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Running title:"'Superensembles of population status

Abstract: Fishery managers must often reconcile conflictistingates of population status and trend.
Superensemble"models, commonly used in climate and weatherstorgcenay provide an effective solution. This
approach uses predictions from multiple models as covanmatesadditional “superensemble” model fitted to
known data. Werevaluated the potential for ensemble averagss@er@nsemble models (“ensemble methods”) to
improve estimates of population status and trendisberies. We fit four widely applicable ddtmited models that
estimate 'stock’biomass relative to the equilibrhiomass at maximum sustainable yieBdRysy). We combined
these estimates of recent fishery status and tieri8iB sy with four ensemble methods: an ensemble avenade a
three superensembles (a linear model, random forest, anddoegtession tree). We trained our superensembles
on 5760 simulated stocks and tested them with erakdation and against a global database of 249 stock
assessmentssEnsemble methodstanbally improved estimates of population statnd tlend. Random forest and
boosted regression trees performed the best at estimatintpfop status: inaccuracy (median absolute proportional
error) decreased from 04256 to 0.320.32, rankorder carelation between predicted and true status improved
from 0.02-0.32 to 0.440.48, and bias (median proportional error) declined #@:22-0.31 t0-0.12-0.03. We

found similar improvements when predicting trend and when applyggimulatiortrained supensembles to

catch data for global fish stocks. Superensembles can optimadiiage multiple model predictions; however, they
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must be tested, formed from a diverse set of accurate modelsuéinon a dataset representative of the populations

to whichthey are applied.
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| ntr oduction

Status and.trend are two of the most fundamental values to quantify in the mantagfeme
ecological.pepulations (e.g., Hutchingsal. 2010; IUCN 2015). However, managers are often
faced withareconciling multiple uncertain and potentially conflictingwessties of status and trend
(e.g., Brodziak,and Piner 2010; Brarettal. 2011; Derobat al. 2015). For example, one model
may suggest a population is at risk and declining in abundance while others may s$uggest i
at risk and stable.
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One solution is to take the average or weighted average of several model predieticars
ensemble. Such ensembles are typically more accurate and less biased than individual model
estimates and can incorporate various types of uncertainty, such as uncertainty in model
structure, initial conditions, and parameter estimation (Dietterich 20@@j@and New 2007).
Ensembles.are superior to individual models in at least three ways: (1) statistically by averaging
across models@and therefore being less likely to pickwheng” model, (2) computationally by
reducing the'risk of getting stuck in a local optima, and (3) representationally bydexgéhe
range of hypetheses explored (Dietterich 2000). This approach forms the basis of mang machi
learning methods (e.g., &terich 2000), has helped reconcile climate forecasts from dozens of
models (e.g.,.Murphgt al. 2004; Tebaldi and Knutti 2007; IPCC 2013), and even improved
early warning signs of malaria outbreaks (Thomataad. 2006). In ecology, ensemble methods
aresometimes used to improve species distribution modelling (e.g., Aratjo and New 2007,
Breineret al. 2015) and indeed have been used to combine estimates of population status and
trend (e.g.; Brodziak and Piner 2010).

Whereas averages or weighted averages of model estimates may improve predictions
compared to a single model, they may not optimally leverage available data. Thetesbpr
does not neeessarily lie in the middle of multiple model predictions, some maageiserform
better than others in dain conditions, and the covariance between models may contain
information that can improve predictive accuracy. For example, one model might pestrat
estimating high.levels of abundance but be biased at low levels of abundance, while another
model might have the opposite properties. An optimal combination of these models ispiypt sim

an average of the two.

We_ can. exploit these characteristics by using the predictions from a group of models as
inputs into-arseparate statistical model. This teclmigametimes called superensemble
modelling (Krishnamurtéet al. 1999), is common in climate and weather forecasting (e.g., Yun
et al. 2005; Moteet al. 2015). The superensemble is fit to a training dataset where outcomes are
well knewn and then used togatict on a dataset of interest. For example, Krishnaretuati
(1999) combined predictions of wind and precipitation in Asian monsoons via a superensemble
regression fit to observed data. Their superensemble was considerably more accurate than any

individual prediction or an average of the predictions.
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In fisheries science, the commonly used operational models for determinugyastdttrend
114  of exploited fish populations are stock assessments, i.e., population models coupled to an
observation model thatcorporate all appropriate data (e.g., catches, size and age distributions,
116  surveys, and tagging information) to quantify values such as the biomass of a stoak that ca
produce maximum sustainable yieB\y) (Hilborn and Walters 1992). However, the broad
118 range of data required to conduct these stock assessments are not available for the majority of
fish populations, including those of conservation concern and of economic interestriedishe
120  (FAO 2014)=Therefore, a number of models have been propmsaddss B/gsy based on the
limited data available for the majority of fish stocks: (1) a time series of the total weight of catch
122 and (2) a basie,understanding of population productivity (e.g., Vasconcellos and Cochrane 2005;
Martell and-Freese 2013). Recently, Rosenleery. (2014) investigated the performance of four
124 datalimited models through a larggeale simulation experiment. Three of these models were
based on Schaefer (logistic) biomass dynamics and one was an empirical model fitted to more
126  datarich stockassessment output. The four models frequently disagreed about population status
(e.g., Fig. 2)»no one model had strong performance across all fish stocks, and some models

128 performed-better than others depending on circumstances.

Here, we.estimte population status and trend of exploited fish populations using ensembles
130 and superensembles (collectively “ensemble methods”) of these fotimdéed models. We
apply four ensemble-method approaches of varying complexity to both simulated and rdal-worl
132 fish stocks:and.compare their predictive performance against each other and tdaahdivi

models.

134 Methods

To test the-ability of superensembles to improve estimates of status and tretadimitéal fish
136  stocks, we first it four individual assessnt models to a large simulated dataset of fish stocks.
We then built and tested the performance of superensembles using cross-validagon of t
138 simulateddataset. Finally, we tested superensembles built with the entire simulated dataset
against a database of global fish stocks. We describe these steps in detail below and illustrate the
140  general approach both with illustrations and pseudocode in Fig. 2.
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I ndividual models of population status

142 We fit four individual datdimited models that use catch data &adic lifehistory parameters to
estimateB/Busy. We chose these models because they can be fit to the vast majority of fisheries

144 around the world, are established in the literature, and have been extensiudyien tested
(Rosenbergtal, 2014).

146 Three of the models are mechanistic and based generally on Schaefer biomass dynamics
(Schaefer1954) of the form

Bt+1 = By + rB{(1 — B¢/By) — C,,
148

whereB,,, represents predicted biomass at tirpéus one yeaiB, represents biomass at time
150  represents.intrinsic population growth rddg represents unfished biomass or carrying capacity

K, andC represents catch. The fourth model is an empirically derived model based on the RAM
152  Legacy Stock Assessment Database (Riebatl 2012). Rosenberg al. (2014) provide a full
background on these four methods
154 (htt p: Ad-wvief 0. or g/ docr ep/ 019/1 3491e/i 3491e00. ht m last accessed 2016
11-08) and code to fit all the models is available in an accompanying package daddtmihe
156 statistical'software R (Rore Team 2015)
https:/Lgithub.com datalimted/datalimted (last accessed 2048.-08). In

158  summary:

» CMSY.(ecatchMSY) implements a stoekeduction analysis with Schaefer biomass
160 dynamics (Martell and Froese 2013). It requires a prior distributionamhK as well as
priors on the relative proportion of biomass at the beginning and end of the time series
162 compared to unfished biomass (depletion). The version of the model used in Rosenberg
et al. (2014) was modified from Martell and Froese (2013) to géadiamass trends from
164 all viabler-K pairs and produce an estimateBéB sy from the median trend.

¢ COM-SIR(catchonly-model with samplingmportance-resampling) is a coupled harvest-
166 dynamics model (Vasconcellos and Cochrane 2005). Biomass is assumed to follow a
Schaefer model and harvest dynamics are assumed to follow a logistic model. The model is

168 fit with a sampling-importance-resampling algorithm (Rosenletat) 2014).
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« SSCOM(statespace catclonly model) is a hierarchical model that, similar to CGNR,
is based on a coupled harvest-dynamics model (Thetsn2013). SSCOM estimates
unobserved dynamics in both fishing effort and the fished population based on a catch time
series and priors an the maximum rate of increase of fishing effort, and the magnitude of
various,forms of stochasticity. The model igriita Bayesian statgpace framework to
integrate.across three forms of stochasticity: variation in effort, piopuldynamics, and
fishingefficiency (Thorsomt al. 2013).

« mPRM (modified panel regression model) is a modified version of the panel-regressi
model from Costell@t al. (2012). Unlike the other models, mPRM is empirical and not
mechanistic— it uses the RAM Legacy Stock Assessment database to fit a regression
model to a series of characteristics of the catch time series and stock withstesked
B/Busy as the response. The model used in this paper is modified from the original —
condenses the lifhistory categories into three categories to match the simulated dataset,
removessthe maximum catch predictor since the absolute catuh simulated dataset is
arbitrary, and does not implement the bias correction needed in Cest&ll(2012) since

we do not derive estimates of median status across multiple stocks.

Simulated dataset to build the superensemble

We first developed an@sted ensemble methods on a fully factorial simulated dataset of fisheries
with known status (Rosenbeegal. 2014). Briefly, these simulations were implemented with the
FLR packages,(Kekt al. 2007) for the statistical software R, and, in particutes, RLBRP

package. Theframework takes a series ofistory parameters and fishery characteristics to
generate population projections and resulting catch timeseriedikitey values (e.gnean
asymptotic length) for three fish life histories (snpedlagic, demersal, and large pelagic) were
translated_into a complete set of parameters for a von Bertalanffy growth moalraty

ogive, natural mortality, a selectivity function, and a BeveHoit stockrecruitment function

using the lifehistory relationships derived in Gislasenal. (2008).

Fishing seenarios included three levels of initial biomass depletion comparaadying
capacity: biomass at 100%, 70%, and 40% of carrying capacity; and four exploitationspatte
(1) a constant exploitain rate, (2) an exploitation rate coupled with biomass to mimic an open-

access singispecies fishery, (3) a scenario where exploitation rate increased corlynaods
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(4) a “rollercoaster” scenario where the exploitation rate increased and then decreased. Process
noise (recruitment variability; i.e., unexplained variability in population dynamics) was
introduced to the models at two magnitudes in log spé©0.2) andN(0,0.6%), and was either

uncorrelated through time or had first-order autoregressive correlation of 0.6niLiation also

included a:seenario wit(0,0.22) measurement error around log catch and one scenario without
measurement€rror. Rosenbetgl. (2014) ran ten iterations for each combination of factors
adding stochastic draws of recruitment and catcording variability each time to generate a

total of 5760 stocks. Code to generate the simulations is available at

https://fgi thub. com datali mted/stocksins (last accessed 2046.-08).

Building the super ensemble models

The individual'models we seek to combine with superensembles provide time series of stock
status B/Busy). Thereforewe can use superensembles to estimate any property of these time
series. here, we focus on two properties: the mean and slopéBafdB in thelast five years.
Together, these)quantities address the recentastdterend of stock status, which are both of
management.and conservation interest (e.g., Hutckirajs2010; IUCN 2015). To avoid undue
influence of the'time series end points on the calculated slope, we measured the slope as the

Theil-Sen estimator of median slope (Theil 1950).

We used the mean or slopeRiBysy as the response variable and the predictions from the
individual models as predictors in our superensemble model2@igiwhen modelling mean
B/Busy —@ratio bounded at zero we fit the superensemble models in log space and
exponentiated-the predictions. For the estimat&Bfisy slope, which are not bounded at zero,

we fit superensemble models on the natural untransformed scale.

We,compared an ensemble average and three superensembles of varying complexity: a
linear model'with tweway interactions, a random forest, and a boosted regression tree. We

describe these models as estimaéingrhich represents either the ensemble estimated log

B/Busy or slope oB/Bysy. The individual model estimates of 18¢Busy or slope oB/Busy
are represented asor models 1 through 4 (MSY, COM-SIR, SSCOM, mPRM). The

ensemble average for each fishewas calculated as:

é\l = (Bi,l + Bi’z + Bi'3 + Bi’4)/4’, fOI‘ i= 1, e, N
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We fit the linear model superensemble with all seeortkr interactions:

6, = Bo + B1bi1+... +B12B; 1B +... +€, €~ Normal(0,0?), fori=1,...,n.

For this illustrative example we chose this level of model complexptyori but a modeller

could apply"model selection via informatitimeoretic or crossalidation approaches.

Our two machine learning superensemble models, a random forest and a generalized
boosted model/(GBM), were based on regression trees. Regression trees sequentially determine
what value of a predictor best splits the response data into two branches based on a loss function
(Breimanet al. 1984). In random forests, arges of regression trees are built on a random subset
of the data and random subset of the covariates of the model (Breiman 2001). In GBMs, each
subsequent-model is fit to the residuals from the previous model; data points thigiaodyf in
a given model-are given more weight in the next model (Eligh 2008). Random forests and
GBMs can provide strong predictive performance and fit highlylmear relationships (Elith
et al. 2008; Hastieet al. 2009). We fit random forest models with the ran&onest package
(Liaw and Wiener 2002) for R with the default argument values. We fit boosted regreesi
modelswith the gbm package (Ridgeway 2015) for R. We fit GBMs with 2000 trees, an
interaction depth of 6, a learning rate (shrinkage parameter) of 0.01, and all gtimeesais at

their defaultvalues.
Additional covariates

Superensemble models allow us to incorporate additional covariates and potentially leverage
interactions'between these covariates and individual model predictions. Additiwaakhtes

could be, for example, lifeistory characteristics, information onpdsitation patterns, or

statistical properties of the data. We tested the performance benefits of including one set of
additional covariates: spectral properties of the catch time series. Spectral analysis decomposes a
time series,into the frequency domaimd provides a means of describing the cyclical shape of

the catch series that is independent of time series length (except in affecting precision) and
independent of absolute magnitude of catch. We fit spectral models to the scaled catch time series

(catch divided by maximum catch) with tlsgpec. ar function in R and recorded representative
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short- and long-term spectral densities at frequencies of 0.20 and 0.05, which correspond to 5-
and 20-year cycles. For the linear model superensemble, we incorgbeatew spectral

covariates $1, ) along with all secondrder interactions as:
6, = Bo A Babid- .. +B1,2D; 102+ .. +Bs1S1; + Ps2S2; + Bs1,5251iS2; + P1s2bi1S2i+. .. +€;,

with e~N (0,02) and for simulated fisheriésl throughn. We include the results of addittiese
additional,covariates in the supplementary materials.

Applying the super ensemble models and testing per for mance

Once the superensemble models are built and trained using the simulated stocks (or any dataset
with “known’ status), we can use the superensembles to estimate the status of new stocks

(Fig. 2b). To do this we applied the individual models to our stocks of interest (i.e., CMSY,
COM-SIR, SSCOM, mPRM) and then used these individual model estimates of statunl @str

data in ourralready buituperensemble models. In this paper we applied the superensemble
models tosubsets of the simulated data as a-usdskation test to test predictive performance

and to the RAM Legacy Stock Assessment database to test predictive performance on real stocks.

Wenusedswrepeated thréad cross validation: we randomly divided the dataset into three
sets, built superensemble models on-thiods of the data, and evaluated predictive performance
on the remaining third. We repeated this across each of the hite@sd then repeated the
whole procedure 50 times to account for bias that may result from any one set diovasiphts.

In the simulated dataset, there were 10 replicates of each unique combinatioulatin
parameters that differed only in shastic variability. Since the dynamics of these populations
were oftenssimilar, we grouped these stocks in the acralggation process into either the training

or testingssplit:

We also tested our ensemble methods on the RAM Legacy Stock Assessment Database
compilation of stockassessment output from hundreds of exploited marine populations around
the world. Quranalysis of the stoeksessment database was based on version 2.5. After
removing'stocks for which at least one of the individual models did not converge (121), this
database included 249 stocks. We removed these stocks for all methods — both for the individual

and superensemble models. An alternative would be to fit separate superensemble models to
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subsets of the individual models that did converge, but for simplicity we only used
superensemble models fitted to all four individual models.

In the case of the RAM Legacy Stock Assessment Database, we used superensembles
trained onithe entire simulation dataset. However, since mPRM is built sartieestock
assessment database, we applied tfoleecross-validation to the data underlying the mPRM
model so thatithesdataset with which mPRM was trained (for the individual nratlel a
superensemble) was separate from the dataset with which it wak Tdgtemeant that, for each
iteration of cross validation, we split the RAM database into three, fit the mPRM model to two
thirds of the RAM database, fit a superensemble with this version of mPRM, and then tested the
performance/of the superensemble on the third of the RAM database we had withheld.

Predictivesperformance can be evaluated with metrics that represent a variety of modelling
goals. Foreentinuous response variables such as the mean and slope of population status,
performance metrics often nseae some form of bias, precision, accuracy (a combination of bias
and precision), or the ability to correctly rank or correlate across populé&ignsWalther and
Moore 2005). Here, we measure proportional error, defin¢é asd)/|6|, whered ando
represent-estimated and “true” (or st@dsessed) mean or slopeBdBysy. We calculated
median proportional error to measure bias, median absolute proportional errastoene
accuracy, and“Spearman’s ramkler correlation between predicted and “true” values to measure
the ability to correctly rank populations. When testing with the RAM Legacy Stes&s&ment
database, we treated the estimates from theseidatstock assessments as known without error.
Thus, any error in the sto@dssessment estimates of the mean or sloBéBafsy also
contributes.te-our estimates of prediction error for each of the four datadlimddels and the
ensemblesinCode to reproduce our analysis is available at
ht t ps: FLgitthub. conf dat al i m t ed/ ensenbl es (last accessed 26111-08).

Results

Applied tosthe simulated dataset of known stock status, the individual models raddevari
success at estimating the mean (status) and slope (treBB\af, in the last five years. All
models exhibited a high degree of scatter around théosoee line of perfect status prediction
(Fig. 3). In contrast to the known unimodal distribution of status, CMSY exhibited bimodal
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predictions (Fig3a), but had the best raokder correlation and accuracy scores (Eg). COM
312 SIR and SSCOM both correctly identified a number of stocks with low status, but figquent

predicted a high status when status was in fact low (Fig. 3b, ¢). mPRM had keladieeability
314  to predict status for the simulated dataset (8i). There was generally little cetation between

true and predicted recent trend in status for any of the individual modelsofdetkeorrelation =
316  0.02-0.25).with the exception of SSCOM (correlation = 0.54; Figsdjla—

Ensemble methods, and in particular the machine learning superensemble(raodeis
318 forest and GBM), generally improved estimates of status and trend over any individighl m
(Fig. 3e-h, Fig.S1e-h). Compared to the individual models, machine learning superensembles
320 decreased inaccuracy (median absolute proportiora) érom 0.42—0.56 to 0.32-0.32,
increased rankrder correlation from 0.02—0.32 to 0.44-0.48, and reduced bias (median
322  proportional error) from -0.22-0.31 to -0.12-0.03 (Bi@). These superensembles also generally
had betterability to distinguishsimulated stocks were above or beBiBysy=0.5 (Fig. S2).
324 Results weressimilar when predicting trend: compared to individual models,nmadearning
superensembles decreased inaccuracy from+-0.08 to 0.03—-0.03, increased raskler
326  correlation from 0.02—-0.54 to 0.61-0.65, and reduced bias from -0.009-0.014 to -0.002—0.002
(Fig. S3). The.ensemble models that simply took a mean of the individual models ranked slightly
328 behind the best individual model for estimating fish stock status (CMSY4&jgand hd
slightly lower correlation but higher accuracy than the best individual modeldattprg the
330 trends of status.(SSCOM; Fig3).

The superensemble models were able to improve the predictive performance by harnessing
332  the best properties of individualottels, the covariance between individual models, and
interactions,with other covariates. For example, SSCOM had strong predictitjevelien it
334  predictedrlowB/B sy (Fig. 3c, Fig. S4c) and CMSY predictions were approximately linearly
related taB/Busy within the low and high clusters of predictions (Fig. S4). SSCOM contributed
336 most strongly on its own to determining trend (Fig. S5). Superensembles also exploited the
covariance between individual model predictions. For instance, both the linearandd&M
338 ensemble suggest that if mMPRM and SSCOM predict high status, the true statusialswm lien
high (Figs S6, S7f). The addition of spectral density covariates helped the superenseaetde m
340  correctly predict higher status values (F&8g, h). The peofmance of the ensembles was only

marginally improved by including these covariates (5@ vs.Fig. 4).
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342 When applied to the stocdkssessment database, the superensemble medsmed
exclusively on the simulated datasetgenerally performed as well better than the best

344 individual models. The mean, random forest, and GBM ensembles outperformed the mPRM
method which is trained directly on the RAM Legacy Stock Assessment database itsdlb (Fig.

346  Fig. S10). Compared to the individual models, the maekearning superensembles increased
accuracy by 930%, improved correlation from 0.19-0.36 to 0.35-0.38, and reduced bias from -

348  0.25-0.4510+=0:05-0.02.

Discussion

350 Ensemblesmethods provide a useful approach to situations where environmentakreso
managment decisions must be made on the basis of multiple, potentially contrastimagjestf

352  status. Compared to individual models of fish population status, ensemble methods were
consistently.the best or among the best across three performance dimensions (accuracy, bias, and

354  rank-order.correlation), two response variables (status and trend), two datasets (simulated and
global fisheries), and multiple ensemble methods (from a simple average toenacinning

356  superensembles). Our results suggest choosngerensemble model that allows for rioear
relationships;,such as machine learning methods; these models provided added iasight int

358 individualFmodel behaviour and generally performed the best.

Certain conditions will make some ensemble models more effective than others. First,
360 ensembleswill'lbe most effective when they are comprised of diverse individual models that
choose different structural model forms, explore contrasting but plausible rangesnoé feat
362 values, and make uncorrelated errors (Ali and Pazzani 1996; Dietterich 200@}i &elaknutti
2007). We.would expect such models to perform well in different conditions and an ensemble
364  model can-exploit the best predictive performance of each. Second, ensemble mbHdels wil
most effective wherhiey are not overfit to the training dataset. Cross-validation testing (Caruana
366 etal. 2004; Hastiest al. 2009) and methods that are robust to overfitting such as random forests
(Breiman'2001), may help avoid overfitting ensemble models. We note thatnplest
368 ensemble model, an average of individual model predictions, performed approximatelyas w
complex machine learning models when we trained our superensembles on thecsirdataset
370 and tested them on a separate “real” dataset (i.e., the RAM Legacy Stock Assessment database,

Fig. 4b). Third, ensemble models will be most effective when they are trained on dataethat
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representative of the dataset of interest (Kratitl. 2009; Weigekt al. 2010). Cross-validation
within a training dataset will provide an optimistically biased impression of predictive
performance if the training dataset fundamentally differs from the dataset of interest ¢Halstie
2009).

We illustrated that superensembles can improve point estimates of populatisrastht
trends in status;-however, there is no reason why superensembles cannot also h@roxsee to
measures,of uncertainty around those point estimates. The same approaches tonuEaBsngs
of uncertainty from any regression model are available to a superensemble. For example,
likelihood ‘profile confidence intervals or Bayesian credible intervals are available for
superensembles fit via maximum likelihood or Bayesiac@uures, respectively. Measures of
predictive uncertainty can be generated for machine learning methods such as maerdtsof
GBMs using bootstrap procedures (e.g. Hasttad. 2009; Finnegast al. 2015). Furthermore,
uncertainty-frem the component models could be included in superensembles. These
superensembles could be fit using any ernorgariables or measuremeatror modelling
approach(e.g. Carrcdt al. 2006).

Multi-medel inference in the form of coefficient averaging weighted by information
theoretics suchras the Akaike Information Criterion (AIC) is a common analytical approach in
fisheries'and“ecology (e.g., Burnham and Anderson 2002; Johnson and Omland 2004; Grueber
et al. 2011). The ensemble methods described in this paper share similarities with coefficient
averaging but differ in other important ways. Ensemble methods and coeffweeagizmg share
the long-held nation that multiple working hypotheses can contribute useful infonmati
inference (Chamberlin 1890). A fundamentdfedience is that coefficient averaging focuses on
averagingeoefficients whereas ensembles instead avegagdictions. Thus, ensembles provide a
general purpese tool: they do not require information theoretics and they can combeeadiff
types of models (e.g., parametric and pamametric models or frequentist and Bayesian
predictions). Furthermore, superensembles extend these benefits by allowing modidébps
to be cambined via non-linear functions that are tuned to known data.

A strength of superensembles is that they can be tailored to predict specific response
variables. For example, we built separate superensemble models dBfBgan and the slope

of B/Busy. The same set of model weights or imear relationships need nlobld across
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402  different response variables. For instance, SSCOM contributed little to the GBM superensemble
estimate of status at higher levels of predi&#&slysy (Fig. S4), but contributed strongly to

404 estimates of trend (Fig5). Formally, fitting superssemble models to specific quantities of
interest (such as the slopeR/Bwusy) provides an additional calibration step to a quantity of

406 interest (Rykiel 1996)This ensemble calibration could include a loss function tailored to the
goals of the model, sgfacing greater weight on accuracy at lower rather than higher status

408 levels. Conversely, because superensembles are tailored to a specific response and loss function,
superensembles force a modeller to choose an operational purpose for thepfrodie(sensu

410 Dickey-Callasetal. 2014). For instance, one could have an ensemble estimBinaf an
ensemble estimate 8f, but their ratio may not be the same as an ensemble estinii of

412 modeller might'therefore choose to focusBiB,, which provdes a unitless ratio, is easier to

compare across stocks, and the ratio is often a more stable estimate across modelst(@&eroba
414 2015).

As Box and Draper (1987) noted, all models are wrong, but some may still be useful. The
416  ensemble methods we investigd attempt to piece together the useful parts of candidate models
to build,as-medel with improved performance. Instead of viewing the superensembledas a bla
418  box, we think considerable mechanistic understanding can be gained by studying its structure.
For example, when SSCOM estimates low status this is likely the case, conversely when
420 COMSIR gestimates low status, the true status is more likely to be higts@igrhese models
have two main differences: (1) the form of effort dynamics and (2) the allowamnbeth
422  measurement and process error in SSCOM, whereas the implemented COMSIR admits
measurement.error only. Were the methods to differ only in effort dynamicssihis goint
424 towards.a-more. suitable representation of effort dynamics at low biomass&€30nS®B/e think
that suchrinvestigation of the structure of a superensemble may lead to imgnovethe

426  mechanisms assumed in individual models.

Combining predictions from multiple models via superensemble methods is broadly useful
428 in other subflds of fisheries@ence and ecology in generhd.fisheries science,
superensembles provide an additional tool to assist with some longstanding issegantfie,
430 superensembles are helpful since modelers need not decide on one-mosielad of decling

on dome versus asymptotic fisheries selectivity (e.g., Sampson and Scott 2012), othen iwhe

This article is protected by copyright. All rights reserved



432 fix or estimate natural mortality (e.g., Johngbal. 2015), superensembles can use multiple
models to draw inference. Furthermore, the relative contributions of individual sreadehelp

434 tease apart the conditions under which various model assumptions result in the orast acc
predictions. Finally, superensembles can be used to directly estimate othdreguainititerest

436 in fisherieS_seience. For instance, superensembles could help assess overfishing by estimating
fishing mortality compared to fishing mortality at MSK¥/Eysy) or be trained to estimate natural

438  mortality.

More broadly, in ecology, predictions about extinction risk are widely used at naganal (

440  the US Endangered Species Act and the Canadian Species at Risk Act) and international (e.g., the
IUCN Red List, IUCN 2015) levels. These risk assessments generally inutivg fiegression

442 models to outcomes for individual species along with predictors of extinctioergs, Anderson
et al. 2011; Pinskyet al. 2011), or fitting population-dynamic models to data for individual

444 species (e:gs=DFO 2010). Both types of models are prone to error caused by model-
misspecification and therefore results are sensitive to decisions about model structure (Brooks

446  and Deroba 2015). Although there are options to account for potential m@dglecification in
determination of species ri¢&.g., coeffcient averaging, Burnham and Anderson 2002;

448  generalized'modeling, Yeaketlal. 2011; or semparametric methods, Thorsenal. 2014),
ensemblemethods are a relatively simple way to combine predictions in a transparent manner.

450 Beyond estimates of status and trend, ensemble methods could be used, for example,go increas
the robustness.of spatial predictions when designing nesvabnirotected areas (Rassweiler

452 et al. 2014) or to forecast potential spatial shifts in species distribution given climate impacts
(Harschet al."2014). In any case, superensembles are not a panacea and are ultimately limited by

454 the quality, breadth, amépresentativeness of simulated or trusted data to which they are

calibrated:s
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Figur e captions

Figure 1: Different models can suggest conflicting populatatuses and trends. Shown are
trajectories of‘estimateBl/B sy from four dataimited assessment methods (colours) and a data
rich stock assessment (black) for Southern blue whitfigromesistius australis) on Campbell
Island RisepNew Zealand. Lines indicate median fits and shaded regions indicate interquartile

ranges. Dashed horizontal line indicaB8ysy=1.

Figure 2: Using a superensemble model to predict population status from two indmahels.

The process.is illustrated graphically on the left and with R pseudocode on the )ight. (a
Individual'modelqred and blue lines) are fit to training data (dots) from populations of known or
assumed status (known status shown by black line). The shaded gray boxes indicate the recent
time periodithatwe are interested in for this paper. Estimates of status ésariridividual

models Ei 1 andBi »), potentially combined with additional covariates, are then used as

covariates in a statistical model fitted to the known or assumed population status as the response
(here represented as a linear model). The synflxold € represent parameters and error in the

linear model, respectively. Theubscripts represent individual fish stocks from f,tandf

represents the known status. (b) The superensemble can then be used to make pfedictans
stocks of interest. The same individual models are fit to populations of intedetbtesn

combined using the previously fitted superensemble model. Heljesubscripts represent
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604 individual fish stocks from 1 tm, andd represents the predicted status. Bhepresat the

parameters estimated when the superensemble was fit in panel a.

606  Figure 3: True (or assessed) population status (x axis) vs. predicted populatifrstat
individualmodels and ensemble methods with ckadiglation (y axis). These scatterplots

608 representithe aggregate results of repeated-tbiéerossvalidation tests where the ensemble
models are built on twithirds of the data and tested on the remaining third. (a—d) Individual

610 datalimited. model estimates of me&fbiomass divided by biomaas maximum sustainable
yield) in the last five years for a simulated dataset of known population.e)sEnsemble

612 estimates forthe same populations. Shown are a mean ensemble, a linear superensemble model
with two-way interactions (LM), a randomrest superensemble (RF), and a generalised boosted

614  regressionsmodel superensemble (GBMJ) (The same ensemble models, which were trained on
the simulated-dataset, applied to the RAM Legacy stock assessment database and compared to

616 datarich stock assees status. In the case of the RAM Legacy stock assessment data, we refit the
modified panel regression model (mMPRM) on each evabdation split. We binned the data into

618 hexagons for visual presentation. Darker areas indicate areas with greater density of data.
Yellow-redsshading and yellowlue shading distinguishes individual models from ensemble

620 methods.

Figure4: Performance metrics of individuahd ensemble models predicting B4 (mean
622  biomass divided by biomass at maximum sustainable yieldgitagh five years fitted to a
dataset with (a).known population status and (b) the RAM Legacy stock assessment database.
624  The xaxis represents withipopulation inaccuracy: median absolute proportional error (MAPE).
The yaxis represents acrepspulationSpearman rarkrder correlation. The toleft corner
626  contains methods with the best performance across the two metrics. The colour shading
represents-bias-(median proportional error; MPE): white points are unbiasepoibiise
628 representimethods that preidB/Busy values that are too high, red pointpresent methods that
predict B/Bysy values that are too low. These performance metrics are derived from the data in
630 Fig. 3 and based on repeated three-fold cxadislation testing.
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# Fit models to training data:

cmsy_status <- cmsy(...)

comsir_status <- comsir(...)

# Combine and reshape output into wide format (not shown)

head(data_training)

# > cmsy_status comsir_status known_status

#>1.4 1.3 1.2

#> ...

# Build supumsunbla model:

ensemble_model <- lm(known_status ~ cmsy_status +
comsir_status, data = data_known)

# Fit models to data of interest

cmsy_status <- cmsy(...)

comsir_status <- comsir(...)

# Combine and reshape output into wide format (not shown)
head(data_interest)

# > cmsy_status comsir_status ...

#>0.9 1.1

#> ...

# Predict status using superensemble model:
predict(ensemble_model, newdata = data_interest)
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