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Abstract

Genome assembly can be challenging for species that are characterized by high amounts of
polymorphism, heterozygosity, and large effective population sizes. High levels of
heterozygosity can result in genome mis-assemblies and a larger than expected genome size
due to the haplotig versions of a single locus being assembled as separate loci. Here, we
describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica.
Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over
97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a
critical resource for foundational research into molluscan adaptation to a changing environment
and for selective breeding for the aquaculture industry. Subsequent resequencing data
suggested the presence of haplotigs in the original assembly, and we developed a post hoc
method to break up chimeric contigs and mask haplotigs in published heterozygous genomes
and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a
large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and
nuanced effects on estimates of heterozygosity, population structure analysis, and outlier
detection. We show that haplotig-masking can be a powerful tool for improving genomic
inference, and we present an open, reproducible resource for the masking of haplotigs in any

published genome.
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1| Introduction

A highly contiguous and annotated genome assembly can be an invaluable tool for population
genomic inference (Ellegren, 2014) enabling both genome-scale and reduced representation
methods for sequencing populations (Ekblom & Galindo, 2010; Fonseca et al., 2016; Matz,
2017). However, even as the cost of second and third generation sequencing continues to drop
(van Dijk, Auger, Jaszczyszyn, & Thermes, 2014), many challenges remain for assembling
references for non-model organisms (Roach, Schmidt, & Borneman, 2018; Solares, Tao, Long,
& Gaut, 2021). One of the greatest hurdles to accurate genome assembly is heterozygosity
(Kajitani et al., 2014; Safonova, Bankevich, & Pevzner, 2015; Vinson et al., 2005), a hallmark of

many wild plant and animal species, including most insects and marine invertebrates.

One assembly artifact created by heterozygosity is the “haplotig”. Haplotigs arise when
algorithms misinterpret divergent allelic haplotypes in heterozygous genomic regions and
assemble them as separate (duplicated) loci, with both copies incorporated into the primary
assembly (Roach et al., 2018). For a genomic region split into haplotigs in the assembled
reference, read mapping software will randomly chose which haplotig to map a read to (i.e., half
the reads map to one haplotig, and the other half of reads map to the other haplotig). This issue
with read mapping means that haplotigs could present a major problem for population genomic
analyses of any highly polymorphic species. The splitting of a diplotig into haplotigs might limit
SNP discovery and reduce estimates of genetic diversity, as allelic reads could potentially map
to different parts of the assembly, reducing coverage (needed for genotyping), allelic
representation within reads for a specific locus, and at the worst extreme producing two
homozygous genotypes for what in reality would be a single heterozygous SNP. If the haplotigs

were associated with populations (one allele more common in one subpopulation than another),



this could introduce errors into statistics like population estimates of observed and expected
heterozygosity as well as Fsr. Haplotigs could also affect estimates of copy number variation
and other structural variants by inherently making extra copies of loci within the genome.
Moreover, haplotig detection is still a developing field in bioinformatics with most software
published within the last four years (Pryszcz & Gabaldon, 2016; Roach et al., 2018; Solares et
al., 2021). As aresult, many published genome assemblies likely have some amount of
haplotigs incorporated into the assembly, and the extent to which haplotig artifacts impact

population genomic analysis has not been well studied.

The eastern oyster, Crassostrea virginica, is an excellent species to understand the impacts of
haplotigs on population genomic inference. Eastern oysters create three dimensional reef
structures that provide multiple ecosystem services such as providing habitat for nearshore
fishes, water quality improvements, and protection from storm waves and erosion; the value of
oyster reef ecosystem services can be as much as $99,000 per hectare per year (Grabowski,
Conrad, & James, 2012). Additionally, the eastern oyster supports a commercial fishing and
aquaculture industry valued at $100 million with several regional selective breeding programs
(Allen, Small, & Kube, 2021; Gémez-Chiarri, Warren, Guo, & Proestou, 2015; Guo, 2021).
Eastern oysters are highly fecund, protandrous hermaphrodites with external fertilization and a
planktonic larval stage (Thompson, Guo, & Harrison, 1996), are distributed from New Brunswick,
Canada, to Yucatan, Mexico, and are genetically diverse (Buroker, 1983; Hoover, Cindi A., and
Patrick M. Gaffney, 2005; Karl & Avise, 1992; Reeb & Avise, 1990; Varney, Galindo-Sanchez,

Cruz, & Gaffney, 2009).

The genome assembly of the eastern oyster is scaffolded onto the 10 known chromosomes for

this species and was first released on NCBI in 2017. Initial results from a resequencing project



indicated that there may be haplotig sequences in the genome, so we developed a protocol to
infer haplotigs within the assembly. In this paper, we describe the assembly and annotation of
the eastern oyster genome. We then describe a post hoc protocol to detect and mask haplotigs
in a genome assembly and apply that to the eastern oyster genome. Lastly, we compare the
haplotig-masked genome to the original genome to understand the effects of haplotigs on read
mapping, SNP discovery, and estimates of common statistics in population level inference. We
show that haplotig-masking can be a powerful tool for improving population genomic analysis

without having to reassemble a genome.

2 | Materials and Methods

2.1 | Original Genome Sequencing and Assembly

2.1.1| Sequencedindividual

An inbred gynogenetic (with DNA from the mother only) oyster (RU13XGHG1#28) was used for
whole genome sequencing to reduce problems associated with high polymorphism. Inbred
gynogenetic oysters were produced by meiotic gynogenesis (Guo, Hershberger, Cooper, &
Chew, 1993) from an oyster line (NEH®) selectively bred for 12 generations. Samples of tissue
from parents and progeny were flash frozen in liquid nitrogen and stored at -80° C. Levels of
inbreeding in the gynogenetic progeny as compared to the parents and wild oysters from
Delaware Bay were determined using a panel of 15 microsatellites (Wang, Wang, Wang, & Guo,
2010), and a confirmed inbred female oyster from the gynogenetic progeny was selected for

sequencing.



2.1.2 | Sequencing and assembly

High quality genomic DNA from the gynogenetic individual was isolated using the Trizol method
from a pool of two tissues (gill, mantle), and DNA quality was assessed through Nanodrop,
Qubit, and TapeStation analysis. All sequences were generated on a PacBio RSII instrument
with P6-C4 sequencing chemistry. De novo assembly used PacBio subreads (>8 kb) with the
standard FALCON v0.5.0 (Chin et al., 2013) method (parameter setting: max_diff 120, max_cov
120, min_cov 3, min_seed_length 9Kb) and assembled contigs were error-corrected with Quiver
(Chin et al., 2013). Error corrected haplotype-specific contigs were first linked together into
scaffolds using SSPACE-LongRead (Boetzer & Pirovano, 2014). Scaffolds were then linked
together into megascaffolds using a high-order chromatin contact map (HiC) between
chromosomes (Bickhart et al., 2017). Adductor muscle tissue from a reference related individual
was used to generate HiC libraries at Phase Genomics (Seattle, WA) for this purpose. The
libraries were sequenced using paired end sequencing on a HiSeq X lllumina instrument and
reads (100bp) were aligned to the error-corrected contigs within scaffolds using BWAV0.7.16 (Li
& Durbin, 2010) with strict parameters (-N 0; no hits from discordant pairs) to prevent
mismatches and nonspecific alignments. Only read pairs that aligned to different contigs were
used for scaffolding. The Proximo Hi-C pipeline performed chromosome clustering and contig
orientation as described previously (Bickhart et al., 2017). At this stage all pseudochromosome
sequences were polished with Pilon (Walker et al., 2014) using ~40x coverage of lllumina data

from the same reference individual.



2.2 | Original Assembly curation

2.2.1 | Annotation

To develop transcript resources, we extracted total RNA from muscle, digestive, gill, and mantle
tissues, and pools of larvae using a RNeasy kit (Qiagen) according to the manufacturers’
protocol. Total RNA for quality was assessed on the Agilent Fragment Analyzer, then enriched
for poly(A)+ RNA using the MicroPolyA Purist kit (Ambion, Carlsbad, CA). We used ScripSeq
(Epicentre, Madison, WI) to generate strand-specific cDNA that was sequenced on the lllumina
Hiseq4000 platform as 100 base paired-end reads (insert size of 400bp). All RNAseq tissue data
(150 million reads) were assembled with Trinity version 2.1.0 (Grabherr et al., 2011). The open
reading frames (ORFs) were extracted from the complete transcriptome assembly (Trinity.fasta)
using TransDecoder and LongOrfs modules
(https://github.com/TransDecoder/TransDecoder/releases/tag/TransDecoder-v5.5.0). The 819Mb
primary de novo assembly was used as input to align Trinity assembled transcripts using BLAT
(Bhagwat, Young, & Robison, 2012; James Kent, 2002). Top hits were parsed with internal
scripts by requiring there only be one best hit (-total_hits 1) with subsequent scaffolds showing
multiple transcript alignments manually inspected for possible redundancy using assembly self-

alignment data.

For assembly self-alignment we first fragmented the assembly in silico into 1 kbp segments and
aligned against itself using BLASTZ (Schwartz et al., 2003). These alignments are scored
against a repeat masked reference sequence using RepeatModeler

(http://www.repeatmasker.org/RepeatModeler) output that is suitable for RepeatMasker



application (N. Chen, 2004). After several alignment criteria were evaluated, we used 97%
identity and 80% coverage with each scaffold to remove redundant contigs.

For gene completeness, all assembled transcripts were aligned against the
pseudochromosomes using BLAT requiring there only be one best hit (-total_hits 1) and parsed
by varied alignment length thresholds of 95, 75 and 25% at a 90% sequence identity cutoff.
Cumulative representation was summed for all transcript varied length alignments. The NCBI
pipeline used for the gene annotation of C. virginica genome followed methods detailed in Pruitt
et al. (Pruitt, Tatusova, Brown, & Maglott, 2012). Lastly, a genetic linkage map with 4006 RAD-
seq markers was constructed with data from 115 progeny from an F2 family (He, 2012) using
JoinMap 4.0 (Van Ooijen, 2006) and used to assess the integrity of the assembly. Accuracy of
sequence placement was assessed using genetic marker sequence alignments against the C.
virginica linkage map as defined by Chromonomer (Catchen, Amores, & Bassham, 2020)

ordering that also uses the genetic linkage map as input.

2.3 | Haplotig Detection and Masking

The original curated and annotated assembly (described above) was deposited in NCBI (RefSeq
Accession: 4991078) in September of 2017 for widespread usage by several stakeholders.
Afterwards, a resequencing project began and during preliminary data analysis in late 2019, a
pattern in coverage across the genome began to indicate that there may be haplotig sequence
contained within the genome assembly. To investigate, the genomic lllumina reads from the
original genome individual (used for genome polishing) were mapped to the original assembly
using BWA (Li & Durbin, 2010). Coverage was averaged across 10kb windows using samtools
(Li et al., 2009) and plotted as a histogram using R (R Development Core Team, 2008). The

bimodal distribution of coverage with a peak at expected coverage (diploid; 64X) and half the



expected coverage (haploid; 32X) confirming the presence of haplotigs in the original assembly.
Because the genome had already been publicly released, and widely used, we chose to mask
haplotigs while preserving the original genome coordinates, enhancing compatibility with

previous and ongoing research.

Files, scripts, and an RMarkdown file to reproduce the entire haplotig detection and masking

process can be found at (https://github.com/The-Eastern-Oyster-Genome-

Project/2022 Eastern Oyster Haplotig Masked Genome/tree/main/Haplotig Masking; with an

archived release of the code for this submission accessible at DOI: 10.5281/zenodo.7448959). To

detect haplotigs, the scaffolded assembly was broken into the original set of assembled contigs
by converting the NCBI annotation file (GCF_002022765.2_C_virginica-
3.0_genomic_gaps.txt.gz) to a bed file and using BEDTools (Quinlan & Hall, 2010) to "subtract"
gaps from the fasta file, generating a set of 669 contigs. To test for chimeric contigs, the
genomic lllumina reads from the original genome individual were then mapped to these 669
contigs using minimap2 (Li, 2018, 2021) and processed with samtools (Li et al., 2009) and
Picard Tools (Institute, 2016) to remove poorly mapping reads and optical and PCR duplicates.
BEDTools (Quinlan & Hall, 2010) was then used to calculate mean coverage across sliding 100

kb windows with 50 kb of overlap.

We used coverage windows to break up chimeric contigs by looking for contigs that had large
windows (>150kb) that shifted from diploid coverage levels to haploid coverage levels. We used
BEDTools (Quinlan & Hall, 2010) to calculate these interval changes to break potentially
chimeric contigs into multiple smaller contigs, preserving all basepairs. The coverage across
sliding windows was used to split potentially chimeric contigs by initially dividing windows into

high (> 40 mean coverage: all-high-intervals) and low (<40 mean coverage: all-low-intervals)



with remaining windows merged. A coverage level of 40 was chosen based on the distribution of
coverage which had a bimodal peak of 32 and 64; 40 represented the tail end of the "haplotig"
peak. Remaining windows smaller than 150kb were also extracted from each of the two

coverage sets, as potential chimeras.

Our logic for breaking contigs, focused on length and coverage of the windows. The all-high-
intervals likely are all diplotigs given the coverage, and the low coverage windows smaller than
150kb are likely to be haplotigs that are nested within chimeric contigs. We combined this
interval set, representing high-confidence diplotigs and high-confidence chimeric haplotigs
(Subset 1). The other two interval sets, the low coverage intervals larger than 150kb and the
high coverage intervals smaller than 150kb are merged, representing high confidence haplotig
intervals and high confidence diplotigs that are nested within chimeric contigs (Subset 2).
Subtracting the high confidence diplotig intervals and the likely nested haplotig intervals (Subset
1) from the high-confidence haplotigs and likely chimeric diplotigs (Subset 2), breaks any
potential chimeras. The sequence in the broken contigs is recovered by extracting sequences
from the original reference using Subet 1 and the result of Subset 1 - Subset 2, producing a set

of contigs broken at chimeric points.

Minimap2 (Li, 2018, 2021) was then used to map the llumina reads to the broken contigs, and
samtools (Li et al., 2009) converted alignments to a BAM file. The program Purge Haplotigs
(Roach et al., 2018) was used to then detect and remove haplotigs from the manual reference
contigs. The "coverage" step of the program was run with 10 as the "low cutoff" (-I), 56 as the
"midpoint (-m)and 120 was the "high cutoff" (-h). The 'purge' and 'clip' steps were run with
default parameters. The mitochondrial genome was flagged in the initial purge step as an

artifact due to its high coverage. It was searched for and removed from the list of artifact



sequences. We then combined the haplotigs from the clip step, and the initial artifacts to create
a "total haplotig" file. We mapped this file back to the original reference, using minimap2, to
identify haplotigs, and used BEDTools (Quinlan & Hall, 2010) to convert the mappings to a
haplotig bed file. This haplotig bed file was used to mask the reference genome using BEDTools

to produce the final haplotig-masked genome.

2.4 | Genome comparison

All code, scripts, and files needed to reproduce the comparative analysis can be found in the

https://github.com/The-Eastern-Oyster-Genome-

Project/2022 Eastern Oyster Haplotig Masked Genome repository in the folder

"Comparative_Analysis"

2.4.1| Coverage

To assess the impacts of haplotig masking, lllumina reads from the original genome individual
were mapped to both genome versions. A modified version of the dDocent pipeline (Puritz,
Hollenbeck, & Gold, 2014) was used to run bwa (Li & Durbin, 2010) to map reads to the
genome. Duplicate reads were identified with the “MarkDuplicates” function of Picard (Institute,
2016). Samtools (Li et al., 2009) was then used to create individual bam files based on a set of
filtering criteria: “total reads”- bam file contains all non-duplicate primary alignments,
“‘multimapping reads”- bam file contains only reads that mapped to more than one location in the
genome, and “filtered reads”- bam file contains only has mapping with a quality score above 10
and no hard or soft clipping above 80bp. BEDTools (Quinlan & Hall, 2010) was then used to

calculate the average coverage over 10kb windows across the genome. Coverage was plotted



as a histogram using the ggplot2 package (Wickham, 2016) in R (R Development Core Team,

2008). Coverage was also plotted along individual chromosomes.

2.4.2 | Completeness of genome

Genome completeness was assessed for both versions using Benchmarking Universal Single-
Copy Orthologs (BUSCO) version 5.4.3 (Seppey, Manni, & Zdobnov, 2019; Simao, Waterhouse,
loannidis, Kriventseva, & Zdobnov, 2015) and the Mollusca ortholog database version 10,
containing 5295 single-copy orthologs. For comparison, the two newest chromosome level
assemblies for Crassostrea gigas were downloaded from NCBI (GCA_011032805.1,

GCA 902806645.1) and assessed using the same BUSCO version and database.

2.5 | Population level inference

2.5.1 | Resequencing data

Ninety adult wild and farmed eastern oysters were collected in the fall of 2017 from multiple
water bodies across the United States of America including the Gulf of Maine, the Delaware Bay,
the Chesapeake Bay, and the northern Gulf of Mexico near Louisiana. Samples were also
included from multiple selected oyster lines, for a total of eight wild localities and five selected
lines. Individuals were sequenced on an lllumina HiSeq X PE 150 bp platform to 15-20X
coverage. Twelve samples were included in sequencing and variant calling from known inbred
experimental lines and populations as part of a different research project. These samples were
included for mapping statistics and SNP counts, but were not used for any population level
analyses, leaving a total of 78 individuals. Full details on sample source, and collection,

processing, and sequencing methods can be found in (Puritz et al., 2022).




2.5.2 | Nucleotide Variant Calling

Raw sequencing reads were processed with a modified version of the dDocent pipeline (Puritz et
al., 2014). First, reads were trimmed for low quality bases and adapter sequences using the
program fastp (S. Chen, Zhou, Chen, & Gu, 2018). Trimmed reads were mapped to both
genome versions using bwa (Li & Durbin, 2010) with mismatch and gap-opening parameters (-B
3 -0 5). Picard (Institute, 2016) was used to mark duplicate reads, and subsequent BAM files
were filtered with samtools (Li et al., 2009) to remove low quality mappings, secondary
alignments, and PCR duplicates. The program freebayes (Erik Garrison & Marth, 2012) was

used to genotype small nucleotide variants (SNPs, InDels, small complex events).

Bcftools (Danecek et al., 2021) and vcftools (Danecek et al., 2011) were used in combination to
filter raw variants. Variants were filtered based on allelic balance at heterozygous loci (between
0.1 and 0.9) and quality to depth ratio of greater than 0.1. Variants were then filtered based on
mean-depth, excluding all loci above the 95th percentile. Vcflib (E. Garrison, 2016) was then
used to decompose variants into SNPs and InDels. Lastly, SNPs were filtered to allow for no
missing data and only biallelic SNPs, and then variants separated into two sets of variants, one

with a minor allele frequency (MAF) of 1% and the other with a MAF of 5%.

2.5.3 | Structural variant calling

We used the program Delly (Rausch et al., 2012) following the "germline sv calling"

(https://github.com/dellytools/delly#germline-sv-calling) pipeline to identify candidate structural

variants (SVs), including deletions, insertions, duplications and inversions. SVs were filtered
using Delly with the "germline" filter. BCFtools (Danecek et al., 2021) was used to convert

inversion SVs to a bed file and then switch "LowQual" genotypes to missing, and SVs were



filtered to a subset with no missing data. Using this filtered SV subset, read based copy number
(VCF Format ID = RDCN) for insertions, deletions, and duplications were extracted to a tab

delimited list for both genome versions.

2.5.4 | ldentification of newly diplotig regions in haplotig-masked genome

When a haplotig is effectively masked, the remaining haplotig should become a diplotig. We
identified these regions to see if changes in population inference were more pronounced in these
regions relative to the rest of the genome. BEDTools (Quinlan & Hall, 2010) was then used to
calculate the average coverage over 10kb windows across both genome versions. New diplotig
regions were identified as any 10kb window that increased in coverage in the haplotig-masked

genome by greater than 1.5 times the coverage in the original genome version.

2.5.5 | Nucleotide diversity

Nucleotide diversity (1m) was calculated across 10kb windows of both genomes using VCFtools
(Danecek et al., 2011) with the SNP dataset with greater than 1% minor allele frequency.
Differences between the original and haplotig-masked nucleotide diversity estimates were tested
using a t-test. 1™ was visualized across genomic windows for both genome versions, as was the
difference between the two estimates. Differences between estimates from the two genome

versions were also visualized and tested across new diplotig regions.

2.5.6 | Heterozygosity

Vcflib (E. Garrison, 2016) was used to calculate per-site values of SNP heterozygosity for the
SNP dataset with only biallelic SNP with greater than 1% minor allele frequency. Per-site values

were averaged across 10kb windows using the program BEDTools (Quinlan & Hall, 2010) for



both versions of the genome. Differences between original and haplotig-masked heterozygosity
estimates were tested and visualized in the same way as nucleotide diversity, across the whole

genome and only in new diplotig regions.

2.5.7 | Global Fsrand outlier detection

The program OutFLANK (Whitlock & Lotterhos, 2015) was used to calculate global Fsr for
biallelic SNPs with a minor allele frequency greater than 5%. Outliers were inferred relative to a
null Fst distribution based on trimmed SNP datasets with heterozygosity greater than 0.1 and
using a random set of 50,000 independent SNPs derived from snp_autoSVD in bigsnpr (Privé,
Aschard, Ziyatdinov, & Blum, 2018) using the settings (min.mac =7, size=10). OutFLANK
calculated g-values for outlier scores for all SNP loci with heterozygosity above 0.1. A false

discovery rate of 0.05 was used to designate significance based on g-values.

The full set of oyster individuals was found to have significant population structure between the
Gulf of Mexico and Atlantic wild populations, as well as among selected lines and wild
populations (pairwise Fst ~ 0.1- 0.5; Puritz et al. 2022). To examine patterns in Fstin a lower
structure dataset (pairwise Fst ~0.01- ; Puritz et al. 2022), populations were subset to wild
populations only from the Atlantic coast of the USA (LSS- 6 populations, 36 individuals). For the
LSS, snp_autoSVD was run with the settings (min.mac =4, size=10) to account for the smaller
number of individuals but OutFLANK run options remained the same. Differences between the
original and haplotig-masked Fsr values were tested using a t-test across both the full data and
the LSS subset. Fsr values were also visualized as Manhattan plots for: the original genome,
the haplotig masked genome, and the difference between the estimates. For visualization, Fsr

values were averaged across 10kbp windows. If a single outlier SNP was detected in a 10kb



window, the entire window was visualized as an outlier. Lastly, Fsr values were also tested for

differences and examined across new diplotig regions in all datasets.

2.5.8 | Copy number differentiation

Copy number variants (CNVs) were filtered for a minor allele frequency greater than 5%.
Differentiation at CNVs was calculated using the Vsr statistic (Redon et al., 2006) as
implemented in (Steenwyk, Soghigian, Perfect, & Gibbons, 2016) and plotted across the
genome. The difference in Vsrvalues produced from the different genome versions across
various data subsets was tested using a t-test and visualized across chromosomes in Manhattan

plots similar to Fsr values.

3 | Results

3.1 | Original assembly

3.1.1 | Sequencedindividual

The individual sequenced was from a family produced by gynogenesis of an already inbred
female oyster. Genotyping with a panel of 11-15 microsatellite loci showed that this family
experienced an approximately 55.4% reduction in the heterozygosity compared with their
parents. The average heterozygosity in the gynogenetic progeny was 0.115, compared with

0.642 in wild Delaware Bay oysters (Supplemental Table 1).



3.1.2 | Sequencing and assembly

We sequenced and assembled a reference genome for the eastern oyster using high-coverage
paired-end libraries. We sequenced 11,116,776 PacBio reads (122.7 GB) resulting in 87x
coverage. We also sequenced 138,800,932 paired-end lllumina reads that were used for
polishing (and later genome assessment). We also generated over 690 million paired end reads
for RNA transcript assembly and assembly annotation. All sequencing reads used for the
assembly and curation can be found on NCBI with accession numbers found in Supplemental

Table 2.

Our initial contig assembly of 819 Mb, was much larger than the genome size of 578Mb
estimated by flow cytometry (Guo Lab, unpublished), and the Pacific oyster, Crassostrea gigas,
assemblies of 647 and 586 Mb. This led us to utilize a strategy of genome self-alignment and
duplicative transcript mapping that identified 135 Mb of heterozygous loci to remove. In the first
assembly of the Pacific oyster polymorphic assembled loci were also removed in a similar way
(Zhang et al 2012). Our final assembly consisted of 684 Mb in 669 contigs of NSO contig and
scaffold length 1.97 and 54 Mb, respectively (Table 1). Most sequences (>99%) were scaffolded
into the known number of 10 chromosomes using HiC and genetic linkage mapping data. The

eastern oyster assembly represents a high level of contiguity (Table 2; Supplemental Table 3).

3.2 | Original Assembly Curation

Gene annotation using the automated NCBI pipeline predicted the presence of 34,596 protein
coding genes and 4,230 non-coding (Supplemental Table 4). When contrasted to the Pacific
oyster genome (Pefaloza et al., 2021), we found a high percentage (36-40% total interspersed)

of repetitive elements with two independent methods (Supplemental Table 5). From assembled



transcripts aligned to our eastern oyster assembly, we found 87% of 171,712 transcripts at a
95% length cutoff. We estimate 22% of the repeats could not be assigned a classification
suggesting additional work is needed to define the composition of oyster sequence repeats. The

assembly annotation can be found on NCBI (GCF_002022775.2).

Five of the assembled chromosomes (1, 2, 3, 4 and 8) were correctly aligned with linkage groups
(LGs) of the genetic map indicating that they were correctly assembled (Supplemental Tables 6
and 7). Three chromosomes (5, 6, and 9) were aligned to more than one LG at different regions
suggesting that they represent misassembled chromosomes. Two chromosomes (7 and 10)
corresponded to parts of LGs indicating that they are chromosomal fragments. There were some
minor discrepancies between the assembly and genetic map that need to be resolved with
additional data. The assembled genome size of 684Mb was 18.3% longer than the genome size
of 578Mb estimated by flow cytometry (Guo Lab, unpublished), suggesting that the assembly still
contains some allelic redundancy. One of the regions is a 1.1 Mb segment that appeared twice
on Chr 1 (47,598,449-48,729,575 and 49,357,009-50,465,997). The duplicated segments had
identical gene content and gene order. Duplicated gene pairs in the two segments had identical
exon-intron structures and 98-100% similarity in coding sequences but varied greatly in intron
sizes. The duplicated gene pairs included two copies of alternative oxidase, a single-copy gene
in most invertebrates, which were 98% identical in coding sequence but differed greatly in intron
sizes, and PCR ampilification of intron 6 indicated the two copies were allelic haplotigs and not

true paralogous duplications (data not shown).



3.3 | Haplotig detection and masking

Breaking up chimeric contigs based on sequencing coverage resulted in 1852 contigs (from the
original 669) with an N50 of 885,077 bp. The program Purge Haplotigs (Roach et al., 2018)
identified 963 haplotigs (partial and whole contigs). This resulted in 1171 primary contigs (non-
haplotigs) totaling 578,183,332 bp with an N50 of 9,802,061. To retain compatibility with past
studies and chromosome-level scaffolding, haplotigs were masked from the original assembly by
substituting "Ns" for haplotig bases. The final haplotig-masked genome contained the same
684,741,128 bp of the original assembly with 100,438,362 bp masked and is archived at DOI:

10.5281/zenodo.7448959. Assessed initially using the original lllumina sequencing reads from the

assembly, the masked version of the genome had a higher overall mean coverage (50.615X)
compared to the original assembly (45.6445X) with a pronounced shift in 10kb intervals with an
approximate diploid coverage peak (~65X) relative to intervals with haploid levels (~32.5X) of
coverage (Figure 1). Looking at total read mappings, multi-mapping reads, and filtered read
mappings across 10kb chromosomalintervals, masked intervals showed a clear dip in coverage
relative to diplotig regions in the original genome while in the masked version of the genome
shows increased total and filtered read mappings in several regions (new diplotigs) while also

decreasing overall rates of multi-mapping reads (Figure S1).

3.4 | Haplotig masking increases read mappings and duplicate detections

We generated over 3,558,207,970 read pairs for the resequencing portion of this project with an
average of 39,535,644 +/- 1,018,131 read pairs per sample. On average, 97.14% +/-2.49% of
reads were retained after quality timming and adapter removal. On average of 96.75% +/-
2.48% trimmed reads mapped to the original genome, compared with 97.01% +/- 2.49% to the

haplotig-masked genome. For the original genome, 6.5% +/- 0.17% of mappings were marked



as duplicates with 6.6% +/- 0.17% marked as duplicates for the haplotig-masked genome. Per
sample statistics for sequencing, read mapping, and percent of the genome covered can be

found in Supplemental Table S8.

3.5 | Completeness of genome

Even though masking haplotigs removed over 100,000,000 bases from the original assembly,
there was minimal impact on assembly completeness evaluated by BUSCO (Seppey et al.,
2019; Siméoet al., 2015). The original genome assembly had 5,158 complete (4,413 single
copy, 745 duplicated), 34 fragmented, and 103 missing orthologs from the Mollusca-specific
BUSCO database. In contrast, the haplotig-masked assembly version had 5,146 complete
(5,034 single copy, 112 duplicated), 39 fragmented, and 110 missing orthologs (Figure S2).
BUSCO assignment can be dependent on contig length, so BUSCO scores were also compared
from non-scaffolded contigs. The original contigs had 5,156 complete (4,184 single copy, 972
duplicated), 34 fragmented, and 105 missing orthologs while the primary contigs (non-haplotigs)
had 5,138 complete (5,003 single copy, 135 duplicated), 44 fragmented, and 113 missing
orthologs. Using the Pacific Oyster, C. gigas, for comparison, the Qi et al. (2021) assembly of
had 5,031 complete (4,836 single copy, 195 duplicated), 21 fragmented, and 243 missing
orthologs and the Pefaloza et al. (2021) assembly had 5,198 complete (5,086 single copy, 112

duplicated), 26 fragmented, and 71 missing orthologs (Figure S3).

3.6 | Haplotig contigs in assemblies reduce SNP discovery

Masking haplotigs increased the number of SNPs genotyped across all levels of filtering (Table

3). For the original assembly, 7,674,518 (3,580,098; MAF 5%) biallelic SNPs were kept after



filtering compared to 12,149,052 (5,574,080; MAF 5%) for the haplotig-masked assembly. SNPs
included in this 36.83% increase were found in representative proportions of genomic
annotations (18.61% exonic, 53.54% intronic, 27.85% intergenic) with relatively even increases
across categories (38.69% exonic, 35.74% intronic, 36.97% intergenic). The largest differences
were in regions that switched from haploid to diploid coverage (new diplotigs) after masking
(Figure 2). In new diplotigs (looking at all SNPs with a MAF > 0.01), the original assembly
produced only 95,667 SNPs after filtering compared to 3,381,377 SNPs in the same regions of
the haplotig-masked assembly with 3,306,188 (97.78%) exclusive only to the haplotig-masked
genome. There were also 175,128 SNPs that were no longer present in the haplotig-masked
genome with 98,589 of those SNPs found inside of haplotigs and 20,478 found inside new
diplotigs. Out of the 8,735,612 SNPs that were called within both genome versions, genotypes
had a mean 99.62% concordance rate, and this rate was lower in new diplotigs (98.97%) vs
other regions of the genome (99.97%). Along with the number of SNPs genotyped, masking
haplotigs had significant effects on the levels of inferred nucleotide diversity, heterozygosity, and

Fst values across the genome.

3.7 | The presence of haplotigs greatly reduces estimates of nucleotide
diversity

Across all calculated measures of genomic diversity and structure, nucleotide diversity (17) was
significantly and drastically affected by the presence of haplotigs in the genome assembly

(Figure 2; Figure 3). For comparison, values of m were averaged across 10kb windows, and for

the original assembly the genome-wide average was 0.00382 +/- 1.93 x 10° compared to
haplotig-masked 0.00587 +/-2.20 x 10, and these two values differed significantly when

evaluated with a t-test (t = 70.2; df=74574, p = 0). When individual window values are



visualized across the whole genome (Figure 3) or across single chromosomes (Figure 2) clear
drops in diversity line up with identified haplotig regions. There was also a clear increase in
estimates of diversity in new diplotigs (Figure 4). Compared across new diplotigs only, the
difference in nucleotide diversity was over an order of magnitude, with the original assembly
average calculated to be 0.000321 +/- 7.6772 x 10 compared to 0.00720 +/- 4.68 x 10 for the
haplotig-masked assembly. This difference was also significant when evaluated with a one-

sided t-test (t = 145; df= 7794. p = 0).

3.8 | Masking haplotigs increases estimates of heterozygosity

The presence of haplotigs in the genome assembly had a more subtle, but statistically
significant, effect on measures of heterozygosity compared to nucleotide diversity (Figure 2;
Figure S4). When calculated over 10kb windows, the mean heterozygosity of the haplotig-
masked genome was 0.140 +/- 0.00249 compared to 0.136 +/- 0.00028 for the original genome
assembly. This small difference was statistically significant (t = 10.5; df = 74517; p < 2.74 x 10
2%: one-sided t-test). The distribution of heterozygosity differences between genome assemblies
showed the greatest difference in new diplotigs (Figure S5). Mean heterozygosity for new
diplotigs was significantly higher (t = 18.1; df=5980; p < 7.36 x 1072; one-sided t-test) in the
haplotig-masked assembly (0.142 +/- 0.00046) and had a lower variance compared to the

original assembly (0.121 +/- 0.00102; Figure S5).
3.9 | Haplotig-masking improves the accuracy of estimates of population

structure and outlier detection

Overall, the distribution of Fsr values was similar across the two genome versions, with the

original assembly having a genome wide average of 0.124 +/- 0.000667 compared to the



haplotig-masked genome-wide average of 0.120 +/- 0.000521. This subtle difference was,
however, significantly different when evaluated with a one-sided t-test (f = -49.2; df=6995427; p
= 0.000). Estimates of Fsr from the original genome also showed a greater variance than the
estimates from the haplotig-masked genome, but in contrast to other population genetic
statistics, the distribution of Fsr differences between genome assemblies did not show the
greatest difference in new diplotigs (Figure 5; Figure S6). The original genome had a mean Fsr
estimate of 0.106 +/- 0.00598 similar to the haplotig-masked genome estimate of 0.109 +/- 9.7 x
10°. Though, this difference was still statistically significant, (one-sided t-test; t = 4.81;

df=34,218; p < 7.71 x 107).

The low structure subset (LSS) showed similar patterns of Fsr values and differences between
the two genomes with the original assembly having an average Fsr of 0.0278 +/- 4.8 x 10° and
the haplotig-masked genome having an average Fsr of 0.0257 +/- 3.7 x 10 (Figure 6). This
difference was also significant (one-sided t-test; t = -35.6; df = 5980814; p < 7.55 x 10278),
Again, while variance in estimates was higher in new diplotig regions, the difference in means
was less pronounced (Figure S7; original = 0.0181 +/- 0.000427; haplotig-masked = 0.0191+/-

6.78 x 10°) and was not significantly different (one-sided t-test; t = 0.779; df =29282; p = 0.218).

Masking haplotigs had a larger effect on outlier loci detection, increasing the number of outliers
detected by about 5%. Using a false discovery rate of 5%, OutFLANK detected 158,057 outliers
(4.4% of all loci) from data using the original genome assembly contrasted to 257,823 (4.6%)
outliers detected from data using the haplotig-masked genome. 2,032 (1.28%) of the outliers
detected with the original genome were not called SNPs in the haplotig-masked genome, with
1,249 falling within masked haplotigs. There were an additional 234 (0.15%) outliers from the

original genome that were no longer significant in the haplotig-masked genome. Restricting the



outlier detection to the LSS, the number of total outliers detected using the original genome was
27,721 (0.96% of all loci) and 38,712 (0.86%) using the haplotig-masked genome. The number
of outliers from the original genome that were not present in the masked genome was 260
(0.94%) with 122 (0.44%) loci that were present in the masked haplotigs. 58 (0.21%) outlier loci

from the original genome were no longer significant in the masked genome.

3.10 | Haplotigs reduce the number of detected structural variants

After filtering, the program Delly detected 247,347 different structural variants (SVs) in the
original genome compared to 279,390 SVs in the haplotig-masked genome. The haplotig-
masked genome had more detections across all categories (Table 4). While the original genome
did have less variants detected, the average length was longer for every category of variant
(Table 4). When SVs were restricted to only those with no missing data across all individuals,
more variants were still detected using the haplotig-masked genome; however, the mean sizes
of each variant were either longer for the haplotig-masked genome or nearly identical for with

variants detected using the original genome (Supplemental Table 9).

3.11 | Haplotigs may not affect estimates of population frequency of copy
number

Delly was also used to call copy number from all samples, and copy number was used to
calculate the statistical Vst across both genomes. Global estimates of Vsr were low for both
genome versions (original- 0.0678 +/- 0.00105; haplotig-masked- 0.0663 +/- 0.000916), and they
did not differ significantly (two-sided t-test; t = -1.10; df = 30,789; p = 0.864). Looking at
averages across 10kb windows, there was no clear pattern of differentiation between genome

versions (Figure S8). The difference was similar when individuals were restricted to the LSS



with the original genome version having a global mean estimate of 0.0131 +/- 0.00084 compared
to the estimate of 0.0122 +/- 0.00074. This difference was also not statistically significant (two-
sided t-test; t = -0.83; df = 27,291; p =0.406). Looking across the 10kb windows, the differences

between estimates appear to be randomly distributed around zero (Figure S9).

4 | Discussion

Here, we assembled an annotated, chromosome-level genome for the eastern oyster
(Crassostrea virginica). The original reference genome, publicly released in 2017, represents
one of the most complete and contiguous genomes for a marine invertebrate species. We also
present an ad hoc method for detecting and masking haplotig sequences in an already published
genome that improves coverage, decreases duplicated orthologs while having only nominal
impacts on genome completeness. Our results show that masking haplotigs in the eastern
oyster genome drastically improved SNP and structural variant discovery. Our results also
demonstrate that haplotigs affected population genomic analyses, and that masking haplotigs
improved many commonly used population statistics. Taken together, we provide the original
assembly and a haplotig-masked genome assembly that will be foundational resources for
insights into molluscan adaptation to a changing environment and a valuable resource for the

aquaculture industry.



4.1 | A chromosome-level genome for an important ecosystem

engineer and aquaculture and fisheries species

The eastern oyster genome represents a similar level of contiguity and completeness compared
to the Pacific oyster (Supplemental table 3; Supplemental Figure S3) and several other
published molluscan genomes (Table 2). More broadly, most whole genome assemblies
currently available for non-model marine species are fragmented and incomplete (Du et al. 2017;
Powell et al. 2018; Gerdol et al. 2020). The C. gigas genome was first published in 2012 (Zhang

et al., 2012) with updates published by two separate groups in 2021 (Pefaloza et al., 2021; Qi,

Li, & Zhang, 2021). The two updated C. gigas assemblies are now chromosome-level along with

the eastern oyster genome. The eastern oyster assembly is more complete than the Qi et al.
(2021) C. gigas assembly and is comparable to the Pefialoza et al. (2021) C. gigas assembly,
despite the primary assembly being done several years prior. The haplotig-masked version for
C. virginica has less duplicates than the Qi et al. (2021) C. gigas assembly and nearly the same
level of duplication as the Pefaloza et al. (2021) C. gigas assembly, even though haplotigs were
masked post hoc. The two species have similar numbers of protein coding genes detected,
though the higher number for C. virginica may have been influenced by the haplotigs present in
the original assembly. A shortcoming of the eastern oyster assembly is the mis-assembly of
several chromosomal fragments as revealed by the linkage map, which can be correctedin a
future assembly. In short, the original eastern oyster genome assembly represents a significant
advancement for molluscan and marine invertebrate genomics in its completeness, and the post
hoc haplotig masking represents a novel way to reduce haplotig sequence without sacrificing

genome completeness.



4.2 | A method for post hoc improvement of existing genomic

resources

A genome assembly represents an advance in knowledge for any one species as well as a
powerful tool for a wide variety of scientific studies. A caveat to a published assembly, or
assembly version, is that it represents a single snapshot of a resource that can continually
improve over time with both technological improvements and the acquisition of additional high-
quality data. Assembly improvements, however, take time, computational and financial
resources, and do not always proceed continuously over time or by the same group of
researchers. In this study, we have presented a simple methodology for improving existing
genome assemblies by masking haplotigs. Looking only at the data generated from the single
sequenced genome individual, haplotig-masking greatly improved genome coverage, reducing
the number of windows at "haplotig" coverage levels and increasing the windows at "diplotig"
coverage levels. Examining read coverage across an exemplar chromosome, areas outside of
masked haplotigs that were previously at "haplotig coverage" levels shifted clearly to "diplotig
coverage levels". Most importantly, even though haplotig-masking effectively removed over 100
mb of data, it did not affect genome completeness. The haplotig-masked genome was 99.8% as
complete as the original genome but had 85% less duplications (as estimated by BUSCO

analysis).

We suspect that the weak point of our method is the breakup of chimeric contigs. The sliding
window approach used for this analysis was a simple and successful approach but could be
improved by a more sophisticated analysis looking at fine scale patterns of coverage changes

statistically, or even incorporating original contig assembly graphs. We also exclusively relied on



the program Purge Haplotigs (Roach et al., 2018), and there are new methods and programs,
such as HapSolo (Solares et al., 2021) that may be able to offer improvements to our

implementation as well.

4.3 | Haplotigs impact population genomic analyses

An accurate reference genome can enhance our understanding of genome structure,
mechanisms promoting genetic diversity and population differentiation, the genetic basis for
complex traits, and allow for the investigation of natural and anthropogenic selection (Ekblom &
Galindo, 2010; Ellegren, 2014; Fonseca et al., 2016), but mis-assemblies, especially false
duplications arising from heterozygosity, can negatively impact SNP discovery (Kelley &
Salzberg, 2010; Roach et al., 2018; Solares et al., 2021). We found that the presence of
haplotigs in our original assembly greatly impacted SNP discovery, structural variant detection,
and significantly impacted all the population genomic statistics that we calculated, including
nucleotide diversity, observed heterozygosity, Fsr, and Vsr. The most striking differences were
in SNP discovery, where across different data subsets and filtering criteria, the haplotig-masked
genome had between 55%-58% more SNPs than the original genome in our resequencing data
when any missing data filters were applied, and these differences were most prominent in
regions that had coverage increased to diplotig levels after masking. This fits with first-principal
expectations that loss of coverage of one allele could lead to a true SNP being mistakenly called
an invariant portion of the genome. Interestingly, there was also a small percentage of SNPs
(2.28% of all SNPs) that were called in the original genome but not the haplotig-masked. The

vast majority were inside haplotigs that were masked, but there were some (20,478; 0.27%) that



were in new diplotig regions, indicating that haplotigs do lead to false positive SNPs in one or

both allelic copies.

Though discovery was vastly different, SNPs that were genotyped in both genome versions had
very high concordance in genotyping (99.62%), though slightly lower in new diplotig regions
(98.97%). The high concordance in shared loci lends confidence to any previous results from
genomes with potentially small percentages of haplotigs. Though, it should be noted that our
results are for genotyped SNPs with moderate (10X-20X) coverage levels per individual and that
haplotigs could potentially have a larger effect on low-coverage whole-genome sequencing
studies that rely on less coverage per individual and genotype likelihoods instead of genotypes

(Lou, Jacobs, Wilder, & Therkildsen, 2021; Lou & Therkildsen, 2022; Matz, 2017).

Perhaps the mostimportant implication of our results is that haplotigs have a large and
significant effect on estimates of nucleotide diversity. Estimates of nucleotide diversity were over
50% higher in the haplotig-masked genome, and this is likely directly attributable to the 55%
increase in SNP discovery. This is because the more SNPs within a 10kb window, the more likely
it is to draw two different haplotypes. The effect of haplotig-masking on nucleotide diversity was
most prevalent in new diplotig regions, which in the original genome had estimates of 17 of close
to zero because of a lack of SNPs. For researchers using genomic tools to assess genetic
diversity, whether in a conservation application (L. M. Benestan et al., 2016) or a fisheries
application (L. Benestan, 2020) of high heterozygosity species, haplotig-masking of existing

genomic resources should be a critical step before population-level assessment.

In contrast to nucleotide diversity, our results suggest that haplotigs have only a minor impact on

overall estimates of heterozygosity. The haplotig-masked genome did have significantly higher



estimates of heterozygosity than the original genome, but the difference was approximately 3%
across the whole genome and 17.5% in new diplotig regions. The subtle difference is likely due
to the high concordance of shared genotypes between the two genome versions, as observed
heterozygosity is simply a proportion of variable loci that are heterozygous and not greatly

affected by differences in SNP discovery.

The results from our population structure and outlier detection analyses were more nuanced.
Estimates of global Fsr were 3.33% larger, on average, estimated from the original genome
version compared to the haplotig-masked genome using the full data set; however, there was a
much larger difference in estimates when using the lower structure subset with the original
genome having estimates that were 8.2% larger on average than the haplotig-masked genome.
Not only did haplotigs inflate estimates of Fsr, but they also increased the variance of those
estimates; the original genome estimates had a standard error 28% higher than the haplotig-
masked genome in the full dataset and 29% in the LSS. The increase in variance had
implications for outlier detection. 1,483 out of 158,057 outliers that were significant in the full
dataset analysis using the original genome were either not significant or no longer present in the
analysis with the haplotig-masked genome. For the lower structure subset, there were 180
outliers out of 27,721 that were missing or non-significant. The differences we observed were
small but consistent, and there are some potential caveats to our analysis. First, our per locality
sample sizes were small (only six individuals per population), and this likely affected the power
we had to detect small allele frequency differences. Second, our SNPs were genotyped at
moderate coverage levels and highly filtered, tolerating no missing data. Missing data may
potentially interact with haplotig effects to alter allele frequencies, but we did not test this in our
study. Lastly, we only examined global population structure and pairwise estimates may have

different patterns due to smaller sample sizes and potentially even smaller background levels of



population structure. Taken all together, haplotigs have a small but consistent and significant
effect on estimates of population structure, and there are still potential haplotig effects that

remain unknown.

Understanding the role of structural variants in adaptation and population structure has taken a
more prominent role in molecular ecology (Bazzicalupo et al., 2020; Mérot, Oomen, Tigano, &
Wellenreuther, 2020; Nelson et al., 2019; Prunier et al., 2019; Wellenreuther, Mérot, Berdan, &
Bernatchez, 2019). Our analysis indicates that while haplotigs do affect structural variant
detection and discovery, haplotigs do not affect estimates of differentiation based on copy
number variation. We found that analysis with the haplotig-masked genome found more
structural variants than the original genome, though all variants were smaller on average in the
haplotig-masked genome. The differences in length did virtually disappear if the analysis was
restricted to only variant calls without missing data. Estimates of Vst were virtually identical
between genome versions for the full data set, and there was a small but non-significant
difference when using the lower structure subset. We only used one program to estimate both
copy number variation and identify structural variants, and our analysis may have benefited from
a stand-alone estimation of copy number variation. We also only had moderate levels of per
sample coverage (10X-20X) this may have limited our power to detect differences in copy

number variation between genome versions.

5 | Conclusion

In this manuscript, we present a chromosome-level genome assembly of the eastern oyster
(Crassostrea virginica), and we describe an ad-hoc method for masking haplotig sequences,

including chimeric contigs, within an existing assembly. We show that haplotig masking



improves read mapping, genome coverage, and SNP discovery. The haplotig-masked genome
greatly reduced duplicated orthologs, while still maintaining one of the highest levels of genome
completeness and continuity for molluscan genomes. Resequencing data shows that haplotig-
masking greatly improves estimates of nucleotide diversity and offers subtle but significant
improvements to estimates of heterozygosity population structure, and outlier detection. The
eastern oyster genome (original and haplotig-masked) will help support both fundamental,
applied, and conservation research on a critical ecosystem species and one of the largest

aquaculture species in North America.
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Tables and Figures

Tables

Table 1. Assembly statistics:

SCAFFOLDS
COUNT 358
LENGTH 685,793,667 bp
AVG 1,915,624 bp
N50 2,791,541 (2,791,483) 2,738,754 bp
LARGEST 12,680,670 bp (ID: LG2_scaffold1_size12680670,

BASES_ONLY_LENGTH: 12,679,178)

Scaffold size distribution

Number (Average Length)

Scaffolds > 1M

232 (613,681,101 bp)

Scaffolds 250K - 1M

111 (69,888,768 bp)

Scaffolds 100K - 250K

12 (2,060,638 bp)

Scaffolds 10K - 100K

3 (163,160 bp)

Scaffolds 5K - 10K 0 (0 bp)
Scaffolds 2K - 5K 0 (0 bp)
Scaffolds 0 - 2K 0 (0 bp)
CONTIGS
COUNT 670
LENGTH 684,663,495
AVG 1,021,885
N50 1,975,305 (1,971,208) 1,921,126
LARGEST 9,802,061

Contig size distribution

Number (Average Length)

Contigs > 1M

238 (522,420,151 bp)

Contigs 250K - 1M

243 (145,713,162 bp)




Contigs 100K - 250K

72 (12,359,820 bp)

Contigs 10K - 100K

94 (4,065,194 bp)

Contigs 5K - 10K

11 (71,898 bp)

Contigs 2K - 5K

9 (29,295 bp)

Contigs 0 - 2K

3 (3,975 bp)




Table 2- Comparison to published molluscan genomes

Number of
Genome Size Chromosomes
Species Publication Individual sequenced (Mb) Assembled Scaffold N50 Scaffold # Completeness Genes Repeat %
Crassostrea virginica This study Gynogen after 12 Original-685.7 10 54,000,000 358 Original-97.4% 34,596 33%
generations ofinbreeding Masked- 584.3 Masked-97.2%
Lottia gigantea (Simakovetal. 2013) Wildsingle male gonad 359.5 NA 1870 4475 NA 23800 21%
Crassostrea gigas (Zhangetal., 2012). 4th gen inbred female 559 NA 401,319 401 95-999% " 28027 36%
(Qietal., 2021) One femalefroma farm 586.8 10 60,957,391 10* 92.5% 30078 57.2%
(BUSCO)
(Pefialozaetal., 2021) Inbredaquaculture female 647.8 10 58,462,999 236 95.6% 30724 43%
(BUSCO)
Mytilus coruscus (Yangetal., 2021) Wildfemale 1566.5 14 99542347 4434 89.4% 37478 47%
(BUSCO)
Octopus bimaculoides  (Albertinetal., 2015). Wild 23715 NA 466,100 379,696 97%8 33638 45%
Octopus minor (Kimetal., 2018) Unknown 5090 NA 196941 41584 76.2% 30,010 44.%
(BUSCO)
Mytilus galloprovincialis (Murgarellaetal., one ind fromVigo, Spain 1,600 NA 2,600 1.7M 16% 10891 36%
2016) (CEGMA)
Pinctada fucata (Duetal., 2017) 3rd generation selected 990 NA 324,000 939 82.8% 32973 Not
martensii individual (BUSCO) reported
Saccostrea glomerata (Powelletal., 2018) single female; 6th estimated: 784 NA 804,200 10,017 87.2% 29738 45%;
generationfrom selective  assembly: 788 (BUSCOand
breedingprogram CEGMA)
Haliotis rufescens (Masonbrinketal., one femaleand one male estimated=1800; NA 1,900,000 8400 95.1% 57785; 33%
2019) cultured, bred from CA assembly=1498 (BUSCO)
Octopus vulgaris (zarrellaetal.,2019) wildcaughtadultmale estimated=2798 NA 263,097 77,683 50% Unknown' >50%
assembly=1780 (BUSCO)
Haliotis laevigata (Botwrightetal.,2019) one culturedfemale estimated=1540; NA 86,805 63,588 86.6% 55,164 NA
assembly=1760 (BUSCO)
Mytilus galloprovincialis (Gerdoletal., 2020) single female assembly1280 NA 207,640 10,577 nNatT 60,338 43%

Table 2- Comparison to published molluscan genomes. Table summarizes data from comparable molluscan genomes. For genomes where
completeness was evaluated with BUSCO, the metazoan reference was used except for C. virginica which used the Molluscan reference, P. fucata
martensii and Octopus minor where the reference was not specified.

"Evaluated by mapping shortreads,sanger-sequenced BACs, and transcripts to the assembly



*Only reported chromosome scaffolds. Unclearifthere were unplaced scaffolds.
SEvaluated by mapping transcripts with predicted ORFs back to the genome
123,509 0. bimaculoides genes were covered at90% of coding sequence by O. vulgarisreads.

" Evaluated with BUSCO and CEGMA but did not include actual com pleteness numbers; said thatthis assemblywas less complete than previous versions, butmostduplication
issueswere resolved



Table 3. SNP Results

Filtering Level

Original Genome

Haplotig-masked Genome

Initial bioinformatic filtering 45,427,924 52,971,541

No missing data, MAF >0.01 8,910,740 14,103,332

No missing data, MAF >0.01, 2 alleles 7,674,518 12,149,052

No missing data, MAF >0.05 4,299,397 6,699,719

No missing data, MAF >0.05, 2 alleles 3,580,098 5,574,080

Low Structure Subset

No missing data, MAF >0.05, 2 alleles 2,872,577 4,482,328

Table 4. All Structural Variants Detected
Type Number Mean Length S.E. Length
detected

Haplotig-Masked Translocation 33,012 NA NA
Deletion 216,912 823 22
Duplication 15,347 14,784 464
Insertion 7,310 28 0
Inversion 6,808 118,478 2,857

Original Translocation 27,838 NA NA
Deletion 192,011 796 21
Duplication 13,155 17,358 585
Insertion 6,351 28 0
Inversion 7,992 243,679 3,489




Figure Legends

Figure 1- Histogram of read coverage across both genome versions. Paired-end lllumina
reads used for polishing the original genome assembly were mapped back to the two genome
versions. Filtered read coverage was averaged across 10kb windows and plotted as a
histogram with bins colored by genome: gray for the original and orange for the haplotig-masked
genome.

Figure 2- Comparison of coverage, SNPs, Fsr, Heterozygosity and Nucleotide diversity
across original and haplotig-masked assembly. Across both assemblies, coverage, the
number of SNPs, Fs7, heterozygosity, and nucleotide diversity were averaged across ten
kilobase windows of Chromosome 2 (NC_03578.1). For coverage (Panel A), Fst (Panel C),
heterozygosity (Panel D), and nucleotide diversity (Panel E), points are the values per 10 kb
window with lines drawn as rolling 3-point averages, and the number of SNPs are plotted as an
area plot. Areas along the chromosome shaded in gray were identified as haplotigs and
therefore have no data for the haplotig-masked genome. Areas shaded in yellow are non-
masked regions that showed a shift from haploid to diploid coverage levels after haplotig-
masking. For all plots, blue is the original genome and purple is the haplotig-masked genome.

Figure 3- Comparison of nucleotide diversity across the original and haplotig-masked
assembly. Panel (A) is values of 1T averaged across 10kb windows across the original
genome. Panel (B) panel is values of 1T averaged across 10 kb windows across the haplotig-
masked genome. Panel (C) is the difference between the original and the haplotig-masked
values in 10kb windows across the entire genome. Panel (D) is a violin and boxplot of 10kb
averaged values between the two genome versions. For all plots, blue is the original genome
and purple is the haplotig-masked genome.

Figure 4- Comparison of nucleotide diversity across the original and haplotig-masked
assembly in newly diplotig regions. Panel (A) is values of 1T averaged across 10kb windows
in the original genome that changed to diploid coverage levels after haplotig-masking. Panel (B)
panel is values of 1T averaged across in the same 10kb new diplotig windows across the
haplotig-masked genome. Panel (C) is the difference between the original and the haplotig-
masked values in 10kb windows across the entire genome with dot size directly related to the
distance from zero. Panel (D) is a boxplot of 10kb averaged values between the two genome
versions. For all plots, blue is the original genome and purple is the haplotig-masked genome.

Figure 5- Comparison of estimates of Fsr across the original and haplotig-masked
genomes. Panel (A) is values of Fsr averaged across 10kb windows in the original genome.
Windows that contained any outlier SNP loci were changed to triangles (16,864 windows).
Panel (B) panel is values of Fsr averaged across 10kb windows across the haplotig-masked
genome. Windows that contained any outlier SNP loci were changed to triangles (22,182
windows). There were 39 windows with SNPs that were identified as outliers in the original
genome analysis but not in the haplotig-masked analysis, and these windows are marked as
upside-down blue triangles. Panel (C) is the difference between the original and the haplotig-
masked values in 10kb windows across the entire genome with dot size directly related to the
distance from zero. There were 39 windows with SNPs that were identified as outliers in the
original genome analysis but not in the haplotig-masked analysis, and these windows are
marked as upside-down blue triangles. Panel (D) is a violin and boxplot of 10kb averaged
values between the two genome versions. For all plots, blue is the original genome and purple
is the haplotig-masked genome.



Figure 6- Comparison of estimates of Fsr from the low structure subset (LSS) across the
original and haplotig-masked genomes. Estimates of Fsr were calculated using the low
structure subset (LSS) to examine how haplotigs affect population structure inference in a lower
signal system. Panel (A) is values of Fsr averaged across 10 kb windows in the original
genome. Windows that contained any outlier SNP loci were changed to triangles (4,993
windows). Panel (B) panel is values of Fst averaged across 10kb windows in the haplotig-
masked genome. Windows that contained any outlier SNP loci were changed to triangles (3,825
windows). There were 31 windows with SNPs that were identified as outliers in the original
genome analysis but not in the haplotig-masked analysis, and these windows are marked as
upside-down blue triangles. Panel (C) is the difference between the original and the haplotig-
masked values in 10kb windows across the entire genome with dot size directly related to the
distance from zero. There were 31 windows with SNPs that were identified as outliers in the
original genome analysis but not in the haplotig-masked analysis, and these windows are
marked as upside-down blue triangles. Panel (D) is a violin and boxplot of 10kb averaged
values between the two genome versions. For all plots, blue is the original genome and purple
is the haplotig-masked genome.
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Figure 1- Histogram of read coverage across both genome versions
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Figure 2- Comparison of coverage, SNPs, Fsr, Heterozygosity, and Nucleotide diversity across

original and haplotig masked assembly
Haplotig-masked vs. Original Chrom 2 (NC_035781.1)
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Figure 3- The effect of haplotigs in estimates of nucleotide diversity
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Figure 4- The effect of haplotigs in estimates of nucleotide diversity in diplotigs
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Figure 5- The effect of haplotigs in estimates of Fst across the genome
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Figure 6- The effect of haplotigs in estimates of Fsr across the genome within the low structure subset
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