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Abstract 

Genome assembly can be challenging for species that are characterized by high amounts of 

polymorphism, heterozygosity, and large effective population sizes.  High levels of 

heterozygosity can result in genome mis-assemblies and a larger than expected genome size 

due to the haplotig versions of a single locus being assembled as separate loci.  Here, we 

describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica.  

Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 

97.3% complete based on BUSCO analysis.  The genome assembly for the eastern oyster is a 

critical resource for foundational research into molluscan adaptation to a changing environment 

and for selective breeding for the aquaculture industry.  Subsequent resequencing data 

suggested the presence of haplotigs in the original assembly, and we developed a post hoc 

method to break up chimeric contigs and mask haplotigs in published heterozygous genomes 

and evaluated improvements to the accuracy of downstream analysis.  Masking haplotigs had a 

large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and 

nuanced effects on estimates of heterozygosity, population structure analysis, and outlier 

detection. We show that haplotig-masking can be a powerful tool for improving genomic 

inference, and we present an open, reproducible resource for the masking of haplotigs in any 

published genome.   
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1 | Introduction 

A highly contiguous and annotated genome assembly can be an invaluable tool for population  

genomic inference (Ellegren, 2014) enabling both genome-scale and reduced representation  

methods for sequencing populations (Ekblom & Galindo, 2010; Fonseca et al., 2016; Matz, 

2017).  However, even as the cost of second and third generation sequencing continues to drop 

(van Dijk, Auger, Jaszczyszyn, & Thermes, 2014), many challenges remain for assembling 

references for non-model organisms (Roach, Schmidt, & Borneman, 2018; Solares, Tao, Long, 

& Gaut, 2021).  One of the greatest hurdles to accurate genome assembly is heterozygosity 

(Kajitani et al., 2014; Safonova, Bankevich, & Pevzner, 2015; Vinson et al., 2005), a hallmark of 

many wild plant and animal species, including most insects and marine invertebrates.   

 

One assembly artifact created by heterozygosity is the “haplotig”. Haplotigs arise when 

algorithms misinterpret divergent allelic haplotypes in heterozygous genomic regions and 

assemble them as separate (duplicated) loci, with both copies incorporated into the primary 

assembly (Roach et al., 2018). For a genomic region split into haplotigs in the assembled 

reference, read mapping software will randomly chose which haplotig to map a read to (i.e., half 

the reads map to one haplotig, and the other half of reads map to the other haplotig). This issue 

with read mapping means that haplotigs could present a major problem for population genomic 

analyses of any highly polymorphic species.  The splitting of a diplotig into haplotigs might limit 

SNP discovery and reduce estimates of genetic diversity, as allelic reads could potentially map 

to different parts of the assembly, reducing coverage (needed for genotyping), allelic 

representation within reads for a specific locus, and at the worst extreme producing two 

homozygous genotypes for what in reality would be a single heterozygous SNP.  If the haplotigs 

were associated with populations (one allele more common in one subpopulation than another), 



   
 

   
 

this could introduce errors into statistics like population estimates of observed and expected 

heterozygosity as well as FST.  Haplotigs could also affect estimates of copy number variation 

and other structural variants by inherently making extra copies of loci within the genome.  

Moreover, haplotig detection is still a developing field in bioinformatics with most software 

published within the last four years (Pryszcz & Gabaldón, 2016; Roach et al., 2018; Solares et 

al., 2021).  As a result, many published genome assemblies likely have some amount of 

haplotigs incorporated into the assembly, and the extent to which haplotig artifacts impact 

population genomic analysis has not been well studied.   

 

The eastern oyster, Crassostrea virginica, is an excellent species to understand the impacts of 

haplotigs on population genomic inference.  Eastern oysters create three dimensional reef 

structures that provide multiple ecosystem services such as providing habitat for nearshore 

fishes, water quality improvements, and protection from storm waves and erosion; the value of 

oyster reef ecosystem services can be as much as $99,000 per hectare per year (Grabowski, 

Conrad, & James, 2012).  Additionally, the eastern oyster supports a commercial fishing and 

aquaculture industry valued at $100 million with several regional selective breeding programs 

(Allen, Small, & Kube, 2021; Gómez-Chiarri, Warren, Guo, & Proestou, 2015; Guo, 2021). 

Eastern oysters are highly fecund, protandrous hermaphrodites with external fertilization and a 

planktonic larval stage (Thompson, Guo, & Harrison, 1996), are distributed from New Brunswick, 

Canada, to Yucatan, Mexico, and are genetically diverse (Buroker, 1983; Hoover, Cindi A., and 

Patrick M. Gaffney, 2005; Karl & Avise, 1992; Reeb & Avise, 1990; Varney, Galindo-Sánchez, 

Cruz, & Gaffney, 2009).   

 

The genome assembly of the eastern oyster is scaffolded onto the 10 known chromosomes for 

this species and was first released on NCBI in 2017.  Initial results from a resequencing project 



   
 

   
 

indicated that there may be haplotig sequences in the genome, so we developed a protocol to 

infer haplotigs within the assembly.  In this paper, we describe the assembly and annotation of 

the eastern oyster genome.  We then describe a post hoc protocol to detect and mask haplotigs 

in a genome assembly and apply that to the eastern oyster genome.  Lastly, we compare the 

haplotig-masked genome to the original genome to understand the effects of haplotigs on read 

mapping, SNP discovery, and estimates of common statistics in population level inference.  We 

show that haplotig-masking can be a powerful tool for improving population genomic analysis 

without having to reassemble a genome. 

2 | Materials and Methods 

2.1 | Original Genome Sequencing and Assembly 

2.1.1 | Sequenced individual 

An inbred gynogenetic (with DNA from the mother only) oyster (RU13XGHG1#28) was used for 

whole genome sequencing to reduce problems associated with high polymorphism. Inbred 

gynogenetic oysters were produced by meiotic gynogenesis (Guo, Hershberger, Cooper, & 

Chew, 1993) from an oyster line (NEH®) selectively bred for 12 generations. Samples of tissue 

from parents and progeny were flash frozen in liquid nitrogen and stored at -80º C. Levels of 

inbreeding in the gynogenetic progeny as compared to the parents and wild oysters from 

Delaware Bay were determined using a panel of 15 microsatellites (Wang, Wang, Wang, & Guo, 

2010), and a confirmed inbred female oyster from the gynogenetic progeny was selected for 

sequencing.   



   
 

   
 

2.1.2 | Sequencing and assembly 

High quality genomic DNA from the gynogenetic individual was isolated using the Trizol method 

from a pool of two tissues (gill, mantle), and DNA quality was assessed through Nanodrop, 

Qubit, and TapeStation analysis. All sequences were generated on a PacBio RSII instrument 

with P6-C4 sequencing chemistry. De novo assembly used PacBio subreads (>8 kb) with the 

standard FALCON v0.5.0 (Chin et al., 2013) method (parameter setting: max_diff 120, max_cov 

120, min_cov 3, min_seed_length 9Kb) and assembled contigs were error-corrected with Quiver 

(Chin et al., 2013). Error corrected haplotype-specific contigs were first linked together into 

scaffolds using SSPACE-LongRead (Boetzer & Pirovano, 2014). Scaffolds were then linked 

together into megascaffolds using a high-order chromatin contact map (HiC) between 

chromosomes (Bickhart et al., 2017). Adductor muscle tissue from a reference related individual 

was used to generate HiC libraries at Phase Genomics (Seattle, WA) for this purpose. The 

libraries were sequenced using paired end sequencing on a HiSeq X Illumina instrument and 

reads (100bp) were aligned to the error-corrected contigs within scaffolds using BWA V0.7.16 (Li 

& Durbin, 2010) with strict parameters (-N 0; no hits from discordant pairs) to prevent 

mismatches and nonspecific alignments. Only read pairs that aligned to different contigs were 

used for scaffolding. The Proximo Hi-C pipeline performed chromosome clustering and contig 

orientation as described previously (Bickhart et al., 2017).  At this stage all pseudochromosome 

sequences were polished with Pilon (Walker et al., 2014) using ~40x coverage of Illumina data 

from the same reference individual. 



   
 

   
 

2.2 | Original Assembly curation 

2.2.1 | Annotation 

To develop transcript resources, we extracted total RNA from muscle, digestive, gill, and mantle 

tissues, and pools of larvae using a RNeasy kit (Qiagen) according to the manufacturers’ 

protocol. Total RNA for quality was assessed on the Agilent Fragment Analyzer, then enriched 

for poly(A)+ RNA using the MicroPolyA Purist kit (Ambion, Carlsbad, CA). We used ScripSeq 

(Epicentre, Madison, WI) to generate strand-specific cDNA that was sequenced on the Illumina 

Hiseq4000 platform as 100 base paired-end reads (insert size of 400bp). All RNAseq tissue data 

(150 million reads) were assembled with Trinity version 2.1.0 (Grabherr et al., 2011). The open 

reading frames (ORFs) were extracted from the complete transcriptome assembly (Trinity.fasta) 

using TransDecoder and LongOrfs modules 

(https://github.com/TransDecoder/TransDecoder/releases/tag/TransDecoder-v5.5.0). The 819Mb 

primary de novo assembly was used as input to align Trinity assembled transcripts using BLAT 

(Bhagwat, Young, & Robison, 2012; James Kent, 2002). Top hits were parsed with internal 

scripts by requiring there only be one best hit (-total_hits 1) with subsequent scaffolds showing 

multiple transcript alignments manually inspected for possible redundancy using assembly self-

alignment data. 

 

For assembly self-alignment we first fragmented the assembly in silico into 1 kbp segments and 

aligned against itself using BLASTZ (Schwartz et al., 2003).  These alignments are scored 

against a repeat masked reference sequence using RepeatModeler 

(http://www.repeatmasker.org/RepeatModeler) output that is suitable for RepeatMasker 



   
 

   
 

application (N. Chen, 2004). After several alignment criteria were evaluated, we used 97% 

identity and 80% coverage with each scaffold to remove redundant contigs.  

For gene completeness, all assembled transcripts were aligned against the 

pseudochromosomes using BLAT requiring there only be one best hit (-total_hits 1) and parsed 

by varied alignment length thresholds of 95, 75 and 25% at a 90% sequence identity cutoff. 

Cumulative representation was summed for all transcript varied length alignments. The NCBI 

pipeline used for the gene annotation of C. virginica genome followed methods detailed in Pruitt 

et al. (Pruitt, Tatusova, Brown, & Maglott, 2012).  Lastly, a genetic linkage map with 4006 RAD-

seq markers was constructed with data from 115 progeny from an F2 family (He, 2012) using 

JoinMap 4.0 (Van Ooijen, 2006) and used to assess the integrity of the assembly. Accuracy of 

sequence placement was assessed using genetic marker sequence alignments against the C. 

virginica linkage map as defined by Chromonomer (Catchen, Amores, & Bassham, 2020) 

ordering that also uses the genetic linkage map as input.  

2.3 | Haplotig Detection and Masking 

The original curated and annotated assembly (described above) was deposited in NCBI (RefSeq 

Accession: 4991078) in September of 2017 for widespread usage by several stakeholders.  

Afterwards, a resequencing project began and during preliminary data analysis in late 2019, a 

pattern in coverage across the genome began to indicate that there may be haplotig sequence 

contained within the genome assembly. To investigate, the genomic Illumina reads from the 

original genome individual (used for genome polishing) were mapped to the original assembly 

using BWA (Li & Durbin, 2010).  Coverage was averaged across 10kb windows using samtools 

(Li et al., 2009) and plotted as a histogram using R (R Development Core Team, 2008).  The 

bimodal distribution of coverage with a peak at expected coverage (diploid; 64X) and half the 



   
 

   
 

expected coverage (haploid; 32X) confirming the presence of haplotigs in the original assembly.  

Because the genome had already been publicly released, and widely used, we chose to mask 

haplotigs while preserving the original genome coordinates, enhancing compatibility with 

previous and ongoing research.   

 

Files, scripts, and an RMarkdown file to reproduce the entire haplotig detection and masking 

process can be found at (https://github.com/The-Eastern-Oyster-Genome-

Project/2022_Eastern_Oyster_Haplotig_Masked_Genome/tree/main/Haplotig_Masking; with an 

archived release of the code for this submission accessible at DOI: 10.5281/zenodo.7448959). To 

detect haplotigs, the scaffolded assembly was broken into the original set of assembled contigs 

by converting the NCBI annotation file (GCF_002022765.2_C_virginica-

3.0_genomic_gaps.txt.gz) to a bed file and using BEDTools (Quinlan & Hall, 2010) to "subtract" 

gaps from the fasta file, generating a set of 669 contigs.  To test for chimeric contigs, the 

genomic Illumina reads from the original genome individual were then mapped to these 669 

contigs using minimap2 (Li, 2018, 2021) and processed with samtools (Li et al., 2009) and 

Picard Tools (Institute, 2016) to remove poorly mapping reads and optical and PCR duplicates.  

BEDTools (Quinlan & Hall, 2010) was then used to calculate mean coverage across sliding 100 

kb windows with 50 kb of overlap.  

  

We used coverage windows to break up chimeric contigs by looking for contigs that had large 

windows (>150kb) that shifted from diploid coverage levels to haploid coverage levels.  We used 

BEDTools (Quinlan & Hall, 2010) to calculate these interval changes to break potentially 

chimeric contigs into multiple smaller contigs, preserving all basepairs.  The coverage across 

sliding windows was used to split potentially chimeric contigs by initially dividing windows into 

high (> 40 mean coverage: all-high-intervals) and low (<40 mean coverage: all-low-intervals) 



   
 

   
 

with remaining windows merged.  A coverage level of 40 was chosen based on the distribution of 

coverage which had a bimodal peak of 32 and 64; 40 represented the tail end of the "haplotig" 

peak. Remaining windows smaller than 150kb were also extracted from each of the two 

coverage sets, as potential chimeras.     

 

Our logic for breaking contigs, focused on length and coverage of the windows.  The all-high-

intervals likely are all diplotigs given the coverage, and the low coverage windows smaller than 

150kb are likely to be haplotigs that are nested within chimeric contigs.  We combined this 

interval set, representing high-confidence diplotigs and high-confidence chimeric haplotigs 

(Subset 1).  The other two interval sets, the low coverage intervals larger than 150kb and the 

high coverage intervals smaller than 150kb are merged, representing high confidence haplotig 

intervals and high confidence diplotigs that are nested within chimeric contigs (Subset 2).  

Subtracting the high confidence diplotig intervals and the likely nested haplotig intervals (Subset 

1) from the high-confidence haplotigs and likely chimeric diplotigs (Subset 2), breaks any 

potential chimeras.  The sequence in the broken contigs is recovered by extracting sequences 

from the original reference using Subet 1 and the result of Subset 1 - Subset 2, producing a set 

of contigs broken at chimeric points.   

 

Minimap2 (Li, 2018, 2021) was then used to map the Illumina reads to the broken contigs, and 

samtools (Li et al., 2009) converted alignments to a BAM file.  The program Purge Haplotigs 

(Roach et al., 2018) was used to then detect and remove haplotigs from the manual reference 

contigs.  The "coverage" step of the program was run with 10 as the "low cutoff" (-l), 56 as the 

"midpoint (-m) and 120 was the "high cutoff" (-h).  The 'purge' and 'clip' steps were run with 

default parameters.  The mitochondrial genome was flagged in the initial purge step as an 

artifact due to its high coverage.  It was searched for and removed from the list of artifact 



   
 

   
 

sequences.  We then combined the haplotigs from the clip step, and the initial artifacts to create 

a "total haplotig" file.  We mapped this file back to the original reference, using minimap2, to 

identify haplotigs, and used BEDTools (Quinlan & Hall, 2010) to convert the mappings to a 

haplotig bed file. This haplotig bed file was used to mask the reference genome using BEDTools 

to produce the final haplotig-masked genome. 

2.4 | Genome comparison 

All code, scripts, and files needed to reproduce the comparative analysis can be found in the 

https://github.com/The-Eastern-Oyster-Genome-

Project/2022_Eastern_Oyster_Haplotig_Masked_Genome repository in the folder 

"Comparative_Analysis" 

2.4.1 | Coverage  

To assess the impacts of haplotig masking, Illumina reads from the original genome individual 

were mapped to both genome versions.  A modified version of the dDocent pipeline (Puritz, 

Hollenbeck, & Gold, 2014) was used to run bwa (Li & Durbin, 2010) to map reads to the 

genome.  Duplicate reads were identified with the “MarkDuplicates” function of Picard (Institute, 

2016).  Samtools (Li et al., 2009) was then used to create individual bam files based on a set of 

filtering criteria: “total reads”- bam file contains all non-duplicate primary alignments, 

“multimapping reads”- bam file contains only reads that mapped to more than one location in the 

genome, and “filtered reads”- bam file contains only has mapping with a quality score above 10 

and no hard or soft clipping above 80bp.  BEDTools (Quinlan & Hall, 2010) was then used to 

calculate the average coverage over 10kb windows across the genome.  Coverage was plotted 



   
 

   
 

as a histogram using the ggplot2 package (Wickham, 2016) in R (R Development Core Team, 

2008).  Coverage was also plotted along individual chromosomes.   

2.4.2 | Completeness of genome 

Genome completeness was assessed for both versions using Benchmarking Universal Single-

Copy Orthologs (BUSCO) version 5.4.3 (Seppey, Manni, & Zdobnov, 2019; Simão, Waterhouse, 

Ioannidis, Kriventseva, & Zdobnov, 2015) and the Mollusca ortholog database version 10, 

containing 5295 single-copy orthologs.  For comparison, the two newest chromosome level 

assemblies for Crassostrea gigas were downloaded from NCBI (GCA_011032805.1, 

GCA_902806645.1) and assessed using the same BUSCO version and database.    

2.5 | Population level inference 

2.5.1 | Resequencing data 

Ninety adult wild and farmed eastern oysters were collected in the fall of 2017 from multiple 

water bodies across the United States of America including the Gulf of Maine, the Delaware Bay, 

the Chesapeake Bay, and the northern Gulf of Mexico near Louisiana.  Samples were also 

included from multiple selected oyster lines, for a total of eight wild localities and five selected 

lines.  Individuals were sequenced on an Illumina HiSeq X PE 150 bp platform to 15-20X 

coverage. Twelve samples were included in sequencing and variant calling from known inbred 

experimental lines and populations as part of a different research project.  These samples were 

included for mapping statistics and SNP counts, but were not used for any population level 

analyses, leaving a total of 78 individuals.  Full details on sample source, and collection, 

processing, and sequencing methods can be found in (Puritz et al., 2022). 



   
 

   
 

2.5.2 | Nucleotide Variant Calling 

Raw sequencing reads were processed with a modified version of the dDocent pipeline (Puritz et 

al., 2014).  First, reads were trimmed for low quality bases and adapter sequences using the 

program fastp (S. Chen, Zhou, Chen, & Gu, 2018).  Trimmed reads were mapped to both 

genome versions using bwa (Li & Durbin, 2010) with mismatch and gap-opening parameters (-B 

3 -O 5).  Picard (Institute, 2016) was used to mark duplicate reads, and subsequent BAM files 

were filtered with samtools (Li et al., 2009) to remove low quality mappings, secondary 

alignments, and PCR duplicates.  The program freebayes (Erik Garrison & Marth, 2012) was 

used to genotype small nucleotide variants (SNPs, InDels, small complex events). 

 

Bcftools (Danecek et al., 2021) and vcftools (Danecek et al., 2011) were used in combination to 

filter raw variants.   Variants were filtered based on allelic balance at heterozygous loci (between 

0.1 and 0.9) and quality to depth ratio of greater than 0.1.  Variants were then filtered based on 

mean-depth, excluding all loci above the 95th percentile.  Vcflib (E. Garrison, 2016) was then 

used to decompose variants into SNPs and InDels.  Lastly, SNPs were filtered to allow for no 

missing data and only biallelic SNPs, and then variants separated into two sets of variants, one 

with a minor allele frequency (MAF) of 1% and the other with a MAF of 5%.   

2.5.3 | Structural variant calling 

We used the program Delly (Rausch et al., 2012) following the "germline sv calling" 

(https://github.com/dellytools/delly#germline-sv-calling) pipeline to identify candidate structural 

variants (SVs), including deletions, insertions, duplications and inversions.  SVs were filtered 

using Delly with the "germline" filter.  BCFtools (Danecek et al., 2021) was used to convert 

inversion SVs to a bed file and then switch "LowQual" genotypes to missing, and SVs were 



   
 

   
 

filtered to a subset with no missing data.  Using this filtered SV subset, read based copy number 

(VCF Format ID = RDCN) for insertions, deletions, and duplications were extracted to a tab 

delimited list for both genome versions. 

2.5.4 | Identification of newly diplotig regions in haplotig-masked genome 

When a haplotig is effectively masked, the remaining haplotig should become a diplotig.  We 

identified these regions to see if changes in population inference were more pronounced in these 

regions relative to the rest of the genome.  BEDTools (Quinlan & Hall, 2010) was then used to 

calculate the average coverage over 10kb windows across both genome versions.  New diplotig 

regions were identified as any 10kb window that increased in coverage in the haplotig-masked 

genome by greater than 1.5 times the coverage in the original genome version.     

2.5.5 | Nucleotide diversity 

Nucleotide diversity (π) was calculated across 10kb windows of both genomes using VCFtools 

(Danecek et al., 2011) with the SNP dataset with greater than 1% minor allele frequency.   

Differences between the original and haplotig-masked nucleotide diversity estimates were tested 

using a t-test.  π was visualized across genomic windows for both genome versions, as was the 

difference between the two estimates.  Differences between estimates from the two genome 

versions were also visualized and tested across new diplotig regions.   

2.5.6 | Heterozygosity 

Vcflib (E. Garrison, 2016) was used to calculate per-site values of SNP heterozygosity for the 

SNP dataset with only biallelic SNP with greater than 1% minor allele frequency.  Per-site values 

were averaged across 10kb windows using the program BEDTools (Quinlan & Hall, 2010) for 



   
 

   
 

both versions of the genome.  Differences between original and haplotig-masked heterozygosity 

estimates were tested and visualized in the same way as nucleotide diversity, across the whole 

genome and only in new diplotig regions. 

2.5.7 | Global FST and outlier detection 

The program OutFLANK (Whitlock & Lotterhos, 2015) was used to calculate global FST for 

biallelic SNPs with a minor allele frequency greater than 5%.  Outliers were inferred relative to a 

null FST distribution based on trimmed SNP datasets with heterozygosity greater than 0.1 and 

using a random set of 50,000 independent SNPs derived from snp_autoSVD in bigsnpr (Privé, 

Aschard, Ziyatdinov, & Blum, 2018) using the settings (min.mac = 7, size=10).  OutFLANK 

calculated q-values for outlier scores for all SNP loci with heterozygosity above 0.1.  A false 

discovery rate of 0.05 was used to designate significance based on q-values. 

 

The full set of oyster individuals was found to have significant population structure between the 

Gulf of Mexico and Atlantic wild populations, as well as among selected lines and wild 

populations (pairwise FST  ~ 0.1- 0.5; Puritz et al. 2022).  To examine patterns in FST in a lower 

structure dataset (pairwise FST  ~ 0.01- ; Puritz et al. 2022), populations were subset to wild 

populations only from the Atlantic coast of the USA (LSS- 6 populations, 36 individuals).  For the 

LSS, snp_autoSVD was run with the settings (min.mac =4, size=10) to account for the smaller 

number of individuals but OutFLANK run options remained the same.  Differences between the 

original and haplotig-masked FST values were tested using a t-test across both the full data and 

the LSS subset.  FST values were also visualized as Manhattan plots for: the original genome, 

the haplotig masked genome, and the difference between the estimates.  For visualization, FST 

values were averaged across 10kbp windows.  If a single outlier SNP was detected in a 10kb 



   
 

   
 

window, the entire window was visualized as an outlier.  Lastly, FST values were also tested for 

differences and examined across new diplotig regions in all datasets.   

2.5.8 | Copy number differentiation 

Copy number variants (CNVs) were filtered for a minor allele frequency greater than 5%.   

Differentiation at CNVs was calculated using the VST statistic (Redon et al., 2006) as 

implemented in (Steenwyk, Soghigian, Perfect, & Gibbons, 2016) and plotted across the 

genome.  The difference in VST values produced from the different genome versions across 

various data subsets was tested using a t-test and visualized across chromosomes in Manhattan 

plots similar to FST values.   

3 | Results 

3.1 | Original assembly 

3.1.1 | Sequenced individual 

The individual sequenced was from a family produced by gynogenesis of an already inbred 

female oyster.  Genotyping with a panel of 11-15 microsatellite loci showed that this family 

experienced an approximately 55.4% reduction in the heterozygosity compared with their 

parents.  The average heterozygosity in the gynogenetic progeny was 0.115, compared with 

0.642 in wild Delaware Bay oysters (Supplemental Table 1).  



   
 

   
 

3.1.2 | Sequencing and assembly 

We sequenced and assembled a reference genome for the eastern oyster using high-coverage 

paired-end libraries. We sequenced 11,116,776 PacBio reads (122.7 GB) resulting in 87x 

coverage. We also sequenced 138,800,932 paired-end Illumina reads that were used for 

polishing (and later genome assessment).  We also generated over 690 million paired end reads 

for RNA transcript assembly and assembly annotation.  All sequencing reads used for the 

assembly and curation can be found on NCBI with accession numbers found in Supplemental 

Table 2. 

 

Our initial contig assembly of 819 Mb, was much larger than the genome size of 578Mb 

estimated by flow cytometry (Guo Lab, unpublished), and the Pacific oyster, Crassostrea gigas,  

assemblies of 647 and 586 Mb.  This led us to utilize a strategy of genome self-alignment and 

duplicative transcript mapping that identified 135 Mb of heterozygous loci to remove. In the first 

assembly of the Pacific oyster polymorphic assembled loci were also removed in a similar way 

(Zhang et al 2012). Our final assembly consisted of 684 Mb in 669 contigs of N50 contig and 

scaffold length 1.97 and 54 Mb, respectively (Table 1). Most sequences (>99%) were scaffolded 

into the known number of 10 chromosomes using HiC and genetic linkage mapping data. The 

eastern oyster assembly represents a high level of contiguity (Table 2; Supplemental Table 3).  

3.2 | Original Assembly Curation 

Gene annotation using the automated NCBI pipeline predicted the presence of 34,596 protein 

coding genes and 4,230 non-coding (Supplemental Table 4).  When contrasted to the Pacific 

oyster genome (Peñaloza et al., 2021), we found a high percentage (36-40% total interspersed) 

of repetitive elements with two independent methods (Supplemental Table 5). From assembled 



   
 

   
 

transcripts aligned to our eastern oyster assembly, we found 87% of 171,712 transcripts at a 

95% length cutoff.  We estimate 22% of the repeats could not be assigned a classification 

suggesting additional work is needed to define the composition of oyster sequence repeats.  The 

assembly annotation can be found on NCBI (GCF_002022775.2).   

 

Five of the assembled chromosomes (1, 2, 3, 4 and 8) were correctly aligned with linkage groups 

(LGs) of the genetic map indicating that they were correctly assembled (Supplemental Tables 6 

and 7). Three chromosomes (5, 6, and 9) were aligned to more than one LG at different regions 

suggesting that they represent misassembled chromosomes. Two chromosomes (7 and 10) 

corresponded to parts of LGs indicating that they are chromosomal fragments. There were some 

minor discrepancies between the assembly and genetic map that need to be resolved with 

additional data. The assembled genome size of 684Mb was 18.3% longer than the genome size 

of 578Mb estimated by flow cytometry (Guo Lab, unpublished), suggesting that the assembly still 

contains some allelic redundancy. One of the regions is a 1.1 Mb segment that appeared twice 

on Chr 1 (47,598,449-48,729,575 and 49,357,009-50,465,997). The duplicated segments had 

identical gene content and gene order. Duplicated gene pairs in the two segments had identical 

exon-intron structures and 98-100% similarity in coding sequences but varied greatly in intron 

sizes. The duplicated gene pairs included two copies of alternative oxidase, a single-copy gene 

in most invertebrates, which were 98% identical in coding sequence but differed greatly in intron 

sizes, and PCR amplification of intron 6 indicated the two copies were allelic haplotigs and not 

true paralogous duplications (data not shown).  



   
 

   
 

3.3 | Haplotig detection and masking 

Breaking up chimeric contigs based on sequencing coverage resulted in 1852 contigs (from the 

original 669) with an N50 of 885,077 bp.  The program Purge Haplotigs (Roach et al., 2018) 

identified 963 haplotigs (partial and whole contigs).  This resulted in 1171 primary contigs (non-

haplotigs) totaling 578,183,332 bp with an N50 of 9,802,061.  To retain compatibility with past 

studies and chromosome-level scaffolding, haplotigs were masked from the original assembly by 

substituting "Ns" for haplotig bases.  The final haplotig-masked genome contained the same 

684,741,128 bp of the original assembly with 100,438,362 bp masked and is archived at DOI: 

10.5281/zenodo.7448959.  Assessed initially using the original Illumina sequencing reads from the 

assembly, the masked version of the genome had a higher overall mean coverage (50.615X) 

compared to the original assembly (45.6445X) with a pronounced shift in 10kb intervals with an 

approximate diploid coverage peak (~65X) relative to intervals with haploid levels (~32.5X) of 

coverage (Figure 1).  Looking at total read mappings, multi-mapping reads, and filtered read 

mappings across 10kb chromosomal intervals, masked intervals showed a clear dip in coverage 

relative to diplotig regions in the original genome while in the masked version of the genome 

shows increased total and filtered read mappings in several regions (new diplotigs) while also 

decreasing overall rates of multi-mapping reads (Figure S1). 

3.4 | Haplotig masking increases read mappings and duplicate detections 

We generated over 3,558,207,970 read pairs for the resequencing portion of this project with an 

average of 39,535,644 +/- 1,018,131 read pairs per sample.  On average, 97.14% +/- 2.49% of 

reads were retained after quality trimming and adapter removal.  On average of 96.75% +/- 

2.48% trimmed reads mapped to the original genome, compared with 97.01% +/- 2.49% to the 

haplotig-masked genome.  For the original genome, 6.5% +/- 0.17% of mappings were marked 



   
 

   
 

as duplicates with 6.6% +/- 0.17% marked as duplicates for the haplotig-masked genome.  Per 

sample statistics for sequencing, read mapping, and percent of the genome covered can be 

found in Supplemental Table S8.   

3.5 | Completeness of genome 

Even though masking haplotigs removed over 100,000,000 bases from the original assembly, 

there was minimal impact on assembly completeness evaluated by BUSCO (Seppey et al., 

2019; Simão et al., 2015).  The original genome assembly had 5,158 complete (4,413 single 

copy, 745 duplicated), 34 fragmented, and 103 missing orthologs from the Mollusca-specific 

BUSCO database.  In contrast, the haplotig-masked assembly version had 5,146 complete 

(5,034 single copy, 112 duplicated), 39 fragmented, and 110 missing orthologs (Figure S2).  

BUSCO assignment can be dependent on contig length, so BUSCO scores were also compared 

from non-scaffolded contigs.  The original contigs had 5,156 complete (4,184 single copy, 972 

duplicated), 34 fragmented, and 105 missing orthologs while the primary contigs (non-haplotigs) 

had 5,138 complete (5,003 single copy, 135 duplicated), 44 fragmented, and 113 missing 

orthologs.  Using the Pacific Oyster, C. gigas, for comparison, the Qi et al. (2021) assembly of 

had 5,031 complete (4,836 single copy, 195 duplicated), 21 fragmented, and 243 missing 

orthologs and the Peñaloza et al. (2021) assembly had 5,198 complete (5,086 single copy, 112 

duplicated), 26 fragmented, and 71 missing orthologs (Figure S3). 

 

3.6 | Haplotig contigs in assemblies reduce SNP discovery  

Masking haplotigs increased the number of SNPs genotyped across all levels of filtering (Table 

3).  For the original assembly, 7,674,518 (3,580,098; MAF 5%) biallelic SNPs were kept after 



   
 

   
 

filtering compared to 12,149,052 (5,574,080; MAF 5%) for the haplotig-masked assembly.  SNPs 

included in this 36.83% increase were found in representative proportions of genomic 

annotations (18.61% exonic, 53.54% intronic, 27.85% intergenic) with relatively even increases 

across categories (38.69% exonic, 35.74% intronic, 36.97% intergenic).  The largest differences 

were in regions that switched from haploid to diploid coverage (new diplotigs) after masking 

(Figure 2).  In new diplotigs (looking at all SNPs with a MAF > 0.01), the original assembly 

produced only 95,667 SNPs after filtering compared to 3,381,377 SNPs in the same regions of 

the haplotig-masked assembly with 3,306,188 (97.78%) exclusive only to the haplotig-masked 

genome.  There were also 175,128 SNPs that were no longer present in the haplotig-masked 

genome with 98,589 of those SNPs found inside of haplotigs and 20,478 found inside new 

diplotigs.  Out of the 8,735,612 SNPs that were called within both genome versions, genotypes 

had a mean 99.62% concordance rate, and this rate was lower in new diplotigs (98.97%) vs 

other regions of the genome (99.97%).  Along with the number of SNPs genotyped, masking 

haplotigs had significant effects on the levels of inferred nucleotide diversity, heterozygosity, and 

FST values across the genome.   

3.7 | The presence of haplotigs greatly reduces estimates of nucleotide 

diversity 

Across all calculated measures of genomic diversity and structure, nucleotide diversity (π) was 

significantly and drastically affected by the presence of haplotigs in the genome assembly 

(Figure 2; Figure 3).  For comparison, values of π were averaged across 10kb windows, and for 

the original assembly the genome-wide average was 0.00382 +/- 1.93 x 10-5 compared to 

haplotig-masked 0.00587 +/- 2.20 x 10-5, and these two values differed significantly when 

evaluated with a t-test (t = 70.2; df=74574, p = 0).   When individual window values are 



   
 

   
 

visualized across the whole genome (Figure 3) or across single chromosomes (Figure 2) clear 

drops in diversity line up with identified haplotig regions.  There was also a clear increase in 

estimates of diversity in new diplotigs (Figure 4). Compared across new diplotigs only, the 

difference in nucleotide diversity was over an order of magnitude, with the original assembly 

average calculated to be 0.000321 +/- 7.6772 x 10-6 compared to 0.00720 +/- 4.68 x 10-5 for the 

haplotig-masked assembly.  This difference was also significant when evaluated with a one-

sided t-test (t = 145; df= 7794. p = 0). 

3.8 | Masking haplotigs increases estimates of heterozygosity 

The presence of haplotigs in the genome assembly had a more subtle, but statistically 

significant, effect on measures of heterozygosity compared to nucleotide diversity (Figure 2; 

Figure S4). When calculated over 10kb windows, the mean heterozygosity of the haplotig-

masked genome was 0.140 +/- 0.00249 compared to 0.136 +/- 0.00028 for the original genome 

assembly.  This small difference was statistically significant (t = 10.5; df = 74517; p < 2.74 x 10-

26; one-sided t-test). The distribution of heterozygosity differences between genome assemblies 

showed the greatest difference in new diplotigs (Figure S5). Mean heterozygosity for new 

diplotigs was significantly higher (t = 18.1; df=5980; p < 7.36 x 10-72; one-sided t-test) in the 

haplotig-masked assembly (0.142 +/- 0.00046) and had a lower variance compared to the 

original assembly (0.121 +/- 0.00102; Figure S5). 

3.9 | Haplotig-masking improves the accuracy of estimates of population 

structure and outlier detection 

Overall, the distribution of FST values was similar across the two genome versions, with the 

original assembly having a genome wide average of 0.124 +/- 0.000667 compared to the 



   
 

   
 

haplotig-masked genome-wide average of 0.120 +/- 0.000521.  This subtle difference was, 

however, significantly different when evaluated with a one-sided t-test (t = -49.2; df=6995427; p 

= 0.000).  Estimates of FST from the original genome also showed a greater variance than the 

estimates from the haplotig-masked genome, but in contrast to other population genetic 

statistics, the distribution of FST differences between genome assemblies did not show the 

greatest difference in new diplotigs (Figure 5; Figure S6).  The original genome had a mean FST 

estimate of 0.106 +/- 0.00598 similar to the haplotig-masked genome estimate of 0.109 +/- 9.7 x 

10-5.  Though, this difference was still statistically significant, (one-sided t-test; t = 4.81; 

df=34,218; p < 7.71 x 10-7).   

 

The low structure subset (LSS) showed similar patterns of FST values and differences between 

the two genomes with the original assembly having an average FST of 0.0278 +/- 4.8 x 10-5 and 

the haplotig-masked genome having an average FST of 0.0257 +/- 3.7 x 10-5 (Figure 6).  This 

difference was also significant (one-sided t-test; t = -35.6; df = 5980814; p < 7.55 x 10-278).   

Again, while variance in estimates was higher in new diplotig regions, the difference in means 

was less pronounced (Figure S7; original = 0.0181 +/- 0.000427; haplotig-masked = 0.0191+/- 

6.78 x 10-5) and was not significantly different (one-sided t-test; t = 0.779; df =29282; p = 0.218). 

 

Masking haplotigs had a larger effect on outlier loci detection, increasing the number of outliers 

detected by about 5%.  Using a false discovery rate of 5%, OutFLANK detected 158,057 outliers 

(4.4% of all loci) from data using the original genome assembly contrasted to 257,823 (4.6%) 

outliers detected from data using the haplotig-masked genome.  2,032 (1.28%) of the outliers 

detected with the original genome were not called SNPs in the haplotig-masked genome, with 

1,249 falling within masked haplotigs.  There were an additional 234 (0.15%) outliers from the 

original genome that were no longer significant in the haplotig-masked genome.  Restricting the 



   
 

   
 

outlier detection to the LSS, the number of total outliers detected using the original genome was 

27,721 (0.96% of all loci) and 38,712 (0.86%) using the haplotig-masked genome. The number 

of outliers from the original genome that were not present in the masked genome was 260 

(0.94%) with 122 (0.44%) loci that were present in the masked haplotigs.  58 (0.21%) outlier loci 

from the original genome were no longer significant in the masked genome.   

3.10 | Haplotigs reduce the number of detected structural variants 

After filtering, the program Delly detected 247,347 different structural variants (SVs) in the 

original genome compared to 279,390 SVs in the haplotig-masked genome.  The haplotig-

masked genome had more detections across all categories (Table 4).  While the original genome 

did have less variants detected, the average length was longer for every category of variant 

(Table 4).   When SVs were restricted to only those with no missing data across all individuals, 

more variants were still detected using the haplotig-masked genome; however, the mean sizes 

of each variant were either longer for the haplotig-masked genome or nearly identical for with 

variants detected using the original genome (Supplemental Table 9). 

3.11 | Haplotigs may not affect estimates of population frequency of copy 

number  

Delly was also used to call copy number from all samples, and copy number was used to 

calculate the statistical VST across both genomes.  Global estimates of VST were low for both 

genome versions (original- 0.0678 +/- 0.00105; haplotig-masked- 0.0663 +/- 0.000916), and they 

did not differ significantly (two-sided t-test; t = -1.10; df = 30,789; p = 0.864).  Looking at 

averages across 10kb windows, there was no clear pattern of differentiation between genome 

versions (Figure S8).  The difference was similar when individuals were restricted to the LSS 



   
 

   
 

with the original genome version having a global mean estimate of 0.0131 +/- 0.00084 compared 

to the estimate of 0.0122 +/- 0.00074.  This difference was also not statistically significant (two-

sided t-test; t = -0.83; df = 27,291; p = 0.406).  Looking across the 10kb windows, the differences 

between estimates appear to be randomly distributed around zero (Figure S9). 

4 | Discussion 

Here, we assembled an annotated, chromosome-level genome for the eastern oyster 

(Crassostrea virginica).  The original reference genome, publicly released in 2017, represents 

one of the most complete and contiguous genomes for a marine invertebrate species.  We also 

present an ad hoc method for detecting and masking haplotig sequences in an already published 

genome that improves coverage, decreases duplicated orthologs while having only nominal 

impacts on genome completeness.  Our results show that masking haplotigs in the eastern 

oyster genome drastically improved SNP and structural variant discovery.  Our results also 

demonstrate that haplotigs affected population genomic analyses, and that masking haplotigs 

improved many commonly used population statistics.  Taken together, we provide the original 

assembly and a haplotig-masked genome assembly that will be foundational resources for 

insights into molluscan adaptation to a changing environment and a valuable resource for the 

aquaculture industry. 

 



   
 

   
 

4.1 | A chromosome-level genome for an important ecosystem 

engineer and aquaculture and fisheries species 

The eastern oyster genome represents a similar level of contiguity and completeness compared 

to the Pacific oyster (Supplemental table 3; Supplemental Figure S3) and several other 

published molluscan genomes (Table 2). More broadly, most whole genome assemblies 

currently available for non-model marine species are fragmented and incomplete (Du et al. 2017; 

Powell et al. 2018; Gerdol et al. 2020).  The C. gigas genome was first published in 2012 (Zhang 

et al., 2012) with updates published by two separate groups in 2021 (Peñaloza et al., 2021; Qi, 

Li, & Zhang, 2021).  The two updated C. gigas assemblies are now chromosome-level along with 

the eastern oyster genome.  The eastern oyster assembly is more complete than the Qi et al. 

(2021) C. gigas assembly and is comparable to the Peñaloza et al. (2021) C. gigas assembly, 

despite the primary assembly being done several years prior.  The haplotig-masked version for 

C. virginica has less duplicates than the Qi et al. (2021) C. gigas assembly and nearly the same 

level of duplication as the Peñaloza et al. (2021) C. gigas assembly, even though haplotigs were 

masked post hoc. The two species have similar numbers of protein coding genes detected, 

though the higher number for C. virginica may have been influenced by the haplotigs present in 

the original assembly.  A shortcoming of the eastern oyster assembly is the mis-assembly of 

several chromosomal fragments as revealed by the linkage map, which can be corrected in a 

future assembly.  In short, the original eastern oyster genome assembly represents a significant 

advancement for molluscan and marine invertebrate genomics in its completeness, and the post 

hoc haplotig masking represents a novel way to reduce haplotig sequence without sacrificing 

genome completeness. 



   
 

   
 

4.2 | A method for post hoc improvement of existing genomic 

resources 

A genome assembly represents an advance in knowledge for any one species as well as a 

powerful tool for a wide variety of scientific studies.  A caveat to a published assembly, or 

assembly version, is that it represents a single snapshot of a resource that can continually 

improve over time with both technological improvements and the acquisition of additional high-

quality data.  Assembly improvements, however, take time, computational and financial 

resources, and do not always proceed continuously over time or by the same group of 

researchers.  In this study, we have presented a simple methodology for improving existing 

genome assemblies by masking haplotigs.  Looking only at the data generated from the single 

sequenced genome individual, haplotig-masking greatly improved genome coverage, reducing 

the number of windows at "haplotig" coverage levels and increasing the windows at "diplotig" 

coverage levels.  Examining read coverage across an exemplar chromosome, areas outside of 

masked haplotigs that were previously at "haplotig coverage" levels shifted clearly to "diplotig 

coverage levels".  Most importantly, even though haplotig-masking effectively removed over 100 

mb of data, it did not affect genome completeness.  The haplotig-masked genome was 99.8% as 

complete as the original genome but had 85% less duplications (as estimated by BUSCO 

analysis).   

 

We suspect that the weak point of our method is the breakup of chimeric contigs.  The sliding 

window approach used for this analysis was a simple and successful approach but could be 

improved by a more sophisticated analysis looking at fine scale patterns of coverage changes 

statistically, or even incorporating original contig assembly graphs.  We also exclusively relied on 



   
 

   
 

the program Purge Haplotigs (Roach et al., 2018), and there are new methods and programs, 

such as HapSolo (Solares et al., 2021) that may be able to offer improvements to our 

implementation as well. 

 

4.3 | Haplotigs impact population genomic analyses 

An accurate reference genome can enhance our understanding of genome structure, 

mechanisms promoting genetic diversity and population differentiation, the genetic basis for 

complex traits, and allow for the investigation of natural and anthropogenic selection (Ekblom & 

Galindo, 2010; Ellegren, 2014; Fonseca et al., 2016), but mis-assemblies, especially false 

duplications arising from heterozygosity, can negatively impact SNP discovery (Kelley & 

Salzberg, 2010; Roach et al., 2018; Solares et al., 2021).  We found that the presence of 

haplotigs in our original assembly greatly impacted SNP discovery, structural variant detection, 

and significantly impacted all the population genomic statistics that we calculated, including 

nucleotide diversity, observed heterozygosity, FST, and VST.  The most striking differences were 

in SNP discovery, where across different data subsets and filtering criteria, the haplotig-masked 

genome had between 55%-58% more SNPs than the original genome in our resequencing data 

when any missing data filters were applied, and these differences were most prominent in 

regions that had coverage increased to diplotig levels after masking.  This fits with first-principal 

expectations that loss of coverage of one allele could lead to a true SNP being mistakenly called 

an invariant portion of the genome.  Interestingly, there was also a small percentage of SNPs 

(2.28% of all SNPs) that were called in the original genome but not the haplotig-masked. The 

vast majority were inside haplotigs that were masked, but there were some (20,478; 0.27%) that 



   
 

   
 

were in new diplotig regions, indicating that haplotigs do lead to false positive SNPs in one or 

both allelic copies.   

 

Though discovery was vastly different, SNPs that were genotyped in both genome versions had 

very high concordance in genotyping (99.62%), though slightly lower in new diplotig regions 

(98.97%).  The high concordance in shared loci lends confidence to any previous results from 

genomes with potentially small percentages of haplotigs.  Though, it should be noted that our 

results are for genotyped SNPs with moderate (10X-20X) coverage levels per individual and that 

haplotigs could potentially have a larger effect on low-coverage whole-genome sequencing 

studies that rely on less coverage per individual and genotype likelihoods instead of genotypes 

(Lou, Jacobs, Wilder, & Therkildsen, 2021; Lou & Therkildsen, 2022; Matz, 2017).   

 

Perhaps the most important implication of our results is that haplotigs have a large and 

significant effect on estimates of nucleotide diversity.  Estimates of nucleotide diversity were over 

50% higher in the haplotig-masked genome, and this is likely directly attributable to the 55% 

increase in SNP discovery.  This is because the more SNPs within a 10kb window, the more likely 

it is to draw two different haplotypes.  The effect of haplotig-masking on nucleotide diversity was 

most prevalent in new diplotig regions, which in the original genome had estimates of π of close 

to zero because of a lack of SNPs. For researchers using genomic tools to assess genetic 

diversity, whether in a conservation application (L. M. Benestan et al., 2016) or a fisheries 

application (L. Benestan, 2020) of high heterozygosity species, haplotig-masking of existing 

genomic resources should be a critical step before population-level assessment.   

 

In contrast to nucleotide diversity, our results suggest that haplotigs have only a minor impact on 

overall estimates of heterozygosity.  The haplotig-masked genome did have significantly higher 



   
 

   
 

estimates of heterozygosity than the original genome, but the difference was approximately 3% 

across the whole genome and 17.5% in new diplotig regions.  The subtle difference is likely due 

to the high concordance of shared genotypes between the two genome versions, as observed 

heterozygosity is simply a proportion of variable loci that are heterozygous and not greatly 

affected by differences in SNP discovery.   

 

The results from our population structure and outlier detection analyses were more nuanced.  

Estimates of global FST were 3.33% larger, on average, estimated from the original genome 

version compared to the haplotig-masked genome using the full data set; however, there was a 

much larger difference in estimates when using the lower structure subset with the original 

genome having estimates that were 8.2% larger on average than the haplotig-masked genome.  

Not only did haplotigs inflate estimates of FST, but they also increased the variance of those 

estimates; the original genome estimates had a standard error 28% higher than the haplotig-

masked genome in the full dataset and 29% in the LSS.  The increase in variance had 

implications for outlier detection.  1,483 out of 158,057 outliers that were significant in the full 

dataset analysis using the original genome were either not significant or no longer present in the 

analysis with the haplotig-masked genome.  For the lower structure subset, there were 180 

outliers out of 27,721 that were missing or non-significant.  The differences we observed were 

small but consistent, and there are some potential caveats to our analysis.  First, our per locality 

sample sizes were small (only six individuals per population), and this likely affected the power 

we had to detect small allele frequency differences.  Second, our SNPs were genotyped at 

moderate coverage levels and highly filtered, tolerating no missing data.  Missing data may 

potentially interact with haplotig effects to alter allele frequencies, but we did not test this in our 

study.  Lastly, we only examined global population structure and pairwise estimates may have 

different patterns due to smaller sample sizes and potentially even smaller background levels of 



   
 

   
 

population structure.  Taken all together, haplotigs have a small but consistent and significant 

effect on estimates of population structure, and there are still potential haplotig effects that 

remain unknown.  

 

Understanding the role of structural variants in adaptation and population structure has taken a 

more prominent role in molecular ecology (Bazzicalupo et al., 2020; Mérot, Oomen, Tigano, & 

Wellenreuther, 2020; Nelson et al., 2019; Prunier et al., 2019; Wellenreuther, Mérot, Berdan, & 

Bernatchez, 2019).  Our analysis indicates that while haplotigs do affect structural variant 

detection and discovery, haplotigs do not affect estimates of differentiation based on copy 

number variation.  We found that analysis with the haplotig-masked genome found more 

structural variants than the original genome, though all variants were smaller on average in the 

haplotig-masked genome.  The differences in length did virtually disappear if the analysis was 

restricted to only variant calls without missing data.  Estimates of VST were virtually identical 

between genome versions for the full data set, and there was a small but non-significant 

difference when using the lower structure subset.  We only used one program to estimate both 

copy number variation and identify structural variants, and our analysis may have benefited from 

a stand-alone estimation of copy number variation.  We also only had moderate levels of per 

sample coverage (10X-20X) this may have limited our power to detect differences in copy 

number variation between genome versions.   

5 | Conclusion 

In this manuscript, we present a chromosome-level genome assembly of the eastern oyster 

(Crassostrea virginica), and we describe an ad-hoc method for masking haplotig sequences, 

including chimeric contigs, within an existing assembly.  We show that haplotig masking 



   
 

   
 

improves read mapping, genome coverage, and SNP discovery.  The haplotig-masked genome 

greatly reduced duplicated orthologs, while still maintaining one of the highest levels of genome 

completeness and continuity for molluscan genomes.  Resequencing data shows that haplotig-

masking greatly improves estimates of nucleotide diversity and offers subtle but significant 

improvements to estimates of heterozygosity population structure, and outlier detection.  The 

eastern oyster genome (original and haplotig-masked) will help support both fundamental, 

applied, and conservation research on a critical ecosystem species and one of the largest 

aquaculture species in North America. 
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Tables and Figures 

Tables 

Table 1. Assembly statistics: 

SCAFFOLDS   

   COUNT 358 

   LENGTH 685,793,667 bp 

   AVG 1,915,624 bp 

   N50 2,791,541 (2,791,483) 2,738,754 bp 

   LARGEST 12,680,670 bp (ID: LG2_scaffold1_size12680670, 
BASES_ONLY_LENGTH: 12,679,178) 

Scaffold size distribution Number (Average Length) 

   Scaffolds > 1M 232 (613,681,101 bp) 

   Scaffolds 250K - 1M 111 (69,888,768 bp) 

   Scaffolds 100K - 250K 12 (2,060,638 bp) 

   Scaffolds 10K - 100K 3 (163,160 bp) 

   Scaffolds 5K - 10K 0 (0 bp) 

   Scaffolds 2K - 5K 0 (0 bp) 

   Scaffolds 0 - 2K 0 (0 bp) 

CONTIGS   

   COUNT 670 

   LENGTH 684,663,495 

   AVG 1,021,885 

   N50 1,975,305 (1,971,208) 1,921,126 

   LARGEST   9,802,061 

Contig size distribution Number (Average Length) 

   Contigs > 1M 238 (522,420,151 bp) 

   Contigs 250K - 1M 243 (145,713,162 bp) 



   
 

   
 

   Contigs 100K - 250K 72 (12,359,820 bp) 

   Contigs 10K - 100K 94 (4,065,194 bp) 

   Contigs 5K - 10K 11 (71,898 bp) 

   Contigs 2K - 5K 9 (29,295 bp) 

   Contigs 0 - 2K 3 (3,975 bp) 

 



   
 

   
 

Table 2- Comparison to published molluscan genomes 

Species Publication Individual sequenced 
Genome Size 

(Mb) 

Number of 
Chromosomes 

Assembled Scaffold N50 Scaffold # Completeness Genes Repeat % 
Crassostrea virginica This  study Gynogen after 12 

generations of inbreeding 
Original- 685.7 
Masked- 584.3 

10 54,000,000 358 Original- 97.4% 
Masked-97.2% 

34,596 33% 

Lottia gigantea (Simakov et al., 2013) Wi ld s ingle male gonad 359.5 NA 1870 4475 NA 23800 21% 

Crassostrea gigas (Zhang et al., 2012).   4th gen inbred female 559 NA 401,319 401 95-99%†   28027 36%  

 (Qi  et a l., 2021) One female from a  farm 586.8 10 60,957,391 10‡  92.5% 
(BUSCO) 

30078 57.2% 

 (Peñaloza et al., 2021) Inbred aquaculture female 647.8 10 58,462,999 236 95.6% 
(BUSCO) 

30724 43% 

Mytilus coruscus (Yang et al., 2021) Wi ld female 1566.5 14 99542347 4434 89.4% 
(BUSCO) 

37478 47% 

Octopus bimaculoides (Albertin et al., 2015). Wi ld 2371.5 NA 466,100 379,696 97%§ 33638 45%  

Octopus minor (Kim et a l., 2018) Unknown 5090 NA 196941 41584 76.2% 
(BUSCO) 

30,010 44.% 

Mytilus galloprovincialis (Murgarella et al., 
2016) 

one ind from Vigo, Spain 1,600 NA 2,600 1.7M 16%  
(CEGMA)  

10891 36%  

Pinctada fucata 
martensii 

(Du et a l., 2017) 3rd generation selected 
individual 

990 NA 324,000 939 82.8%  
(BUSCO) 

32973 Not 
reported 

Saccostrea glomerata (Powell et al., 2018) s ingle female; 6th 
generation from selective 
breeding program 

estimated: 784 
assembly: 788 

NA 804,200 10,017 87.2%  
(BUSCO and 
CEGMA) 

29738 45%;  

Haliotis rufescens (Masonbrink et al., 
2019) 

one female and one male 
cul tured, bred from CA 

estimated=1800; 
assembly =1498 

NA 1,900,000 8400 95.1%  
(BUSCO) 

57785;  33% 

Octopus vulgaris (Zarrella et a l., 2019) wi ld caught adult male estimated=2798 
assembly=1780 

NA 263,097 77,683 50%  
(BUSCO) 

Unknown¶ >50% 

Haliotis laevigata (Botwright et al., 2019) one cultured female estimated=1540; 
assembly=1760 

NA 86,805 63,588 86.6%  
(BUSCO) 

55,164 NA 

Mytilus galloprovincialis (Gerdol et a l., 2020) s ingle female assembly 1280 NA 207,640 10,577 NA††  60,338  43%  

Table 2- Comparison to published molluscan genomes. Table summarizes data from comparable molluscan genomes.  For genomes where 
completeness was evaluated with BUSCO, the metazoan reference was used except for C. virginica which used the Molluscan reference, P. fucata 
martensii and Octopus minor where the reference was not specified. 
†Evaluated by mapping short reads,sanger-sequenced BACs, and transcripts to the assembly 



   
 

   
 

‡Only reported chromosome scaffolds.  Unclear if there were unplaced scaffolds. 
§Evaluated by mapping transcripts with predicted ORFs back to the genome 
¶23,509 O. b imaculoides genes were covered at 90% of coding sequence by O. vulgaris reads. 
††Evaluated with BUSCO and CEGMA but did not include actual completeness numbers; said that this assembly was less complete than previous versions, but most duplication 
issues were resolved 



   
 

   
 

Table 3. SNP Results 

Filtering Level Original Genome Haplotig-masked Genome 

Initial bioinformatic filtering 45,427,924 52,971,541 

No missing data, MAF >0.01 8,910,740 14,103,332 

No missing data, MAF >0.01, 2 alleles 7,674,518 12,149,052 

No missing data, MAF >0.05 4,299,397 6,699,719 

No missing data, MAF >0.05, 2 alleles 3,580,098 5,574,080 

Low Structure Subset   

No missing data, MAF >0.05, 2 alleles 2,872,577 4,482,328 
 

Table 4. All Structural Variants Detected 

 Type Number 
detected 

Mean Length S.E. Length 

Haplotig-Masked Translocation 33,012 NA NA 

 Deletion 216,912 823 22 

 Duplication 15,347 14,784 464 

 Insertion 7,310 28 0 

 Inversion 6,808 118,478 2,857 

Original Translocation 27,838 NA NA 

 Deletion 192,011 796 21 

 Duplication 13,155 17,358 585 

 Insertion 6,351 28 0 

 Inversion 7,992 243,679 3,489 
 

  



   
 

   
 

Figure Legends 
Figure 1- Histogram of read coverage across both genome versions.  Paired-end Illumina 
reads used for polishing the original genome assembly were mapped back to the two genome 
versions.  Filtered read coverage was averaged across 10kb windows and plotted as a 
histogram with bins colored by genome: gray for the original and orange for the haplotig-masked 
genome.  
 
Figure 2- Comparison of coverage, SNPs, FST, Heterozygosity and Nucleotide diversity 
across original and haplotig-masked assembly.  Across both assemblies, coverage, the 
number of SNPs, FST, heterozygosity, and nucleotide diversity were averaged across ten 
kilobase windows of Chromosome 2 (NC_03578.1).  For coverage (Panel A), FST (Panel C), 
heterozygosity (Panel D), and nucleotide diversity (Panel E), points are the values per 10 kb 
window with lines drawn as rolling 3-point averages, and the number of SNPs are plotted as an 
area plot.  Areas along the chromosome shaded in gray were identified as haplotigs and 
therefore have no data for the haplotig-masked genome.  Areas shaded in yellow are non-
masked regions that showed a shift from haploid to diploid coverage levels after haplotig-
masking.  For all plots, blue is the original genome and purple is the haplotig-masked genome. 
 
Figure 3- Comparison of nucleotide diversity across the original and haplotig-masked 
assembly.  Panel (A) is values of π averaged across 10kb windows across the original 
genome. Panel (B) panel is values of π averaged across 10 kb windows across the haplotig-
masked genome. Panel (C) is the difference between the original and the haplotig-masked 
values in 10kb windows across the entire genome. Panel (D) is a violin and boxplot of 10kb 
averaged values between the two genome versions.  For all plots, blue is the original genome 
and purple is the haplotig-masked genome. 
 
Figure 4- Comparison of nucleotide diversity across the original and haplotig-masked 
assembly in newly diplotig regions.  Panel (A) is values of π averaged across 10kb windows 
in the original genome that changed to diploid coverage levels after haplotig-masking. Panel (B) 
panel is values of π averaged across in the same 10kb new diplotig windows across the 
haplotig-masked genome. Panel (C) is the difference between the original and the haplotig-
masked values in 10kb windows across the entire genome with dot size directly related to the 
distance from zero. Panel (D) is a boxplot of 10kb averaged values between the two genome 
versions.  For all plots, blue is the original genome and purple is the haplotig-masked genome. 
 
Figure 5- Comparison of estimates of FST across the original and haplotig-masked 
genomes.  Panel (A) is values of FST averaged across 10kb windows in the original genome.  
Windows that contained any outlier SNP loci were changed to triangles (16,864 windows). 
Panel (B) panel is values of FST averaged across 10kb windows across the haplotig-masked 
genome. Windows that contained any outlier SNP loci were changed to triangles (22,182 
windows). There were 39 windows with SNPs that were identified as outliers in the original 
genome analysis but not in the haplotig-masked analysis, and these windows are marked as 
upside-down blue triangles.  Panel (C) is the difference between the original and the haplotig-
masked values in 10kb windows across the entire genome with dot size directly related to the 
distance from zero. There were 39 windows with SNPs that were identified as outliers in the 
original genome analysis but not in the haplotig-masked analysis, and these windows are 
marked as upside-down blue triangles.   Panel (D) is a violin and boxplot of 10kb averaged 
values between the two genome versions.  For all plots, blue is the original genome and purple 
is the haplotig-masked genome. 
 



   
 

   
 

Figure 6- Comparison of estimates of FST from the low structure subset (LSS) across the 
original and haplotig-masked genomes.  Estimates of FST were calculated using the low 
structure subset (LSS) to examine how haplotigs affect population structure inference in a lower 
signal system. Panel (A) is values of FST averaged across 10 kb windows in the original 
genome.  Windows that contained any outlier SNP loci were changed to triangles (4,993 
windows). Panel (B) panel is values of FST averaged across 10kb windows in the haplotig-
masked genome. Windows that contained any outlier SNP loci were changed to triangles (3,825 
windows). There were 31 windows with SNPs that were identified as outliers in the original 
genome analysis but not in the haplotig-masked analysis, and these windows are marked as 
upside-down blue triangles.  Panel (C) is the difference between the original and the haplotig-
masked values in 10kb windows across the entire genome with dot size directly related to the 
distance from zero. There were 31 windows with SNPs that were identified as outliers in the 
original genome analysis but not in the haplotig-masked analysis, and these windows are 
marked as upside-down blue triangles.   Panel (D) is a violin and boxplot of 10kb averaged 
values between the two genome versions.  For all plots, blue is the original genome and purple 
is the haplotig-masked genome. 
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Figure 1- Histogram of read coverage across both genome versions 

Full resolution figure available (here) 



   
 

   
 

Figure 2- Comparison of coverage, SNPs, FST, Heterozygosity, and Nucleotide diversity across 

original and haplotig masked assembly 

 

Full resolution figure available (here) 



   
 

   
 

 

Figure 3- The effect of haplotigs in estimates of nucleotide diversity  

 

Full resolution figure available (here) 
 



   
 

   
 

 

Figure 4- The effect of haplotigs in estimates of nucleotide diversity in diplotigs 

 

Full resolution figure available (here) 



   
 

   
 

Figure 5- The effect of haplotigs in estimates of FST across the genome 

 

Full resolution figure available (here) 
  



   
 

   
 

Figure 6- The effect of haplotigs in estimates of FST across the genome within the low structure subset 

 

Full resolution figure available (here) 
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