(Huse et al., 2012). Using the Competition flowchart (Figure 6) gives the answer sequence Y,
N, N, Y, Y, Y and the management suggestion would be to adjust multispecies (or single
species) HCRs for competition or changed K, which is similar to the other two stocks

discussed above.
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713 For these pelagic stocks in the Norwegian Sea, that are known to be well managed regarding
714  fishing pressure (ICES, 2018), it is no surprise that ecological interactions emerge as some of
715  the more important mechanisms influencing their population dynamics. These features are
716  common to small'pelagic fishes around the world (Peck et al., 2014; Tyrrell et al., 2011), and
717  the need to/better incorporate these considerations remains (Skern-Mauritzen et al., 2016).
718  Some form of multispecies modeling seems highly warranted (Skern-Mauritzen et al., 2018),
719  and fortunately is ongoing in this region (e.g., Howell & Filin, 2014). To what extent

720  multispecies. HCRs can or will be adopted remains unclear, but the need for them is quite
721 clear.

722

723 Applying the framework for Aquaculture — the case of salmon lice

724 Atlantic Salmon (Sa/mo salar, Salmonidae) farming has become a major industry along the
725  Norwegian coast. The production takes place in net pens which are openly connected to the
726  surrounding.environment. Salmon lice (Lepeophtheirus salmonis, Caligidae) is a major pest
727  in salmon fasming and one of the most important challenges for the industry. In addition to
728  causing problems for the growth and survival of the farmed salmon, the salmon farms act as
729  major reservoirs of pathogens for the wild salmon and sea trout (Salmo trutta trutta,

730  Salmonidae; Terrissen et al., 2013). The wild salmon populations in Norway have been

731 reduced during recent decades. The sea fisheries have been closed since the 1980s, but there
732 is still a fishery in the rivers. The salmon lice infestation can lead to increased mortality in
733 outward migrating salmon smolts (Torrissen et al., 2013). It has also been hypothesized that
734  the food conditions in the Norwegian Sea (Jensen et al 2012) and the competition with the
735  planktivorous fish stocks (Huse et al., 2012) affects the growth and survival of the salmon
736  feeding in the Norwegian Sea.

737

738  The most obvious'diagnostic in this instance is an increase in disease/parasite infestation

739  (Table 3). Using'the diagram to diagnose the wild salmon results in disease as the most likely
740  mechanismsand competition as the second one. For the "increase in disease" flowchart (Fig.
741 7) the answers would be Y, High, Y. This will result in the suggested management action
742 Disrupt disease vectors. This is a sensible approach and is in line with current management
743  actions. The industry spends more than $400 million a year on combating salmon lice using
744  various bathing treatments (Rae, 2002; Costello, 2009; Abolofia et al., 2017), motivated to a

745  large degree by the negative effects on wild salmon. The secondary mechanism with
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competition would yield a path of Y, N, N, Y. This would leave us with the question of
sufficient data and suggest Multispecies and SS HCRs adjusted for competition if the data

are adequate and to gather more information and evaluate multispecies HCRs.

NorthwestAtlantic

Overview
The northwest Atlantic is a highly productive ecosystem, with an extensive continental shelf
that has supported major fisheries for centuries (Fogarty & Murawski 1998, Link et al.,
2011b). Thisregion merges subtropical-temperate with subarctic biomes and hence has high
biodiversitysand food web complexity for an ecosystem at this latitude. The fisheries there
have had a history of sequential overfishing, going from pelagics to demersal groundfish to
elasmobranchs and back to pelagics and invertebrates (EAP, 2012; Fogarty & Murawski,
1998, Fowler, 1999; NEFSC, 2019a, 2019b; Swain & Sinclair, 2000; Baum et al., 2003;
Rose, 2004; Link et al., 2011b; Boudreau et al., 2017). This ecosystem has also experienced
recent and extreme warming (Pershing et al., 2015), arguably some of the most rapid
warming anywhere in the world’s oceans. A general polar shift in biomass has been observed
(Fogarty et'al., 2008; Nye et al., 2009; Pinksy et al., 2013; Bell et al., 2014; Lynch et al.,
2015). This all'occurs in the context of many other ocean uses (EAP, 2012; Link & Marshak,
2019; NEFSC,2019a, 2019b).

Applying the framework for pelagic fish in the Georges Bank-Gulf of Maine
Ecosystem
The diagnostics for Atlantic herring exhibit declines in multiple features of population size,
recruitment, and maturity (Table 3; NEFSC, 2018). From these observations that emerged as
key diagnostics (Table 3), we contrast them with what could be the causal mechanism (Table
2) and then explote the various flowcharts accordingly. In this instance these diagnostics are
indicative primatily of recruitment overfishing (Table 2). Numerous studies have confirmed
that this stockshas experienced swings in fishing pressure (Fogarty & Murawski, 1998; Link
et al., 20 Llby"Overholtz et al., 2008; Overholtz & Link, 2007), in some instances leading to
severe depletionyin the late 1970s and early 1980s followed by a recovery in the late 1990s
and early aughts (Overhotlz et al., 2008; Overholtz & Link, 2007), with more variable
pressures recently (Link et al., 2011b; NEFSC 2018a). Currently this population is facing
fishing pressures that oscillate around what is sustainable and is recognized as being close to

if not overfished (NEFSC 2018a). Using the Overfishing flowchart (Figure 3), the answer
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sequence is Y, Y, N, Y which results in recommendations of evaluating multispecies HCRs,
or reducing total overall effort. If the evidence for ecosystem overfishing is debatable
(which it still can be given the novelty of these measures and philosophical disagreements
over this perspective (Link et al., 2011b; Link, 2018)), then the answer sequence becomes Y,
Y, N, N, ¥ which results in management suggestions of reducing F or spawning closures.
There is no‘indication of major shifts in distribution, and most other diagnostics are
inconclusive. Growth rates and stomach content diagnostics may indicate an increase in
predation. Furthermore, recent assessments indicate that this stock may in fact not be
experiencing,overfishing (NEFSC, 2018a). Additionally, this population has a well-
documented,history of experiencing wide-spread predation mortality (Overholtz et al., 2008;
Overholtz & Link; 2007; Smith et al., 2015; Deroba, 2018). Thus it is wise to consider
predation as another source of mortality. Using the increase in predation flowchart (Figure 5)
gives the answer sequence Y, N, Y, Y which results in the management suggestion of
modifying F or evaluating multispecies HCRs. Herring in the northwest Atlantic is likely
exhibiting population dynamics largely in response to external (to the population and fleet)
sources of mertality, with internal dynamics (via recruitment) secondarily present. It would
be wise to aecount for or mitigate those external dynamics accordingly (Overholtz et al.,
2008; Tyrrell etal., 2011; Smith et al., 2015; Deroba, 2018). This is consistent with ongoing
efforts for this.stock (Overholtz et al., 2000, 2008; NEFSC, 2012, 2018; Deroba, 2018;
Deroba et al., 2019)

The diagnostics for Atlantic mackerel are similar to those for herring in the northwest
Atlantic. There have been declines in measures of population size and individual size and the
stock is currently thought to be overfished (NEFSC 2018b). From the observations that
emerged as key diagnostics (Table 3), we contrast them with what could be the causal
mechanism (Tablé 2) and then explored the various flowcharts accordingly. In this instance
these are indi¢ative of (recruitment) overfishing (Table 2). Similar to herring, there has been a
noted historysefoverfishing this population in this ecosystem (Fogarty & Murawski, 1998;
Link et al.,,2011b) such that evaluating overfishing is warranted. Using the Overfishing
flowchart (Figure 3), the answer sequence is Y, Y, N, Y which results in recommendations of
evaluating multispecies HCRs, or reducing total overall effort. Of note is that although
mackerel is currently experiencing overfishing, the entire ecosystem also has experienced this
level of pressure (Link, 2018), plus the important role of mackerel as a forage fish in this

ecosystem will need to be considered in mitigating this overfishing. Again, as ecosystem
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overfishing is controversial (Link, 2018), the alternate answer sequence becomes Y, Y, N, N,
N, N, which results in recommendations of checking other mechanisms. Similar to herring,
and probably the majority of small pelagic fishes (Pikitch et al., 2012; Essington et al., 2015)
mackerel also exhibit diagnostics consistent with notable predation (Table 3). This population
has a well=doeumented history of experiencing significant predation from multiple predators
in this ecosystem (Link et al., 2011b; Moustahfid et al., 2009; Smith et al., 2015). Using the
increase in predation flowchart (Figure 5) gives the answer sequence Y, N, Y, Y which
results in the management suggestion of modifying F or evaluating multispecies HCRs.
Mackerel population dynamics are likely driven primarily by mortality features, with some
consideration of internal dynamics (i.e., recruitment) warranted. In some instances, there may
be no specific 0r advisable management action to mitigate this predation impact, but
inclusion in SA modeling and adjustments to BRPs or HCRs seems prudent (Overholtz et al.,

2000; Moustahfid et al., 2009; Curti et al., 2013; Smith et al., 2015).

Applying the framework for Atlantic Cod in the Gulf of Maine Ecosystem
The diagnosties:for Atlantic cod in the Gulf of Maine have clearly shown lower abundance,
lowered recruitment, smaller size metrics, and a shift in distribution (NEFSC 2013, 2017;
Palmer, 2014)."We contrast these key diagnostics (Table 3) with what could be the causal
mechanism (Table 2) and then explored the various flowcharts accordingly. In this instance
these diagnostics are indicative of overfishing and a possible shift in location (Table 2).
Given our prescribed ordering of use of the flow charts (noted above) and then using the shift
in location flowchart (Figure 2), the answer sequence is Y, N, Y, Y, Y, N, N, N, N which
results in recommendations to reevaluate stock identification. The evidence suggests that
this stock is not expanding its range or migration, but rather that its distribution is shifting
northerly (Fogarty et al., 2008; Nye et al., 2009; Pinksy et al., 2013) in response to warming
temperatuzes in.the region (Pershing et al., 2015). That it may cross an international boundary
could also speakito allocation concerns. The diagnostics also point to a secondary mechanism
of overfishing=This stock is in fact known to be overfished (NEFSC 2013, 2017; Palmer,
2014). Using'the overfishing flowchart (Figure 3), the answer sequence is Y, Y, N, Y which
results in recommendations to establish ecosystem TAC, reduce total effort, or evaluate
multispecies/multifleet harvest control rules. The evidence for overfishing is consistent
with decades of observations for this stock (NEFSC, 2013, 2017; Link et al., 2011b), but the
preponderance of overfishing for multiple stocks in this ecosystem suggests that a

multispecies approach may be warranted versus stock-specific considerations. As both
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overfishing and a distribution shift may be occurring, a comprehensive reevaluation of BRPs
or HCRs seems prudent (Nye et al., 2009; NEFSC, 2013, 2017; Link et al., 2011b; Palmer,
2014).

Discussion

There is a significant need for a framework like the one proposed here. Largely because we
need to change the mind-set when approaching fisheries issues from one of weighing or
exploring every potential, optimized outcome to one of identifying workable solutions in the
context of such oceanographic, ecological, and socio-economic complexity (Jackson et al.,
2001; Ruckelshaus et al., 2008; Halpern et al., 2008; Cheung et al., 2010; Hoegh-Guldberg &
Bruno, 2010; Hilborn, 2011; Link et al., 2012a; Micheli et al., 2014; Boyd et al., 2015;
Halpern et al., 2015; Tam et al., 2017; Link, 2018; Marshall et al., 2017; Fulton et al., 2019;
Link & Marshak, 2019). We propose the first ever framework to systematically,
simultaneously, comparatively and relatively explore population diagnostics that link
responses tosmain’causal factors. Additionally, this framework then proposes specific

management,actions tailored to address those mechanisms of population change.

We acknowledge that what we propose is a first start, and likely could miss many nuances,
may be miSinformed with respect to particular mechanisms, may miss other factors, and as
such will likely need to be modified over time. One could view as this a prototype to be
attempted and improved as it is applied to additional LMR populations. We also
acknowledge'that,even though this proposed framework identifies probable mechanisms, it
does not aimute.establish and quantify detailed process information nor specific details and
nuances of €ause-and-effect relationships. Rather, it simply aims to identify general patterns
and features, a la fisheries autopsies (Smith & Link, 2005) to better assign diagnostics to the
most probable, general mechanisms resulting in population change. By analogy, the point is
to identify-- using.common diagnostics-- that someone has influenza so that the person can be
treated, not primarily to identify the causal factors that made the individual susceptible to
infection, exposed them to the pathogen, worry about the particular strain of the flu, etc. We
also recognize the potential for multiple mechanisms occurring at once, and again propose
starting with the flowchart that has the most likely impact and minimization of risk, working
through them until sustainable solutions can be obtained. We also recognize that the resulting

advice from the flowcharts can still be rather general, and acknowledge that specific values,
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analyses or reference point modifications would need to be tailored to the local management
regime, analytical tools, and ecological context as informed by the data in that situation. Our
aim is to see this framework tested on many other LMR populations, adapted for regional

implementation accordingly.

An important.eutcome from the approach proposed here is to rule out causal mechanism and
management actions that are not appropriate. For example, there are numerous calls for carte
blanche spatialelosures as a management action (Lauck et al., 1998; Roberts et al., 2001,
2017; Gell &Reberts, 2003; Halpern, 2003; Lester et al., 2009; Watson et al., 2014). In some
instances, these are indeed appropriate (Murawski et al., 2000; Halpern & Warner, 2003;
Hilborn et al., 2004; Selig & Bruno, 2010). Yet in others such as changing migration or
increases in predation, they will not entirely ameliorate the negative factors influencing LMR
populations«(Adllison et al., 1998; Soto, 2002; Hilborn et al., 2004; Keller et al., 2009; Makino
et al., 2014).-and:thus may not be the best intervention. By specifying, with relatively simple
diagnostics; what management interventions will be most apt to have a positive impact, we
can avoid the inefficiencies of “excessive adaptive management” cycling (i.e., continually
trying new, albeitiineffective, management interventions; Walters, 1986; Levin, 1999; Smith
et al., 1999; Allan & Curtis, 2005; Walters, 2007; Argent, 2009; Allen & Gunderson, 2011;
Rist et al., 2013;, Westgate et al., 2013; DeFries & Nagendra, 2017).

In many respects, the framework we propose is a form of ecological engineering (Odum,
1983; Holling, 1996; de la Mare 1998, 2005; Mitsch, 2012). Using the engineering
perspective, what we propose aims to increase detection of signals among the noise
(Jennings, 2005), thereby suggesting the next suitable set of actions (e.g., Jennings, 2005;
Andalecio, 2010; Lockerbie et al., 2018) in a structured decision making manner. The
diagnostics‘and standards for evaluation of them as a suite of decision criteria could also
provide efficienciés and improvements in a relatively simple, empirically-based manner that
would necessitate'an identified range of actions. We certainly are not advocating for
curtailmentof-fisheries-related research in any way, but we do think such an engineering
approach coeuld focus from a plethora of process-oriented studies into ones that lead to more
refined solutions, for LMR management (Lockerbie et al., 2016, 2017; Krug et al., 2017; Link
& Marshak, 2019). Often the factors and combinations thereof facing LMR populations can
seem so overwhelming that it leads to inaction. The key point from this engineering approach

is that we know enough to act now, and given that we will always have imperfect knowledge,
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the framework we propose provides a rubric to ensure that not only are suitable management

interventions explored, but no probable cause of population decline is ignored.

We acknowledge the complexity of the combination of the factors facing just one LMR
population,.and possible responses thereto, can indeed seem overwhelming. Let alone a full
suite of LMRsqin a given marine ecosystem. Yet the salient feature of the framework
proposed here is t0 recognize such complexity, prioritize among the most probable factors
influencingraspopulation, and then from known linkages and first principles, recommend
action. This-framework seeks to find diagnostics and actionable solutions rather than
optimizing/among the myriad possible mechanisms that could be influencing fish
populations. Our fear for the fisheries discipline is that there are too many factors influencing
LMR populations'too rapidly for our normal way of conducting business via detailed,
mechanism=by=mechanism process studies to handle them all at once and in adequate time.
An approachdlike'the framework we propose here seeks to prioritize and triage those that
warrant atténtion, with suggestions of what the most suitable actions should probably be (de
la Mare, 2005; Fletcher, 2005; Hobday et al., 2011; Hare et al., 2016), in a way to ensure
sustainable’ LMR ‘populations.

Anotherconsideration for the application of this framework is who actually makes these
determinations-and the resultant management decisions? Certainly fisheries management
bodies need to start thinking about this. And certainly LMR analysts and population
modellers need to start thinking about this as well. But the salient point is that ultimately it
does not matter as long as someone begins to do so. Perhaps this framework could be
adopted as part of LMR review protocols, or prior to population modelling efforts, as part of
LMR analysis scoping common when gauging data needs and availability. Both would
ensure that the prominent factors influencing an LMR population would not be overlooked,
and might éven suggest the best scenarios to test for the condition of a given population. But
we do not wanttg'be too prescriptive regarding who needs to execute this approach nor
where in anysgiven management process it needs to be inserted. Rather, we simply want to
present the.approach so the broad community of fisheries scientists and managers are
empowered to'test the framework and apply it as practitioners in their own local and specific

contexts.

Management of risk is an essential part of fisheries management (Table 1-Risk.VI). The

negative consequences of LMR population decline are well documented (e.g. Cushing, 1990,
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1995; 2011 Smith, 1994; Jennings & Kaiser, 1998; Reno, 1998; Jackson et al., 2001;
Hutchings & Reynolds, 2004; Hsieh et al., 2006; Anderson et al., 2008; Cury et al., 2008;
Shelton & Mangel, 2011; Essington et al., 2015; Eddy et al., 2017). We certainly have a clear
recognition of the risks caused by overfishing (Myers et al., 1994; Rosenberg et al., 1994;
Hall 1999y Murawski, 2000; Jackson et al., 2001; Walters & Kitchell, 2001; Pauly et al.,
2002; Froese 2004; Hutchings & Reynolds, 2004; Birkeland & Dayton, 2005; Coll et al.,
2008; Worm et al., 2009; Hilborn, 2010; Pikitch, 2012). But as the climate and hence oceans
continue togchange at a rapid pace (Harley et al., 2006; Hoegh-Guldberg et al., 2007; IPCC,
2014; Allen et al., 2018), as fisheries continue to clash with other fisheries (Daan &
Sissenwine;,1991; Murawski, 1991; Pomeroy et al., 2016; Rindorf et al., 2017a, 2017b) and
other oceanfusés (Sanchirico et al., 2010; Yates et al., 2015; Rudd et al., 2018), and as
ecosystem dynamics shift (e.g., Francis & Hare, 1994; Scheffer et al., 2001; Casini et al.,
2008; deYoung etal., 2008; Mollmann et al., 2008; Johnson et al., 2011; Lockerbie et al.,
2018), the need to account for and manage risk from a wider array of factors is heightened.
There are many extant methods and approaches to identify and evaluate this risk (Table 1-
Risk.VII), andsinshany ways they are quite compatible with and actually informative to the
approach noted here. Among these risk-based approaches that identify major concerns, very
few actually prescribe recommended management actions. We hope that the framework
provided here bridges the gap between identification of risk to specific and appropriate

management measures.

There are other works that have attempted to provide decision trees for managing LMRs
beyond the risk“assessments noted above. For instance, changes to migration (Link et al.,
2011a; Pinnegaret al., 2013; Karp et al., 2018), changes due to climate change (Allison et al.,
2009; Cinner et al., 2012; 2013; Hare et al., 2016; Karp et al., 2018), overfishing (Fletcher,
2005; Cope & Punt, 2009; Dunn et al., 2011), or changes due to predation (Rochet et al.,
2005; Shannon et al., 2014) have all in many ways served as precursors to the framework
noted here. Yet none of those has attempted to tackle the full range of factors that influence
LMR populationsssimultaneously. The challenge among all of these prior approaches has
been to note where in the science-to-management decision process is appropriate to insert the
additional information or intervention. If one generally accepts the Monitoring/Data =
Modeling/Assessment > Management Advice/BRPs > Management Action/HCRs rubric as
the generic process for executing LMR management (Caddy & Mahon, 1995; Mace et al.,
2001; Caddy, 2004; Punt, 2010; NMFS, 2016; Karp et al., 2018; Lynch et al., 2018), it is
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clear from this generic management process that the science-to-management decision process
has multiple insertion points. Each of the steps in that process could potentially be a place to
account for the factors influencing LMR populations, and it may be wise to include some
level of redundancy to ensure the mechanism is addressed, as it is in engineering systems
(Odum, 19833 Holling, 1996; de 1a Mare 1998, 2005; Mitsch, 2012). In fact, many of the
recommendations from the flowcharts result in recommendations that indeed capture both
this need for redundancy and the reality of multiple insertion points. This built-in optionality
leading to redundancy is important primarily as a means to address imperfect knowledge

among these factors in a given marine ecosystem.

Almost all of the proposed management measures noted here (Figure 1) are not novel LMR
management options (Table 1-EAFM.VI). They are simply reconfigured or used with respect
to specific causal'mechanisms of population responses. This is beneficial for at least two
reasons. Firstds:that the management measures to address the factors facing LMR populations
are already/extant, and we do not need to develop even further solutions (Table 1-EAFM.VI).
And second, that these measures are extant affords some modicum of familiarity, which
should enhance their ongoing uptake and use (Riechers et al., 1993; Smith et al., 2007; Rice,
2011). For those that are mildly novel or proposed for use in an atypical fashion, the use of
management Strategy evaluations (MSE) as a simulation and testing tool should be able to
better assudge concerns about those measures (Smith et al., 1999; Sainsbury et al., 2000;
Bunnefeld et al., 2011; Fulton et al., 2011, 2014; Punt et al., 2014, 2016; Cummings et al.,
2017; Lynchet al., 2018). More so, it is the combination of measures, with some built-in
redundancyasnoted above, along with their specificity to the particular mechanism
influencing MR populations that should increase even further their efficacy for achieving

sustainable/LMR populations.

The need to' compare and coordinate across species emerges from this proposed framework.
Many of the factots revolving around ecological or habitat or disease interactions imply
factors that impaet more than one taxa. Additionally, an important thing to note about this
framework.is that many of the management recommendations result in multispecies HCR,
reduce bycatch, restore habitat, or ecosystem-level BRP types of actions that impact more
than one targeted species. Clearly the need to further advance multi-taxa approaches has
merit, and in many ways is an important feature of enhanced fisheries management (Fogarty,

2014; Collie et al., 2016; Holsman et al., 2017, 2018; Holsman et al., 2018; Link, 2018;
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Weijerman et al., 2018; Fulton et al., 2019). We acknowledge that ecosystem reference points
are still controversial (Link, 2018) but assert that they need to be given additional
consideration; initial instances of doing so exhibit significant improvements (Link, 2018;
Fulton et al., 2019). The framework we propose here is decidedly single-population in
orientation;, butiitis clear that ancillary information will benefit this framework. We assert
that at least' having extant, multispecies MSEs is advisable given the range of HCR that will
likely need 'to be explored (Punt, 2010; Fulton et al., 2014; Punt et al., 2014; Grtiss et al.,
2016; Onoet al., 2017; Rindorf et al., 2017a, b; Holsman et al., 2018; Fulton et al., 2019).

We offer this proposed framework as a way to enhance and improve sustainable management
of LMR populations. We also offer it as a way to further implement EAFM (Table 1-
EAFM.VIII). In'many ways, we view the two as synonymous. The benefits of EAFM have
been well stated but are rarely realized (Table 1-EAFM.III). In many ways they embody the
objectives of sustainable LMR management, are in many ways necessary to do so, and in
many ways address the competing objectives as doing so occurs (Table 1-EAFM.IV). We
acknowledgesthat'the lack of clear operational guidance has hindered the wide adoption of
EAFM and'EBEM (Table 1-EAFM.V). We trust that the approach proposed here provides at
least the'rudiments of an operational framework for executing EAFM. By better diagnosing
factors influeneing LMR populations, suggestive of more appropriate management
interventions, and ultimately leading to improved fisheries, we trust that sustainable LMR

management using an EAFM will become increasing realized.
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Table 1. Summary of the literature for major mechanisms impacting living marine resource (LMR) populations, with detailed mechanisms or
specific effects noted. With some summarizations of EAFM, Monitoring, and Risk considerations. LMR = living marine resource, BRP =

biological reference point, F = fishing mortality rate, HCR = harvest control rule.
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2676  Table 2. Diagnostic table listing population features (rows) indicative of possible mechanisms (columns) influencing LMR populations. A minus
2677  sign indicates a negative effect, a plus sign indicates a positive effect, a zero indicates no effect, and a question mark indicates that the effect is
2678  unknown relative to the possible mechanism. Different signs are also similarly shaded to facilitate comparison across mechanism. Those cells

2679  circled indieate-population features that can particularly distinguish among mechanisms. In = increase, De = decrease.

Potential mechanisms
. Migration & . . . . .. . . Disease
Population feature Overfishing Location Movement Habitat quality Habitat quantity Competition Prey abundance Physiology Predation and
- — Parasites
Recruitment | Growth | Ecosystem Route | Timing In De In De In De In De In De In De
Abundance - - - 0 2 0 + - + - - + + - %0 “o - + -
Biomass - - - 0 0 0 4 - ils - - + + - + - - + -
Abundance at age - - - 0 0 0 + - + - - + + - ? ? U= + -
Size at age 0/- - - 0 0 0 4 - + - = + + = + - + - 0
Weight at length 0/- - - 0 0 0 4+ - + - - + + - + - + - 0/?
Length frequency - - - 0 0 0 + - + - - + + - ? ? + + -
. . a
Max L/ L infinity — - - 0 4 0 4 0 + - + 0/- = + + - ? - “0 + -
Growth rate 0 - - 0 0 0 + - + - - + + = + = + =
Condition factor 0 - - 0 + 0 Lt - Y - - + + - + - 0 0 -
Liver weight/HST 4 0 /- 4 - 0 ? 0 0 - 0 - - + + - 4 + i 4 0 0 i
Stomach weight 0 0 ?/0 0 0 ? + - + - - + + - + - 0 0 0
Diet composition 0 0 0/? 0 0 + ? ? ? ? ? ? ? ? 0 0 ? ? ?
Median Age = L - - 0 0 0 4 - + - = + + - ? ? = + -
Fe cundity Tt o = 0 0 0 + - + - - + + - + - Yo+ 0 -
Maturatiy (ogives) - 0 - 0 0 0/- 4 0 - 4 0 - - + + - + - 0/+ 0 -
Recruitment - - - 0 0 0 + - + - - + + - + - - + -
Pathogen/parasite J
genp 0 0 ; ? ? 9 ? - 9 - 0/+ - - 0/+ 9 9 0 0 +

prevalence 4 M 4
Distribution 0 - - +/- - 3 + = + = = + + - + = = + "0
Range - - - +/ - 0 + - + |- ++ - - i + - - +
S.pawmng initiation : o/- 0 ) 4 . Y| . , , , 5 N , 0 0 ) , 0 0 ,
time

2680 Spawning duration - 0/- 0 ? I 0 4 - 4 - - + + - - + 0 0 -
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2681  Table 3. Case studies of example populations from the Northeast and Northwest Atlantic. Values indicate actual observed population responses
2682  in each situation. A minus sign indicates a negative effect, a plus sign indicates a positive effect, a zero indicates no effect, and a question mark

2683  indicates that the effect is unknown. Cells highlighted in shading indicate particularly distinguishing diagnostics.

Stocks/Regions
Population feature Norwefglan sp.rlng Northeast Atlantic Blue whiting Salmon Northwest Alantic herring Northwest Atlantic Gulf of Maine Cod
spawning herring mackerel mackerel
Ecosystem|Norwegian Sea Norwegian Sea Norwegian Sea Norwegian Sea  |Northeast US Shelf Northeast US Shelf Northeast US Shelf
Abundance - + 0 - - - -
Biomass - + 0 - - - -
Abundance atage - 0/+ 0 - - - -
Size at age - 0 - +/- 0/- - -
Weight at length 0 - 0 0 0 0 -
Length frequency + 0 + 0 0 - -
Max L/ L infinity 0/+ 0 0/+ 0 0 - 0
Growth rate ? 0 4 +/- ? ? -
Condition factor - 0 - +/- 0 0/- -
Liver weight/HST 0 ? ? 0 ? ? ?
Stomach weight - 0/+ - +/- 0 0 0
Diet composition - ? ? 0 ? ? 0
Median Age - 0 - 0 -/0 -
Fecundity - 0 ? 0 ? ? ?
Maturatiy (ogives) - 0 - 0 - - ?
Recruitment - + + - - - -
Pathogen/parasite 0 0 0 + 9 5 N
prevalence
Distribution 0 < 0 0 0 0 4+
Range 0 W+ 0 0 0/- 0/+
Spawning initiation ) 9 9 0 9 0 9
time
Spawning duration - ? ? 0 ? 0/- ?
Likely Prey Movement, Competition, Disease and
me chanism/Flow™ | Availibility/Competition, . . . Predation, OF Predation, OF Shift in Location, OF
. Competition Predation Parasites
2684 chart number Predation, OF
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Figure Legends

Figure 1. Schematic of how major factors can impact key features of LMR populations.
Which when diagnosed, suggest particular LMR management actions and options. LMR=
living marineresource, HCR= harvest control rules, BRP= biological reference point, TAC=
total allowable catch, SA = stock assessment, ID = identification, p*= probability of
overfishing.” We use the term Living Marine Resources (LMR) largely as a fish stock or
populationgbut recognize that there can be other taxa that are harvested. Here we use the term
“factors” as those facets of a marine ecosystem that respond to some larger-scale driver, but
functionally,can be thought of as synonymous to a “mechanism” or “process” that influences
LMR populatigns, In the sense they negatively influence a population, we synonymously use
the term “pressure.” We use the term “features” as representative of those aspects of LMR
populations that can be tracked to understand the potential causality of a population change,
here used synonymously as “diagnostics”. We use the term Living Marine Resources (LMR)
largely as afish stock or population, but again recognize that there can be other taxa that are

harvested.

Figure 2..Change in movement and location. Flowchart for suggesting management or
assessment action given changes in migration of a LMR population. Semicolons indicate

alternative management actions.

Figure 3. Overfishing. Flowchart for suggesting management or assessment action given

overfishing of a LMR population. Semicolons indicate alternative management actions.

Figure 4. Change in physiology. Flowchart for suggesting management or assessment action
given change.inphysiology of a LMR population. Semicolons indicate alternative
managementactions. Change in bold in the flowchart could either indicate decrease or
increase depending on whether it relates a decline or an increase in physiological rates.

Managementiactions in italic only refer to the cases where there is a decline in physiology.
Figure 5. Increase in predation. Flowchart for suggesting management or assessment action

for increased predation on LMR populations. Semicolons indicate alternative management

actions.
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Figure 6. Increase in competition or decrease in prey. Flowchart for suggesting management
or assessment action given competition and/or prey base of a LMR population. Semicolons

indicate alternative management actions.

Figure 7."Inerease in disease or parasitism. Flowchart for suggesting management or
assessment/action for disease outbreaks in LMR populations. Semicolons indicate alternative

management actions.
Figure 8. Habitat change. Flowchart for suggesting management or assessment action given

changes in habitat of a LMR population. Semicolons indicate alternative management

actions.
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Mechanism: Change in mavemeant, migraticon & lacation
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Mechanism: Cverfishing
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Mechanisim: Change in physiolepy
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fechanism: Increase in predation
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Mechanism: increase in competition ar decrcass in prey
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Kechanism: Increase in disease or parasites
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Mechanism: Habilat change
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