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Running title: Superensembles of population status 42 

 

Abstract: Fishery managers must often reconcile conflicting estimates of population status and trend. 44 

Superensemble models, commonly used in climate and weather forecasting, may provide an effective solution. This 

approach uses predictions from multiple models as covariates in an additional “superensemble” model fitted to 46 

known data. We evaluated the potential for ensemble averages and superensemble models (“ensemble methods”) to 

improve estimates of population status and trend for fisheries. We fit four widely applicable data-limited models that 48 

estimate stock biomass relative to the equilibrium biomass at maximum sustainable yield (B/BMSY). We combined 

these estimates of recent fishery status and trends in B/BMSY with four ensemble methods: an ensemble average and 50 

three superensembles (a linear model, random forest, and boosted regression tree). We trained our superensembles 

on 5760 simulated stocks and tested them with cross-validation and against a global database of 249 stock 52 

assessments. Ensemble methods substantially improved estimates of population status and trend. Random forest and 

boosted regression trees performed the best at estimating population status: inaccuracy (median absolute proportional 54 

error) decreased from 0.42–0.56 to 0.32–0.32, rank-order correlation between predicted and true status improved 

from 0.02–0.32 to 0.44–0.48, and bias (median proportional error) declined from -0.22–0.31 to -0.12–0.03. We 56 

found similar improvements when predicting trend and when applying the simulation-trained superensembles to 

catch data for global fish stocks. Superensembles can optimally leverage multiple model predictions; however, they 58 
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must be tested, formed from a diverse set of accurate models, and built on a dataset representative of the populations 

to which they are applied. 60 
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Introduction 76 

Status and trend are two of the most fundamental values to quantify in the management of 

ecological populations (e.g., Hutchings et al. 2010; IUCN 2015). However, managers are often 78 

faced with reconciling multiple uncertain and potentially conflicting estimates of status and trend 

(e.g., Brodziak and Piner 2010; Branch et al. 2011; Deroba et al. 2015). For example, one model 80 

may suggest a population is at risk and declining in abundance while others may suggest it is not 

at risk and stable. 82 
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One solution is to take the average or weighted average of several model predictions, i.e., an 

ensemble. Such ensembles are typically more accurate and less biased than individual model 84 

estimates and can incorporate various types of uncertainty, such as uncertainty in model 

structure, initial conditions, and parameter estimation (Dietterich 2000; Araújo and New 2007). 86 

Ensembles are superior to individual models in at least three ways: (1) statistically by averaging 

across models and therefore being less likely to pick the “wrong” model, (2) computationally by 88 

reducing the risk of getting stuck in a local optima, and (3) representationally by expanding the 

range of hypotheses explored (Dietterich 2000). This approach forms the basis of many machine 90 

learning methods (e.g., Dietterich 2000), has helped reconcile climate forecasts from dozens of 

models (e.g., Murphy et al. 2004; Tebaldi and Knutti 2007; IPCC 2013), and even improved 92 

early warning signs of malaria outbreaks (Thomson et al. 2006). In ecology, ensemble methods 

are sometimes used to improve species distribution modelling (e.g., Araújo and New 2007; 94 

Breiner et al. 2015) and indeed have been used to combine estimates of population status and 

trend (e.g., Brodziak and Piner 2010). 96 

Whereas averages or weighted averages of model estimates may improve predictions 

compared to a single model, they may not optimally leverage available data. The best prediction 98 

does not necessarily lie in the middle of multiple model predictions, some models may perform 

better than others in certain conditions, and the covariance between models may contain 100 

information that can improve predictive accuracy. For example, one model might perform well at 

estimating high levels of abundance but be biased at low levels of abundance, while another 102 

model might have the opposite properties. An optimal combination of these models is not simply 

an average of the two. 104 

We can exploit these characteristics by using the predictions from a group of models as 

inputs into a separate statistical model. This technique, sometimes called superensemble 106 

modelling (Krishnamurti et al. 1999), is common in climate and weather forecasting (e.g., Yun 

et al. 2005; Mote et al. 2015). The superensemble is fit to a training dataset where outcomes are 108 

well known and then used to predict on a dataset of interest. For example, Krishnamurti et al. 

(1999) combined predictions of wind and precipitation in Asian monsoons via a superensemble 110 

regression fit to observed data. Their superensemble was considerably more accurate than any 

individual prediction or an average of the predictions. 112 
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In fisheries science, the commonly used operational models for determining status and trend 

of exploited fish populations are stock assessments, i.e., population models coupled to an 114 

observation model that incorporate all appropriate data (e.g., catches, size and age distributions, 

surveys, and tagging information) to quantify values such as the biomass of a stock that can 116 

produce maximum sustainable yield (BMSY) (Hilborn and Walters 1992). However, the broad 

range of data required to conduct these stock assessments are not available for the majority of 118 

fish populations, including those of conservation concern and of economic interest to fisheries 

(FAO 2014). Therefore, a number of models have been proposed to assess B/BMSY

Here, we estimate population status and trend of exploited fish populations using ensembles 

and superensembles (collectively “ensemble methods”) of these four data-limited models. We 130 

apply four ensemble-method approaches of varying complexity to both simulated and real-world 

fish stocks and compare their predictive performance against each other and the individual 132 

models. 

 based on the 120 

limited data available for the majority of fish stocks: (1) a time series of the total weight of catch 

and (2) a basic understanding of population productivity (e.g., Vasconcellos and Cochrane 2005; 122 

Martell and Froese 2013). Recently, Rosenberg et al. (2014) investigated the performance of four 

data-limited models through a large-scale simulation experiment. Three of these models were 124 

based on Schaefer (logistic) biomass dynamics and one was an empirical model fitted to more 

data-rich stock-assessment output. The four models frequently disagreed about population status 126 

(e.g., Fig. 1), no one model had strong performance across all fish stocks, and some models 

performed better than others depending on circumstances. 128 

Methods 134 

To test the ability of superensembles to improve estimates of status and trend in data-limited fish 

stocks, we first fit four individual assessment models to a large simulated dataset of fish stocks. 136 

We then built and tested the performance of superensembles using cross-validation of the 

simulated dataset. Finally, we tested superensembles built with the entire simulated dataset 138 

against a database of global fish stocks. We describe these steps in detail below and illustrate the 

general approach both with illustrations and pseudocode in Fig. 2. 140 
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Individual models of population status 

We fit four individual data-limited models that use catch data and basic life-history parameters to 142 

estimate B/BMSY

Three of the models are mechanistic and based generally on Schaefer biomass dynamics 146 

(Schaefer 1954) of the form 

B̂t+1 = Bt + rBt(1− Bt/B0)− Ct, 

. We chose these models because they can be fit to the vast majority of fisheries 

around the world, are established in the literature, and have been extensively simulation tested 144 

(Rosenberg et al. 2014). 

 148 

where B̂t+1 represents predicted biomass at time t plus one year, Bt represents biomass at time t, r 

represents intrinsic population growth rate, B0 represents unfished biomass or carrying capacity 150 

K, and C represents catch. The fourth model is an empirically derived model based on the RAM 

Legacy Stock Assessment Database (Ricard et al. 2012). Rosenberg et al. (2014) provide a full 152 

background on these four methods 

(http://www.fao.org/docrep/019/i3491e/i3491e00.htm, last accessed 2016-154 

11-08) and code to fit all the models is available in an accompanying package datalimited for the 

statistical software R (R Core Team 2015) 156 

https://github.com/datalimited/datalimited (last accessed 2016-11-08). In 

summary: 158 

• CMSY (catch-MSY) implements a stock-reduction analysis with Schaefer biomass 

dynamics (Martell and Froese 2013). It requires a prior distributions on r and K as well as 160 

priors on the relative proportion of biomass at the beginning and end of the time series 

compared to unfished biomass (depletion). The version of the model used in Rosenberg 162 

et al. (2014) was modified from Martell and Froese (2013) to generate biomass trends from 

all viable r-K pairs and produce an estimate of B/BMSY

• COM-SIR (catch-only-model with sampling-importance-resampling) is a coupled harvest-

dynamics model (Vasconcellos and Cochrane 2005). Biomass is assumed to follow a 166 

Schaefer model and harvest dynamics are assumed to follow a logistic model. The model is 

fit with a sampling-importance-resampling algorithm (Rosenberg et al. 2014).  168 

 from the median trend.  164 
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• SSCOM (state-space catch-only model) is a hierarchical model that, similar to COM-SIR, 

is based on a coupled harvest-dynamics model (Thorson et al. 2013). SSCOM estimates 170 

unobserved dynamics in both fishing effort and the fished population based on a catch time 

series and priors on r, the maximum rate of increase of fishing effort, and the magnitude of 172 

various forms of stochasticity. The model is fit in a Bayesian state-space framework to 

integrate across three forms of stochasticity: variation in effort, population dynamics, and 174 

fishing efficiency (Thorson et al. 2013).  

• mPRM (modified panel regression model) is a modified version of the panel-regression 176 

model from Costello et al. (2012). Unlike the other models, mPRM is empirical and not 

mechanistic — it uses the RAM Legacy Stock Assessment database to fit a regression 178 

model to a series of characteristics of the catch time series and stock with stock-assessed 

B/BMSY

Simulated dataset to build the superensemble 

 as the response. The model used in this paper is modified from the original — it 180 

condenses the life-history categories into three categories to match the simulated dataset, 

removes the maximum catch predictor since the absolute catch in the simulated dataset is 182 

arbitrary, and does not implement the bias correction needed in Costello et al. (2012) since 

we do not derive estimates of median status across multiple stocks.  184 

We first developed and tested ensemble methods on a fully factorial simulated dataset of fisheries 186 

with known status (Rosenberg et al. 2014). Briefly, these simulations were implemented with the 

FLR packages (Kell et al. 2007) for the statistical software R, and, in particular, the FLBRP 188 

package. The framework takes a series of life-history parameters and fishery characteristics to 

generate population projections and resulting catch timeseries. Life-history values (e.g. mean 190 

asymptotic length) for three fish life histories (small pelagic, demersal, and large pelagic) were 

translated into a complete set of parameters for a von Bertalanffy growth model, a maturity 192 

ogive, natural mortality, a selectivity function, and a Beverton-Holt stock-recruitment function 

using the life-history relationships derived in Gislason et al. (2008). 194 

Fishing scenarios included three levels of initial biomass depletion compared to carrying 

capacity: biomass at 100%, 70%, and 40% of carrying capacity; and four exploitation patterns: 196 

(1) a constant exploitation rate, (2) an exploitation rate coupled with biomass to mimic an open-

access single-species fishery, (3) a scenario where exploitation rate increased continuously, and 198 
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(4) a “roller-coaster” scenario where the exploitation rate increased and then decreased. Process 

noise (recruitment variability; i.e., unexplained variability in population dynamics) was 200 

introduced to the models at two magnitudes in log space, N(0,0.22) and N(0,0.62), and was either 

uncorrelated through time or had first-order autoregressive correlation of 0.6. The simulation also 202 

included a scenario with N(0,0.22) measurement error around log catch and one scenario without 

measurement error. Rosenberg et al. (2014) ran ten iterations for each combination of factors 204 

adding stochastic draws of recruitment and catch-recording variability each time to generate a 

total of 5760 stocks. Code to generate the simulations is available at 206 

https://github.com/datalimited/stocksims (last accessed 2016-11-08). 

Building the superensemble models 208 

The individual models we seek to combine with superensembles provide time series of stock 

status (B/BMSY). Therefore, we can use superensembles to estimate any property of these time 210 

series. Here, we focus on two properties: the mean and slope of B/BMSY in the

We used the mean or slope of B/B

 last five years. 

Together, these quantities address the recent state and trend of stock status, which are both of 212 

management and conservation interest (e.g., Hutchings et al. 2010; IUCN 2015). To avoid undue 

influence of the time series end points on the calculated slope, we measured the slope as the 214 

Theil-Sen estimator of median slope (Theil 1950). 

MSY as the response variable and the predictions from the 216 

individual models as predictors in our superensemble models (Fig. 2a). When modelling mean 

B/BMSY — a ratio bounded at zero — we fit the superensemble models in log space and 218 

exponentiated the predictions. For the estimates of B/BMSY

We compared an ensemble average and three superensembles of varying complexity: a 

linear model with two-way interactions, a random forest, and a boosted regression tree. We 222 

describe these models as estimating ��, which represents either the ensemble estimated log 

B/B

 slope, which are not bounded at zero, 

we fit superensemble models on the natural untransformed scale. 220 

MSY or slope of B/BMSY. The individual model estimates of log B/BMSY or slope of B/BMSY 224 

are represented as �� for models i 1 through 4 (CMSY, COM-SIR, SSCOM, mPRM). The 

ensemble average for each fishery i was calculated as: 226 θı̂ = �b̂i,1 + b̂i,2 + b̂i,3 + b̂i,4�/4, for i = 1, . . . , n. 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved 

 

We fit the linear model superensemble with all second-order interactions: 228 θı̂ = β0 + β1b̂i,1+. . . +β1,2b̂i,1b̂i,2+. . . +ϵi, ϵ ∼ Normal(0,σ2), for i = 1, . . . , n. 

 

For this illustrative example we chose this level of model complexity a priori but a modeller 230 

could apply model selection via information-theoretic or cross-validation approaches. 

Our two machine learning superensemble models, a random forest and a generalized 232 

boosted model (GBM), were based on regression trees. Regression trees sequentially determine 

what value of a predictor best splits the response data into two branches based on a loss function 234 

(Breiman et al. 1984). In random forests, a series of regression trees are built on a random subset 

of the data and random subset of the covariates of the model (Breiman 2001). In GBMs, each 236 

subsequent model is fit to the residuals from the previous model; data points that are fit poorly in 

a given model are given more weight in the next model (Elith et al. 2008). Random forests and 238 

GBMs can provide strong predictive performance and fit highly non-linear relationships (Elith 

et al. 2008; Hastie et al. 2009). We fit random forest models with the randomForest package 240 

(Liaw and Wiener 2002) for R with the default argument values. We fit boosted regression tree 

models with the gbm package (Ridgeway 2015) for R. We fit GBMs with 2000 trees, an 242 

interaction depth of 6, a learning rate (shrinkage parameter) of 0.01, and all other arguments at 

their default values. 244 

Additional covariates 

Superensemble models allow us to incorporate additional covariates and potentially leverage 246 

interactions between these covariates and individual model predictions. Additional covariates 

could be, for example, life-history characteristics, information on exploitation patterns, or 248 

statistical properties of the data. We tested the performance benefits of including one set of 

additional covariates: spectral properties of the catch time series. Spectral analysis decomposes a 250 

time series into the frequency domain and provides a means of describing the cyclical shape of 

the catch series that is independent of time series length (except in affecting precision) and 252 

independent of absolute magnitude of catch. We fit spectral models to the scaled catch time series 

(catch divided by maximum catch) with the spec.ar function in R and recorded representative 254 
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short- and long-term spectral densities at frequencies of 0.20 and 0.05, which correspond to 5- 

and 20-year cycles. For the linear model superensemble, we incorporated the two spectral 256 

covariates (S1, S2) along with all second-order interactions as: θı̂ = β0 + β1b̂i,1+. . . +β1,2b̂i,1b̂i,2+. . . +βS1S1i + βS2S2i + βS1,S2S1iS2i + β1,S2b̂i,1S2i+. . . +ϵi, 
with ε∼N (0,σ2) and for simulated fisheries i 1 through n. We include the results of adding these 258 

additional covariates in the supplementary materials. 

Applying the superensemble models and testing performance 260 

Once the superensemble models are built and trained using the simulated stocks (or any dataset 

with “known” status), we can use the superensembles to estimate the status of new stocks 262 

(Fig. 2b). To do this we applied the individual models to our stocks of interest (i.e., CMSY, 

COM-SIR, SSCOM, mPRM) and then used these individual model estimates of status or trend as 264 

data in our already built superensemble models. In this paper we applied the superensemble 

models to subsets of the simulated data as a cross-validation test to test predictive performance 266 

and to the RAM Legacy Stock Assessment database to test predictive performance on real stocks. 

We used repeated three-fold cross validation: we randomly divided the dataset into three 268 

sets, built superensemble models on two-thirds of the data, and evaluated predictive performance 

on the remaining third. We repeated this across each of the three splits and then repeated the 270 

whole procedure 50 times to account for bias that may result from any one set of validation splits. 

In the simulated dataset, there were 10 replicates of each unique combination of simulation 272 

parameters that differed only in stochastic variability. Since the dynamics of these populations 

were often similar, we grouped these stocks in the cross-validation process into either the training 274 

or testing split. 

We also tested our ensemble methods on the RAM Legacy Stock Assessment Database — a 276 

compilation of stock-assessment output from hundreds of exploited marine populations around 

the world. Our analysis of the stock-assessment database was based on version 2.5. After 278 

removing stocks for which at least one of the individual models did not converge (121), this 

database included 249 stocks. We removed these stocks for all methods — both for the individual 280 

and superensemble models. An alternative would be to fit separate superensemble models to 
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subsets of the individual models that did converge, but for simplicity we only used 282 

superensemble models fitted to all four individual models. 

In the case of the RAM Legacy Stock Assessment Database, we used superensembles 284 

trained on the entire simulation dataset. However, since mPRM is built on the same stock-

assessment database, we applied three-fold cross-validation to the data underlying the mPRM 286 

model so that the dataset with which mPRM was trained (for the individual model and 

superensemble) was separate from the dataset with which it was tested. This meant that, for each 288 

iteration of cross validation, we split the RAM database into three, fit the mPRM model to two-

thirds of the RAM database, fit a superensemble with this version of mPRM, and then tested the 290 

performance of the superensemble on the third of the RAM database we had withheld. 

Predictive performance can be evaluated with metrics that represent a variety of modelling 292 

goals. For continuous response variables such as the mean and slope of population status, 

performance metrics often measure some form of bias, precision, accuracy (a combination of bias 294 

and precision), or the ability to correctly rank or correlate across populations (e.g., Walther and 

Moore 2005). Here, we measure proportional error, defined as (�� − �)/|�|, where �� and � 296 

represent estimated and “true” (or stock-assessed) mean or slope of B/BMSY. We calculated 

median proportional error to measure bias, median absolute proportional error to measure 298 

accuracy, and Spearman’s rank-order correlation between predicted and “true” values to measure 

the ability to correctly rank populations. When testing with the RAM Legacy Stock Assessment 300 

database, we treated the estimates from these data-rich stock assessments as known without error. 

Thus, any error in the stock-assessment estimates of the mean or slope of B/BMSY

Results 306 

 also 302 

contributes to our estimates of prediction error for each of the four data-limited models and the 

ensembles. Code to reproduce our analysis is available at 304 

https://github.com/datalimited/ensembles (last accessed 2016-11-08). 

Applied to the simulated dataset of known stock status, the individual models had variable 

success at estimating the mean (status) and slope (trend) of B/BMSY in the last five years. All 308 

models exhibited a high degree of scatter around the one-to-one line of perfect status prediction 

(Fig. 3). In contrast to the known unimodal distribution of status, CMSY exhibited bimodal 310 
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predictions (Fig. 3a), but had the best rank-order correlation and accuracy scores (Fig. 4a). COM-

SIR and SSCOM both correctly identified a number of stocks with low status, but frequently 312 

predicted a high status when status was in fact low (Fig. 3b, c). mPRM had relatively poor ability 

to predict status for the simulated dataset (Fig. 3d). There was generally little correlation between 314 

true and predicted recent trend in status for any of the individual models (rank-order correlation = 

0.02–0.25) with the exception of SSCOM (correlation = 0.54; Figs S1a–d). 316 

Ensemble methods, and in particular the machine learning superensemble models (random 

forest and GBM), generally improved estimates of status and trend over any individual model 318 

(Fig. 3e–h, Fig. S1e–h). Compared to the individual models, machine learning superensembles 

decreased inaccuracy (median absolute proportional error) from 0.42–0.56 to 0.32–0.32, 320 

increased rank-order correlation from 0.02–0.32 to 0.44–0.48, and reduced bias (median 

proportional error) from -0.22–0.31 to -0.12–0.03 (Fig. 4a). These superensembles also generally 322 

had better ability to distinguish if simulated stocks were above or below B/BMSY

The superensemble models were able to improve the predictive performance by harnessing 

the best properties of individual models, the covariance between individual models, and 332 

interactions with other covariates. For example, SSCOM had strong predictive ability when it 

predicted low B/B

=0.5 (Fig. S2). 

Results were similar when predicting trend: compared to individual models, machine learning 324 

superensembles decreased inaccuracy from 0.04–0.06 to 0.03–0.03, increased rank-order 

correlation from 0.02–0.54 to 0.61–0.65, and reduced bias from -0.009–0.014 to -0.002—0.002 326 

(Fig. S3). The ensemble models that simply took a mean of the individual models ranked slightly 

behind the best individual model for estimating fish stock status (CMSY; Fig. 4a) and had 328 

slightly lower correlation but higher accuracy than the best individual model at predicting the 

trends of status (SSCOM; Fig. S3). 330 

MSY (Fig. 3c, Fig. S4c) and CMSY predictions were approximately linearly 334 

related to B/BMSY within the low and high clusters of predictions (Fig. S4). SSCOM contributed 

most strongly on its own to determining trend (Fig. S5). Superensembles also exploited the 336 

covariance between individual model predictions. For instance, both the linear model and GBM 

ensemble suggest that if mPRM and SSCOM predict high status, the true status also tends to be 338 

high (Figs S6, S7f). The addition of spectral density covariates helped the superensemble models 

correctly predict higher status values (Fig. S8g, h). The performance of the ensembles was only 340 

marginally improved by including these covariates (Fig. S9 vs. Fig. 4). 

A
u

th
o

r 
M

a
n

u
s
c
ri
p

t



This article is protected by copyright. All rights reserved 

When applied to the stock-assessment database, the superensemble models — trained 342 

exclusively on the simulated dataset — generally performed as well or better than the best 

individual models. The mean, random forest, and GBM ensembles outperformed the mPRM 344 

method which is trained directly on the RAM Legacy Stock Assessment database itself (Fig. 4b, 

Fig. S10). Compared to the individual models, the machine learning superensembles increased 346 

accuracy by 0–30%, improved correlation from 0.19–0.36 to 0.35–0.38, and reduced bias from -

0.25–0.45 to -0.05–0.02. 348 

Discussion 

Ensemble methods provide a useful approach to situations where environmental resource 350 

management decisions must be made on the basis of multiple, potentially contrasting estimates of 

status. Compared to individual models of fish population status, ensemble methods were 352 

consistently the best or among the best across three performance dimensions (accuracy, bias, and 

rank-order correlation), two response variables (status and trend), two datasets (simulated and 354 

global fisheries), and multiple ensemble methods (from a simple average to machine learning 

superensembles). Our results suggest choosing a superensemble model that allows for non-linear 356 

relationships, such as machine learning methods; these models provided added insight into 

individual model behaviour and generally performed the best. 358 

Certain conditions will make some ensemble models more effective than others. First, 

ensembles will be most effective when they are comprised of diverse individual models that 360 

choose different structural model forms, explore contrasting but plausible ranges of parameter 

values, and make uncorrelated errors (Ali and Pazzani 1996; Dietterich 2000; Tebaldi and Knutti 362 

2007). We would expect such models to perform well in different conditions and an ensemble 

model can exploit the best predictive performance of each. Second, ensemble models will be 364 

most effective when they are not overfit to the training dataset. Cross-validation testing (Caruana 

et al. 2004; Hastie et al. 2009) and methods that are robust to overfitting such as random forests 366 

(Breiman 2001), may help avoid overfitting ensemble models. We note that our simplest 

ensemble model, an average of individual model predictions, performed approximately as well as 368 

complex machine learning models when we trained our superensembles on the simulation dataset 

and tested them on a separate “real” dataset (i.e., the RAM Legacy Stock Assessment database, 370 

Fig. 4b). Third, ensemble models will be most effective when they are trained on data that are 
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representative of the dataset of interest (Knutti et al. 2009; Weigel et al. 2010). Cross-validation 372 

within a training dataset will provide an optimistically biased impression of predictive 

performance if the training dataset fundamentally differs from the dataset of interest (Hastie et al. 374 

2009). 

We illustrated that superensembles can improve point estimates of population status and 376 

trends in status; however, there is no reason why superensembles cannot also be used to provide 

measures of uncertainty around those point estimates. The same approaches to deriving measures 378 

of uncertainty from any regression model are available to a superensemble. For example, 

likelihood profile confidence intervals or Bayesian credible intervals are available for 380 

superensembles fit via maximum likelihood or Bayesian procedures, respectively. Measures of 

predictive uncertainty can be generated for machine learning methods such as random forests or 382 

GBMs using bootstrap procedures (e.g. Hastie et al. 2009; Finnegan et al. 2015). Furthermore, 

uncertainty from the component models could be included in superensembles. These 384 

superensembles could be fit using any errors-in-variables or measurement-error modelling 

approach (e.g. Carroll et al. 2006). 386 

Multi -model inference in the form of coefficient averaging weighted by information 

theoretics such as the Akaike Information Criterion (AIC) is a common analytical approach in 388 

fisheries and ecology (e.g., Burnham and Anderson 2002; Johnson and Omland 2004; Grueber 

et al. 2011). The ensemble methods described in this paper share similarities with coefficient 390 

averaging but differ in other important ways. Ensemble methods and coefficient averaging share 

the long-held notion that multiple working hypotheses can contribute useful information for 392 

inference (Chamberlin 1890). A fundamental difference is that coefficient averaging focuses on 

averaging coefficients whereas ensembles instead average predictions. Thus, ensembles provide a 394 

general purpose tool: they do not require information theoretics and they can combine different 

types of models (e.g., parametric and non-parametric models or frequentist and Bayesian 396 

predictions). Furthermore, superensembles extend these benefits by allowing model predictions 

to be combined via non-linear functions that are tuned to known data. 398 

A strength of superensembles is that they can be tailored to predict specific response 

variables. For example, we built separate superensemble models of mean B/BMSY and the slope 400 

of B/BMSY. The same set of model weights or non-linear relationships need not hold across 
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different response variables. For instance, SSCOM contributed little to the GBM superensemble 402 

estimate of status at higher levels of predicted B/BMSY (Fig. S4), but contributed strongly to 

estimates of trend (Fig. S5). Formally, fitting superensemble models to specific quantities of 404 

interest (such as the slope of B/BMSY

As Box and Draper (1987) noted, all models are wrong, but some may still be useful. The 

ensemble methods we investigated attempt to piece together the useful parts of candidate models 416 

to build a model with improved performance. Instead of viewing the superensemble as a black 

box, we think considerable mechanistic understanding can be gained by studying its structure. 418 

For example, when SSCOM estimates low status this is likely the case, conversely when 

COMSIR estimates low status, the true status is more likely to be high (Fig. S4). These models 420 

have two main differences: (1) the form of effort dynamics and (2) the allowance for both 

measurement and process error in SSCOM, whereas the implemented COMSIR admits 422 

measurement error only. Were the methods to differ only in effort dynamics, the results point 

towards a more suitable representation of effort dynamics at low biomasses in SSCOM. We think 424 

that such investigation of the structure of a superensemble may lead to improvement in the 

mechanisms assumed in individual models. 426 

) provides an additional calibration step to a quantity of 

interest (Rykiel 1996). This ensemble calibration could include a loss function tailored to the 406 

goals of the model, say placing greater weight on accuracy at lower rather than higher status 

levels. Conversely, because superensembles are tailored to a specific response and loss function, 408 

superensembles force a modeller to choose an operational purpose for their model upfront (sensu 

Dickey-Collas et al. 2014). For instance, one could have an ensemble estimate of B and an 410 

ensemble estimate of B0, but their ratio may not be the same as an ensemble estimate of B/B0. A 

modeller might therefore choose to focus on B/B0, which provides a unitless ratio, is easier to 412 

compare across stocks, and the ratio is often a more stable estimate across models (Deroba et al. 

2015). 414 

Combining predictions from multiple models via superensemble methods is broadly useful 

in other subfields of fisheries science and ecology in general. In fisheries science, 428 

superensembles provide an additional tool to assist with some longstanding issues. For example, 

superensembles are helpful since modelers need not decide on one model — instead of deciding 430 

on dome versus asymptotic fisheries selectivity (e.g., Sampson and Scott 2012), or on whether to 
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fix or estimate natural mortality (e.g., Johnson et al. 2015), superensembles can use multiple 432 

models to draw inference. Furthermore, the relative contributions of individual models can help 

tease apart the conditions under which various model assumptions result in the most accurate 434 

predictions. Finally, superensembles can be used to directly estimate other quantities of interest 

in fisheries science. For instance, superensembles could help assess overfishing by estimating 436 

fishing mortality compared to fishing mortality at MSY (F/FMSY

More broadly, in ecology, predictions about extinction risk are widely used at national (e.g., 

the US Endangered Species Act and the Canadian Species at Risk Act) and international (e.g., the 440 

IUCN Red List, IUCN 2015) levels. These risk assessments generally involve fitting regression 

models to outcomes for individual species along with predictors of extinction risk (e.g., Anderson 442 

et al. 2011; Pinsky et al. 2011), or fitting population-dynamic models to data for individual 

species (e.g., DFO 2010). Both types of models are prone to error caused by model-444 

misspecification and therefore results are sensitive to decisions about model structure (Brooks 

and Deroba 2015). Although there are options to account for potential model-misspecification in 446 

determination of species risk (e.g., coeffcient averaging, Burnham and Anderson 2002; 

generalized modeling, Yeakel et al. 2011; or semi-parametric methods, Thorson et al. 2014), 448 

ensemble methods are a relatively simple way to combine predictions in a transparent manner. 

Beyond estimates of status and trend, ensemble methods could be used, for example, to increase 450 

the robustness of spatial predictions when designing networks of protected areas (Rassweiler 

et al. 2014) or to forecast potential spatial shifts in species distribution given climate impacts 452 

(Harsch et al. 2014). In any case, superensembles are not a panacea and are ultimately limited by 

the quality, breadth, and representativeness of simulated or trusted data to which they are 454 

calibrated. 

) or be trained to estimate natural 

mortality. 438 
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Figure captions 586 

Figure 1: Different models can suggest conflicting population statuses and trends. Shown are 

trajectories of estimated B/BMSY from four data-limited assessment methods (colours) and a data-588 

rich stock assessment (black) for Southern blue whiting (Micromesistius australis) on Campbell 

Island Rise, New Zealand. Lines indicate median fits and shaded regions indicate interquartile 590 

ranges. Dashed horizontal line indicates B/BMSY

Figure 2: Using a superensemble model to predict population status from two individual models. 592 

The process is illustrated graphically on the left and with R pseudocode on the right. (a) 

Individual models (red and blue lines) are fit to training data (dots) from populations of known or 594 

assumed status (known status shown by black line). The shaded gray boxes indicate the recent 

time period that we are interested in for this paper. Estimates of status from these individual 596 

models (��i,1 and ��i,2), potentially combined with additional covariates, are then used as 

covariates in a statistical model fitted to the known or assumed population status as the response 598 

(here represented as a linear model). The symbols β and ε represent parameters and error in the 

linear model, respectively. The i subscripts represent individual fish stocks from 1 to n, and � 600 

represents the known status. (b) The superensemble can then be used to make predictions for new 

stocks of interest. The same individual models are fit to populations of interest and then 602 

combined using the previously fitted superensemble model. Here, the j subscripts represent 

=1. 
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individual fish stocks from 1 to m, and �� represents the predicted status. The �̂ represent the 604 

parameters estimated when the superensemble was fit in panel a. 

Figure 3: True (or assessed) population status (x axis) vs. predicted population status from 606 

individual models and ensemble methods with cross-validation (y axis). These scatterplots 

represent the aggregate results of repeated three-fold cross-validation tests where the ensemble 608 

models are built on two-thirds of the data and tested on the remaining third. (a–d) Individual 

data-limited model estimates of mean \ (biomass divided by biomass at maximum sustainable 610 

yield) in the last five years for a simulated dataset of known population status. (e–h) Ensemble 

estimates for the same populations. Shown are a mean ensemble, a linear superensemble model 612 

with two-way interactions (LM), a random forest superensemble (RF), and a generalised boosted 

regression model superensemble (GBM). (i–l) The same ensemble models, which were trained on 614 

the simulated dataset, applied to the RAM Legacy stock assessment database and compared to 

data-rich stock assessed status. In the case of the RAM Legacy stock assessment data, we refit the 616 

modified panel regression model (mPRM) on each cross-validation split. We binned the data into 

hexagons for visual presentation. Darker areas indicate areas with greater density of data. 618 

Yellow-red shading and yellow-blue shading distinguishes individual models from ensemble 

methods. 620 

Figure 4: Performance metrics of individual and ensemble models predicting B/BMSY (mean 

biomass divided by biomass at maximum sustainable yield) in the last five years fitted to a 622 

dataset with (a) known population status and (b) the RAM Legacy stock assessment database. 

The x-axis represents within-population inaccuracy: median absolute proportional error (MAPE). 624 

The y-axis represents across-population Spearman rank-order correlation. The top-left corner 

contains methods with the best performance across the two metrics. The colour shading 626 

represents bias (median proportional error; MPE): white points are unbiased, blue points 

represent methods that predict B/BMSY values that are too high, red points represent methods that 628 

predict B/BMSY values that are too low. These performance metrics are derived from the data in 

Fig. 3 and based on repeated three-fold cross-validation testing. 630 A
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Training data

Model 1 Model 2Training status

(a)

# Fit models to training data:

cmsy_status <- cmsy(...)

comsir_status <- comsir(...)

# Combine and reshape output into wide format (not shown)

head(data_training)

# > cmsy_status comsir_status known_status

# > 1.4         1.3           1.2

# > ...         ...           ...

# Build superensemble model:

ensemble_model <- lm(known_status ~ cmsy_status +

  comsir_status, data = data_known)

# Fit models to data of interest:

cmsy_status <- cmsy(...)

comsir_status <- comsir(...)

# Combine and reshape output into wide format (not shown)

head(data_interest)

# > cmsy_status comsir_status ...

# > 0.9         1.1

# > ...         ...

# Predict status using superensemble model:

predict(ensemble_model, newdata = data_interest)

# > 1.06  0.98  0.85 ... # status across multiple fisheries

Model 1 Model 2

Predicted status

Fit superensemble model

Data of interest

Predict using superensemble model

(b)

✓i = β1b̂i,1 + β2b̂i,2 + ✏i, for i = 1, ..., n

θ̂j = β̂1b̂j,1 + β̂2b̂j,2, for j = 1, ...,m
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