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Few regions have been more severely impacted by climate change in the United States than
Desert Southwest.Here we use ecological genomics to assess the potential for adaptation to rising
global temperatures ina widespreadsongbird, the willow flycatcher (Empidonax traillii), and find
the endangeredidesert southwestern subspeciés {. extimus) mostvulnerable to future climate
change [Highlyssignificant correlations between present abundance and estimates of genomic
vulnerability —the mismatch between current and predicted future genotypenvironment
relationships=indicate small, fragmented populations of theSouthwesternwillow flycatcher will
have to adaptmaostto keep pace with climate changeLinks between climateassociatedyenotypes
and genes importantto thermal tolerance in birds provide a potential mechanism for adaptation to
temperature extremes.Our resultsdemonstratethat the incorporation of genotypeenvironment
relationshipsinto landscapescale models of climate vulnerabilityfacilitates more precise

predictions of climate impactsthat can guide conservation in threatened and endangered groups

Introduction

The effects of climate change on biodiversity are forecast to be one of the leading causastain
over the next centurfDawsonet al. 2011; Warreret al. 2013; Pacificiet al. 2015; Urban 2015)
Evidence of climaténduced local extinctions are now widespread among plant and animal species
(Sinervoet al. 2010; Wiens 2016and the velocity of climate change impacts in desert biomes is

predicted to be among the fastdstarieet al. 2009) Recent climate change has altered community
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composition by favoring generalist taxa over habitat specialists and rare gpméndezt al. 2006;
Estradeet al. 2016) but the ability to measure climate impacts below the species level is often lacking.
Fine-scale estimates of vulnerability to climate change require an understandirth tfdoapacity for
populations to shift their ranges to track climate conditiaasyell as their capacity to tolerate climate
alterationgn'situ'via phenotypic plasticity or adaptation. Despite the fact that intraspecifitioatiia
climate tolerances may factor critically in the ability of species to move or adaptironmental change,
most modeling efforts ignore local adaptation. However, genomic tools artafaxgliassessments of
local adaptation in nemodel species with increasing reliabil{yavolaineret al. 2013)and such
information_can,be used to improve climate vulnerability estimates. Hetemiginegenomewide
sequencing,with/environmeaitdatato improve predictions of how genotypavironment relationships
may be disrupted by future environmental change in an endangered songbird native torthe Dese

Southwest of the United States, the Southwestern willow flycatcher.

Until recently, assessing species vulnerability to climate change focused largelggouwrsent range
climate associations to predict distributions under models of future cliPateesan & Yohe 2003;
Pacificiet al. 2015) However, complex biotic interactions (competition, specialization, coigmojwetc.)
and or limits to dispersal imposed by physical barriers may limit range, shitgng it important to
understand-asspecigmtential to adapt to climate chanigesitu (Williams et al. 2008) Methodologies

in the field of ecelogical genomics have provided tools to help incorporate information on local
adaptationsintesclimate vulnerability models by identifying regions where tiimduced selective
pressure will be highegFitzpatrick & Keller 2015)but such methods have yet to be widaiplemented.
These approacheslculate the difference between current genegipgronment relationships and those
predicted undefuture climate chang® identify the geographic regions of greatest mismahkdbre
specifically, they can be used to ask, “How much would allele frequencies across the range have to
change to keep pace with projected changes in climata?he absence of a range shift, populations in
regions where the mismatch is greatest will either need to adapt or may suffer popidatines, as was
recently shown in the North American songbird, the Yellow warl3gophaga petechia) (Bay et al.

2018)

Few regions in North America will be more severely impacted by temperature extnaméisd desert
Southwes{Diffenbaughet al. 2008; Hsianget al. 2017) While nost largescale analyses of climate

impactsin birdshave focused on changes in geographic ranges or shifts in migratory pheodiegfer
synchronize arrival times with earlier spriogset(Both & Visser 2001; Botlet al. 2006; Stephenst al.

2016) thesechangewill do little to offset the impact glummerheat wave# desert regionsRecent
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101  work suggests that small desert paisses in particular, will experience higher rates of mortality due to
102  dehydratiorand hyperthermias the frequency of extreme temperature events insr@slsgight et al.
103  2017) In addition, vork in poultry has shown that high temperatutas cause heart strair, in some
104 cases heatrt failur@s birds attempt to dissipate heat through increased blood circul&tiother, this
105 work has'shown'that such stress is not just physiological in nature, but is associatéifienetttiell

106  expression in a suite of ~300 gerigbanget al. 2017) Based on these studjege predict thagenes

107 important to thermal coolingill be under strong selection in small desert passedaadise frequency of
108 heat wavesiincreases.

109

110 Theendangered/Southwestern willow flycatcpeovides arexampleof adesert passerine for which a
111 better understanding ofimatevulnerabilityhas importanimplications for itsconservation This desert
112  subspeciesone offour subspeciewithin the willow flycatcher whose combined ranges sihan

113  continental United Statéfig. 1; Pacific Northwestern fornk. t. brewsteri; Western Central fornk. t.
114  adastus, and Eastern forpk. t. traillii). Thepresencef the Southwestemwillow flycatcher in particular
115 is associated with riparian woodlands along streams and watef@eggwick 2000andsuch habitats
116  are thought t@rovideimportantrefugesfrom temperaturextremegChen 1999; McLeoet al. 2008)
117  Atthe turn'of the century, the Southwestemitiow flycatcherwas described as commuereverits

118 specializedshabitat existé@Grinnell & Miller 1944) but by1995 when it was listednder theEndangered
119  Species Actthe humber of known breeding pairs had been reduced to betweandiD (Unitt 1987;
120  Soggeetlal=1997) Population declines have been attributed to loss of riparian habitats in the Southwest
121  following dambuilding, water diversions, groundwater pumping, urbanization, agricultural geveit,
122  and livestocksgrazingService 2002)but the role that climate change may have played in declines is
123 unknown. Someresearchers have questioned the subspecies designation of the Southillestern
124  flycatcher suggesting that is a peripheral population of an otherwise widespread species with no
125 evidence for ecological distinctiveng@nk 2015), althouglhis suggestion haseen questioned

126  (Theimeret al. 2016) Here we use ecological genomics to investigate the potential for ecological
127  distinctiveness withithe willow flycatcheras well as the potential role of rising global temperatanes
128 itsfuture persistence.

129

130 To investigatgotential genomic signals of local adaptatiothi@ willow flycatcher, we tested for

131  significant genotyp&nvironment correlations using 105,000 SNP markers from 219 individuals spanning
132 24 populations across the breeding rarkig. (L; Table 1). To identify thgenomiclocatiors of climate
133  associate@NPs in relation to genes and gene regions important to adaptation under climgts wiean

134  alsoassembled and annotated the fivilow flycatchergenome. Significant genotyjsvironment
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correlations for a subset of loci were further validated by genotyping an add@hmdividuals

spanning 25 populations. To identdgographicategions where climatinduced selective pressure is
predicted to be greatest under future climate change, we used gradiemhfmtelihgandcalculate an

index of genomic vulerability - defined aghe mismatch between current and future genotype
environment relionships. We compared genomic vulnerability across the four subspecies and examined
relationships between abundance and genomic vulnerahilisderto understanavhich geographical

regions will'be most severely impacted by climiaiguced selectiveressure.

Materials and Methods

Sample Collectioniand DNA extraction

We compiled a collection efo3willow flycatcherblood or tissue samples frofd locations across the
breeding rangasing a combination of samples from previous studies, museum donations and new field
collections(Paxton 200Q) 219 individuals from 24 populationsane used to test fgenomewide
gerotypeenvironment correlations, while 274 individuals spanning@8ulationq8 replicate and 17
new populationsjvere used to validate a subset of signifiggarbtype-environment correlations
identified in thegenomewide analysiS(Niotal_indiv= 493; Notal_pops= 41; Table 1 Fig. 1). The willow
flycatchérrangesmap and associated subspecies boundaries was taken from the most cede3tatédsit
Geological Survey map used for willow flycatcher survgaggeet al. 1997) Samples within one
degredatitudesand longitude and with no more than 10% difference in any environmental véagble
indicated by ouenvironmental analysibelow) were lumped into a single populatioBNA was purified
using the Qiageff DNeasy Bood and Tissue extraction kit and quantified usheyQubi® dsDNA HS
Assaykit (Thermo Fisher Scientific).

Genome Sequencing, Assembly, and Annotation

Thegenomic DNA library was createding a single Southwestern willow flycatcher individual from
Roosevelt LakegAZ anthe lllumina TruSeq DNA PCRRree LT kit (lllumina) with adjustmentsOne
ug of DNA,was dilutedn 100 ul of AEbufferandfragmentedo anaveragensert size of ~400bp. The
resulting library wasequencedn two lane®f anlllumina HiSeq250Q1sing250bp paireeend
sequencingit the QB3 Vincent J. Coatee@mics Sequencing LaboratoyC Berkeley Two matepair
libraries were also creategsing4kb and 8kb inserts and sequenced onthird of a 100bp pairednd

lllumina HiSeq 2500 lane #e Huntsman Cancer Center at the University of UTate 250bp paired
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169 end readsvere used to assemble contigigh the Discovar DeNovo assembler from the Broad Institute
170  (http://www.broadinstitute.org), discarding contigs less than 1000 bp in length.pdiatreads were

171  trimmed and separated fromiped endeadsusing NxTrim(O'Connellet al. 2015)andcontigs were

172  scaffolded withSSPACE(overlap requiremerk=3) (Boetzeret al. 2010)using both paired end and mate
173  pair librariesWeusedreapr(Huntet al. 2013)and mapping ofhe 8kb insertibrary to break the

174  assembly dikely error regionsSSPACE scaffolding was repeated with k=5 and scaffolds <5kbp were
175 discarded for the final assembly.

176

177  For annotation purposes, repetitive regions were replaced with N's using RepeatMgs@eg birds)

178 (Tarailo-Graevac & Chen 2009). For annotation, we used two diffateiriitio gene predictions within

179  the MAKER pipeling(Cantarekt al. 2008) SNAP and AUGUSTUS. SNAP was trained iteratively using
180 Zebra FinchseBNA and protein sequences downloaded from Ensembl and AUGUSTUS was rureusing th
181  available chicken training dataset. We used Interpro&@dobnov & Apweiler 2001)o add Pfam protein
182  annotation@nd‘gene ontology (GO) teransl identified 15,489 geneScaffoldswere alignedo the

183  Zebra Finch'geneme (version 3.2.4) using the software promer, part of the Mjpidokege (Delchest
184  al. 2003) After alignment, we retained the longest consistent alignmgntaf each chromosome while
185 filtering for similarity (i 50) and alignment lengthl 300). We then determined the location of the

186 longest alignment for each scaffold and ordered scaffolds accordingly for visoalizatposes.

187

188  SNP Discovery and SNP Filtering

189  Genome seansn 219 individualsvere conductetbllowing the BestRADIlibrary preparatiomprotocol

190  with some modification§Ali et al. 2016) 100ngof DNA wasdigested using th8bfl restriction enzyme
191 (New England Biolabs, NEBJnd fagments werégated with Sbfl adapters prepared with biotinytate
192  ends Adaptetligatedsamples were pooled and cleaned ugiXgdgencour® AMPure XP beas

193 (Beckman.Coulter)All DNA fragmentsvere shearetb an average length of 400bpd adardigated
194  fragmentsweresboundo M-280 streptavidin magnetidynabead¢Life Technologies).Blunt endrepair
195 and ligation'oNEBNext Adaperswas performed using the Illumina NEBNext Ultra DNA Library Prep
196  Kit (New England Biolabs, NEB) anélgencour® AMPure XP beas(Beckman Coulter) were used to
197  size selecan average of 500dpagments The final librarywascleaned and run on a Bioanalyzer at the
198 UCLA Technolegy Center for Genomics & Bioinformatiescheck for the size distribution and the

199 absence of contaminant$wo libraries each comprisedf 96 individuals wereinitially sequenceth

200 two lanes of 100bp paired end reads on an lllumina HiSeq 2308@€C DavisGenome Centerin a
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third lane,69 individuals with low coverage from the first two libraries wereequenced and an

additional27 individualswere sequenced

The program Stack€atcheret al. 2013)was used tademultiplex, filter and trim adapters from the data
with the process_radtags function and to remove duplicate read pairs using the ctoriendition.

Reads were mapped to our genome assembly using bowtie2 (Langmead & Salzbean@@i)
Haplotype ‘Caller in'the Genome Analysis Toolkit was used to identify single nuclpotidaorphisms
(SNPs), following best practices from the Broad Institute (http://www.broadinstitgjeFinally, we
discarded low quality and rare variants (genotype quality<30; depth<8; minorfidtglency<0.01), as
well as indels and nehiallelic SNPs using vcftoolaneceket al. 2011) We used the R package
genoscapeRteol®OI: 10.5281/zenodo.8482y® visualize the tradeoff between discarding SNPs with

low coverage andiscardingndividuals with missing genotypes in orderdeterminethefinal number of
SNPs and individuals retainégl Fig.1).

Environmental data

For each sampling location, we obtained environmental data from publicly deaithbases. These 25
variables included 19 climate variables downloaded from WorldCifmanset al. 2005) which
represented-average climate between the years11981) as well as vegetation indi¢€arroll et al.
2004)(NDVI anehNDVIlstd, average for the year 2003), Tree C¢8eixtonet al. 2013)and elevation

data from-thesGlebal Land Cover Facilityttp://www.landcovenrg) anda measure of surface moisture

characteristics from the NASA Scatterometer Climate Record Pathfinder projeck$Q&T mean and

standard deviatien, downloaded from scp.byu.edu).

Assessing therale of geography and environment

To assestherelative contributions of geography and the environment to genetic divergence in tle will
flycatcher,we comparedenetic, environmentahnd geographic distance matrices asddmultiple tests
designed to accouffdr spatial autocorrelationFor locations with >4 individuals (Table 1)we

calculated pairwis€ sr across all qualitfiltered SNPs using the R package SNPreldteenget al. 2012)
and pairwise geographic distances from longitude and latitude using the R package ggetipphans

et al. 2012) We thencalculatecenvironmental distance between each pair of sites by removing highly
correlated climate variables (Pearson’s r>0.7; Tap® Zable ), scaling and centering each
environmental variable to account for differences in magnitude, and then calculatimge&uclidean

differences between sitddantel, Partial Manteland multiple regression of distance matrices wesel

This article is protected by copyright. All rights reserved


https://doi.org/10.5281/zenodo.848279�
http://www.landcover.org)/�

234  to test for associations between lineariEgd (Fsr/1-Fsr) and genetic and environmental distance after
235  accounting for geographic distance.

236

237  Gradient forest prediction of genomic mismatch

238  We identified the environmental variables that best explained genetic variatignguadient forest

239  analysis with the/R package gradientFo(Edlis et al. 2012) Because rare alleles are more likely to yield
240 false positives, we onlysedSNPs with minor allele frequency >10%. The gradient forest analysis
241 (ntree=5003 nbin=201, corr.threshold=0.5) provided a ranked list based on the relativ&vprpdirer of
242 all environmental variables (Table. ZJo ensure that our model was explaining more variation than we
243  would expect by/chance, we compared the number of SNPs with positivel Fhe mean Racross these
244  ‘predictive’doci'(those with positive #to 10 runs with randomized environmenésualization of the

245  gradient forest model across the rangthefwillow flycatcher(Buschkeet al. 2016) was done by

246  generating and extractinmcorrelatedIOCLIM values for 100,000 random point3he final gradient
247  forest modeivas usedo predictthegenomic composition frorancorrelatec&nvironmentavariables for
248  each randam point (Table.2rincipal components analysis (PCA) was used to summarize values. To
249  visualize the different adaptive environments across the breeding range, colors weesl desgd on

250 the top 3 pincipal components axegas recommended by thethorgEllis et al. 2012)

251

252  We extended the gradient forest analysis to predict “genomic vulnerabditg the method presented
253 by Fitzpatricksand Keller (2015). Here, “genomic vulnerability” (termed “genetwetifby Fitzpatrick

254  and Keller) is a measure of the mismatch between genotype anddrgdigtedenvironment using

255  associationssaerass current gradients as a baseline. We used the baseline gradient&resicoiated
256  using currenBIOCLIM valuesto predictgenomes under futuenvironmerdl conditiongbased on RCP
257 2.6 2050 projections) at the same 100,000 random points. The Euclidean distance beteeeright=d
258 current and predicted values is what we refer to as “genomienalditity” (Bay et al. 2018)

259

260  Identification of SNPs as candidates for environmental selection

261  To identify SNPgwith minor allele frequency >0.1) that war®st highly associated with the top

262  environmental variables while accounting for underlying population stryeterased Latent Factor

263  Mixed Models (LFMM)(Frichotet al. 2013) For each of the top 8 environmental variables from the
264  gradient foest analysis, we ran five separate MCMC runs with a latent factor of K=4, based on the
265 number of reported subspec@sdpreviousmorphological andienetic analysis based upon neutral

266  markerg(Paxton 200Q)P-values from all five runs were combined and adjusted for multiple tests using a

267 false discovery rate (FDR) correction. We annotated each significant SNP with gene25Bkthin
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upstream or downstreawhich we assume is within the distances before which LD should break down
(Backstromet al. 2006)

Validation of climate associated SNPs

To validategenotypeenvironment correlations identified in thEMM analysis, we genotypéetie top
ranking 18SNPSthat were significantly associated with the &glimate variableand could be
converted to SNPtype Assalysan additional 274 breeding individuals from 25 locations. DNA was
extracted from feather smples using the KingFishét Cell and Tissue DNA Kit an8NP genotyping
was performed,on the Fluididth96.96 IFC controller following manufacturer guidelinsine
individuals'with_greater then 8% of missidgta were removed from downstream analysisfiawadi dlele
frequencies’'were calculated for each SNP at each location. Standard linear regression iwassiged

significant associations betweelimate andillele frequency (FDRorrected pralue <0.05).

Association between genomic vulnerability and abundance

To assess'the relationship between genomic vulnerability and abundance and determisebspities
may bemost vulnerable to future climate change, correlated estimageof genomic vulnerability with
willow flycatcher/rehtive abundanciom the North American Breeding Bird Survey (BB&) 2011

2015, includingsall siteg/here the species was detected at least once during the history of the survey
(Pardieck 2017)In order to associate the two datasetstorbasedBBSrelative abundance estimates

derived fromsinverselistance weighting interpolation (201®; Sauer et al. 201 RAttps://www.mb¥

pwrc.usgs.gov/bbs/shape_ral5.Wtoflroutelevel mean countwas converted toaster format with grid

resolution efiapproximately 15 x 15 km. We then extracted values of relative abundanceanit ge
vulnerability for grid cells including BBS routessing bilinear interpolatiofHijmans 2015) For cells

with BBS routes where detections had been recordediobwhich modetbased estimates of abundance
were not availabldue tolow abundance and isolatiorofn other sites with detections, weigagd mean
countvalues(~ 9% of routes; mean count = 0)0&ignificant differences igenomic vulnerability
betweersubspecies wer@ssessed usingpxplotswith 95% confidence intervals around median
vulnerability score¢Chamberst al. 1983)

Results

Genome assembly, SNP discovery, and SNP/population filtering

The final Southwesterwillow flycatchergenome assembiyas1.2 (b in length and consistlof 7,791
scaffolds (contig N50=79,613bp; scaffold N50=895,074lp)otal, we identified 6,355,061 SNPs

across the genomBiscardinglow quality SNPs and low coverage individuadsulted in dinal set of
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302 105,000 SNPs and 175 individua$d Fig. 1), with less tharr.4% missing genotypes per SNP

303 (mean=2.3%), less tharl5.8% missingSNPsper individual (meanz.3%), and minor allele frequency
304 greater than 1%Becausd-sr is robust to low sample size when a large number of SNPs are employed
305 (Nazarencet al. 2017) we retained all populations with a minimum dfrdean= 8) individualsfor

306 analysis based updrs (distance matrix comparisonsgsulting in a final dataset of 168 individuals
307 from 22 sampling locations. Alternatively, to avoid bias associated with implsasize in analyses
308 requiring estimates of allele frequen@radient Forest and LFMMwe used only gpulations with a
309 minimum ofsix individuals(average = 1Qyesulting in a final dataset @86 individuals from 14

310 sampling locationéFig. 1; Table 1).

311

312  Assessing the'raleof geography and environment in shaping genetic structure

313  PairwiseFgsracross all qualitfiltered SNPs ranged frof- 0.11(SI Table2). Mantel tests revealed
314  highly significanticorrelations betwegenetic and geographic distance (r Z00F = 1x 10°), genetic
315 and environmental distance (r £6,P =1 x 10°, and geographic arehvironmental distance (r =42,
316 p=1.8x 10" (SIFig. 2A). Partial Mantetestsrevealed the correlation between genetic and

317 environmental distance remaingidnificantafter accounting fothe relationship betweeageneticand
318 geographic distance (r = @4p =3 x 10* SI Fig. 2) and both geographic and environmental distances
319  were significantin a multiple regression of distance matrices (MR¥D.59 geographyP = 1 x 10°;
320 environmenP =38 x 10°).

321

322  Gradient forest mapping of genotype environment correlations

323  More geneticwvariation was explained by our gradient forest tthase generatashder randomized
324  envionments (SFig. 3). A total of 9015 SNPs were correlated with environment with méaf. 8,
325 compared torasmearf &f 0.130.15 acros84895633 SNPs for randomized da¥ile used gradient
326 forest models to identify whicHimate and vegetation variablegre mostmportantin structuring
327  genetic variationn the willow flycatcherandvisualize climateassociated allativariation aross the
328 breeding rangeHig. 2 A& B). Seven temperatusariablesand one precipitation variableeremost
329  strongly correlated with genetic variatiaoross the breeding rge ofwillow flycatchers (Table

330 Mapping pincipakcomponent®f gradient forest outpuevealedputativesignals oflocal adaptation
331 across the USouthweat, the Eastthe InterMountainWest and the Pacific Northwegeographic

332  regions(Fig. 2C).

333

334 I dentification of candidate SNPs for environmental selection
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To investigategenomic regions potentially involved élimate adaptation, we identified genomic regions
associated with the tdpclimatic variablegwhich explained 49% of the total variatiamging Latent
Factor Mixed Model$25) (Table2, SI Table3). We found77, 100, 104 97,97, 58,107and70 SNPs
significantlyassociated with BIO1BIO10,BIOS5, BIO1, BIO6, BIO9, BIO4 andBIO17 respediely
(FDR-corrected p<0.05), with SNPlocated on chromosome ,16limate 20, shared among variables
The SNPs were broagldistributed across the genomredwithin 25 KB of 202genes with a variety of
functions(SI'Table3). We identified5 genes (BRACAL, RNDZCIITA, ICOS, and UBE2C)hatwere
among the~300 genézund to be differentially expressed in RNA-seq analysis of thermal tolerance in
chickeng(Zhanget al. 2017) two of which were physically linked (BRACA1 aND2),and an
additional 5genes (Eell, SLC23A2, NOX4, PIRT, and GR1N&ith GOterms related tother aspects
of thermal tolerancencludingrespiratory system process, oxidative strasdresponse to heé@Rimadi
et al. 2015)(SI Table 4. Three of the Henes from theoultry thermal stress study as well as 3 of the
genes with potentially releva®O terms were found to be outliers in association with BIEI§.3BA).
Further targeted genotyping using Fluidig@iNPtypeassays foll8 of the topcandidate SNPs in an
additional274 birds from24 locations validatedlimate associations in 8/I8N\Ps(FDR-corrected
p<0.05;SI Table §. In particular, we found a highly significant relationship between the Climate_20
SNP and 7 ofithe 8 top ranked climate variables in both the genome scan and validationviéslgtso
link between:Climate_20 and geriked to thermal tolerance in bedvas found, the highly significant
relationship between this SNP and climate variables reflective of the intensity oesinmaat waves,
such as/MeansTemperature of the Warmest Quarter (BIO10), ssiggestential role for this region in
climate adaptatin (Fig. 3 B, C, and D).

Prediction of genamic mismatch and association between vulnerability and abundance

Undera model-offuture climate changgenomic vulnerability was predicted to lhighestin the
southern.parf.thewillow flycatcherrange(Fig. 4A), corresponding to the range of the Southwestern
willow flyeateher'subspecies rang®verall, highest genomic vulnerabilibgcurred at sitewith

especially low abundance, resulting isignificantnegative correlation between abundance andtgene
vulnerability"(r=-0.18; P < 0.001; df 2382 Fig. 4B, C). Abundancef southwestern willow flycatcher
was low_aeross sites and correlation betwadaimdancandvulnerabilityfor this subspecies was
especially strong,(r =0.49 P = 0016; df =27) and weakest for the eastern subspecies regahif{; r =
-0.1% P < 0.001; df 857). While there were regions of high and low genomic vulnerability across the
rangethe southwesterwillow flycatchersubspeciebad the highesiverall mediargenomic

vulnerabilityscore(Fig. 4D).
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368

369 Discussion

370 Climate envelope models are widely used to predict future species distri@#rnmsesan & Yohe 2003;
371 Pacificiet al. 2015) but such models do not account for complex biotic interactions (competition,
372  specialization, coevolution, et@) barriers to dispers#hatmay limit range shiftgWilliams et al. 2008)
373  Here we showadence forocal adaptatiomn the willow flycatcheysupporing the ideahatclimate

374  vulnerability estimates based on a single species distribution mogals thentireNorth American
375  breeding rang€Zink 2015)could potentiallyesult inmisplacedconservation efforts. Here we move
376  beyond species distribution modelitaydentify populations that will need to adapbst to keep pace
377  with climate,changeacritically importantquestiorfor the endangered Southwesteritiow flycatcher
378  whose dispergaliisnown to bdimited by proximity to water sourcegFriggens & Finch 2015)By

379 calculating the difference between current@gpeenvironment relationships and those predicted under
380 future climate changeve identifyregions of highestulnerability in thesouthern part of thevillow

381 flycatcherrange A comparison of the average genomic vulnerability across all currently recognized
382  subspecies strongly supports thew thatallele frequencies the endangere®outhwestermvillow

383 flycatcherwill have to evolve most to keep pace with climate chargignificant correlations between
384  estimates of genomic vulnerability and abunddnme Breeding Bird Survey data confirm tredteady
385 rare populationssin the Southwest and throughout the rangaHheighestgenomic vulnerability,

386  suggesting thatelimathange may have already had an impacpopulation declines regions at the
387 edge of thesspecies nich®ur resultddemonstratéow the incorporation ajenotypeenvironment

388 relationshipsnto models of climate vulnerabilityanimprove predictions oflimateinduced impacts
389 below the species level

390

391  Assessing thesextent of intraspecific variation in climate tolerances is an impagasiefp towards
392 understanding species vulnerability to climate chandgre weinvestigatehe relationshigpetween

393  genetic, geographic and environmental distandke willow flycatcher andind consistent support for
394 the conclusiorboth geography and environment are important to genetic divergence in the willow
395 flycatcher(S Fig.2). Mapping putativelyadaptive genetic variatiamsinggradientforesttransformed
396 climate variablesupporsthe idea that the Pacific Northwest, the Southwest, the East, aimdethe
397  MountainWestharbor unique genotypenvironment correlationgViore specifically, ar results support
398 the ideahathighmaximum temperatures during the warmest month (BED&jmportant tgerotype
399 environment correlations the Southwestvhile gerotypeenvironment relationships in the Pacific
400 Northwest are driven bgnvironmental variables such g®cipitationduring the driest quartéBIO17)

401 and mean temperatwduring thecoldest quartefFigs. 2 & 3). In contrast, geotype-environment

This article is protected by copyright. All rights reserved



402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

correlations innter-Mountain Westnd Eastern populationsenter closer ze in the PCA(Fig. 2A),
indicatinga moremoderatémpact of climate variables underlisimate adaptation in thisrea In sum,

our results support the idea tlyginotypeenvironment correlationia the willow flycatcherarecomplex
involving multiple environmental variables and gemic regionsand such information can be used to help

refine estimates of future climate vulnerability

Adaptation to local environmentdten occus through natural selection &g on a large number of loci,
each with @malleffect on phenotypéOrr 2005) Here weidentify putativeloci important to local
adaptation ithe,willow flycatcherafteraccounting for underlying population structumed find
betweerb8= 107SNPs significantly associated with eaclihad top8 environmental variablg$S| Table
3). Independentalidationof ourtop climateassociated SNPs in 274 new individuals from 24
populationgevealedhat 8 ofourtop 18 lociwerelikely robust toType 1error. While such error is a
problemcommonyto all association studi@dcCarthyet al. 2008) the high number of false positives
our data underscores the idbat genotypenvironment associations that cannot be validated should be
interpreted with cautionHighly significant associations between Climate_20 and 7 of our-Batdged
environmental variables in both the genome scan and validation datasets provides thé striieges
for local adaptation across the willow flycatclgenome(Fig. 3). While ro associations between
Climate g20-and:genes known to be important to thermal tolerance in birds were idiethifie
relationship between allele frequency variation in this SNP and Mean TempefaheaMarmest
Quarter [(BI©5)ssuggests a potential roletfias region inadaptatiorto temperature extremeSverall,
ourresultsare in keeping with the idea that willow flycatchers exhibgfionspecificgenotypeclimate
associationssthathould be considered when assessing the capacity for endangered populations of the
Southwestermvillow flycatcherto shift their rangén response to rising global temperatures.

While gerotypeenvironment correlations have been noted across a varielgnbfgmdanimal systems,
the mechahnissbehindsuch lochadapation remainless well understood. Recent warnk birdssuppors
the ideahat exposure to high temperatures can result in dehydration and heat stressetaldy
(Albright et'al. 2017; Zhanget al. 2017) As a first step towards understanding the genomic basis of
adaptation téemperaturen the willow flycatcher we identifygeneswithin 25KB of our topranking
climateassociated SNRSI Table 4. Our strongest evidence for genes and gegemsthat may be
important.to climate adaptatiom this speciesomes from the overlap between five genes in our panel
(BRACAL, RND2, CIITA, ICOS, and UBE2G)nd those that were also found to be differentially
expressed in a thermal tolerance study in po@#hanget al. 2017) More specifically,Zang et al (2016)
concluded thagxpression of these genes was linked talibsipaion of heat througlincreased heart

pumping and blood circulation smaller breedsf chickens These results amnsistentith the recent
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436  work by Albright et al(2017)who found that mall passerinem the Desert Southwestereparticulaty
437  prone tomortality resulting from the failure to maintain body temperatures below lethal linitsle

438 more research is needed, it is possible that physiological pathways responsibletfeatinvgiare related
439  to those involvedh interspecific adaptation to temperature extrermtasgther, vhile limited gene

440  annotationiinformation for nemodel organisms makes us cautious about placing significar@®©

441 termanalysegStein 2001)we also note the presence of four gdiieell, SLC23A2, NOX4, PIRT, and
442 GRIN1) withGOtermsrelated to heat stress, thermal toleraacel oxidative stressruture efforts will
443  focus onvalidatinggene environment correlationspattativeheat stress relatédci as well as

444  investigatingthe,extent tavhich the genes identified hereay serve as a mechanism for adaptattion
445  temperature extremes in the willow flycatcher.

446

447  Desertecosystems are home to soofiehe worlds raresspeciesmanyof which are alreadyhreatened
448 by climate changé@_.oarieet al. 2009) Methods for assessing climate change impactgé¢habn sirgle
449  species distribution modetsay overlook the importance of local adaptatinriheability of populations
450 to respondto environmental shjffsotentially leading tonisplacedconservation effortsThe US Fish

451  and Wildlife Servicavasconsidering removintghe Southwestermvillow flycatcherfrom the endangered
452  species list, in part becauska singlespecies distribution modeiatshowedno evidenceof habitat

453  specializationsacross the ranggerewe annotate the firstillow flycatchergenomeand use populatien
454  level, genomewide sequencintp showthatwillow flycatchers are not a singlemogenous groyputa
455  compositesofocally adapted populationgith specificgenotypeenvironmentelationshipgselated to

456  differences in temperatuextremes Clear evidence for local adaptation across the rhigigightsthe
457  need fomanagement efforts below the spede®!if locally adapted populations are to be conserved.
458  Estimate of'the mismatch between currenngeypeenvironment correlations and those predicted under
459  future climatesindicate that the Southwestern subspecies is at the greatest risk ofiretl e

460  extinction.Our findings support the idea thabtectionor enhancement afparian thermal refugehen
461  1999)within regions of lowegenomic vulnerabilityn thedesert Southweshay be the most effective
462  strategy forconservingemaining populationsf flycatchers by buffering thefnom temperature

463  extremes
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Table 1. Samplejlocation information. Ngap nofiter = NUmMber of idividuals for genome-wide RAD dataset before filtering for read
depth and missing data, NRAD_filter = number of remaining post-filtering, Nvalidation = number of individuals in the SNP

validation dataset.

Location Latitude Longitude Nrao_ N rap_fiter Nalidation
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nofilter

East Pima, AZ 32.83 -109.7 _ 8
San Pedro/Gila River confluence, AZ 32.98 -110.77 18 14 17
West Fort Ditch, NM 33.04 -108.54 _ _ 11
San Carlos Reservation, AZ 33.2 -110.44 _ _ 30
San Diego, CA 33.28 -117.37 14 4 6
Roosevelt Lake, AZ 33.77 -111.24 20 10 18
White Mountains, AZ 34.00 -109.00 15 13 15
Camp Verde, AZ 34.56 -111.84 _ _ 17
Santa Ynez River, CA 34.62 -120.18 _ _ 8
Zuni/Nutria Diversion Reservation, NM 35.24 -108.64 _ _ 8
South Fork Kern River;:CA 35.66 -118.46 20 13 11
Southern Ute Reservation, CO 37.12 -107.59 _ _ 6
Pahranagat Lake NWR, NV 37.32 -115.13 _ _ 6
Owen's River atBishop, CA 37.41 -118.48 _ _ 12
Alamosa National Wildlife Refuge, CO 37.5 -106 _ _ 17
Beaver Creek, CO 37.68 -108.38 _ _ 6
Clear Creek, CO 37.79 -108.24 _ _ 8
Baltimore Area, MD 39.4 -76.99 _ _ 8
Escalante State Wildlife Area, CO 39.47 -106.37 _ _ 13
Fish Creek, UT 39.78 -111.20 14 11 _
Rio Blanco Laken€O 40.09 -108.21 _ _ 7
Orefield, PA 40.66 -75.67 21 21 _
White River Conflito the Green River, UT 40.67 -109.68 7 6 _
Willow Slew, IN 40.98 -87.53 4 4 _
Bigelow Meadows, CA 41.26 -121.88 7 6 _
Agusta, Ml 42.3 -85.32 _ _ 9
Mink Creek, ID 42.75 -112.39 6 6 _
Malheur NWR, OR 42.83 -118.87 7 6 _
FCTC-SABO, Ml 42.84 -85.30 4 4 6
Jones Creek, OR 43.04 -123.97 10 10 _
Little White River Rec:Area, SD 43.17 -101.53 4 4 6
Black Creek, NY- 43.38 -73.91 6 4 _
Fall Creek 2, ID 43.43 -111.40 7 _
Marion Forks, OR 44.37 -122.02 _ _ 14
Finley NWR, OR 44.41 -123.35 3 0 _
Priem Road, OR 44.78 -123.38 7 6 _
Elm Creek, MN 45.13 -93.45 4 0 6
Waubay NWR, SD 45.40 -97.33 4 4 _
Hamon Memorial, MT 45.95 -114.13 5 4 _
Carbondale (Edgwick), WA 47.09 -122.05 8 7 _
Fork clearcut, WA 47.97 -124.40 4 4 _
Total 219 168 273
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Table 2. Environmental variables used in the gradient forest analysis, ordered by ranked importance of variables

and the cumulative contribution of each variable. The top eight environmental variables represent 49% of the total.

Cumulative
Variable Definition GF Rank
Contribution

BIO11 * Mean Temperature of Coldest Quarter 8.03E-04 7.66
BIO10 Mean Temperature of Warmest Quarter 6.71E-04 14.40
BIO1 AnnualMean Temperature 6.41E-04 21.05
BIO5* Max Temperature of Warmest Month 6.40E-04 27.47
BIO6 Min Temperature of Coldest Month 5.79E-04 32.90
BIO4* Temperature Seasonality (standard deviation *100) 5.20E-04 38.30
BIO9 Mean Temperature of Driest Quarter 4.91E-04 43.64
BIO17* Precipitation of Driest Quarter 4.78E-04 48.76
NDVI_Mean Vegetation Indicies 4.50E-04 53.18
BIO15 Precipitation Seasonality (Coefficient of Variation) 4.28E-04 57.39
BIO7 Temperature Annual Range (BIO5-BIO6) 3.75E-04 61.41
TreeCover Tree Cover 3.72E-04 65.41
BIO14 Precipitation of Driest Month 3.64E-04 69.36
BIO16 Precipitation of Wettest Quarter 3.09E-04 72.75
BIO19 Precipitation of Coldest Quarter 2.96E-04 76.04
BIO2* Mean Diurnal Range (Mean of monthly (max temp - min temp)) 2.90E-04 79.31
BIO8* MeaniTemperature of Wettest Quarter 2.87E-04 82.49
BIO13 Precipitation of Wettest Month 2.82E-04 85.63
STM Elevation 2.21E-04 88.36
BlIO12 Annual-Precipitation 2.12E-04 90.98
BIO3 Isothermality (BIO2/BIO7) (* 100) 2.07E-04 03.54
QuickScat Surface moisture characteristics 2.02E-04 95.87
BIO18 Precipitation of Warmest Quarter 1.92E-04 98.17
NDVI_StDev Vegetation Indicies 1.81E-04 100.00

* Top ranked, uncorrelated climate variables used for Gradient Forest mapping and distance matrix comparison analyses.

These variables were selected by moving down the list of ranked importance for the full model and discarding
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variables highly correlated (Pearson's r>7) with a variable of higher importance.
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Figure 1. Willow Flycatcher Range Map and Sampling. Open
and closed circles represent the data used in distance matrix
comparison tests, while only populations represented by closed
circles were used in the Gradient Forest analysis. Open gray
boxes represent populations used to validate gene-environ-
ment correlations. Lines represent currently recognized
subspecies boundaries according to Sogge et al (1997). E. t.
brewsteri = Pacific Coastal, E.t. adastus = Interior West, E. t. trallii
= East, and E. t. extimus = Southwest.

This article is protected by copyright. All rights reserved



ele_12977_f2.pdf

Precipitation Mean Temp
Driest Coldest
Quarter Quarter

(Bio11)

(Bio17)

Latitude

Max Temp

Temp

Seasonality Warmest
(BIO4) Month
(BIO5)

-130 -120 -110 -100 -80 -80 -70
Longitude

Figure 2. Im-ig gene-environment correlations across the willow flycatcher breeding

range. A) Principal components analysis of gradient forest-transformed climate variables.
Black dots represent the PC scores associated with the sampling locations, while colors are
based upo led gene-environment correlations from 100,000 random points across the
breeding r rrows show the loadings of the top ranked uncorrelated environmental
variables. ient forest-transformed climate variables from the PCA mapped to geogra-
phy sup imate adaptation across the breeding range. Black lines designating approxi-
mate subsp ocations support the idea that while subspecies are adapted to distinct
ecologic ns, climate adaption is complex.
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Figure 3!/'Candidate SNPs linked to temperature in the Willow flycatchers. A) Manhattan
plot showing the FDR-corrected significance level for SNPs associated with Temperature Season-
ality (BIO4) and B) Mean Temperature of the Warmest Quarter (BIO10). Dashed line represents
p=0.05. Colors distinguish different chromosomes. Candidate genes linked to thermal tolerance
in birds are highlighted by red stars and denoted with gene names, while Climate_20, the SNP
validated in'B.and C below, is denoted by a black triangle. No link between Climate_20 and
genes linked.to.thermal tolerance in birds was found, but the highly significant relationship
between this SNP and 7 of the 8 top ranked climate variables (except temperature seasonality
shown in A above) in both the genome scan and validation results (Sl Table 5) suggest a poten-
tial role for this region in climate adaptation. C) Relationship between Climate_20 and mean
temperaturé’of the warmest quarter in genome scan and SNP validation datasets. The allele
frequencies fromdthe original genome scan data are denoted by squares, while allele frequen-
cies based uponithe validation set are denoted by circles. D) The association between Mean
Temperature of the Warmest Quarter (BIO10) and Climate_20 across geographic space, with
population allele.frequencies color coded from high frequency (red) to low (yellow).
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Figure 4. Genomic Vulnerability and abundance in the Willow Flycatcher. A) Map of
genomic vulnerability across the Willow Flycatcher breeding range. Red = high genomic
vulnerabilityzblde = low genomic vulnerability, lines indicate subspecies boundaries. B)
Genomic Vulnerability versus abundance based upon the estimated mean number of
birds/ route in 2011-2015 Breeding Bird Survey. C) Estimates of relative abundance from
the BBS based on inverse-distance weighting interpolation. Points indicate the BBS routes
where Willow,Flycatchers have been recorded. Points in the grey areas fall in regions where
abundance:was:too low or distant from other detection routes to be included in the BBS
spatial model. D) Quantile box plots of the median Genomic Vulnerability broken down by
subspecies. Open circles represent outliers.
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