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Few regions have been more severely impacted by climate change in the United States than the 48 

Desert Southwest.  Here we use ecological genomics to assess the potential for adaptation to rising 49 

global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find 50 

the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate 51 

change.  Highly significant correlations between present abundance and estimates of genomic 52 

vulnerability – the mismatch between current and predicted future genotype-environment 53 

relationships – indicate small, fragmented populations of the Southwestern willow flycatcher will 54 

have to adapt most to keep pace with climate change.  Links between climate-associated genotypes 55 

and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to 56 

temperature extremes. Our results demonstrate that the incorporation of genotype-environment 57 

relationships into landscape-scale models of climate vulnerability facilitates more precise 58 

predictions of climate impacts that can guide conservation in threatened and endangered groups.  59 

 60 

Introduction  61 

The effects of climate change on biodiversity are forecast to be one of the leading causes of extinction 62 

over the next century (Dawson et al. 2011; Warren et al. 2013; Pacifici et al. 2015; Urban 2015).  63 

Evidence of climate-induced local extinctions are now widespread among plant and animal species 64 

(Sinervo et al. 2010; Wiens 2016) and the velocity of climate change impacts in desert biomes is 65 

predicted to be among the fastest (Loarie et al. 2009).  Recent climate change has altered community 66 
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composition by favoring generalist taxa over habitat specialists and rare species (Menéndez et al. 2006; 67 

Estrada et al. 2016), but the ability to measure climate impacts below the species level is often lacking.  68 

Fine-scale estimates of vulnerability to climate change require an understanding of both the capacity for 69 

populations to shift their ranges to track climate conditions, as well as their capacity to tolerate climate 70 

alterations in situ via phenotypic plasticity or adaptation.  Despite the fact that intraspecific variation in 71 

climate tolerances may factor critically in the ability of species to move or adapt to environmental change, 72 

most modeling efforts ignore local adaptation.  However, genomic tools are facilitating assessments of 73 

local adaptation in non-model species with increasing reliability (Savolainen et al. 2013) and such 74 

information can be used to improve climate vulnerability estimates.  Here we combine genome-wide 75 

sequencing with environmental data to improve predictions of how genotype-environment relationships 76 

may be disrupted by future environmental change in an endangered songbird native to the Desert 77 

Southwest of the United States, the Southwestern willow flycatcher.   78 

 79 

Until recently, assessing species vulnerability to climate change focused largely on using current range-80 

climate associations to predict distributions under models of future climate (Parmesan & Yohe 2003; 81 

Pacifici et al. 2015).  However, complex biotic interactions (competition, specialization, coevolution, etc.) 82 

and or limits to dispersal imposed by physical barriers may limit range shifts, making it important to 83 

understand a species’ potential to adapt to climate change in situ (Williams et al. 2008).  Methodologies 84 

in the field of ecological genomics have provided tools to help incorporate information on local 85 

adaptation into climate vulnerability models by identifying regions where climate-induced selective 86 

pressure will be highest (Fitzpatrick & Keller 2015), but such methods have yet to be widely implemented.  87 

These approaches calculate the difference between current genotype-environment relationships and those 88 

predicted under future climate change to identify the geographic regions of greatest mismatch.  More 89 

specifically, they can be used to ask, “How much would allele frequencies across the range have to 90 

change to keep pace with projected changes in climate?”.  In the absence of a range shift, populations in 91 

regions where the mismatch is greatest will either need to adapt or may suffer population declines, as was 92 

recently shown in the North American songbird, the Yellow warbler (Setophaga petechia) (Bay et al. 93 

2018). 94 

 95 

Few regions in North America will be more severely impacted by temperature extremes than the desert 96 

Southwest (Diffenbaugh et al. 2008; Hsiang et al. 2017).  While most large-scale analyses of climate 97 

impacts in birds have focused on changes in geographic ranges or shifts in migratory phenology to better 98 

synchronize arrival times with earlier spring onset (Both & Visser 2001; Both et al. 2006; Stephens et al. 99 

2016), these changes will do little to offset the impact of summer heat waves in desert regions.  Recent 100 
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work suggests that small desert passerines, in particular, will experience higher rates of mortality due to 101 

dehydration and hyperthermia as the frequency of extreme temperature events increases (Albright et al. 102 

2017). In addition, work in poultry has shown that high temperatures can cause heart strain, or in some 103 

cases heart failure, as birds attempt to dissipate heat through increased blood circulation.  Further, this 104 

work has shown that such stress is not just physiological in nature, but is associated with differential 105 

expression in a suite of ~300 genes (Zhang et al. 2017).  Based on these studies, we predict that genes 106 

important to thermal cooling will be under strong selection in small desert passerines as the frequency of 107 

heat waves increases. 108 

 109 

The endangered Southwestern willow flycatcher provides an example of a desert passerine for which a 110 

better understanding of climate vulnerability has important implications for its conservation.  This desert 111 

subspecies is one of four subspecies within the willow flycatcher whose combined ranges span the 112 

continental United States (Fig. 1; Pacific Northwestern form, E. t. brewsteri; Western Central form, E. t. 113 

adastus; and Eastern form, E. t. traillii).  The presence of the Southwestern willow flycatcher in particular 114 

is associated with riparian woodlands along streams and waterways (Sedgwick 2000) and such habitats 115 

are thought to provide important refuges from temperature extremes (Chen 1999; McLeod et al. 2008).  116 

At the turn of the century, the Southwestern willow flycatcher was described as common wherever its 117 

specialized habitat existed (Grinnell & Miller 1944), but by 1995 when it was listed under the Endangered 118 

Species Act, the number of known breeding pairs had been reduced to between 300 and 500 (Unitt 1987; 119 

Sogge et al. 1997). Population declines have been attributed to loss of riparian habitats in the Southwest 120 

following dam-building, water diversions, groundwater pumping, urbanization, agricultural development, 121 

and livestock grazing (Service 2002), but the role that climate change may have played in declines is 122 

unknown.  Some researchers have questioned the subspecies designation of the Southwestern willow 123 

flycatcher, suggesting that it is a peripheral population of an otherwise widespread species with no 124 

evidence for ecological distinctiveness (Zink 2015), although this suggestion has been questioned 125 

(Theimer et al. 2016).   Here we use ecological genomics to investigate the potential for ecological 126 

distinctiveness within the willow flycatcher as well as the potential role of rising global temperatures on 127 

its future persistence.   128 

 129 

To investigate potential genomic signals of local adaptation in the willow flycatcher, we tested for 130 

significant genotype-environment correlations using 105,000 SNP markers from 219 individuals spanning 131 

24 populations across the breeding range (Fig. 1; Table 1).  To identify the genomic locations of climate-132 

associated SNPs in relation to genes and gene regions important to adaptation under climate change, we 133 

also assembled and annotated the first willow flycatcher genome.  Significant genotype-environment 134 
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correlations for a subset of loci were further validated by genotyping an additional 274 individuals 135 

spanning 25 populations.  To identify geographical regions where climate-induced selective pressure is 136 

predicted to be greatest under future climate change, we used gradient forest modeling and calculated an 137 

index of genomic vulnerability - defined as the mismatch between current and future genotype-138 

environment relationships.  We compared genomic vulnerability across the four subspecies and examined 139 

relationships between abundance and genomic vulnerability in order to understand which geographical 140 

regions will be most severely impacted by climate-induced selective pressure.  141 

 142 

 143 

 144 

 145 

Materials and Methods 146 

Sample Collection and DNA extraction 147 

We compiled a collection of 493 willow flycatcher blood or tissue samples from 41 locations across the 148 

breeding range using a combination of samples from previous studies, museum donations and new field 149 

collections (Paxton 2000).  219 individuals from 24 populations were used to test for genome-wide 150 

genotype-environment correlations, while 274 individuals spanning 25 populations (8 replicate and 17 151 

new populations) were used to validate a subset of significant genotype-environment correlations 152 

identified in the genome-wide analysis (Ntotal_indiv = 493; Ntotal_pops = 41; Table 1; Fig. 1).  The willow 153 

flycatcher range map and associated subspecies boundaries was taken from the most current United States 154 

Geological Survey map used for willow flycatcher surveys (Sogge et al. 1997). Samples within one 155 

degree latitude and longitude and with no more than 10% difference in any environmental variable (as 156 

indicated by our environmental analysis, below) were lumped into a single population.  DNA was purified 157 

using the QiagenTM

 160 

 DNeasy Blood and Tissue extraction kit and quantified using the Qubit dsDNA HS 158 

Assay kit (Thermo Fisher Scientific).   159 

Genome Sequencing, Assembly, and Annotation 161 

The genomic DNA library was created using a single Southwestern willow flycatcher individual from 162 

Roosevelt Lake, AZ and the Illumina TruSeq DNA PCR-Free LT kit (Illumina), with adjustments.  One 163 

ug of DNA was diluted in 100 ul of AE buffer and fragmented to an average insert size of ~400bp.  The 164 

resulting library was sequenced on two lanes of an Illumina HiSeq2500 using 250bp paired-end 165 

sequencing at the QB3 Vincent J. Coates Genomics Sequencing Laboratory, UC Berkeley. Two mate-pair 166 

libraries were also created, using 4kb and 8kb inserts and sequenced on one-third of a 100bp paired-end 167 

Illumina HiSeq 2500 lane at the Huntsman Cancer Center at the University of Utah.  The 250bp paired 168 
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end reads were used to assemble contigs with the Discovar DeNovo assembler from the Broad Institute 169 

(http://www.broadinstitute.org), discarding contigs less than 1000 bp in length. Mate pair reads were 170 

trimmed and separated from paired end reads using NxTrim (O’Connell et al. 2015) and contigs were 171 

scaffolded with SSPACE (overlap requirement k=3) (Boetzer et al. 2010) using both paired end and mate 172 

pair libraries. We used reapr (Hunt et al. 2013) and mapping of the 8kb insert library to break the 173 

assembly at likely error regions. SSPACE scaffolding was repeated with k=5 and scaffolds <5kbp were 174 

discarded for the final assembly.  175 

 176 

For annotation purposes, repetitive regions were replaced with N’s using RepeatMasker (-species birds) 177 

(Tarailo‐Graovac & Chen 2009). For annotation, we used two different ab initio gene predictions within 178 

the MAKER pipeline (Cantarel et al. 2008): SNAP and AUGUSTUS. SNAP was trained iteratively using 179 

Zebra Finch cDNA and protein sequences downloaded from Ensembl and AUGUSTUS was run using the 180 

available chicken training dataset. We used Interproscan (Zdobnov & Apweiler 2001) to add Pfam protein 181 

annotation and gene ontology (GO) terms and identified 15,489 genes. Scaffolds were aligned to the 182 

Zebra Finch genome (version 3.2.4) using the software promer, part of the MUMmer package (Delcher et 183 

al. 2003). After alignment, we retained the longest consistent alignment (-q) for each chromosome while 184 

filtering for similarity (-i 50) and alignment length (-l 500). We then determined the location of the 185 

longest alignment for each scaffold and ordered scaffolds accordingly for visualization purposes. 186 

 187 

SNP Discovery and SNP Filtering 188 

Genome scans on 219 individuals were conducted following the BestRAD library preparation protocol 189 

with some modifications (Ali  et al. 2016).  100ng of DNA was digested using the SbfI restriction enzyme 190 

(New England Biolabs, NEB) and fragments were ligated with SbfI adapters prepared with biotinylated 191 

ends. Adapter-ligated samples were pooled and cleaned using 1X Agencourt AMPure XP beads 192 

(Beckman Coulter). All DNA fragments were sheared to an average length of 400bp and adapter-ligated 193 

fragments were bound to M-280 streptavidin magnetic Dynabeads (Life Technologies).  Blunt end repair 194 

and ligation of NEBNext Adapters was performed using the Illumina NEBNext Ultra DNA Library Prep 195 

Kit (New England Biolabs, NEB) and Agencourt AMPure XP beads (Beckman Coulter) were used to 196 

size select an average of 500bp fragments.  The final library was cleaned and run on a Bioanalyzer at the 197 

UCLA Technology Center for Genomics & Bioinformatics to check for the size distribution and the 198 

absence of contaminants.  Two libraries, each comprised of 96 individuals, were initially sequenced in 199 

two lanes of 100bp paired end reads on an Illumina HiSeq 2500 at the UC Davis Genome Center.  In a 200 
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third lane, 69 individuals with low coverage from the first two libraries were re-sequenced and an 201 

additional 27 individuals were sequenced.  202 

 203 

The program Stacks (Catchen et al. 2013) was used to demultiplex, filter and trim adapters from the data 204 

with the process_radtags function and to remove duplicate read pairs using the clone_filter function. 205 

Reads were mapped to our genome assembly using bowtie2 (Langmead & Salzberg 2012) and the 206 

Haplotype Caller in the Genome Analysis Toolkit was used to identify single nucleotide polymorphisms 207 

(SNPs), following best practices from the Broad Institute (http://www.broadinstitute.org). Finally, we 208 

discarded low quality and rare variants (genotype quality<30; depth<8; minor allele frequency<0.01), as 209 

well as indels and non-biallelic SNPs using vcftools (Danecek et al. 2011).  We used the R package 210 

genoscapeRtools (DOI: 10.5281/zenodo.848279) to visualize the tradeoff between discarding SNPs with 211 

low coverage and discarding individuals with missing genotypes in order to determine the final number of 212 

SNPs and individuals retained (SI Fig. 1).  213 

 214 

Environmental data 215 

For each sampling location, we obtained environmental data from publicly available databases. These 25 216 

variables included 19 climate variables downloaded from WorldClim (Hijmans et al. 2005)  which 217 

represented average climate between the years 1960-1990, as well as vegetation indices (Carroll et al. 218 

2004) (NDVI and NDVIstd, average for the year 2003), Tree Cover (Sexton et al. 2013) and elevation 219 

data from the Global Land Cover Facility (http://www.landcover.org) and a measure of surface moisture 220 

characteristics from the NASA Scatterometer Climate Record Pathfinder project (QuickSCAT mean and 221 

standard deviation, downloaded from scp.byu.edu). 222 

 223 

Assessing the role of geography and environment  224 

To assess the relative contributions of geography and the environment to genetic divergence in the willow 225 

flycatcher, we compared genetic, environmental, and geographic distance matrices and used multiple tests 226 

designed to account for spatial autocorrelation.  For locations with > 4 individuals (Table 1), we 227 

calculated pairwise FST across all quality-filtered SNPs using the R package SNPrelate (Zheng et al. 2012) 228 

and pairwise geographic distances from longitude and latitude using the R package geosphere  (Hijmans 229 

et al. 2012).  We then calculated environmental distance between each pair of sites by removing highly 230 

correlated climate variables (Pearson’s r>0.7; Table 2; SI Table 1), scaling and centering each 231 

environmental variable to account for differences in magnitude, and then calculating pairwise Euclidean 232 

differences between sites. Mantel, Partial Mantel, and multiple regression of distance matrices were used 233 
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to test for associations between linearized FST (FST/1-FST

 236 

) and genetic and environmental distance after 234 

accounting for geographic distance.  235 

Gradient forest prediction of genomic mismatch 237 

We identified the environmental variables that best explained genetic variation using gradient forest 238 

analysis with the R package gradientForest (Ellis et al. 2012). Because rare alleles are more likely to yield 239 

false positives, we only used SNPs with minor allele frequency >10%. The gradient forest analysis 240 

(ntree=500, nbin=201, corr.threshold=0.5) provided a ranked list based on the relative predictive power of 241 

all environmental variables (Table 2).  To ensure that our model was explaining more variation than we 242 

would expect by chance, we compared the number of SNPs with positive R2 and the mean R2 across these 243 

‘predictive’ loci (those with positive R2

 251 

) to 10 runs with randomized environments. Visualization of the 244 

gradient forest model across the range of the willow flycatcher (Buschke et al. 2016), was done by 245 

generating and extracting uncorrelated BIOCLIM values for 100,000 random points.  The final gradient 246 

forest model was used to predict the genomic composition from uncorrelated environmental variables for 247 

each random point (Table 2).  Principal components analysis (PCA) was used to summarize values.  To 248 

visualize the different adaptive environments across the breeding range, colors were assigned based on 249 

the top 3 principal components axes, as recommended by the authors (Ellis et al. 2012).  250 

We extended the gradient forest analysis to predict “genomic vulnerability” using the method presented 252 

by Fitzpatrick and Keller (2015). Here, “genomic vulnerability” (termed “genetic offset” by Fitzpatrick 253 

and Keller) is a measure of the mismatch between genotype and future predicted environment using 254 

associations across current gradients as a baseline. We used the baseline gradient forest model calculated 255 

using current BIOCLIM values to predict genomes under future environmental conditions (based on RCP 256 

2.6 2050 projections) at the same 100,000 random points. The Euclidean distance between these weighted 257 

current and predicted values is what we refer to as “genomic vulnerability” (Bay et al. 2018). 258 

 259 

Identification of SNPs as candidates for environmental selection 260 

To identify SNPs (with minor allele frequency >0.1) that were most highly associated with the top 261 

environmental variables while accounting for underlying population structure, we used Latent Factor 262 

Mixed Models (LFMM) (Frichot et al. 2013). For each of the top 8 environmental variables from the 263 

gradient forest analysis, we ran five separate MCMC runs with a latent factor of K=4, based on the 264 

number of reported subspecies and previous morphological and genetic analysis based upon neutral 265 

markers (Paxton 2000). P-values from all five runs were combined and adjusted for multiple tests using a 266 

false discovery rate (FDR) correction. We annotated each significant SNP with genes within 25kb 267 
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upstream or downstream which we assume is within the distances before which LD should break down 268 

(Backstrom et al. 2006). 269 

 270 

Validation of climate associated SNPs 271 

To validate genotype-environment correlations identified in the LFMM analysis, we genotyped the top 272 

ranking 18 SNPS that were significantly associated with the top 8 climate variables and could be 273 

converted to SNPtype Assays in an additional 274 breeding individuals from 25 locations. DNA was 274 

extracted from feather samples using the KingFisherTM Cell and Tissue DNA Kit and SNP genotyping 275 

was performed on the FluidigmTM

 280 

 96.96 IFC controller following manufacturer guidelines. Nine 276 

individuals with greater then 8% of missing data were removed from downstream analysis and final allele 277 

frequencies were calculated for each SNP at each location. Standard linear regression was used to test for 278 

significant associations between climate and allele frequency (FDR-corrected p-value <0.05). 279 

Association between genomic vulnerability and abundance 281 

To assess the relationship between genomic vulnerability and abundance and determine which subspecies 282 

may be most vulnerable to future climate change, we correlated estimates of genomic vulnerability with 283 

willow flycatcher relative abundance from the North American Breeding Bird Survey (BBS) for 2011-284 

2015, including all sites where the species was detected at least once during the history of the survey 285 

(Pardieck 2017).  In order to associate the two datasets, vector-based BBS relative abundance estimates 286 

derived from inverse-distance weighting interpolation (2010-15; Sauer et al. 2017; https://www.mbr-287 

pwrc.usgs.gov/bbs/shape_ra15.html

 296 

) of route-level mean counts was converted to raster format with grid 288 

resolution of approximately 15 × 15 km. We then extracted values of relative abundance and genomic 289 

vulnerability for grid cells including BBS routes using bilinear interpolation (Hijmans 2015).  For cells 290 

with BBS routes where detections had been recorded, but for which model-based estimates of abundance 291 

were not available due to low abundance and isolation from other sites with detections, we assigned mean 292 

count values (~ 9% of routes; mean count = 0.06). Significant differences in genomic vulnerability 293 

between subspecies were assessed using boxplots with 95% confidence intervals around median 294 

vulnerability scores (Chambers et al. 1983).  295 

Results 297 

Genome assembly, SNP discovery, and SNP/population filtering 298 

The final Southwestern willow flycatcher genome assembly was 1.2 Gb in length and consisted of 7,791 299 

scaffolds (contig N50=79,613bp; scaffold N50=895,074bp).  In total, we identified 6,355,061 SNPs 300 

across the genome. Discarding low quality SNPs and low coverage individuals resulted in a final set of 301 
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105,000 SNPs and 175 individuals (SI Fig. 1), with less than 7.4% missing genotypes per SNP 302 

(mean=2.3%), less than 15.6% missing SNPs per individual (mean=2.3%), and minor allele frequency 303 

greater than 1%.  Because FST is robust to low sample size when a large number of SNPs are employed 304 

(Nazareno et al. 2017), we retained all populations with a minimum of 4 (mean = 8) individuals for 305 

analysis based upon FST

 311 

 (distance matrix comparisons), resulting in a final dataset of 168 individuals 306 

from 22 sampling locations.  Alternatively, to avoid bias associated with low sample size in analyses 307 

requiring estimates of allele frequency (Gradient Forest and LFMM), we used only populations with a 308 

minimum of six individuals (average = 10), resulting in a final dataset of 136 individuals from 14 309 

sampling locations (Fig. 1; Table 1).   310 

Assessing the role of geography and environment in shaping genetic structure 312 

Pairwise FST across all quality-filtered SNPs ranged from 0 - 0.11 (SI Table 2).  Mantel tests revealed 313 

highly significant correlations between genetic and geographic distance (r = 0.70, P = 1 x 10-6), genetic 314 

and environmental distance (r = 0.56, P = 1 x 10-6), and geographic and environmental distance (r = 0.42, 315 

p = 1.8 x 10-4) (SI Fig. 2A).  Partial Mantel tests revealed the correlation between genetic and 316 

environmental distance remained significant after accounting for the relationship between genetic and 317 

geographic distance (r = 0.42, p = 3 x 10-4; SI Fig. 2) and both geographic and environmental distances 318 

were significant in a multiple regression of distance matrices (MRM: R2=0.59; geography P = 1 x 10-5; 319 

environment P = 3 x 10-5

 321 

).  320 

Gradient forest mapping of genotype environment correlations  322 

More genetic variation was explained by our gradient forest than those generated under randomized 323 

environments (SI Fig. 3). A total of 9015 SNPs were correlated with environment with mean R2=0.18, 324 

compared to a mean R2

 333 

 of 0.13-0.15 across 3489-5633 SNPs for randomized data. We used gradient 325 

forest models to identify which climate and vegetation variables were most important in structuring 326 

genetic variation in the willow flycatcher and visualize climate-associated allelic variation across the 327 

breeding range (Fig. 2 A & B).  Seven temperature variables and one precipitation variable were most 328 

strongly correlated with genetic variation across the breeding range of willow flycatchers (Table 2). 329 

Mapping principal components of gradient forest output revealed putative signals of local adaptation 330 

across the US Southwest, the East, the Inter-Mountain West, and the Pacific Northwest geographic 331 

regions (Fig. 2C).  332 

Identification of candidate SNPs for environmental selection 334 
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To investigate genomic regions potentially involved in climate adaptation, we identified genomic regions 335 

associated with the top 8 climatic variables (which explained 49% of the total variation) using Latent 336 

Factor Mixed Models (25) (Table 2, SI Table 3).  We found 77, 100, 104, 97, 97, 58, 107 and 70 SNPs 337 

significantly associated with BIO11, BIO10, BIO5, BIO1, BIO6, BIO9, BIO4 and BIO17 respectively 338 

(FDR-corrected p<0.05), with 1 SNP located on chromosome 16, Climate_20, shared among 7 variables.  339 

The SNPs were broadly distributed across the genome and within 25 KB of 202 genes with a variety of 340 

functions (SI Table 3). We identified 5 genes (BRACA1, RND2, CIITA, ICOS, and UBE2C) that were 341 

among the ~300 genes found to be differentially expressed in an RNA-seq analysis of thermal tolerance in 342 

chickens (Zhang et al. 2017), two of which were physically linked (BRACA1 and RND2), and an 343 

additional 5 genes (Ecel1, SLC23A2, NOX4, PIRT, and GR1N1) with GO terms related to other aspects 344 

of thermal tolerance, including respiratory system process, oxidative stress, and response to heat (Rimoldi 345 

et al. 2015) (SI Table 4).  Three of the 5 genes from the poultry thermal stress study as well as 3 of the 346 

genes with potentially relevant GO terms were found to be outliers in association with BIO6 (Fig. 3A).  347 

Further, targeted genotyping using Fluidigm SNPtype assays for 18 of the top candidate SNPs in an 348 

additional 274 birds from 24 locations validated climate associations in 8/18 SNPs (FDR-corrected 349 

p<0.05; SI Table 5).  In particular, we found a highly significant relationship between the Climate_20 350 

SNP and 7 of the 8 top ranked climate variables in both the genome scan and validation results.  While no 351 

link between Climate_20 and genes linked to thermal tolerance in birds was found, the highly significant 352 

relationship between this SNP and climate variables reflective of the intensity of summer heat waves, 353 

such as Mean Temperature of the Warmest Quarter (BIO10), suggests a potential role for this region in 354 

climate adaptation (Fig. 3 B, C, and D).   355 

 356 

Prediction of genomic mismatch and association between vulnerability and abundance 357 

Under a model of future climate change, genomic vulnerability was predicted to be highest in the 358 

southern part of the willow flycatcher range (Fig. 4A), corresponding to the range of the Southwestern 359 

willow flycatcher subspecies range.  Overall, highest genomic vulnerability occurred at sites with 360 

especially low abundance, resulting in a significant negative correlation between abundance and genetic 361 

vulnerability (r = - 0.18; P < 0.001; df = 1382; Fig. 4B, C).  Abundance of southwestern willow flycatcher 362 

was low across sites and correlation between abundance and vulnerability for this subspecies was 363 

especially strong (r = - 0.49; P = 0.016; df = 27) and weakest for the eastern subspecies region (traillii; r = 364 

-0.11; P < 0.001; df = 957).  While there were regions of high and low genomic vulnerability across the 365 

range, the southwestern willow flycatcher subspecies had the highest overall median genomic 366 

vulnerability score (Fig. 4D).   367 
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 368 

Discussion 369 

Climate envelope models are widely used to predict future species distributions (Parmesan & Yohe 2003; 370 

Pacifici et al. 2015), but such models do not account for complex biotic interactions (competition, 371 

specialization, coevolution, etc.) or barriers to dispersal that may limit range shifts (Williams et al. 2008). 372 

Here we show evidence for local adaptation in the willow flycatcher, supporting the idea that climate 373 

vulnerability estimates based on a single species distribution model across the entire North American 374 

breeding range (Zink 2015) could potentially result in misplaced conservation efforts.  Here we move 375 

beyond species distribution modeling to identify populations that will need to adapt most to keep pace 376 

with climate change - a critically important question for the endangered Southwestern willow flycatcher 377 

whose dispersal is known to be limited by proximity to water sources  (Friggens & Finch 2015).  By 378 

calculating the difference between current genotype-environment relationships and those predicted under 379 

future climate change, we identify regions of highest vulnerability in the southern part of the willow 380 

flycatcher range.  A comparison of the average genomic vulnerability across all currently recognized 381 

subspecies strongly supports the view that allele frequencies in the endangered Southwestern willow 382 

flycatcher will have to evolve most to keep pace with climate change.  Significant correlations between 383 

estimates of genomic vulnerability and abundance from Breeding Bird Survey data confirm that already 384 

rare populations in the Southwest and throughout the range have the highest genomic vulnerability, 385 

suggesting that climate change may have already had an impact on population declines in regions at the 386 

edge of the species niche.  Our results demonstrate how the incorporation of genotype-environment 387 

relationships into models of climate vulnerability can improve predictions of climate-induced impacts 388 

below the species level.  389 

 390 

Assessing the extent of intraspecific variation in climate tolerances is an important first step towards 391 

understanding species vulnerability to climate change.  Here we investigate the relationship between 392 

genetic, geographic and environmental distance in the willow flycatcher and find consistent support for 393 

the conclusion both geography and environment are important to genetic divergence in the willow 394 

flycatcher (SI Fig. 2).  Mapping putatively adaptive genetic variation using gradient forest-transformed 395 

climate variables supports the idea that the Pacific Northwest, the Southwest, the East, and the Inter-396 

Mountain West harbor unique genotype-environment correlations.  More specifically, our results support 397 

the idea that high maximum temperatures during the warmest month (BIO5) are important to genotype-398 

environment correlations in the Southwest, while genotype-environment relationships in the Pacific 399 

Northwest are driven by environmental variables such as precipitation during the driest quarter (BIO17) 400 

and mean temperatures during the coldest quarter (Figs. 2 & 3).  In contrast, genotype-environment 401 
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correlations in Inter-Mountain West and Eastern populations, center closer zero in the PCA (Fig. 2A), 402 

indicating a more moderate impact of climate variables underling climate adaptation in this area.  In sum, 403 

our results support the idea that genotype-environment correlations in the willow flycatcher are complex, 404 

involving multiple environmental variables and genomic regions and such information can be used to help 405 

refine estimates of future climate vulnerability.  406 

 407 

Adaptation to local environments often occurs through natural selection acting on a large number of loci, 408 

each with a small effect on phenotype (Orr 2005).  Here we identify putative loci important to local 409 

adaptation in the willow flycatcher, after accounting for underlying population structure, and find 410 

between 58 – 107 SNPs significantly associated with each of the top 8 environmental variables (SI Table 411 

3).  Independent validation of our top climate-associated SNPs in 274 new individuals from 24 412 

populations revealed that 8 of our top 18 loci were likely robust to Type 1 error. While such error is a 413 

problem common to all association studies (McCarthy et al. 2008), the high number of false positives in 414 

our data underscores the idea that genotype-environment associations that cannot be validated should be 415 

interpreted with caution.  Highly significant associations between Climate_20 and 7 of our 8 top-ranked 416 

environmental variables in both the genome scan and validation datasets provides the strongest evidence 417 

for local adaptation across the willow flycatcher genome (Fig. 3).  While no associations between 418 

Climate_20 and genes known to be important to thermal tolerance in birds were identified, the 419 

relationship between allele frequency variation in this SNP and Mean Temperature of the Warmest 420 

Quarter (BIO5) suggests a potential role for this region in adaptation to temperature extremes. Overall, 421 

our results are in keeping with the idea that willow flycatchers exhibit region-specific genotype-climate 422 

associations that should be considered when assessing the capacity for endangered populations of the 423 

Southwestern willow flycatcher to shift their range in response to rising global temperatures. 424 

While genotype-environment correlations have been noted across a variety of plant and animal systems, 425 

the mechanisms behind such local adaptation remain less well understood.  Recent work on birds supports 426 

the idea that exposure to high temperatures can result in dehydration and heat stress related mortality 427 

(Albright et al. 2017; Zhang et al. 2017).  As a first step towards understanding the genomic basis of 428 

adaptation to temperature in the willow flycatcher, we identify genes within 25KB of our top-ranking 429 

climate-associated SNPs (SI Table 4).  Our strongest evidence for genes and gene regions that may be 430 

important to climate adaptation in this species comes from the overlap between five genes in our panel 431 

(BRACA1, RND2, CIITA, ICOS, and UBE2C) and those that were also found to be differentially 432 

expressed in a thermal tolerance study in poultry (Zhang et al. 2017).  More specifically, Zang et al (2016) 433 

concluded that expression of these genes was linked to the dissipation of heat through increased heart 434 

pumping and blood circulation in smaller breeds of chickens.  These results are consistent with the recent 435 
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work by Albright et al (2017) who found that small passerines in the Desert Southwest were particularly 436 

prone to mortality resulting from the failure to maintain body temperatures below lethal limits.  While 437 

more research is needed, it is possible that physiological pathways responsible for overheating are related 438 

to those involved in interspecific adaptation to temperature extremes.  Further, while limited gene 439 

annotation information for non-model organisms makes us cautious about placing significance on GO 440 

term analyses (Stein 2001), we also note the presence of four genes (Ecel1, SLC23A2, NOX4, PIRT, and 441 

GRIN1) with GO terms related to heat stress, thermal tolerance, and oxidative stress.  Future efforts will 442 

focus on validating gene environment correlations at putative heat stress related loci as well as 443 

investigating the extent to which the genes identified here may serve as a mechanism for adaptation to 444 

temperature extremes in the willow flycatcher.  445 

 446 

Desert ecosystems are home to some of the world’s rarest species, many of which are already threatened 447 

by climate change (Loarie et al. 2009).  Methods for assessing climate change impacts that rely on single 448 

species distribution models may overlook the importance of local adaptation in the ability of populations 449 

to respond to environmental shifts, potentially leading to misplaced conservation efforts.  The US Fish 450 

and Wildlife Service was considering removing the Southwestern willow flycatcher from the endangered 451 

species list, in part because of a single species distribution model that showed no evidence of habitat 452 

specialization across the range.  Here we annotate the first willow flycatcher genome and use population-453 

level, genome-wide sequencing to show that willow flycatchers are not a single homogenous group, but a 454 

composite of locally adapted populations with specific genotype-environment relationships related to 455 

differences in temperature extremes.  Clear evidence for local adaptation across the range highlights the 456 

need for management efforts below the species level if locally adapted populations are to be conserved.  457 

Estimates of the mismatch between current genotype-environment correlations and those predicted under 458 

future climate indicate that the Southwestern subspecies is at the greatest risk of climate-induced 459 

extinction. Our findings support the idea that protection or enhancement of riparian thermal refuges (Chen 460 

1999) within regions of lower genomic vulnerability in the desert Southwest may be the most effective 461 

strategy for conserving remaining populations of flycatchers by buffering them from temperature 462 

extremes.  463 
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Table 1.  Sample location information.  NRAD_nofilter

depth and missing data , NRAD_filter = number of remaining post-filtering, Nvalidation =  number  of individuals in the SNP  

 = number of idividuals for genome-wide RAD dataset before filtering for read  

validation dataset. 

            

            

Location Latitude Longitude NRAD_ NRAD_filter Nvalidation 
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nofilter 

            

East Pima, AZ 32.83 -109.7 _ _ 8 

San Pedro/Gila River confluence, AZ 32.98 -110.77 18 14 17 

West Fort Ditch, NM 33.04 -108.54 _ _ 11 

San Carlos Reservation, AZ 33.2 -110.44 _ _ 30 

San Diego, CA 33.28 -117.37 14 4 6 

Roosevelt Lake, AZ  33.77 -111.24 20 10 18 

White Mountains, AZ 34.00 -109.00 15 13 15 

Camp Verde, AZ 34.56 -111.84 _ _ 17 

Santa Ynez River, CA 34.62 -120.18 _ _ 8 

Zuni/Nutria Diversion Reservation, NM 35.24 -108.64 _ _ 8 

South Fork Kern River, CA 35.66 -118.46 20 13 11 

Southern Ute Reservation, CO 37.12 -107.59 _ _ 6 

Pahranagat Lake NWR, NV 37.32 -115.13 _ _ 6 

Owen's River at Bishop, CA 37.41 -118.48 _ _ 12 

Alamosa National Wildlife Refuge, CO 37.5 -106 _ _ 17 

Beaver Creek, CO 37.68 -108.38 _ _ 6 

Clear Creek, CO 37.79 -108.24 _ _ 8 

Baltimore Area, MD 39.4 -76.99 _ _ 8 

Escalante State Wildlife Area, CO 39.47 -106.37 _ _ 13 

Fish Creek, UT 39.78 -111.20 14 11 _ 

Rio Blanco Lake, CO 40.09 -108.21 _ _ 7 

Orefield, PA 40.66 -75.67 21 21 _ 

White River Confl. to the Green River, UT 40.67 -109.68 7 6 _ 

Willow Slew, IN 40.98 -87.53 4 4 _ 

Bigelow Meadows, CA 41.26 -121.88 7 6 _ 

Agusta, MI 42.3 -85.32 _ _ 9 

Mink Creek, ID 42.75 -112.39 6 6 _ 

Malheur NWR, OR 42.83 -118.87 7 6 _ 

FCTC-SABO, MI 42.84 -85.30 4 4 6 

Jones Creek, OR 43.04 -123.97 10 10 _ 

Little White River Rec. Area, SD 43.17 -101.53 4 4 6 

Black Creek, NY 43.38 -73.91 6 4 _ 

Fall Creek 2, ID 43.43 -111.40 7 7 _ 

Marion Forks, OR 44.37 -122.02 _ _ 14 

Finley NWR, OR 44.41 -123.35 3 0 _ 

Priem Road, OR 44.78 -123.38 7 6 _ 

Elm Creek, MN 45.13 -93.45 4 0 6 

Waubay NWR, SD 45.40 -97.33 4 4 _ 

Hamon Memorial, MT 45.95 -114.13 5 4 _ 

Carbondale (Edgwick), WA 47.09 -122.05 8 7 _ 

Fork clearcut, WA 47.97 -124.40 4 4 _ 

Total     219 168 273 
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Table 2.  Environmental variables used in the gradient forest analysis, ordered by ranked importance of variables 

and the cumulative contribution of each variable.  The top eight environmental variables represent 49% of the total. 

        

Variable Definition GF Rank 
Cumulative 

Contribution 

BIO11 * Mean Temperature of Coldest Quarter 8.03E-04 7.66 

BIO10  Mean Temperature of Warmest Quarter 6.71E-04 14.40 

BIO1  Annual Mean Temperature 6.41E-04 21.05 

BIO5* Max Temperature of Warmest Month 6.40E-04 27.47 

BIO6  Min Temperature of Coldest Month 5.79E-04 32.90 

BIO4* Temperature Seasonality (standard deviation *100) 5.20E-04 38.30 

BIO9  Mean Temperature of Driest Quarter 4.91E-04 43.64 

BIO17*  Precipitation of Driest Quarter 4.78E-04 48.76 

NDVI_Mean Vegetation Indicies 4.50E-04 53.18 

BIO15  Precipitation Seasonality (Coefficient of Variation) 4.28E-04 57.39 

BIO7  Temperature Annual Range (BIO5-BIO6) 3.75E-04 61.41 

TreeCover Tree Cover 3.72E-04 65.41 

BIO14  Precipitation of Driest Month 3.64E-04 69.36 

BIO16  Precipitation of Wettest Quarter 3.09E-04 72.75 

BIO19  Precipitation of Coldest Quarter 2.96E-04 76.04 

BIO2*  Mean Diurnal Range (Mean of monthly (max temp - min temp)) 2.90E-04 79.31 

BIO8*  Mean Temperature of Wettest Quarter 2.87E-04 82.49 

BIO13  Precipitation of Wettest Month 2.82E-04 85.63 

STM Elevation  2.21E-04 88.36 

BIO12  Annual Precipitation 2.12E-04 90.98 

BIO3  Isothermality (BIO2/BIO7) (* 100) 2.07E-04 93.54 

QuickScat Surface moisture characteristics  2.02E-04 95.87 

BIO18  Precipitation of Warmest Quarter 1.92E-04 98.17 

NDVI_StDev Vegetation Indicies 1.81E-04 100.00 

* Top ranked, uncorrelated climate variables used for Gradient Forest mapping and distance matrix comparison analyses.   

These variables were selected by moving down the list of ranked importance for the full model and discarding  
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variables highly correlated (Pearson's r>7) with a variable of higher importance. 
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Figure 1. Willow Flycatcher Range Map and Sampling. Open 

and closed circles represent the data used in distance matrix 

comparison tests, while only populations represented by closed 

circles were used in the Gradient Forest analysis.  Open gray 

boxes represent populations used to validate gene-environ-

ment correlations.  Lines represent currently recognized 

subspecies boundaries according to Sogge et al (1997).  E. t. 

brewsteri = Paci�c Coastal, E.t. adastus = Interior West, E. t. trallii 

= East, and E. t. extimus = Southwest. 
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Figure 2.  Mapping gene-environment correlations across the willow �ycatcher breeding 

range.  A) Principal components analysis of gradient forest-transformed climate variables.  

Black dots represent the PC scores associated with the sampling locations, while colors are 

based upon modeled gene-environment correlations from 100,000 random points across the 

breeding range.  Arrows show the loadings of the top ranked uncorrelated environmental 

variables.  B) Gradient forest-transformed climate variables from the PCA mapped to geogra-

phy support climate adaptation across the breeding range. Black lines designating approxi-

mate subspecies locations support the idea that while subspecies are adapted to distinct 

ecological regions, climate adaption is complex.  
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Figure 3.  Candidate SNPs linked to temperature in the Willow �ycatchers.  A) Manhattan 

plot showing the FDR-corrected signi�cance level for SNPs associated with Temperature Season-

ality (BIO4) and B) Mean Temperature of the Warmest Quarter (BIO10). Dashed line represents 

p=0.05. Colors distinguish di�erent chromosomes.  Candidate genes linked to thermal tolerance 

in birds are highlighted by red stars and denoted with gene names, while Climate_20, the SNP 

validated in B and C below, is denoted by a black triangle.  No link between Climate_20 and 

genes linked to thermal tolerance in birds was found, but the highly signi�cant relationship 

between this SNP and 7 of the 8 top ranked climate variables (except temperature seasonality 

shown in A above) in both the genome scan and validation results (SI Table 5) suggest a poten-

tial role for this region in climate adaptation.  C) Relationship between Climate_20 and mean 

temperature of the warmest quarter in genome scan and SNP validation datasets.  The allele 

frequencies from the original genome scan data are denoted by squares, while allele frequen-

cies based upon the validation set are denoted by circles.  D) The association between Mean 

Temperature of the Warmest Quarter (BIO10) and Climate_20 across geographic space, with 

population allele frequencies color coded from high frequency (red) to low (yellow).
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Figure 4.  Genomic Vulnerability and abundance in the Willow Flycatcher.  A) Map of 

genomic vulnerability across the Willow Flycatcher breeding range.  Red = high genomic 

vulnerability, blue = low genomic vulnerability, lines indicate subspecies boundaries. B) 

Genomic Vulnerability versus abundance based upon the estimated mean number of 

birds/ route in 2011-2015 Breeding Bird Survey. C) Estimates of relative abundance from 

the BBS based on inverse-distance weighting interpolation.  Points indicate the BBS routes 

where Willow Flycatchers have been recorded.  Points in the grey areas fall in regions where 

abundance was too low or distant from other detection routes to be included in the BBS 

spatial model.  D) Quantile box plots of the median Genomic Vulnerability broken down by 

subspecies.  Open circles represent outliers.
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